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Abstract: In this paper, we study several constrainted least squares solutions of quaternion Sylvester matrix equation. We first propose
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1. Introduction

First some necessary notations are given to make this
paper more fluid. R\Q represent the real number field
and quaternion skew-field, respectively. Rt represents the
set of all real column vectors with order t. Rm×n\Qm×n

represent the set of all m × n real \quaternion matrices,
respectively. ηHQn×n\ ηAQn×n represent the set of all n ×

n quaternion η − Hermitian matrix and quaternion η −

anti − Hermitian matrices, respectively. In represents the
unit matrix with order n. δi

n represents the ith column of
unit matrix In. AT , AH , A† stands for the transpose, the
conjugate transpose, Moore-Penrose(MP) inverse of matrix
A, respectively. ⊗ represents the Kronecker product of
matrices. n represents the semi-tensor product of matrices.
‖·‖ represents the Frobenius norm of a matrix or Euclidean
norm of a vector.

In the process of studying the theory and numerical
calculation of mathematical and physical problems, it
is often necessary to solve the approximate solution of
quaternion linear system, which also have wide applications
in computer science, quantum physics, statistic, signal
and color image processing, rigid mechanics, quantum

mechanics, control theory, field theory and so on [1–9].
Many researchers are interested in quaternion linear system
and use different methods to get a lot of results [10, 11]. In
this paper, we are interested in the Sylvester equation

AXB + CYD = E (1.1)

over quaternion algebra. η − Hermitian matrix and η −

anti − Hermitian matrix are two kind of important matrices
in linear modeling and convergence analysis in statistical
signal processing [12, 13]. As for the special Hermitian
solution of the Sylvester equation, the following literatures
are available. Ling et al came up with iterative algorithms for
the η -Hermitian and η-bi Hermitian solutions with minimal
norm for quaternion least squares problem [14]. Yuan et al.
studied η -Hermitian and η-anti-Hermitian solutions to the
quaternion matrix equations [15, 16]. Liu considered the η-
anti-Hermitian solution for the quaternion matrix equations
AX = B, AXB = C, AXAη∗ = B, EXEη∗ + FYFη∗ =

H, and established general expressions of solutions [17].
Rehman et al. mentioned some necessary and sufficient
conditions for the existence of the solution to the system of
real quaternion matrix equations including η−Hermicity and
also constructed the general solution to the system when it
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is consistent [18].
In this paper, we will propose a new method to solve the

special least squares problems of (1.1) by using a powerful
tool-the semi-tensor product of matrices. The semi-tensor
product(STP) is a new matrix product, which generalizes
the conventional matrix product to two arbitrary matrices.
The conventional multiplication of matrix is limited of
dimension and non-commutativity. The semi-tensor product
breaks through the limitation of dimension and satisfies
quasi-commutative. It has been proved to be extremely
useful in many fields such as the coloring problem [19], the
design of shifting register [20], the fault detection [21] and
so on. In addition, since the dynamics of a finite game can be
modeled as a logical network [22], the semi-tensor product
method has also been applied to the study of game theory
[23, 24]. In this paper, we will convert the least squares
problems of quaternion matrix equation to the corresponding
real problems by using the semi-tensor product. Our specific
problem is as follows:

Problem 1. Let A ∈ Qm×n, B ∈ Qn×s, C ∈ Qm×k, D ∈

Qk×s, E ∈ Qm×s, and

S M=
{
(X,Y)|X ∈ηHQn×n,Y ∈ηAQk×k,‖AXB+CYD − E‖=min

}
.

Find out (X̂, Ŷ) ∈ S M such that∥∥∥X̂
∥∥∥2

+
∥∥∥Ŷ

∥∥∥2
= min

X ∈ ηHQn×n

Y ∈ ηAQk×k

{
‖X‖2 + ‖Y‖2

}
(X̂, Ŷ) is called minimal norm least squares mixed solution
of (1.1).

This paper is arranged as follows. In Section 2, we
recall some preliminary results on quaternion matrix and
STP used in the paper. In Section 3, we propose a new
kind of real vector representation of a quaternion matrix and
survey its properties. In Section 4, we study the solutions
of Problem 1 by applying the real vector representation of
quaternion matrix, the special structure of solutions and STP.
In Section 5, we give a numerical experiment to illustrate
the effectiveness of the method. In Section 6, we make some
concluding remarks.

2. Preliminaries

Definition 2.1. [25] A quaternion q ∈ Q is expressed as

q = a + bi + cj + dk,

where a, b, c, d ∈ R, and three imaginary units i, j,k satisfy

i2 = j2 = k2 = ijk = −1, ij = −ji = k,

jk = −kj = i, ki = −ik = j.

Q is clearly an associative but non-commutative algebra of

rank four over R, called quaternion skew-field.

Let A = A1 + A2i + A3j + A4k ∈ Qk×k, where Ai ∈ R
k×k (i =

1, 2, 3, 4). The matrix AiH , AjH , AkH are defined as below

AiH = −iAHi = AT
1 − AT

2 i + AT
3 j + AT

4 k,

AjH = −jAHj = AT
1 + AT

2 i − AT
3 j + AT

4 k,

AkH = −kAHk = AT
1 + AT

2 i + AT
3 j − AT

4 k.

Definition 2.2. [26] Let A ∈ Qk×k, η = i, j,k. If AηH = A,

then A is η-Hermitian. If AηH = −A, then A is η-anti-

Hermitian. For A = A1 + A2i + A3j + A4k ∈ Qk×k, by

Definition 2.1, we can obtain

(1)For η=i, A ∈ ηHQk×k ⇐⇒ AT
2 =−A2, AT

s =As, s = 1, 3, 4.

(2)For η=j, A ∈ ηHQk×k ⇐⇒ AT
3 =−A3, AT

s =As, s = 1, 2, 4.

(3)For η=k, A ∈ ηHQk×k ⇐⇒ AT
4 =−A4, AT

s =As, s = 1, 2, 3.

Similarly, we have

(4)For η=i, A ∈ ηAQk×k ⇐⇒ AT
2 =A2, AT

s =−As, s = 1, 3, 4.

(5)For η=j, A ∈ ηAQk×k ⇐⇒ AT
3 =A3, AT

s =−As, s = 1, 2, 4.

(6)For η=k, A ∈ ηAQk×k ⇐⇒ AT
4 =A4, AT

s =−As, s = 1, 2, 3.

Definition 2.3. [27] Let A ∈ Rm×n, B ∈ Rp×q, the semi-

tensor product of A and B is denoted by

A n B = (A ⊗ It/n)(B ⊗ It/p),

where t = lcm(n, p) is the least common multiple of n and p.

If n = p, the semi-tensor product of matrices reduces to
the conventional matrix product.

Theorem 2.1. [27]Assume that A, B, C are real matrix

with appropriate sizes , a, b ∈ R , then

(1) (Distributive law)

A n (aB ± bC) = aA n B ± bA nC,

(aA ± bB) nC = aA nC ± bB nC.
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(2) (Associative law)

(A n B) nC = A n (B nC).

(3) Assume that x ∈ Rm, y ∈ Rn, then

x n y = x ⊗ y.

The semi-tensor product of a matrix and a vector has the
following properties of quasi-commutativity.

Theorem 2.2. [27] Let x ∈ Rt, A ∈ Rm×n, then

x n A = (It ⊗ A) n x.

Definition 2.4. [28] Let x ∈ Rm, y ∈ Rn, then

W[m,n](x n y) = y n x,

in which

W[m,n] = δmn[1, · · · , (n − 1)m + 1, · · · , m, · · · , nm],

where δk[i1, · · · , is] is an abbreviation of [δi1
k , · · · , δ

is
k ].

Especially, when m = n, we denote W[n] := W[n,n].

The following results are the well-known conclusions of
matrix equations.

Theorem 2.3. [29] The least squares solutions of the matrix

equation Ax = b, with A ∈ Rm×n and b ∈ Rm, can be

represented as

x = A†b + (I − A†A)y,

where y ∈ Rn is an arbitrary vector. The minimal norm least

squares solution of the matrix equation Ax = b is A†b.

Theorem 2.4. [29] The matrix equation Ax = b, with A ∈

Rm×n and b ∈ Rm, has a solution x ∈ Rn if and only if

AA†b = b.

In this case it has the general solution

x = A†b + (I − A†A)y,

where y ∈ Rn is an arbitrary vector.

3. A new kind of real vector representation of a
quaternion matrix and its properties

In this section, we will propose the concept of real
vector representation of a quaternion matrix and study its
properties. First we define real staking form of x ∈ Q.

Definition 3.1. Let x = x1 + x2i + x3j + x4k ∈ Q, denote

vR(x) = (x1, x2, x3, x4)T ,

vR(x) is called as the real staking form of x.

By means of structure matrix and the real stacking form,
we can express the product of two quaternions by the semi-
tensor product of matrices.

Theorem 3.1. Let x, y ∈ Q, then

vR(xy) = MQ n vR(x) n vR(y), (3.1)

where

MQ =

(
1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 −1 0
0 0 1 0 0 0 0 −1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 −1 0 0 1 0 0 0

)

is the structure matrix of multiplication of quaternion.

Combining the real stacking form of a quaternion with
vec operator of a real matrix, we propose a new kind
of real vector representation of a quaternion matrix. For
this purpose, we first propose the real stacking form of a
quaternion vector as follows.

Definition 3.2. Let x = (x1, · · · , xn), y = (y1, · · · , yn)T be

quaternion vectors. Denote

vR(x) =


vR(x1)
...

vR(xn)

 , vR(y) =


vR(y1)
...

vR(yn)


vR(x) and vR(y) are called as the real staking form of

quaternion vector x and y, respectively.

Now we define the concepts of the real column stacking
form and the real row stacking form of a quaternion matrix
A.

Mathematical Modelling and Control Volume 1, Issue 2, 112–120
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Definition 3.3. For A ∈ Qm×n, denote

vR
c (A) =


vR(Col1(A))
vR(Col2(A))

...

vR(Coln(A))


, vR

r (A) =


vR(Row1(A))
vR(Row2(A))

...

vR(Rowm(A))


,

vR
c (A) and vR

r (A) are called the real column stacking form

and the real row stacking form of A, respectively.

We can prove that this real vector representation has
the following properties with respect to vector or matrix
operations.

Theorem 3.2. Let x = (x1, x2, · · · , xn), x̌ = (x̌1, x̌2, · · · , x̌n),
y = (y1, y2, · · · , yn)T , xi, x̌i yi ∈ Q, a ∈ R, then

(1) vR(x + x̌) = vR(x) + vR(x̌),

(2) vR(ax) = avR(x),

(3) vR(xy) = MQ n

 n∑
i=1

(δi
n)T n (I4n ⊗ (δi

n)T )

 n vR(x) n vR(y).

Proof. By simply computing, we know (1), (2) hold. We
only give a detailed proof of (3). Using (3.1), we have

vR(xy) =vR(x1y1 + · · · + xnyn)
=MQ n vR(x1) n vR(y1) + · · · + MQ n vR(xn) n vR(yn)

=MQ n

(
n∑

i=1
vR(xi) n vR(yi)

)
=MQ n

(
n∑

i=1
(δi

n)T n vR(x) n (δi
n)T n vR(y)

)
=MQ n

(
n∑

i=1
(δi

n)T n (I4n ⊗ (δi
n)T )

)
n vR(x) n vR(y).

By using Theorem 3.2, we can drive the following result
on the real vector representation of multiplication of two
quaternion matrices.

Theorem 3.3. Let A, Ǎ ∈ Qm×n, B ∈ Qn×p, α ∈ R, then

(1) vR
r (A + Ǎ) = vR

r (A) + vR
r (Ǎ), vR

c (A + Ǎ) = vR
c (A) + vR

c (Ǎ),

(2) ‖A‖ = ‖vR
r (A)‖ = ‖vR

c (A)‖,

(3) vR
r (AB) = G(vR

r (A) n vR
c (B)),

in which

F = MQ n

 n∑
i=1

(δi
n)T n (I4n ⊗ (δi

n)T )

 ,

G =



Fn(δ1
m)Tn[I4mn⊗(δ1

p)T ]

...
Fn(δ1

m)Tn[I4mn⊗(δp
p)T ]

...
Fn(δm

m)Tn[I4mn⊗(δ1
p)T ]

...
Fn(δm

m)Tn[I4mn⊗(δp
p)T ]


.

Proof. We only prove the equality in (3). We partition A

and B with its rows or columns as follows ,

A =


Row1(A)
Row2(A)

...

Rowm(A)


, B =

(
Col1(B) Col2(B) · · · ,Colp(B)

)
.

Then we have

vR
r (AB) =



vR(Row1(A)Col1(B))
...

vR(Row1(A)Colp(B))

...
vR(Rowm(A)Col1(B))

...
vR(Rowm(A)Colp(B))


=



FnvR(Row1(A))nvR(Col1(B))
...

FnvR(Row1(A))nvR(Colp(B))

...
FnvR(Rowm(A))nvR(Col1(B))

...
FnvR(Rowm(A))nvR(Colp(B))



=



Fn[(δ1
m)TnvR

r (A)]n[(δ1
p)TnvR

c (B)]

...
Fn[(δ1

m)TnvR
r (A)]n[(δp

p)TnvR
c (B)]

...
Fn[(δm

m)TnvR
r (A)]n[(δ1

p)TnvR
c (B)]

...
Fn[(δm

m)TnvR
r (A)]n[(δp

p)TnvR
c (B)]



=



Fn(δ1
m)Tn[I4mn⊗(δ1

p)T ]

...
Fn(δ1

m)Tn[I4mn⊗(δp
p)T ]

...
Fn(δm

m)Tn[I4mn⊗(δ1
p)T ]

...
Fn(δm

m)Tn[I4mn⊗(δp
p)T ]


(vR

r (A) n vR
c (B)).

4. The solutions of Problem 1

In this section, we study the solutions of Problem 1. First,
Through the structural characteristics of η-Hermitian matrix
and anti-η-Hermitian matrix, we can find a large number of
repeated elements in the matrices. In order to reduce the
calculation order of quaternion matrix equation (1.1), we can
extract some elements as independent elements, and express
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the whole matrix by independent elements. The specific
contents are as follows.

Theorem 4.1. Let X ∈ ηHQn×n η = i, j,k, denote

LXi =


xii

xi(i+1)
...

xin


, (i = 1, 2, · · · , n), vR

s (X) =


vR(LX1)
vR(LX2))

...

vR(LXn)


.

Then

vR
c (X) = JηvR

s (X),

where

Jη =



Jη1
...

Jηm
...

Jηn


and Jηm =



Jη1m
...

Jηrm
...

Jηnm


m = 1, 2, · · · , n,

when η = i,Ji
m is as follows

Ji
rm =


(
δ

(r−1)(2n−r+2)
2 +m−r+1

n(n+1)/2

)T
⊗ R4(

δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T
⊗ I4

r < m

r ≥ m
, R4=

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

)
.

Similarly we have Jj
m, Jk

m.

Jj
rm =


(
δ

(r−1)(2n−r+2)
2 +m−r+1

n(n+1)/2

)T
⊗ L4(

δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T
⊗ I4

r < m

r ≥ m
, L4 =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

)
.

Jk
rm =


(
δ

(r−1)(2n−r+2)
2 +m−r+1

n(n+1)/2

)T
⊗ S 4(

δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T
⊗ I4

r < m

r ≥ m
, S 4 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
.

We can also find the relationship of vR
c (X) and vR

s (X) for
η − anti − Hermitian matrix.

Theorem 4.2. Let X ∈ ηAQn×n η = i, j,k, vR
s (X) is defined

in Theorem 4.1 Then

vR
c (X) = RηvR

s (X),

where

Rη =



Rη
1
...

Rη
m
...

Rη
n


and Rη

m =



Rη
1m
...

Rη
rm
...

Rη
nm


m = 1, 2, · · · n,

when η = i, Ri is as follows

Ri
rm=


(
δ

(r−1)(2n−r+2)
2 +m−r+1

n(n+1)/2

)T
⊗ R′4(

δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T
⊗ I4

r < m

r ≥ m
, R′4 =

(
−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
.

Similarly we have Rj, Rk.

Rj
rm=


(
δ

(r−1)(2n−r+2)
2 +m−r+1

n(n+1)/2

)T
⊗ L′4(

δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T
⊗ I4

r < m

r ≥ m
, L′4 =

(
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)
,

Rk
rm=


(
δ

(r−1)(2n−r+2)
2 +m−r+1

n(n+1)/2

)T
⊗ S ′4(

δ
(m−1)(2n−m+2)

2 +r−m+1
n(n+1)/2

)T
⊗ I4

r < m

r ≥ m
, S ′4 =

(
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)
.

Based on the above discussion, we give the solution
of problem 1 by feat of the real vector representation of
quaternion matrix and STP.

Theorem 4.3. Let A ∈ Qm×n, B ∈ Qn×s, C ∈ Qm×k, D ∈ Qk×s,

E ∈ Qm×s, Gi has the same structure as G except for the

dimension, denote

M1 = G2 nG3 n vR
r (A) nW[4ns,4n2] n vR

c (B) n Jη,

M2 = G4 nG5 n vR
r (C) nW[4ks,4k2] n vR

c (D) n Rη,

M̂ = (M1, M2) .

Then the set S M of Problem 1 is represented as

S M=

{
(X,Y)

∣∣∣∣∣( vR
s (X)

vR
s (Y)

)
=M̂†vR

r (E)+
(
I2(n2+k2)+2(n+k)−M̂†M̂

)
y
}

(4.1)

where, y ∈ R2(n2+k2)+2(n+k). And then, the minimal norm least

squares mixed solution (X̂, Ŷ) of (1.1) satisfies vR
s (X̂)

vR
s (Ŷ)

 = M̂†vR
r (E). (4.2)
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Proof.

‖AXB + CYD − E‖

=
∥∥∥vR

r (AXB + CYD) − vR
r (E)

∥∥∥
=

∥∥∥M1 n vR
s (X) + M2 n vR

s (Y) − vR
r (E)

∥∥∥
=

∥∥∥∥∥∥∥(M1, M2)

 vR
s (X)

vR
s (Y)

 − vR
r (E)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥M̂

 vR
s (X)

vR
s (Y)

 − vR
r (E)

∥∥∥∥∥∥∥ .
Thus

‖AXB + CYD − E‖ = min

if and only if ∥∥∥∥∥∥∥M̂

 vR
s (X)

vR
s (Y)

 − vR
r (E)

∥∥∥∥∥∥∥ = min.

For the real matrix equation

M̂

 vR
s (X)

vR
s (Y)

 = vR
r (E).

According to Theorem 2.3, its least squares solutions can be
represented as vR

s (X)
vR

s (Y)

=M̂†vR
r (E) + (I2(n2+k2)+2(n+k) − M̂†M̂)y,

where y ∈ R2(n2+k2)+2(n+k). Thus we get the formula in (4.1).
Notice

min
(X,Y)∈S M

‖X‖2 + ‖Y‖2 ⇐⇒ min
(X,Y)∈S M

∥∥∥∥∥∥∥
 vR

s (X)
vR

s (Y)


∥∥∥∥∥∥∥

2

,

so we have that the minimal norm least squares mixed
solution (X̂, Ŷ) of (1.1) satisfies vR

s (X̂)
vR

s (Ŷ)

 = M̂†vR
r (E).

Therefore, (4.2) holds.

Corollary 4.4. Let A ∈ Qm×n, B ∈ Qn×s, C ∈ Qm×k, D ∈

Qk×s, M̂ is defined in Theorem 4.3. Then AXB + CYD = E

has a mixed solution (X,Y) if and only if(
M̂M̂† − I4ms

)
vR

r (E) = 0. (4.3)

Moreover, if (4.3) holds, the mixed solution set of AXB +

CYD = E can be represented as

S̃ M=

{
(X,Y)

∣∣∣∣∣ ( vR
s (X)

vR
s (Y)

)
=M̂†vR

r (E)+(I2(n2+k2)+2(n+k)−M̂†M̂)y
}

(4.4)

where y ∈ R2(n2+k2)+2(n+k). We can obtain the minimal
norm mixed solution (X̂, Ŷ) satisfying vR

s (X̂)
vR

s (Ŷ)

 = M̂†vR
r (E). (4.5)

Proof. AXB + CYD = E has a mixed solution (X,Y) if and
only if

‖AXB + CYD − E‖ = 0.

Using (2) in Theorem 3.3 and the properties of the MP
inverse, we get

‖AXB + CYD − E‖

=

∥∥∥∥∥∥∥M̂

 vR
s (X)

vR
s (Y)

 − vR
r (E)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥M̂M̂†M̂

 vR
s (X)

vR
s (Y)

 − vR
r (E)

∥∥∥∥∥∥∥
=

∥∥∥M̂M̂†vR
r (E) − vR

r (E)
∥∥∥

=
∥∥∥(M̂M̂† − I4ms)vR

r (E)
∥∥∥ .

Therefore, for (X,Y), we obtain

‖AXB + CYD − E‖ = 0
⇐⇒

∥∥∥(M̂M̂† − I4ms)vR
r (E)

∥∥∥ = 0
⇐⇒ (M̂M̂† − I4ms)vR

r (E) = 0.

When AXB + CYD = E is compatible, its mixed solution
[X,Y] ∈ S̃ M satisfies

M̂

 vR
s (X)

vR
s (Y)

 = vR
r (E).

Moreover, according to Theorem 2.4, the mixed solution
[X,Y] satisfies vR

s (X)
vR

s (Y)

 = M̂†vR
r (E) + (I2(n2+k2)+2(n+k) − M̂†M̂)y,

where y ∈ R2(n2+k2)+2(n+k) and the minimal norm mixed
(X̂, Ŷ), satisfies  vR

s (X̂)
vR

s (Ŷ)

 = M̂†vR
r (E).

So, we can get the formula in (4.4), (4.5).
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5. Algorithm and numerical experiment

In this section, using the results in Section 4, we propose
the algorithm of solving Problem 1.

Algorithm 5.1. (Problem 1)

(1) Input A, B, C, D, E, ∈ Qn×n, (i = 1 : 4), output

vR
r (A), vR

r (C), vR
c (B), vR

c (D), vR
r (E),

(2) Input G, W[m, n], Jη, Rη output the matrix M̂,

(3) According to (4.2), output the minimal norm least

squares mixed solution (X̂, Ŷ) of (1.1).

Example 5.1. Consider the quaternion matrix equation

AXB + CYD = E. Using the ‘rand’ and ‘quaternion’ in

Matlab, the quaternion matrix A, B, C, D are created.

Suppose X ∈ ηHQn×n, Y ∈ ηAHQk×k, η = i. Let m = n =

k = s = 8, and randomly generate 20 groups of matrices

A, B,C,D, X,Y. Compute quaternion matrix equation 1.1.

we get a solution (XT ,YT ) of Problem 1 by Algorithm 5.1

and the method in [30], respectively. and the error ε =

log10([XT ,YT ] − [X,Y]) is shown in the Figure below.

0 2 4 6 8 10 12 14 16 18 20

Number of operations (n)

-12

-11.8

-11.6

-11.4

-11.2

-11

-10.8

-10.6

-10.4

-10.2

er
ro

r 
(

)

real reprsentation
real vector representation

η = i

Here, two methods are used for comparing the i-
Hermitian and i-anti-Hermitian mixed solutions with the real
solutions. It can be seen that the real vector representation
method based on the semi tensor product of matrix has
more times than the real representation method. A large
number of numerical experiments show that the real vector
representation method has a dominant probability of more
than 50% when calculating the same quaternion matrix
equation (1.1).

Remark 5.1. (i) There are many kinds of mixed solutions.

In Example 5.1, only the i-Hermitian and i-anti-Hermitian

cases are studied.

(ii) Because the comparison with the real representation

method in [30], In order to ensure the number of effective

elements calculated is the same, the Ji and Ri which are used

to find rules are changed before.

6. Conclusions

In this paper, we proposed a real vector representation
of quaternion matrix and combined this real vector
representation with semi-tensor product of matrices. We
solved the least squares problems as in Problem 1. It
is not hard to find that with the help of this real vector
representation and semi-tensor product of matrices, we
can transform the problems of solving matrices with
some special structure on quaternion skew-field into the
corresponding problems on real number field. It is very
helpful for us to solve the quaternion matrix equation.
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