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Abstract: We introduce an efficient structure-preserving model-order reduction technique for the large-scale second-order linear
dynamical systems by imposing two-sided projection matrices. The projectors are formed based on the features of the singular value
decomposition (SVD) and Krylov-based model-order reduction methods. The left projector is constructed by utilizing the concept of
the observability Gramian of the systems and the right one is made by following the notion of the interpolation-based technique iterative
rational Krylov algorithm (IRKA). It is well-known that the proficient model-order reduction technique IRKA cannot ensure system
stability, and the Gramian based methods are computationally expensive. Another issue is preserving the second-order structure in the
reduced-order model. The structure-preserving model-order reduction provides a more exact approximation to the original model with
maintaining some significant physical properties. In terms of these perspectives, the proposed method can perform better by preserving
the second-order structure and stability of the system with minimized H2-norm. Several model examples are presented that illustrated
the capability and accuracy of the introducing technique.

Keywords: singular value decomposition; Krylov subspace; alternative direction implicit; structure preservation;
H2-norm; system stability

1. Introduction

Mathematical modeling of physical systems plays a
significant role in assessing, simulate, control, or optimize
the implementation of real-world problems in technological
development. It is an alternative approach to avoid extensive
laboratory works engaged with a great deal of equipment.
On the other hand, mathematical modeling can save not
only time or labor but also help to enhance the performance
of the physical system. The models are originated in
different ways, such as finite element method (FEM) or
finite difference method (FDM) discretization, and often
represented by linear time-invariant (LTI) continuous-time
system. The second-order LTI continuous-time system can
be represented in state-state form as

Mξ̈(t) + Dξ̇(t) + Kξ(t) = Hu(t),

y(t) = Lξ(t) + Dau(t),
(1.1)

where M,D,K ∈ Rn×n are time-invariant matrices, H ∈ Rn×p

is the input matrix describing the external access to the
system, L ∈ Rm×n represents the output of the measurement
and Da ∈ R

m×p is the direct feed-through of the system.
The number of states or dimensions of the system is n while
ξ(t) ∈ Rn is the vector of states, u(t) ∈ Rp is the vector of
control input and y(t) ∈ Rm is the measured output of the
system. The input and output of the system are defined in
continuous-time over the interval [0,∞) and thus the system
is known as a continuous-time system of second-order. If
M = I, then the system is called a standard state-space
system, or if M is an invertible matrix then the system can
also be converted into a standard state-space system. If
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p = m = 1, the system is called single-input single-output
(SISO) system, otherwise, it is called the multi-input multi-
output (MIMO) system. In the MIMO system, we consider
p,m << n, i.e., the number of input and output of the system
is much less than the number of states. Applying Laplace
transformation, the transfer function of second-order LTI
continuous system can be found as

G(s) = L(s2M + sD + K)−1H + Da; s ∈ C. (1.2)

Many physical phenomena of science and engineering can
be modeled as second-order systems (see e.g., [1–3]). For
example, in mechanics, mechatronics [4], and multi-body
dynamics [5], where the velocity is taken into account in
the modeling, and thus the acceleration becomes part of
the system. In mechanics, usually, the matrices M, D, and
K describe the mass, damping, and stiffness distributions,
respectively, and the vector ξ(t) is known as mechanical
displacement [6]. Such systems also appear in electrical
engineering when RLC circuits are designed for nodal
analysis [7]. There the matrices M, D, and K are called
the conductance, capacitance, and susceptance matrices,
respectively, and the vector ξ(t) is denoted as electric charge.

To generate an exact model of a physical system, through
discretization, a sufficient number of grid points needs
to create because the system may obstruct by several
bodies with factious devices. As a result, the size of the
developing model usually becomes too large and sparse,
and additionally well-structured also. A large-scale system
demands extraordinary computational effort to deal with and
consume additional computer memory to store it. It also
prohibits rapid simulation processes that are obligatory in
many installations. To avoid these types of complications,
reducing the size of the system becomes unavoidable in
many cases. The technique to reduce the size or dimension
of a model is known as model order reduction (MOR)
[8–10]. The r-dimensional reduced-order model (ROM) of
(1.1) can be written as

M̂ ¨̂ξ(t) + D̂ ˙̂ξ(t) + K̂ξ̂(t) = Ĥu(t),

ŷ(t) = L̂ξ̂(t) + D̂au(t),
(1.3)

where M̂, D̂, K̂ ∈ Rr×r, Ĥ ∈ Rr×p, L̂ ∈ Rm×r, D̂a = Da and
r � n. The target is to minimize the value of r by the trial

and error basis such that system (1.3) approximates to the
system (1.1) by conserving the system properties invariant.
The transfer function corresponding to the ROM (1.3) is
denoted by Ĝ(s) and is defined as

Ĝ(s) = L̂(s2M̂ + sD̂ + K̂)−1Ĥ + D̂a; s ∈ C. (1.4)

The aspect of model order reduction is to reduce
the unwanted enormous computational interruptions
in analyzing or improving the performance in the
implementation of modern technology. Among several
model reduction techniques, SVD based balanced
truncation (BT) [11, 12] and Krylov-based techniques
iterative rational Krylov algorithm (IRKA) [13, 14] are
well-known and efficient in this arena. Both techniques
have some advantages or disadvantages such as IRKA
is computationally cheap, whereas BT is comparatively
expensive, BT has a priori error bound, in contrast, IRKA
has no error bound. Also, BT preserves the stability of the
system, contrariwise IRKA does not depend on it. By going
beyond these issues, combining the features of both these
techniques S. Gugercin in [15] developed an efficient way
for model-order reduction of large-scale linear dynamical
systems that assures the system stability asymptotically
with minimizedH2 approximation. We propose a two-sided
projection-based model-order reduction method iterative
SVD-Krylov algorithm (ISKA) for the second-order linear
dynamical system. The method is susceptible to provide
the best approximation to the full model by preserving
the second-order structure and stability of the system with
minimizedH2 norm.

2. Preliminaries

Consider the k-dimensional linear dynamical system
represents in state-space form of first-order ordinary
differential equation as

Eẋ(t) = Ax(t) + Bu(t), x(t0) = x0, t ≥ t0,

y(t) = Cx(t) +Dau(t),
(2.1)

where E ∈ Rk×k is non-singular, A ∈ Rk×k, B ∈ Rk×p, C ∈
Rm×k andDa ∈ R

m×p.
However, the second-order system (1.1) can be converted

into an equivalent first-order form (2.1) in several ways [16].

Mathematical Modelling and Control Volume 1, Issue 2, 79–89



81

Due to the structural requirement of the system, a feasible
first-order representation of the second-order system is
needed to be constructed. To design a suitable arrangement
of the second-order system (1.1), we are choosing the
following first-order form

x(t) =
[
ξ(t)T ξ̇(t)T

]T
, E =

I 0
0 M

 , A =

 0 I

−K −D

 ,
B =

0
H

 , C =
[
L 0

]
, andDa = Da.

(2.2)
The systematize observability Lyapunov equation of (2.1)

is

ATQE + ETQA = −CTC. (2.3)

Since the direct computation of the observability Gramian
by solving equation (2.3) is almost impossible for large-
scale settings, one needs to find the corresponding Gramian
factor by any suitable techniques, for instance, Low-
rank Cholesky-factor based Alternating Direction Implicit
(LRCF-ADI) method as in [17–19]. If Zq the observability
Gramian factor, then the Gramian, Q = ZqZT

q can be treated
as the approximate solution of the Lyapunov equation
(2.3). The techniques for finding Zq of first-order system
is provided in Algorithm 1.

Now consider the computationally feasible r-dimensional
reduced order model of (2.1) is given by

Ê ˙̂x(t) = Âx̂(t) + B̂û(t),

ŷ(t) = Ĉx̂(t) + D̂aû(t),
(2.4)

where Ê ∈ Rr×r, Â ∈ Rr×k, B̂ ∈ Rr×p, Ĉ ∈ Rm×r and D̂a ∈

Rm×p.
The reduced coefficient matrices of (2.4) is formed by the

following way

Ê = WTEV, Â = WTAV, B̂ = WTB, Ĉ = CV, D̂a = Da.

(2.5)
Here the projector V is constructed by following the

prominent Krylov-based interpolatory MOR techniques
IRKA in [14, 20] as

V =
[
(α1E −A)−1Bb1, · · · , (αrE −A)−1Bbr

]
, (2.6)

Algorithm 1: First-order LRCF-ADI [17, 19]
Input : E,A,B,C, τ (tolerance), imax (number of

iterations) and shift parameters {µ j}
imax
j=1.

Output: Low-rank Cholesky-factor Zq such that
Q ≈ ZqZT

q .
1 Consider at i = 1, Z0 = [ ] andW0 = CT .
2 while ‖Wi−1W

T
i−1‖ ≥ τ or i ≤ imax do

3 SolveVi = (AT + µiE
T )−1Wi−1.

4 if Im(µi) = 0 then
5 Update Zi =

[
Zi−1

√
−2µiVi

]
,

6 ComputeWi =Wi−1 − 2µiE
TVi.

7 else
8 Assume γi =

√
−2Re(µi), δi =

Re(µi)
Im(µi)

,

9 Update Zi+1 =[
Zi−1 γi(Re(Vi) + δiIm(Vi)) γi

√
δ2

i + 1Im(Vi)
]
,

10 ComputeWi+1 =

Wi−1 − 4Re(µi)ET [Re(Vi) + δiIm(Vi)].
11 i = i + 1

12 end if
13 i = i + 1

14 end while

in which {αi}
r
i=1 and {bi}

r
i=1 are the assuming interpolation

points and tangential directions respectively, where r is the
size the desired ROM. The other projector W is formed with
observability Gramian Q according to the SVD-based MOR
techniques in [15, 21, 22] as

W = QV(VTQV)−1. (2.7)

The detailed procedure of computing the ROMs (2.4)
of first-order system is illustrated in Algorithm 2. In [15,
Theorem 3.2] S. Gugercin showed that the ROMs (2.4)
achieved by Algorithm 2 maintaining the stability of the
system asymptotically as the original system.

3. Structure-preserving model-order reduction of
second-order system by ISKA

The main intention of this work is to reduce the dimension
of the second-order system (1.1) by keeping the system
structure invariant through the ISKA approach. To do this,
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Algorithm 2: First-order ISKA [15]
Input : E,A,B,C,Da, and Zq (from Algorithm 1).
Output: Ê, Â, B̂, Ĉ, D̂a := Da.

1 Consider the initial assumptions for the the interpolation
points {αi}

r
i=1 and the tangential directions {bi}

r
i=1.

2 Construct V =
[
(α1E −A)−1Bb1, · · · , (αrE −A)−1Bbr

]
3 Compute Q = ZqZT

q and construct W = QV(VTQV)−1.
4 while (not converged) do
5 Find Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV .
6 for i = 1, · · · , r. do
7 Evaluate Âzi = λiÊzi and y∗i Â = λiy∗i Ê to find

αi ← −λi, b∗i ← −y∗i B̂
8 end for
9 . Repeat Step-2 and Step-3.

10 i = i + 1;

11 end while
12 Find the reduced-order matrices by repeating Step-5.

it is essential to modify some steps of first-order ISKA and
LRCF-ADI algorithms in terms of second-order matrices of
(1.1).

3.1. Structure-preserving LRCF-ADI for second-order

system

The LRCF-ADI method of first-order was discussed in
[19, 23, 24]. The modification of the LRCF-ADI algorithm
for the structure-preserving second-order form can be
derived as follows.

Let us consider Vi =

V(1)
i

V
(2)
i

 andWi =

W(1)
i

W
(2)
i

, then for

the first iteration of the Step-3 of Algorithm 1 can be written
as

(AT + µ1E
T )V1 = CT ,

or,


 0 I

−K −D

T

+ µ1

I 0
0 M

T 
V(1)

1

V
(2)
1

 =
[
L 0

]T
.

(3.1)

From (3.1) we get

V
(1)
1 = −(µ1MT − DT )V(2)

1 ,

V
(2)
1 = (−KT + µ1DT − µ2

1MT )−1LT .
(3.2)

As a consequence, for i ≥ 2, the next i−th iterations take
the forms

V
(1)
i = −(µiMT − DT )V(2)

i ,

V
(2)
i = (−KT + µiDT − µ2

i MT )−1W
(1)
i−1.

(3.3)

If the shift parameter has no imaginary part, then the Step-
6 of Algorithm 1 can be written as

Wi =Wi−1 − 2µiE
TVi,

or,

W(1)
i

W
(2)
i

 =

W(1)
i−1

W
(2)
i−1

 − 2µi

I 0
0 M

T V(1)
i

V
(2)
i

 , (3.4)

which implies

W
(1)
i =W

(1)
i−1 − 2µiV

(1)
i ,

W
(2)
i =W

(2)
i−1 − 2µiMTV

(2)
i ,

(3.5)

and if it contains an imaginary part, then for δi =
Re(µi)
Im(µi)

, the
Step-10 of Algorithm 1 can be expressed as

Wi+1 =Wi−1 − 4Re(µi)ET [Re(Vi) + δiIm(Vi)] ,

or,

W(1)
i+1

W
(2)
i+1

 =

W(1)
i−1

W
(2)
i−1

 − 4Re(µi)

I 0
0 M

T

×Re

V(1)
i

V
(2)
i

 + δiIm

V(1)
i

V
(2)
i

 .
(3.6)

This results in

W
(1)
i+1 =W

(1)
i−1 − 4Re(µi)

[
Re(V(1)

i ) + δiIm(V(1)
i )

]
,

W
(2)
i+1 =W

(2)
i−1 − 4Re(µi)MT

[
Re(V(2)

i ) + δiIm(V(2)
i )

]
.

(3.7)

The re-organized second-order structure-preserving form
of LRCF-ADI is exhibited in Algorithm 3.

3.2. Structure-preserving ISKA for second-order system

withH2 optimality

Algorithm 2 needs to reform in the structure-preserving
shape with the system matrices of (1.1). In the Step-2 of this
algorithm, projector V needs to be re-structured utilizing the
second-order matrices. Let us consider the i−th iteration of
V be expressed as Vi and due to the structure of the system,
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Algorithm 3: Second-order structure-preserving LRCF-
ADI
Input : M,D,K,H, L, τ (tolerance), imax (number of

iterations) and shift parameters {µ j}
imax
j=1.

Output: Low-rank Cholesky-factor Zq such that
Q ≈ ZqZT

q .
1 Consider at i = 1, Z0 = [ ] andW0 = CT from (2.2).
2 while ‖Wi−1W

T
i−1‖ ≥ τ or i ≤ imax do

3 Solve (3.2) to findV1 and (3.3) to findVi ; i ≥ 2.
4 if Im(µi) = 0 then
5 Update Zi =

[
Zi−1

√
−2µiVi

]
,

6 Compute updated value ofWi by (3.5).

7 else
8 Assume γi =

√
−2Re(µi), δi =

Re(µi)
Im(µi)

,

9 Update Zi+1 =[
Zi−1 γi(Re(Vi) + δiIm(Vi)) γi

√
δ2

i + 1Im(Vi)
]
,

10 Compute updated value ofWi+1 by (3.7).
11 i = i + 1

12 end if
13 i = i + 1

14 end while

it can be partitioned as Vi =

V (1)
i

V (2)
i

, then for the MIMO

dynamical systems, it can be configured as

(αiE −A)Vi = Bbi,

or,

αiI −I

K αiM + D

 V (1)
i

V (2)
i

 =

0
H

 bi.
(3.8)

Equation (3.8) implies to

V (1)
i = (α2

i M + αiD + K)−1Hbi,

V (2)
i = αiV

(1)
i .

(3.9)

Likewise for the SISO case, without considering the
tangential direction bi, (3.9) can be written as

V (1)
i = (α2

i M + αiD + K)−1H,

V (2)
i = αiV

(1)
i .

(3.10)

Now, the error system associated with the reduced-order
model (1.3) of the considering second-order system (1.1) by
maintaining the first-order representation (2.2) has the form

Gerr = G(s) − Ĝ(s) = Cerr(sEerr −Aerr)−1Berr, (3.11)

where G(s) and Ĝ(s) are defined in (1.2) and (1.4),
respectively. In (3.11), we have constituted

Eerr =

E 0
0 Ê

 , Aerr =

A 0
0 Â

 ,
Berr =

B
B̂

 , and Cerr =
[
C −Ĉ

]
.

(3.12)

Here, E,A,B and C are the matrices provided in the first-
order representation (2.2) of the second-order system (1.1)
and also Ê, Â, B̂ and Ĉ have the following compositions

Ê =

I 0
0 M̂

 , Â =

 0 I

−K̂ −D̂

 , B̂ =

0
Ĥ

 , Ĉ =
[
L̂ 0

]
.

(3.13)

The observability Lyapunov equation corresponding to
the Graminan Qerr of the error system (3.11) is

AT
errQerrEerr + ET

errQerrAerr + CT
errCerr = 0. (3.14)

Authors in [25] evolved an efficient approach to estimate
theH2 norm of the error system (3.11) as

‖Gerr‖H2 =

√
trace(BT

errQerrBerr)

=

√
‖G(s)‖2

H2
+ ‖Ĝ(s)‖2

H2
+ 2trace(BTQsB̂).

(3.15)

Here, ‖G(s)‖H2 is the H2 norm of the full model which
we need to evaluate at one time in computation but this
is infeasible to investigate for a large-scale system by any
direct solver. Suppose Zq is the low-rank Gramian factor of
the Gramian Qerr of the Lyapunov equation (3.14) then

‖G(s)‖2
H2

= trace(BTQerrB) = trace(HT (ZqZT
q )H), (3.16)

and that can be successfully determined by Algorithm 3.

Again, theH2 norm of the reduced-order model, ‖Ĝ(s)‖H2

can be enumerated by the Gramian Q̂ of the low-rank
Lyapunov equation

ÂT Q̂Ê + ÊT Q̂Â = −ĈT Ĉ, (3.17)

that consists of reduced-order matrices. Due to the small size
of these matrices, the Lyapunov equation (3.17) is solvable
by the MATLAB library command lyap.
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Algorithm 4: Second-order structure-preserving ISKA
withH2 norm
Input : M,D,K,H, L,Da, and Zq (from

Algorithm 3).
Output: M̂, D̂, K̂, Ĥ, L̂, D̂a := Da, and ‖Gerr‖H2 .

1 Consider the initial assumptions for the the interpolation
points {αi}

r
i=1 and the tangential directions {bi}

r
i=1.

2 Construct V = [V1,V2, · · · ,Vr] using (3.9) or (3.10).
3 Compute Q = ZqZT

q and construct W = QV(VTQV)−1.
4 while (not converged) do
5 Find M̂ = WT MV, D̂ = WT DV,

K̂ = WT KV, Ĥ = WT H, L̂ = LV .
6 for i = 1, · · · , r. do
7 Form Â and Ê by (3.13) to evaluate Âzi = λiÊzi

and y∗i Â = λiy∗i Ê to find αi ← −λi, b∗i ← −y∗i B̂.
8 end for
9 Repeat Step-2 and Step-3.

10 i = i + 1;

11 end while
12 Find the reduced matrices by repeating Step-5.
13 Solve equation (3.17) by MATLAB library command
lyap.

14 Solve equation (3.18) by Algorithm 4 of [26].
15 Estimate ‖Gerr‖H2 by the equation (3.15).

Finally, trace(BTQsB̂) can be measured by the low-rank
Gramian Qs of the sparse-dense Sylvester equation

ATQsÊ + ETQsÂ = −CT Ĉ, (3.18)

that can be efficiently solved by the techniques provided in
Algorithm 4 of [26].

The second-order structure-preserving modified form of
Algorithm 2 with the computation technique of H2 norm is
summarised in Algorithm 4.

The author in [3] showed that the second-order systems
are equivalent to the corresponding first-order systems,
hence system (1.3) is equivalent to (2.4). Thus, according to
[15] the reduced-order system (1.3) achieved by Algorithm 4
is asymptotically stable.

4. Numerical results

The proposed method ISKA is validated by applying
to some data generated from real-world problems.
International Space Station Model (ISSM), Clamped Beam
Model (CBM), Scalable Oscillator Model (SOM), and
Butterfly Gyro Model (BGM) are under our attention. The
numerical computations are carried out with MATLAB R©

R2015a (8.5.0.197613) on a board with 4×Intel R©CoreTMi5-
6200U CPU incorporating a 2.30 GHz clock speed and
16 GB RAM.

Table 1 displays the dimensions of the discussing models,
their types with analogous input-output structures, and the
size of the corresponding ROMs gain by the developed
technique ISKA as illustrated in Algorithm 4. Detailed
of those models are available on the web-page for the
Oberwolfach Benchmark Collection∗.

Table 1. Model examples with input-output
structures.

Model Full model (n) Input/Output ROM (r)

ISSM 270 3/3 20

CBM 348 1/1 30

SOM 9001 1/1 50

BGM 17361 12/12 70

4.1. Frequency domain analysis

Figure 1a, Figure 2a, Figure 3a and Figure 4a display the
well-matching of the transfer functions of the full models
with analogous ROMs in the desired dimensions. Figure 1b,
Figure 2b, Figure 3b and Figure 4b depict the absolute errors
in computing ROMs of the relating second-order models,
whereas Figure 1c, Figure 2c, Figure 3c and Figure 4c
illustrate the corresponding relative errors in attaining the
ROMs.

From the displaying figures achieved by ISKA, it
is conspicuous that the proposed method is sufficiently
efficient and robust for the target models in finding ROMs
of the second-order systems by conserving the second-order
structure.

∗https://sparse.tamu.edu/Oberwolfach
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Figure 1. Comparison of full model and ROM of
the model ISSM.
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Figure 2. Comparison of full model and ROM of
the model CBM.
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Figure 3. Comparison of full model and ROM of
the model SOM.
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Figure 4. Comparison of full model and ROM of
the model BGM.
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In comparison with the previous work [25], it is noticed
that Algorithm 4 can generate a better approximation to the
full model. Since the graphical presentations are almost
the same, to compendious the article, we are avoiding the
graphical comparison here but we will present theH2-norm
comparisons next.

4.2. Stability analysis

Sub-figures of Figure 5 exhibit the step-responses of the
ROMs of the target models originate from Algorithm 4.
The horizontal axis depicts the time required for the step-
response to be converged to the equilibrium, whereas the
vertical axis is for the amplitude. The ROM of BGM
converged within a fraction of a second, and the ROMs of
ISSM, CBM, and SOM need 100, 500, and 10000 seconds,
respectively, to be converged.

It is perceivable from Figure 5 that all the ROMs
computed by Algorithm 4 of the considering models are
stable after a certain period of time, i.e, the ROMs are
asymptotically stable.

4.3. H2-norm comparisons

Table 2 represents the comparisons of the H2 error norm
of the ROMs achieved by IRKA and our newly developed
technique as represents in Algorithm 4. Here, we compared
the H2 error norm estimated by ISKA in the present work
with that of the previous work for concerning models in [25]
by IRKA.

Table 2. Display ofH2 error norm of the ROMs.

Model
IRKA

ISKA
Position Velocity

ISSM 1.2 × 10−6 5.1 × 10−6 4.6 × 10−7

CBM 1.1 × 10−3 3.6 × 10−3 2.3 × 10−4

SOM 1.8 × 101 3.6 × 101 3.4 × 10−2

BGM 6.6 × 10−12 7.8 × 10−12 1.9 × 10−12

It has been observed that the developed approach ISKA
is well-efficient to minimize the H2 error norms of all
the considering models in comparison to IRKA and that
ascertain the proposed technique can provide a better
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Figure 5. Step-responses of the ROMs.
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approximation to the original model by conserving system
properties.

Moreover, from Table 2, it is evident that the MIMO
systems are more feasible in terms of H2 norm optimality
in comparison to the SISO systems.

5. Conclusion

We have introduced a two-sided projection-based
structure-preserving model-order reduction approach for
the second-order linear dynamical systems. Here we
have following the features of the SVD and Krylov-based
model reduction methods. We have successfully modified
the LRCF-ADI and ISKA algorithms of first-order to
preserve the second-order structure in the reduced-order
model. Structure-preservation of the system is significant
for getting a better approximation to the full model. It
conserves some fundamental physical properties of the
system that is essential for more exploration of the system.
The SVD-based method has a priori error bound but
it has computational complexities, and the Krylov-based
technique is computationally efficient but it has neither an
error bound nor the stability guarantee. The numerical
investigations of the proposed method on some real-world
models manifest that it is productive to provide the reduced-
order model by preserving the second-order structure and
system stability with minimized H2 norm of the reduced
system.
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