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Abstract:

Successful identification procedures are undoubtedly important for accurate model description and the consequent

implementation of control strategies. Linear Parameter Varying (LPV) models are nowadays standard for control design purposes
and powerful identification techniques accordingly available. Anyhow, recent advances have brought to focus the class of Nonlinear
Parameter Varying (NLPV) models, which keep some nonlinearities embedded to the formulation. Identification tools for this latter
class are still not available. Therefore, this paper proposes a novel method for the robust identification of stochastic NLPV systems,
considering that the nonlinear parameter part is a priori known and obeys a Lipschitz condition. The method is based on a modified
extended Masreliez-Martin filter and yields the joint estimation of both NLPV systems states and model parameters. The method
manages the stochasticity of the system by considering the presence of measurement outliers with non-Gaussian distributions. Results
considering real data from a vehicle suspension system are presented in order to demonstrate the consistency of the proposed method.

Keywords: extended robust filter; identification; nonlinear parameter varying systems; state and parameter estimation;

non-Gaussian noises

1. Introduction

Linear Parameter Varying (LPV) models have become
progressively popular over the last two decades [20,28,43].
LPV models retain the design synthesis advantages of the
Linear Time Invariant (LTI) setting, while being able to
represent nonlinear dynamics with truthfulness. The LPV
framework has been applied for control [37], observation
[29] and identification [3, 5] purposes. In this paper, we
address the two latter topics.

Recent works have shown the particular interest of the
class of Nonlinear Parameter Varying (NLPV) models
[6, 33].
which encapsulates the nonlinearities into time-varying

In contrast to the “regular” LPV paradigm,

scheduling parameters p, NLPV models retain some explicit

nonlinearities that are “easily handled” outside of the
scheduling term p, such as local Lipschitz nonlinear terms.
On one hand, the LPV class exhibits linearity w.r.t. the
state space, on the other hand, the NLPV class is nonlinear
on both parameter and state spaces. The main interest
in using the explicit nonlinearities coupled to the LPV
structure is that they can be taken into account by the
control design method, reducing the over-bounding of
the nonlinearities by the scheduling parameter and, thus,
enabling less conservative control performances. Anyhow,
the development of identification and state estimation
methods specifically conceived for NLPV models is yet

unseen.

Over the past few decades, particular attention has

been devoted to nonlinear system identification under non-
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Gaussian measurement noises [8,9,36,40]. These stochastic
tools are generic and could be applied to the case of NLPV
models, yet they could benefit from the availability of the
scheduling parameter data if properly designed.

Motivated by this research gap, the aim of this paper is to
extend and generalise the Masreliez-Martin filter [40] joint
state and parameter estimation method for the class of NLPV
models with explicit Lipchitz nonlinearities. We stress that
the main interest regarding the considered method is that it
offers a simple recursive implementation and convergence
properties verifiable through an LMI problem. The main
novelty is that, by exploiting the local Lipschitz condition
of the NLPV model, better state and parameter estimates are
obtained. Furthermore, the use of the scheduling parameter
data also enhances the results, since more information
regarding the system dynamics is available. Accordingly,

the major contributions are:

o The proposition of a robust identification procedure for
joint parameter and state estimation for the class of
NLPV models. Assuming that the explicit nonlinear
term is structurally known and Lipschitz, the algorithm
is is based on an adaptation of the modified Masreliez-
Martin filter.

upon the measurement data and a random walk

The method considers coloured noise

behaviour for the parameter variations.
e A sufficient LMI condition is provided for the
verification of the local convergence of the proposed
This LMI

remedy is derived from the direct Lyapunov method

parameter and state estimation tool.

applied over an Ordinary Differential Equation (ODE)

associated to the estimation error. The solution of
the LMI also serves as an estimate for the zone of
attraction of the algorithm. We also discuss how the
the Lipschitz constant directly affects the size of this
basin of attraction.

e The application of the proposed NLPV identification
procedure to a mechatronic test-rig of an automotive
semi-active suspension system. The effectiveness of
the proposed method is discussed in terms of state
estimation error and parameter identification precision,

measured through standard indexes.

Remark 1. We stress that in the previous works by
the Authors [40], the joint parameter-state estimation of
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a nonlinear stochastic system is considered and verified
through simulations on a mathematical model. In this paper,
the joint estimation algorithm of a stochastic NLPV system
is considered, for which the nonlinear part is explicit, a
priori known, and obeys a local Lipschitz condition. The
proposed algorithm is verified through experimental results
on a real vehicle system. Due to LPV parameter-dependent
model matrices and to the nonlinear Lipschitz condition
of the explicit nonlinear term, the proposed algorithm
is completely different from the prior [40] in terms of
matrix structures, gains and recursive estimation laws, but
also conceptually, exploiting the availability of scheduling

parameters to refine the joint estimation results.

The

background state-of-the-art regarding nonlinear and LPV

The rest of this paper is organised as follows.

identification is discussed is Section 2, where the formal
The proposed NLPV state
and parameter estimation algorithm is presented in Section

problem setup is also given.

3. The LMI problem used to verify the local asymptotic
convergence of the method is also presented therein. The
experimental validation results are given in Section 4. This

paper ends with conclusions in Section 5.

1.1. Notation

In the sequel, the set of nonnegative real number is denoted
by R., whist the set of nonnegative integers including zero
is denoted by N. R? represents a g-dimensional real space.
The index set Ny, ;) represents {i € N|a < i < b}, with
0 < a < b. The identity matrix of size j is denoted as
I;; col{a, b, c} denotes the vectorization (collection) of the
entries and diag{v} denotes the diagonal matrix generated

with the line vector v.

2. Background and problem formulation

System identification [2] is a topic of great importance
The

vast majority of control strategies are model-driven, which

for coherent control synthesis and implementation.

means that their success relies on the accurate knowledge
of the model parameters. Accordingly, the issue of system
identification under stochastic process signals deserves
special attention [10, 27, 39], since real processes are
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not purely deterministic and stochastic noises are always

present.

Besides the identification problem regarding model
parameters, state estimation is a crucial aspect for the control
of processes modelled through state-space representations,
for which only output data is available. The classic state-
feedback design requires online information of the state
variables, which can be provided by observers/estimators.
Due to these reasons, we note that joint state and parameter
estimation is very useful and much facilitates the operation
of adaptive and fault-tolerant state-feedback methods, since
state observation and parameter variation estimates are
provided by a single operator.

The Extended Kalman Filter (EKF) is a very well
established method
model parameters and system states, as seen in different
applications [17, 47, 49, 50]. The EKF is popular for

many reasons, but especially because it is not a complex

[25] for the joint estimation of

algorithm, it has a recursive implementation law, and
ensures asymptotic convergence. Its main drawback is that it
is based on the assumption that the measurement noise has a
Gaussian distribution. Many empirical and practical essays
have shown that this assumption is rather weak [40]. Itis a
fact that measurement data from real processes may present
inconsistent values at some points, i.e. “outliers”. These
corruptions are typically non-Gaussian and significantly
reduce the effectiveness of algorithms such as the EKF.
Research has progressively focused on overcoming the EKF
restrictions; some of the recent approaches are: maximum
likelihood methods [24,45], prediction error techniques [42]
and robust identification algorithms [40]. These are all
computationally less expensive than the EKF and require

less restrictive assumptions on the measurement data.

The

inconsistent observations with the largest part of the

known fact is that the measurements have

observation population.  Justification of the proposed
approach, which considers the presence of outliers, was
confirmed in practice [21,32]. The presence of outliers can
destroy the good features of linearly recursive algorithms,
which are typically designed for the estimation in the
presence of Gaussian noises. Therefore, it is very important
to design a robust algorithm which is insensitive to outliers,

since they exist in all real instrumented systems.

Mathematical Modelling and Control

We note that many of the popular identification methods,
such as the KF and the EKF, have been extended for
the case of nonlinear [11] and LPV models [4]. For the
latter class of models, the known parameter-varying data is
used to schedule the estimation problem, which has input-
output/input-state linearity. The state-of-the-art regarding
LPV identification includes subspace techniques [12, 15],
successive LTI approximations [13], robust filtering [5],
multi-step canonical variate analysis [22, 35], prediction
error methods [51] and nonlinear programs [23]. The review
book [14] thoroughly discusses these recent developments
and the future trends on LPV identification. A clear
investigation gap is to consider NLPV models, for which
there exists an explicit nonlinear function which must
be taken into account by the estimation procedure, since
Up to
the Authors’ knowledge, there has been no technique
specifically devoted for the class of NLPV models, albeit the

input-output/input-state linearity no longer holds.

fact that many of NL identification methods can be applied
to the NLPV case. The focus of this paper is given w.r.t.
to this matter, pursuing the generalisation of a nonlinear
joint parameter and state estimation method to the NLPV
class, by exploiting the availability of the scheduling map
data and the properties of the explicit nonlinearity. The
purpose of exploiting the explicit nonlinearity is to seek
better estimation results than just applying the nonlinear
method itself.

Nonlinearity is a key feature present in almost all physical
system controlled over large operating conditions. The
extended Masreliez-Martin filter (EMMF) [26] is a an
interesting option for the robust identification of nonlinear
systems under stochastic, non-Gaussian corruptions. This
robust method is based on Huber’s statistics foundations
[21]. Instead of using a Gaussian distribution assumption
as the EKF, the EMMF is synthesised considering that the
noise is coloured and belongs to some known distribution
class. Furthermore, this algorithm ensures robustness and
insensitivity w.r.t. the differences between this distribution
class and the real outlier distribution. This paper considers
the adaptation of the EMMF to the NLPV case due
to its rather simple implementation and easily verifiable
convergence property, as previously discussed [40, 41].
Furthermore, we stress that the EMMF framework offers
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offset-free joint parameter and state estimation, with a zone

of attraction that can be estimated from an LMI problem.

Remark 2. System identification theory has been set up
since the 70’s as the problem of generating parameter
estimates in a stochastic framework [25, 38], since input
data samples are consider as deterministic signals corrupted
by noise. As demonstrated by then [16, 18, 38], the input
signal needs to be independent from the process noise for the
estimation of the parameter to be unbiased, in the majority of
cases. This property remains true in the context of this work.
We note that in the experimental validation results (Section
4), we consider a PRBS input signal which is independent

from this process noise.

2.1. Problem formulation

In this paper, we generalise and apply the EMMF
filter filter for the joint state and parameter estimation
problem of NLPV models with strcuturally known Lipschitz
nonlinearities. The task of estimation both states and
parameters is done by using a joint formulation. For this
goal, the following first-order affine Lipschitz NLPV system

model is considered:

xk+1) = Alpr, O)x(k) + B(pg, O )@(x(k)u(k) + w. (k) ,

k) = Clpr, O)xk) + wy(k), 2.1
with model matrices given as follows:

Alpk, ) = Aobk + prAiby, (22)

B(pk,0) = Bobk + prBi6k, (2.3)

Clor,0) = Cobk + pkCr6k, (2.4

being x(k) € R™ the state vector (to be estimated), 8(k) €
R™ the parameter vector (also to be estimated), y(k) €
R™ the output measurement vector, u(k) € R™ the input
variable and p; € R the scheduling vector. The explicit
nonlinear term ® : R™ — R is structurally known and
Lipschitz, as details Assumption 1. We note that u and p are,
a priori, deterministic and known signals. Furthermore, we

stress that x(k) and 6(k) are independent from p(k) and u(k).

Assumption 1. The nonlinear term ®(x(k)) in the
considered NLPV model of Eq (2.1) obeys a local Lipschitz

condition around x, this is:

IPG) - 0@ < IFx-HI, Vx, &  (2.5)

Mathematical Modelling and Control

Remark 3. Assuming that the structure of the explicit
nonlinearity of the NLPV is known is not at all absurd.
Note that, in the majority of LPV cases, these nonlinearities
are embedded to the scheduling parameters p. On the
contrary, for the NLPV case, they are willingly made
explicit (outside of p) because the designer knows how
they are physically derived. In many processes, when
two physical systems are cascaded (actuator and the actual
process, for instance), and one of them has a known
nonlinearity, this nonlinearity re-appears in the input/output
relationship for the complete cascaded block. As an
example, take a vehicle suspension system: the dynamics
of the suspended vehicle chassis depend on the suspension
control system (damper and spring), which inherently
have known nonlinear behaviours; for the case of electro-
rheological suspensions, this behaviour is a hyperbolic

tangent function [33].

Assumption 2. The NLPV system in Eq (2.1) is corrupted
by process noise w,(k) € R™ and measurement noise
wy, € R™. We consider that the process noise is Gaussian,
whereas the measurement noise is a Gaussian mixture. This
is: the process noise is a zero-mean white noise, i.e. p(w,) :
N0, Q,(k)), where p(-) stands for the probability density
function and Q. (k) for the co-variance matrix related to w,,
whilst the measurement noise w, is non-Gaussian, including
the presence of outliers. This noise is distributed as follows:

P, =

{pOwy) + (1 = )pi(wy) + epa(wy)},  (2.6)

which is a mixture of a nominal normal distribution

p1(wy)
density p(wy)

N(O, Q)l,(k)) and a contaminating probability
1 N(Q, Qs(k)), being Q;(k) and Qﬁ(k) the
co-variance matrices for the nominal and the contamination
term. The degree of contamination parameter abides to:

0<e<l.

Remark 4. The output measurement noise wy, fore = 0,
would have a Gaussian distribution p;(w,), whereas, for e =
1, it would also present a normal distribution, of p,(w,). In
both cases, there would be a complete absence of outliers,
which is not envied if the stochasticity of the process is to be

taken into account.

Assumption 3. The change in the model parameters has a
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random walk behaviour, this is:

1 = O +wek), 2.7

or, more generally,

Ot = Coby + wy(k), (2.8)

where p(wg) N0, Qq(k)), being Qy(k) the co-variance
matrix for the random walk distribution. Matrix Cy is a prior
known and non-singular; it can be used to plug information

on the model parameter change phenomenon that occurs.

Despite the fact that many system parameters can be
available with some reasonable accuracy, given within a
certain range, some model parameters may be entirely
unknown because manufacturers consider these data as
proprietary information. For example, the precise
determination of leakage and friction coefficients causes
great difficulty in the control of electro-rheological actuators
[29];

included to reflect the variation of the physical system

accordingly loss of effectiveness faults must be

parameters. Due to the obvious presence of non-Gaussian
noises, as well as the impossibility of determining the
exact values of the system parameters, the observed system
is considered as a stochastic system whose parameters
are successfully determined by the proposed identification
procedure.

Bearing in mind the previous Assumptions, the goal of
this paper is reiterated: propose an algorithm to jointly
estimate the states x(k) and parameters 6, of the NLPV
system described by Eq (2.1), for all k.

asymptotic convergence of the estimation is required,

Moreover,

despite the presence of non-Gaussian measurement noise
(outliers) wy.  Output data y(k), input data wu(k) and
scheduling data p(k) is considered available. Formally, this

Problem is described:

Problem 1. For the NLPV system in Eq (2.1), consider an

augmented states vector given by:

x(k)

29
6 (2.9)

w>=[ }ewm,

which compiles not only the states, but also the varying

process model parameters. Consider qi(-) as a nonlinear

Mathematical Modelling and Control

map at instant k. Then, find an estimation law of the

following form:
Ak+1) = q @k, y(k), u(k), p, Or: &)
_ | SR, y(K), u(k)»pk,ék’fk) (2.10)
8k(ff(k),)’(k), u(k)7pk76k7§k)
yk) = hi(z(k), Ok, wy(k)), 2.11)
with & = N(0,Q¢(K)), with Qe(k) = diagiQ.(k), (I -

E)le.(k) + EQ%(k) , Qg(k)}, encompassing all disturbances:

& = [wim Wik Wik | . @1

This estimation should minimise the sensitivity of 7 to
wy and ensure that the expectation of estimation error
E((e(k)) = E (z(k) — 2(k)) has local asymptotic convergence
for any state error starting condition e,(0) = x(0) — X(0)

given within a basin of attraction Q, which is equivalent to:

klim eky — 0,Ye(0) € Q. (2.13)

In the sequel, Problem 1 is solved by the use of a
modified EMMEF. More specifically, the Fischer information
of the regular EMMF in the a posterior co-variance matrix
is replaced by an approximation given by the derivative
of Huber’s function, which increases the flexibility of the
algorithm and speeds up its convergence rate. The benefits
of this modified version of the EMMEF is discussed and
illustrated in [40,41].

Remark 5. We note that the EMMF has been shown to
possess offset-free convergent robust filtering qualities [41],
which can be checked through a set of linear inequalities. If
such inequalities are verified, the estimates from the EMME,
given in an augmented state form alike of z(k), retain low

sensitivity to measurement outliers.

Remark 6. The considered NLPV model presented in
Eqgs (2.1)-(2.4) has affine parameter-dependence w.r.t. the
scheduling variable p;. Anyhow, the method could directly
consider polynomial, polytopic and fractional parameter
dependencies, for which only the form of matrices A(-), B(:)
and C(-) have to be altered. Moreover, we note that the
proposed joint estimation problem, given in the recursive
form of Eq (2.10), is set to benefit from the availability
of the scheduling parameter data p;, which coordinates the

Volume 1, Issue 1, 35-51.
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estimation function g(-), as shown in the sequel. In contrast
to the nonlinear EMME, the proposed NLPV EMMEF uses an
explicit pi-dependent time-varying function g(-). As done
in other LPV identification methods [14], the scheduling
variable p; data is used to provide more data to the filter,
which is potentially better than using a nonlinear EMMF that
disregards the knowledge of py.

Lemma 1. Consider a joint state and parameters estimation
law of the form given by Eq (2.10), in Problem 1. The
convergence of the estimation error e(k) can be analysed
with an associated ODE system. If this associated system is
locally asymptotically stable, which can be verified through
the direct Lyapunov method, then, the expectation of the

estimation error E (e(k)) converges.

Proof. Provided in the original paper by L. Ljung [25]. O

3. Robust estimation procedure for NLPV systems

In order to develop the proposed robust method for joint
estimation of states and parameters of affine NLPV systems
with explicit Lipchitz nonlinearities, given in the form of Eq
(2.1), the full expression for z(k), in terms of the nonlinear

maps g (-) and A (-) are detailed:

@1 () = | Ao+ A 0 Jztk—1)

+ (Bo+Bipe (| L, 0, |ztk—1)

+ ([T, 0 0, |&1). 3.1)
() = [ (Co+Cipti 0 |2k

+ ([0n I, 0, |&)- (3.2)

Then, based on these expressions, the extended robust
filter (EMMF) [40] is proposed for the NLPV case. The
estimation of z(k), namely Z(k), addressing Problem 1, has

the following form:

P(k) = Fk-DPk-DFT(k-1)

+ L(k—DQek— DL (k- 1)

= Pk - KK)Wv(k) KT (k). (3.3)
K(k)y = P'(H ()T (K), (3.4)
k) = TR [y - k), 0, 0)] (3.5)
W) = k-1 +KE)YPO(K), (3.6)

Mathematical Modelling and Control

P(v(k)) colfyr(vi (k) - .. Y(vu, (D),

[HOPUHT (k) + V() Q (VT (0] * . (3.8)

(3.7)

T (k)

being implied that:

94 =%
F(k) = 6—Z|2(k) = I 0;: 1, ]l)?(k),é(k) , (39
Oqxk
L k = |3 = HrL n, > 3.10
(k) 9%, L2k i, (3.10)
oh
Hk) = 8—;|2(k) = | o ]|fr(k),9(k)’ (3.11)
ohy,
Viky = —lp = L. 3.12
(k) o, l2) X (3.12)

For the outputs contaminated with outliers, the nonlinear
function ¢(-) issues a transformation upon v(k), with is
associated to the output prediction error. This nonlinearity

is a Huber’s influence function, as gives:
Yk = min{lv,®ll, Ksign{v;(0)}, (3.13)
with its derivative with respect to v;(k) given by:

1, vl <k

- 3.14
o . wzk. O

gvik) = {
Remark 7. The sign function is defined as usual, being
equal to identity for positive entries, null for null entries and

minus identity for negative entries.

Remark 8. The use of the nonlinear Huber’s influence
function, given in Eq (3.13), is set to assign less weight to
small quantities of larger residuals, such that the presence
of outliers does not have significant influence on the final
estimate 2(k), while giving unit weight to the main part of

the data population with moderate residuals.

The following block structured form of the EMMF

estimation gain and co-variance matrices are given:

Kk = [ NGO | miT | @as)
Py(k) | Py(k)
P(k) = : 1
(k) x [P0 } (3.16)

Finally, the estimation law from Eq (3.6) is given in a

compact, recursive form, as follows:

N(k)

) =
2(k) MK

2k—-1)+ [ }‘I’(v(k)) , (3.17)
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which is directly equivalent to:

#k) = fior (8= 1), utk = 1),01) (3.18)
+ NE)Y (k)
= Alp-1, 02k - 1)
+ Blpe-1, O )@ Rk — 1) u(k — 1) + NP (v(k)) ,
O = Cobioy + MNP ((K)). (3.19)

We note how Eq (3.18) explicitly expresses the state and
parameter estimates w.r.t. previous scheduling parameters
data, benefiting from its availability. In a full nonlinear
formulation, as in the original EMMEF, with unknown
scheduling parameter data p;, the nonlinear map fi—_(-) is

only written in terms of X(k — 1), u(k — 1), and Or_1.

Remark 9. The

algorithm are:

initial conditions for the estimation

20

P0) = l

0 s
P(xo)
0y,

On, (3.20)

P(6y)

These values (x(0)
knowledge about the NLPV system variables.

and 6y) represent some a priori
For the
case when these are not known, they can be chosen, for

simplicity, as null entries.

Remark 10. The main difference from the proposed joint
state and parameter estimation algorithm is the use of
Huber’s nonlinearity W(-). Its insertion suitably transforms
the output prediction errors to penalize the presence of
outliers and, thus, eliminate their influence upon the

resulting estimation.

3.1. Convergence analysis

In order verify that the proposed joint state and parameter
estimation algorithm converges, i.e. limg.e(k) — O,
an associated ODE system is presented and its stability is
verified using a direct Lyapunov method over the associated

ODE from Lemma 1.

Lemma 2. The expectation of the joint parameter and
state estimation error derived from proposed method in Eqs
(3.18)-(3.19) is associated to an ODE system®, which is

*With e,(7) = x(t) — 2(7) and ey(t) = 6(1) — O(7).

Mathematical Modelling and Control

given by:
de(r) _ | o
dr [% ) (3.21)
de;(T) - o), a2
T
d
ecf) = fi(@. (3.23)

The nonlinear functions f{(-) and f;(-) derive from
the difference between the Lipschitz affine NLPV system

dynamics and the estimation from the algorithm, as follows:

@) = Aped(t) + By (D(x(1)) — P(E(T)) U
- NOYO(1), (3.24)
fi(@) = Caep(t) — M(T)P((7)). (3.25)

Take a continuous
kKT,
where T is the sampling period of the NLPV system in Eq

Proof. The proof follows from [25].
version of the discrete time system where 7 =

(2.1). Then, taking k = i—/, the following continuous-time
r(k) — r(k = 1).
Firstly, take the dynamics of the parameter estimation

approximation is valid: % =

error, for which the parameter estimates are given by Eq

(3.19), considering wy null:
eok) = (Cobh-r) — (Cobor + MO (K))) .(3.26)

It directly follows that:

Ca

———
deo(r)  _ (Cg - Inp) eg(T) — M()¥P(»(1)), (3.27)

dr

which asymptotically converges to some constant ey due to
the construction of M(7).

Then, take the dynamics of the state estimation error, for
which the state estimates are given by Eq (3.18):

ex(k) = x(k) — &(k) = A(pg-1, Op-1)x(k)
+B(px-1, 6 1)D(x(k = 1)ulk = 1) = Aps1, 612 (k)
—B(px-1, G- O(R(k = D)uk = 1) = NP (v(k)),

which, by exploiting the affine nature of A and B, leads to:

ex(k) (Ao + A1pr-1) eglk — e, (k — 1)

(Bo + Bipi-1) eg(k — 1) (D(x(k — 1)) u(k — 1)

+
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= (Bo + Bipr-1) eg(k — 1) (O(X(k — 1)) u(k — 1)
— NR)POK)). (3.28)

Finally, since e4(7) = eg and taking u(k—1) = u as constant,

one obtains:

%V
de, _—
% = [Ao+Aipi-1 — Ly ] egex(r)
T
By
+  [Bo + Bipk-1 — I, ] € (D(x(1) — P(E((T) U
- N@OYW(1). (3.29)
This concludes the proof. O

Lemma 3. The ODE system of Eq (3.21) is locally
asymptotically stable for any real Lipschitz constant T if
there exists a positive definite matrix P, = P{ > 0 and

a scalar €, € R such that the following LMI holds:

-¢I'T  BiP, ARTA(D P
0 -1, 0 <0,
P To()As  PLBy —(N(@)'Pp+ PLN(T))
T(1)[(Co + Cipr)eg) = Ta(7).

Then, for any starting condition x(0) € €, which is the sub-
level ellipsoid associated to Py, the proposed algorithm in

Eq (2.10) yields local asymptotically stability.

Proof. In order verify the stability property of the ODE
system of Eq (3.21), the direct Lyapunov method is used.
Assuming there exists some positive definite matrix Py,
consider the following positive definite candidate Lyapunov

function:

Vir) = E{¥e@) PO} . (3.30)

The local basin of attraction is given Ww.r.t. the

state error estimation e.(k), since the parameter error
eg(k) asymptotically converges to some constant e; by
construction (refer to the proof of Lemma 2). This basin of
attraction can be estimated as sub-level set ellipsoid related

to Pr,ie.:

Q = {x € R™|xTPx < o} (3.31)
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Differentiating V w.r.t. 7 along the solution of the ODE

system, we get:

dv 0¥
@ - elyo@rp, 20O 55
dr or
Note that the latter term w can be expanded as
follows:
oY (v(1)) d¥Y(v(1)) ov(t)
= . 3.33
or dv or ( )

Moreover, note that v(r) = T(1T)[C(ox, 0(T))x(T) —
C(px. B(1))2(1)]. Then, it holds for 42 = 0 that:

v(r) = T@[(Co+ Cipr)egler), (3.34)
=Ta(7)
dv(T) T )dex(‘r) (3.35)
dr
Recall from previous development that W is naturally
bounded, i.e.:
0 M < L., (3.36)
ov
which means that (% < %) holds. Thus:
T
o g {dv(T) PLYO(D) + YD) P, V(T)}
dr d d
dav
T < BTA@A) + By @) - )T
PLYO(m)Y () PLITA(T)Ape(T)
+B4 (O(x(1)) — ©(X(7)) ul},
Defining A(7) = (ex(T)T [(D(x(1)) - CD(fc(T)))ﬁ]T ‘P(V(T))T)T,

it follows that:

dv
© E{A(1) MA@} (3.37)
dr
with:
0 BTP, ATT,(0)" Py,
M, = 0 0 0
P.Tp(As PLBy —(N@TPL+P.N(1))

The Lipschitz condition from Eq (2.5) holds as:

[(D(x(1)) — ©E())) u]" [(D(x(7)) = D(R(T)) U] <
e (1) TTTe (1), (3.38)
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which is analogous to:

-r'r 0 0
A0 0 1, 0]Ar) < 0. (339
0 0 O
~—
Mr
: . : dv(r)
Since the direct Lyapunov method requires == to be

nonpositive, the explicit nonlinearities can be overlapped

with the aid of the Lipschitz condition, taking:

V() 0,  (3.40)
dr
&A@ MrAT) < 0. (34D
de) & (ﬂ(T)TMr/l(T)) < 0, (3.42)

for €, being a (scalar) slack variable.

Finally, the S-procedure [7] can be applied to Eq (3.42),
considering A(t)T My A(t) = E {/l(T)TMr/l(T)}. By doing so,
condition:

E{A@)" (M) - M) A} < 0 (3.43)
is equivalently expressed in the form of the LMI in Lemma
3. Therefore, if the positive definite P and a scalar €, indeed
exists, the Lyapunov condition is verified and the proposed
algorithm guarantees offset-free joint state and parameter
estimation. This concludes the proof. O

Remark 11. We note that
potentially conservative sufficient condition that ensures

inequality (3.43) is a

the convergence of the NLPV joint estimation algorithm.
Therefore, if there exists some positive definite P, which
verifies LMI in Lemma 3, the local zone of attraction
within which the ODE from Eq (3.21) displays asymptotic
convergence may be small. The size of this zone depends on
a series of matters, such as the model of the process and the
Lipschitz constant I'. In Section 4, we show an illustration

of this attraction region for a suspension system example.
4. Experimental validation results

In this Section, we present experimental validation
results concerning the proposed joint parameter and state

estimation, considering Lipschitz NLPV in form of Eq (2.1).
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Figure 1. INOVE 1/5-sized vehicle.

4.1. Semi-Active suspension test-rig

The identified process is that of a semi-active suspension
system. The used data is provided by the sensors of a
1/5-scaled vehicle mechatronic test-bench, equipped with
4 semi-active Electro-rheological (ER) dampers with the
force range of £50N. This vehicle test-rig, shown in
Figure 1, allows testing under different configurations and
use-cases (for full details, refer to www.gipsa-1lab.fr/
projet/inove). Each damper is controlled through a
PWM signal given within the [00.35] range’.Below each
wheel of the vehicle lies an OMRONT# linear servomotor
which is able to mimic various road type conditions, with a
maximal velocity threshold of 1.5m/s.

4.2. Lipschitz NLPV model

In order to describe the vertical dynamics of this
experimental platform, a decoupled, quarter-car modelling
framework is followed: each corner of the vehicle is
represented by an individual set of equations. Each damper
is controlled seeking to minimise the effects of the road upon
the safety and comfort of the passengers on-board. The
dynamic coupling effects between the corners are neglected.
Through the sequel, the presented results are those from the
front-left corner test-bench.

Figure 2 shows a schematic diagram of the quarter-
car representation of a vehicle with four suspension units.
Each semi-active suspension system comprises a spring
with a stiffness parameter k; and a controlled damper of
The chassis body at
each side is represented by a sprung mass m,, which is

variable damping coefficient c(-).

"These PWM modules operate at 25kHz rate duty-cycles
and vary the electric field that is applied over each ER damper
chambers and, thus, change the ER fluid flows viscosity and the
delivered damping force.
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connected to the wheel-link, represented by the unsprung
mass m,,. The wheel is represented by a spring with
stiffness k,. The vertical dynamics are described regarding
the displacements of the sprung and unsprung masses: z(f)
and z,,5(?), respectively. The road profile is z,(¢) a disturbance

signal to this system.

Suspended mass

mS
s : 3 e |4
uspension system == e
\E s
Unsprung mass e
(or wheel mass)

Figure 2.  Vehicle corner with semi-active

suspension system.

The force provided by each ER damper is described
through a dynamic version [33] of the widely-used nonlinear
hyperbolic tangent model [19], as follows:

Fo©) = kozaef(t) + coZaer(t) + Fgr(t), 4.1
dFgr 1 Je .
7 () = —=Fgg@)+ = tanh(k1Z4er(t) + C1Zder()Iu(t),
t T T
where z47(t) = (z4(¢) — z.4s(?)) represents the suspension

deflection and u(f) stands for duty cycle of a PWM signal
that regulates the ER damper. Regarding control purposes,
this PWM variable u(¢) is the control input to the suspension
system.

The spring and tire forces are given by:

F@) =
Fy(1)

4.2)
(4.3)

kdeef(t) P
kt(zus(t) - Zr(t)) .

The dynamics of the sprung and unsprung masses are

obtained using regular laws of motion around an origin

equilibrium:

—F(t) - Fa(n),
Fy(t) + Fa(t) = Fi(D).

(4.4)
4.5)

myZ(t) =

muszus(t)

Table 1 presents the model parameter values and their
descriptions. The nominal values for spring stiffness,
passive damper stiffness and viscous damping coefficient
are provided by the manufacturers of these models. The
remaining values were previously identified using regular

state-of-the-art procedures [48].

Mathematical Modelling and Control

We must stress that the damping characteristics of the
ER damper vary over time. According to the lifespan
of these components, the passive stiffness ky and viscous
damping coefficient ¢y have variations, for multiple reasons
[29, 31], such as small oil leakages, air pressure inside the
damper chamber, influence of external (high) temperatures,
etc. Therefore, we assume that these parameters should be
identified online and are subject to a random walk behaviour
and additive noise, in the fashion of Eq (2.8). Accordingly,

it is implied that:
T
O = [kok Cok] s (4.6)

where 8, comprises the values for ky and ¢ given in Table 1

(nominal values).

Table 1. Vehicle model parameters.

Parameter Description Value Unit
Mg Sprung mass 2.27 kg
My Unsprung mass 0.32 kg

ky Spring stiff. 1396 N/m
k; Tire stiff. 12270 N/m
ko Passive damp. stiff. 1704  N/m
Co Viscous damp. coef. 68.83 N.s/m
ky Hysteresis displ. coef. | 218.16 N/m
c Hysteresis vel. ceof. 21 N.s/m
fe Dynamic yield force 28.07 N

T Time constant 43 s

The two major control objectives [34] of semi-active
suspensions systems are: vehicle body isolation and
passenger comfort enhancement. These two goals are
physically conflicting: while stiff/high damping enhances
passenger comfort, smooth/low damping enables easier road
holding. An accurate knowledge of the actuator dynamics
(damping force delivered by the ER damper) is necessary
to correctly design control strategies regarding these two
objectives. Accordingly, the online estimation of parameters
6 is essential.

We note that the active hysteresis coefficients k;, ¢; and
the dynamic yield force of the ER damper f,. appear only in
the controlled part of the damper force Fgp(?), see Eq (4.1).

This means that possible variations upon these parameters
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(due to external factors, for instance) can be treated directly
as actuator loss of effectiveness, as done in previous papers
[29]. Therefore, their online estimation is not as important
as the one regarding the passive terms, present in Fy(z) —
Fgr(t), which directly appear in the dynamics and cannot be
indirectly accounted for.

Furthermore, as illustrates Table 1, we note that the tire
stiffness and spring stiffness values are much larger that
those for the damping coefficient, which means that the
model is not so sensible to their variations. Changes upon
the sprung mass and unsprung mass are usually accounted
for by robustness, since any suspension control requires the
tolerance of these parameters within a nominal interval [30],
since these parameters vary according to the amount of
vehicle passengers.

In order to cast this quarter-car suspension system
dynamics into a Lipschitz NLPV state-space model, the

system states are selected as follows:

W0 = [ 2 ® 40 GuO-20) fe Fe® | .

The available measurements of this system are the vertical
acceleration variables, given through on-boards sensors

(inertial units/accelerometers), as follows:

o = [ 20 0|

Then, considering w, as coloured measurement noise
and z,(7) as the load disturbance variable, an NLPV state-
space formulation is found with p = u(f) as the scheduling

variable:

(1)
y(®)

Acx(t) + Be(p)P(x(1)) + D, (1) ,

C.x() + De,w(t), 4.7)

T . .
where w(t) = [z‘,(t) , wy(t)] is a concise disturbance vector.
The nonlinearity is:

O (x(r)) = tanh(,x(2)) , 4.8)

with I';, = [k, ¢1,0,—cy,0]. Notice that Eq. (4.8) verifies
a local Lipschitz condition in x, as expected by Assumption
I:

IDx—-DI < Tlx-DIVx, X, (4.9)
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with ' = |[[';,|| is the smallest Lipchitz constant that verifies
Eq (4.9).

The state-space matrices A., B., C.,D., and D,, are given
by:

0 10 -1 0
hothy) w1
A = 0 o 0 1 0 |,
kstko ) cg =k €O 1
o o0 o o -I
. T
Bp) = [0 0 00 L],
- T
b - |00 100
“ (00 0 0 0]
e N S
C. = (kATf(Ok) ZHL; & 2 Lm: },
P
“ o oo1 |

This model is Euler-discretized with a sampling period
of T, = 5ms, which is an operational constraint of the
considered test-bench. This leads to discrete-time Lipschitz
NLPV system of the form in Eq (2.1). W.r.t. to the original
problem setup model, the discretization implies A(-) = I, +
T Ac(), B() = TsB:(-) and C(-) = T,Cc().

Regarding the previous notation, the road profile
derivative disturbance z,(¢) stands for w.(f). We note that
in many modern cars, cameras (and adaptive estimation
algorithms) are used to preview the future road profiles, e.g.
[30,44,46]. This is trivial and widely seen in the automotive
suspension literature [30]. Thus, from the viewpoint of the

joint estimation algorithm, w, is a known variable.

4.3. Convergence verification

It must be remarked that the considered experimental test-
bench has physical limits to the motion variables (z;, Zj,
etc.). Therefore, it is implied that the states x have upper
and lower limits; mathematically, this is expressed as a box-

type set constraint x € X'V t, where:

X = {x = col{x;} eR"*Ixj <x;<x; Vje N[l,nx]} .

The numerical values for these upper and lower (physical)
limits of the states are given below, in Table 2.
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Table 2. State admissible limits.

Description x; Statex; X;
Suspension Deflection —0.6; <x1< 0.6m
Chassis Body Velocity -20m/s <x < 20m/s

Tire Deflection —-0.6m <x3< 0.6m
Wheel-Link Velocity -60m/s <xs< 60m/s
Controlled Damper Force -50N <xs5< 50N

Before presenting the actual estimation results obtained
with the proposed algorithm, its convergence property
regarding state estimation must be analysed. In fact,
state estimation convergence can be tested with the LMI
provided in Lemma 3. For the considered system, the
corresponding LMI is indeed verified, which ensures that
the Lyapunov convergence condition holds. The symmetric
positive definite matrix Py for which this LMI holds is the

following, with e, = 8.02107%:

P, =
0.0515 0.0017 0.0186 —3.1¢7'! 1.58¢7°
* 5.6e7  6.14¢* —29¢ 11 5.72¢711
* * 0.0106 -5.06e7!!  51.36¢7°
* * * —6.31e™  —1.29¢7
* * * * 2.48¢™*

The sub-level ellipsoid set of P determines the zone of
attraction estimate for the proposed NLPV EMMEF. This is,
for any starting condition xy € €, convergence is verified.
We note that the LMI problem from Lemma 3 is evaluated
offline within 2.10s, using Matlab software and SDPT3
solver on an i5 CPU@2.4 GHz Macintosh with 8§ GB of
RAM.

Regarding this matter, Figure 3 shows this zone of
attraction in three different 2D cuts: on the left-side,
the region of attraction for states x; and x, is given;
in the center, the region for states x3 and x; is shown;
while on the right-side, the region for states x4 and xs
is exhibited. In this Figure, the (minimal and maximal)
physical limits of each state are also displayed (those in
Table 2).

algorithm will ensure convergence, since all possible xj

Clearly, for any physically possible xy, the

are indeed contained inside Q: X < €, which means
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that Y xo (xo € X — xp € Q) and, thus, the proposed
solution is recursively feasible and ensures convergence

when applied to the considered suspension system process.

—a, (12

!
Clx o

100

50 100 10 5 0 H 10 00 S0 o 50 100

Figure 3. Zone of attraction of the proposed
algorithm.

4.4. Joint state and parameter estimation

For the application of the proposed algorithm, a real
input set comprising + = 5s of vertical vehicle motions is
considered (i.e. k = 1000 iterations). The road profile z,.(¢)
represents a vehicle running in a straight line on a dry road
when it encounters a sequence of 13 mm bumps along its
four wheels. This real road profile z,(f) applied to the test-
bench through the controlled servomotors under the wheels
and its derivative (input of the NLPV model) w,(f) = z.(¢)
are presented in Figure 4.

x10%

mis 2)

dz /dt : Road Profile Variati

0 05 1 15 2 25 3 as 4 45 5
Time (s)

Figure 4. Road profile scenario

Disturbances).

The test-bed model is then fed with a PRBS signal
bounded within [0, 0.3], which is given in Figure 5.
This input signal is of PRBS type in order to provide
frequency-rich output signals y (chassis body and wheel-
link accelerations). These outputs, which are corrupted with
coloured noise, are presented in Figure 6. As shown in
this Figure, we note that the measurement noise is quite
significant: the average noise-to-signal ratios for the chassis
body and wheel-link acceleration outputs are of roughly
10 % and 5 %, respectively.
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005 ‘ ‘
0 )

0 05 1 15 2 25 3 35 4
Time (s)

Figure 5. PRBS control input / scheduling

variable.

Measured Outputs
300 = — — Tt T o — - T

I I I I 8|
0 100 200 300 400 500 600 700 800 %00 1000
umber of iterations

Figure 6. Measured outputs, € = 0.05.

The achieved estimation results are now presented. In
order to show the advantages of the proposed method
conceived for Lipschitz NLPV systems, it is compared
against: i) an extended Kalman filter [47], which is tuned
based on a tangent linerised model of the process around
the origin equilibrium; and i) a robust EMMF [41], which
considers nonlinear process dynamics and does not make use
of the scheduling variable and does not take into account
the Lipschitz behaviour along the input trajectory. Through
the sequel, NLPV-MEMMF denotes the results achieved
with the proposed algorithm, EKF those obtained with a
the extended Kalman filter and RMMF those for the robust
nonlinear filter.

We note that the results comprise the application of these
methods for different degrees of contamination e, as gives
Eq (2.6). For presentation simplicity, the estimation results
are shown only for € = 0.05. Anyhow, we assess the results
considering other contamination levels through performance
indexes.

The following results, considering the joint estimation
of the NLPV system states x and the variations of the
damper force passive parameters 6y, were elaborated on a
i5 CPU@2.4 GHz (2 Cores) Macintosh with 8 GB of RAM,
with the aid of Matlab. The average execution time required
to evaluate the recursive law given in Eq (2.10) is of 3.43 ms
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per iteration, which means that the proposed method can be
used in online vehicle suspension applications, running on
embedded on-board micro-controllers.

Considering a € = 0.05, Figure 7 shows the identification
of the varying parameters over the 5 s of data, while Figure
8 shows the estimation of the five system states. Clearly,
convergent state estimation results and adequate parameter
identification curves are obtained with the proposed method.
These results could certainly serve for the computation of
online state-feedback control laws, such as robust MPCs, for
instance.

1702

1701 -

10

I I
100 200 300 400 500 600 700 800 900 1000
T T T T T T T T T

100 200 300 400 500 600 700 800 900 1000
Number of iterations

Figure 7. Parameters estimation, € = 0.05.
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Figure 8. State estimation, € = 0.05.

In order to quantify the performance of the proposed
10 and 11
show, respectively the Mean Square Error (MSE) index (in

tool against the other methods, Figures 9,
logarithmic scale) , computed as the squared mean 2-norm of
the deviance between real variables z and their estimations
Z (along the dataset), for different leves of contamination:
€ = 0.05, 0.1 and 0.2, respectively. Note that z comprises
states and parameters. Clearly, the smallest MSE results are
obtained with the proposed NLPV-EMMF method, for all
degrees of contamination, indicating the effectiveness of the
proposed tool. Recall that, in the logarithmic scale, results

closer to —eo indicate smaller estimation errors.
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Degree of Contamination: ¢ = 0.05
T T

Degree of Contamination: €= 0.2
T T T

Figure 9. Joint parameter and state estimation:

mean square error for € = 0.05.

Degree of Contamination: ¢ = 0.1
T T T

= RMMF
+ H— NLPV-MEMMF
EKF

500 600 700 800 900 1000
Number of iterations

Figure 10. Joint parameter and state estimation:

mean square error for € = 0.1.

the
performance of the three methods regarding state and
the Robust Akaike
criterion (RAC) [1] is considered. This criterion measures

Complementary, to quantify identification

parameter estimations separately,

the inconsistency between the probability density of

the estimation results against the exact probability
density of the parameter variations (random walk).
solution, as follows:
RAC(K) = In (£ (RAC(Kk — 1) + 16k — elP?))-

Table 3 shows the means values obtained for the

This criterion has a dynamic

parameter estimation considering the RAC index (RAC)
and the logarithmic Mean Square Error (MSE) for the state

estimation; both indexes are computed for the € = 0.05

I I I
7 900

Figure 11. Joint parameter and state estimation:

mean square error for € = 0.2.

The presented results have shown that the widely-
used extended Kalman filter (EKF) is very sensitive
to the presence of non-Gaussian noises, as opposed to
the proposed robust joint estimation algorithm (NLPV-
MEMMF). Also, it is clearly shown that the included
modifications to extended Masreliez-Martin filer (RMMF)
for joint estimation increase the practical usability and
convergence rate of the algorithm, which is now specially
tendered for Lipschitz NLPV systems. In order to show
robustness of the proposed robust joint estimation algorithm
for systems with parameter faults with respect to these other
conventional (and widely-used) joint estimation algorithms,
the algorithms are tested over 1000 random and independent
simulations, for different contamination degrees. Regarding
these tests, it is particularly important to note that NLPV-
MEMMF maintains its high performances regarding the

other methods, for all contamination degrees.

Table 4.

different degrees of contamination, 1000 random

Joint parameter and state MSE for

tests.
case. Evidently, the proposed NLPV-MEMMEF achieves the
best results. This is very interesting and means that the
. . ) Method Mean Best Worst Var.
proposed solution can indeed serve for an online parameter —0.05
and state estimation tool for controlled Lipschitz NLPV il
. . .. . EKF 1.325 -0.118 2915 0.815
processes subject to inherent stochasticity, benefiting from
i . RMMF -2.555 -3.769 -0.890 0.217
the availability of the scheduling parameter data and the
. . - NLPV-MEMMF | -3411 -3916 -2.667 0.081
Lipschitz characteristic of ®(x).
e=0.1
Table 3. Performance indexes: RAC (Parameter EKF 2.633 0.397 4.954 0912
Estimation) and MSE (State Estimation). RMMF —2201  -3.501 -0935 0214
NLPV-MEMMF | -2922 -3.647 -1.928 0.094
Method 0: (mean RAC) | x: In(MSE) €e=02
EKF 1.248 1.2211 EKF 4.172 0.820 7.251  1.732
RMMF —-1.559 -1.2764 RMMF -1.147  0.071 1.359  0.544
NLPV-MEMMF -3.402 -3.8948 NLPV-MEMMF | -2454 -3.066 -1.741 0.111
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To conclude this Section, Table 4 provides the statistical
data based on these random independent tests. Regarding
this Table, for the cases of levels of high contamination
degree (¢ = 0.2), it can be seen that the worst results
obtained by NLPV-MEMMF are even better than the best
result obtained by other methods. It can be clearly
seen that the superiority of the proposed robust algorithm
is greater in higher degrees of contamination, since the
proposed method yields the least amount of variance in the
considered performance index. Also, it is important to notice
that, in presence of non-Gaussian noises, the proposed
NLPV-MEMMF is an attractive alternative solution which
outperforms other algorithms and, at the same time, has

reduced complexity in comparison with them.

5. Conclusions

This paper proposed a robust system identification
algorithm specific conceived for Nonlinear Parameter-
Varying models subject to stochasticity. The explicit
nonlinear term obeys a Lipschitz condition and the matrices
are affine on the scheduling parameters. The proposed
approach, based on a modified extended Masreliez-Martin
filter, jointly estimates the NLPV system states together
with the physical parameters with precision. The estimation
error asymptotically converges, despite the non-Gaussian
disturbances. The effectiveness of the proposed algorithm is
verified using real data from vehicle suspension mechatronic
test-bed. As illustrated, the method can effectively estimate
estates and stochastic parameter variations, becoming an
interesting option for online state-feedback control policies,
since it only uses output data. The major drawback of the
proposed method is that it requires the explicit time-varying
nonlinearity to be structurally known and Lipschitz, as well
as needing a linear parametrisation of a priori evaluated
basis functions. For future works, the Authors plan on
comparing the method against artificial neural networks and
genetic algorithms set for the structural discovery of the

model dynamics, which do not require such assumptions.
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