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Abstract: Successful identification procedures are undoubtedly important for accurate model description and the consequent
implementation of control strategies. Linear Parameter Varying (LPV) models are nowadays standard for control design purposes
and powerful identification techniques accordingly available. Anyhow, recent advances have brought to focus the class of Nonlinear
Parameter Varying (NLPV) models, which keep some nonlinearities embedded to the formulation. Identification tools for this latter
class are still not available. Therefore, this paper proposes a novel method for the robust identification of stochastic NLPV systems,
considering that the nonlinear parameter part is a priori known and obeys a Lipschitz condition. The method is based on a modified
extended Masreliez-Martin filter and yields the joint estimation of both NLPV systems states and model parameters. The method
manages the stochasticity of the system by considering the presence of measurement outliers with non-Gaussian distributions. Results
considering real data from a vehicle suspension system are presented in order to demonstrate the consistency of the proposed method.

Keywords: extended robust filter; identification; nonlinear parameter varying systems; state and parameter estimation;
non-Gaussian noises

1. Introduction

Linear Parameter Varying (LPV) models have become
progressively popular over the last two decades [20, 28, 43].
LPV models retain the design synthesis advantages of the
Linear Time Invariant (LTI) setting, while being able to
represent nonlinear dynamics with truthfulness. The LPV
framework has been applied for control [37], observation
[29] and identification [3, 5] purposes. In this paper, we
address the two latter topics.

Recent works have shown the particular interest of the
class of Nonlinear Parameter Varying (NLPV) models
[6, 33]. In contrast to the “regular” LPV paradigm,
which encapsulates the nonlinearities into time-varying
scheduling parameters ρ, NLPV models retain some explicit

nonlinearities that are “easily handled” outside of the
scheduling term ρ, such as local Lipschitz nonlinear terms.
On one hand, the LPV class exhibits linearity w.r.t. the
state space, on the other hand, the NLPV class is nonlinear
on both parameter and state spaces. The main interest
in using the explicit nonlinearities coupled to the LPV
structure is that they can be taken into account by the
control design method, reducing the over-bounding of
the nonlinearities by the scheduling parameter and, thus,
enabling less conservative control performances. Anyhow,
the development of identification and state estimation
methods specifically conceived for NLPV models is yet
unseen.

Over the past few decades, particular attention has
been devoted to nonlinear system identification under non-
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Gaussian measurement noises [8,9,36,40]. These stochastic
tools are generic and could be applied to the case of NLPV
models, yet they could benefit from the availability of the
scheduling parameter data if properly designed.

Motivated by this research gap, the aim of this paper is to
extend and generalise the Masreliez-Martin filter [40] joint
state and parameter estimation method for the class of NLPV
models with explicit Lipchitz nonlinearities. We stress that
the main interest regarding the considered method is that it
offers a simple recursive implementation and convergence
properties verifiable through an LMI problem. The main
novelty is that, by exploiting the local Lipschitz condition
of the NLPV model, better state and parameter estimates are
obtained. Furthermore, the use of the scheduling parameter
data also enhances the results, since more information
regarding the system dynamics is available. Accordingly,
the major contributions are:

• The proposition of a robust identification procedure for
joint parameter and state estimation for the class of
NLPV models. Assuming that the explicit nonlinear
term is structurally known and Lipschitz, the algorithm
is is based on an adaptation of the modified Masreliez-
Martin filter. The method considers coloured noise
upon the measurement data and a random walk
behaviour for the parameter variations.

• A sufficient LMI condition is provided for the
verification of the local convergence of the proposed
parameter and state estimation tool. This LMI
remedy is derived from the direct Lyapunov method
applied over an Ordinary Differential Equation (ODE)
associated to the estimation error. The solution of
the LMI also serves as an estimate for the zone of
attraction of the algorithm. We also discuss how the
the Lipschitz constant directly affects the size of this
basin of attraction.

• The application of the proposed NLPV identification
procedure to a mechatronic test-rig of an automotive
semi-active suspension system. The effectiveness of
the proposed method is discussed in terms of state
estimation error and parameter identification precision,
measured through standard indexes.

Remark 1. We stress that in the previous works by
the Authors [40], the joint parameter-state estimation of

a nonlinear stochastic system is considered and verified
through simulations on a mathematical model. In this paper,
the joint estimation algorithm of a stochastic NLPV system
is considered, for which the nonlinear part is explicit, a

priori known, and obeys a local Lipschitz condition. The
proposed algorithm is verified through experimental results
on a real vehicle system. Due to LPV parameter-dependent
model matrices and to the nonlinear Lipschitz condition
of the explicit nonlinear term, the proposed algorithm
is completely different from the prior [40] in terms of
matrix structures, gains and recursive estimation laws, but
also conceptually, exploiting the availability of scheduling
parameters to refine the joint estimation results.

The rest of this paper is organised as follows. The
background state-of-the-art regarding nonlinear and LPV
identification is discussed is Section 2, where the formal
problem setup is also given. The proposed NLPV state
and parameter estimation algorithm is presented in Section
3. The LMI problem used to verify the local asymptotic
convergence of the method is also presented therein. The
experimental validation results are given in Section 4. This
paper ends with conclusions in Section 5.

1.1. Notation

In the sequel, the set of nonnegative real number is denoted
by R+, whist the set of nonnegative integers including zero
is denoted by N. Rq represents a q-dimensional real space.
The index set N[a,b] represents {i ∈ N | a ≤ i ≤ b}, with
0 ≤ a ≤ b. The identity matrix of size j is denoted as
I j; col{a , b , c} denotes the vectorization (collection) of the
entries and diag{v} denotes the diagonal matrix generated
with the line vector v.

2. Background and problem formulation

System identification [2] is a topic of great importance
for coherent control synthesis and implementation. The
vast majority of control strategies are model-driven, which
means that their success relies on the accurate knowledge
of the model parameters. Accordingly, the issue of system
identification under stochastic process signals deserves
special attention [10, 27, 39], since real processes are
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not purely deterministic and stochastic noises are always
present.

Besides the identification problem regarding model
parameters, state estimation is a crucial aspect for the control
of processes modelled through state-space representations,
for which only output data is available. The classic state-
feedback design requires online information of the state
variables, which can be provided by observers/estimators.
Due to these reasons, we note that joint state and parameter
estimation is very useful and much facilitates the operation
of adaptive and fault-tolerant state-feedback methods, since
state observation and parameter variation estimates are
provided by a single operator.

The Extended Kalman Filter (EKF) is a very well
established method [25] for the joint estimation of
model parameters and system states, as seen in different
applications [17, 47, 49, 50]. The EKF is popular for
many reasons, but especially because it is not a complex
algorithm, it has a recursive implementation law, and
ensures asymptotic convergence. Its main drawback is that it
is based on the assumption that the measurement noise has a
Gaussian distribution. Many empirical and practical essays
have shown that this assumption is rather weak [40]. It is a
fact that measurement data from real processes may present
inconsistent values at some points, i.e. “outliers”. These
corruptions are typically non-Gaussian and significantly
reduce the effectiveness of algorithms such as the EKF.
Research has progressively focused on overcoming the EKF
restrictions; some of the recent approaches are: maximum
likelihood methods [24,45], prediction error techniques [42]
and robust identification algorithms [40]. These are all
computationally less expensive than the EKF and require
less restrictive assumptions on the measurement data.

The known fact is that the measurements have
inconsistent observations with the largest part of the
observation population. Justification of the proposed
approach, which considers the presence of outliers, was
confirmed in practice [21, 32]. The presence of outliers can
destroy the good features of linearly recursive algorithms,
which are typically designed for the estimation in the
presence of Gaussian noises. Therefore, it is very important
to design a robust algorithm which is insensitive to outliers,
since they exist in all real instrumented systems.

We note that many of the popular identification methods,
such as the KF and the EKF, have been extended for
the case of nonlinear [11] and LPV models [4]. For the
latter class of models, the known parameter-varying data is
used to schedule the estimation problem, which has input-
output/input-state linearity. The state-of-the-art regarding
LPV identification includes subspace techniques [12, 15],
successive LTI approximations [13], robust filtering [5],
multi-step canonical variate analysis [22, 35], prediction
error methods [51] and nonlinear programs [23]. The review
book [14] thoroughly discusses these recent developments
and the future trends on LPV identification. A clear
investigation gap is to consider NLPV models, for which
there exists an explicit nonlinear function which must
be taken into account by the estimation procedure, since
input-output/input-state linearity no longer holds. Up to
the Authors’ knowledge, there has been no technique
specifically devoted for the class of NLPV models, albeit the
fact that many of NL identification methods can be applied
to the NLPV case. The focus of this paper is given w.r.t.
to this matter, pursuing the generalisation of a nonlinear
joint parameter and state estimation method to the NLPV
class, by exploiting the availability of the scheduling map
data and the properties of the explicit nonlinearity. The
purpose of exploiting the explicit nonlinearity is to seek
better estimation results than just applying the nonlinear
method itself.

Nonlinearity is a key feature present in almost all physical
system controlled over large operating conditions. The
extended Masreliez-Martin filter (EMMF) [26] is a an
interesting option for the robust identification of nonlinear
systems under stochastic, non-Gaussian corruptions. This
robust method is based on Huber’s statistics foundations
[21]. Instead of using a Gaussian distribution assumption
as the EKF, the EMMF is synthesised considering that the
noise is coloured and belongs to some known distribution
class. Furthermore, this algorithm ensures robustness and
insensitivity w.r.t. the differences between this distribution
class and the real outlier distribution. This paper considers
the adaptation of the EMMF to the NLPV case due
to its rather simple implementation and easily verifiable
convergence property, as previously discussed [40, 41].
Furthermore, we stress that the EMMF framework offers
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offset-free joint parameter and state estimation, with a zone
of attraction that can be estimated from an LMI problem.

Remark 2. System identification theory has been set up
since the 70’s as the problem of generating parameter
estimates in a stochastic framework [25, 38], since input
data samples are consider as deterministic signals corrupted
by noise. As demonstrated by then [16, 18, 38], the input
signal needs to be independent from the process noise for the
estimation of the parameter to be unbiased, in the majority of
cases. This property remains true in the context of this work.
We note that in the experimental validation results (Section
4), we consider a PRBS input signal which is independent
from this process noise.

2.1. Problem formulation

In this paper, we generalise and apply the EMMF
filter filter for the joint state and parameter estimation
problem of NLPV models with strcuturally known Lipschitz
nonlinearities. The task of estimation both states and
parameters is done by using a joint formulation. For this
goal, the following first-order affine Lipschitz NLPV system
model is considered:

x(k + 1) = A(ρk, θk)x(k) + B(ρk, θk)Φ(x(k))u(k) + wx(k) ,

y(k) = C(ρk, θk)x(k) + wy(k) , (2.1)

with model matrices given as follows:

A(ρk, θk) = A0θk + ρkA1θk , (2.2)

B(ρk, θk) = B0θk + ρkB1θk , (2.3)

C(ρk, θk) = C0θk + ρkC1θk , (2.4)

being x(k) ∈ Rnx the state vector (to be estimated), θ(k) ∈
Rnp the parameter vector (also to be estimated), y(k) ∈
Rny the output measurement vector, u(k) ∈ Rnu the input
variable and ρk ∈ R

nρ the scheduling vector. The explicit
nonlinear term Φ : Rnx → R is structurally known and
Lipschitz, as details Assumption 1. We note that u and ρ are,
a priori, deterministic and known signals. Furthermore, we
stress that x(k) and θ(k) are independent from ρ(k) and u(k).

Assumption 1. The nonlinear term Φ(x(k)) in the
considered NLPV model of Eq (2.1) obeys a local Lipschitz
condition around x, this is:

||Φ(x) − Φ(x̂)|| ≤ ||Γ(x − x̂)|| , ∀ x , x̂ . (2.5)

Remark 3. Assuming that the structure of the explicit
nonlinearity of the NLPV is known is not at all absurd.
Note that, in the majority of LPV cases, these nonlinearities
are embedded to the scheduling parameters ρ. On the
contrary, for the NLPV case, they are willingly made
explicit (outside of ρ) because the designer knows how
they are physically derived. In many processes, when
two physical systems are cascaded (actuator and the actual
process, for instance), and one of them has a known
nonlinearity, this nonlinearity re-appears in the input/output
relationship for the complete cascaded block. As an
example, take a vehicle suspension system: the dynamics
of the suspended vehicle chassis depend on the suspension
control system (damper and spring), which inherently
have known nonlinear behaviours; for the case of electro-
rheological suspensions, this behaviour is a hyperbolic
tangent function [33].

Assumption 2. The NLPV system in Eq (2.1) is corrupted
by process noise wx(k) ∈ Rnx and measurement noise
wy ∈ R

ny . We consider that the process noise is Gaussian,
whereas the measurement noise is a Gaussian mixture. This
is: the process noise is a zero-mean white noise, i.e. p(wx) :
N(0,Qx(k)), where p(·) stands for the probability density
function and Qx(k) for the co-variance matrix related to wx,
whilst the measurement noise wy is non-Gaussian, including
the presence of outliers. This noise is distributed as follows:

Pε = {p(wy) : (1 − ε)p1(wy) + εp2(wy)} , (2.6)

which is a mixture of a nominal normal distribution
p1(wy) : N(0,Q1

y(k)) and a contaminating probability
density p2(wy) : N(0,Q2

y(k)), being Q1
y(k) and Q2

y(k) the
co-variance matrices for the nominal and the contamination
term. The degree of contamination parameter abides to:
0 < ε < 1.

Remark 4. The output measurement noise wy, for ε = 0,
would have a Gaussian distribution p1(wy), whereas, for ε =

1, it would also present a normal distribution, of p2(wy). In
both cases, there would be a complete absence of outliers,
which is not envied if the stochasticity of the process is to be
taken into account.

Assumption 3. The change in the model parameters has a
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random walk behaviour, this is:

θk+1 = θk + wθ(k) , (2.7)

or, more generally,

θk+1 = Cθθk + wθ(k) , (2.8)

where p(wθ) : N(0,Qθ(k)), being Qθ(k) the co-variance
matrix for the random walk distribution. Matrix Cθ is a prior

known and non-singular; it can be used to plug information
on the model parameter change phenomenon that occurs.

Despite the fact that many system parameters can be
available with some reasonable accuracy, given within a
certain range, some model parameters may be entirely
unknown because manufacturers consider these data as
proprietary information. For example, the precise
determination of leakage and friction coefficients causes
great difficulty in the control of electro-rheological actuators
[29]; accordingly loss of effectiveness faults must be
included to reflect the variation of the physical system
parameters. Due to the obvious presence of non-Gaussian
noises, as well as the impossibility of determining the
exact values of the system parameters, the observed system
is considered as a stochastic system whose parameters
are successfully determined by the proposed identification
procedure.

Bearing in mind the previous Assumptions, the goal of
this paper is reiterated: propose an algorithm to jointly
estimate the states x(k) and parameters θk of the NLPV
system described by Eq (2.1), for all k. Moreover,
asymptotic convergence of the estimation is required,
despite the presence of non-Gaussian measurement noise
(outliers) wy. Output data y(k), input data u(k) and
scheduling data ρ(k) is considered available. Formally, this
Problem is described:

Problem 1. For the NLPV system in Eq (2.1), consider an

augmented states vector given by:

z(k) =

 x(k)
θk

 ∈ Rnx+np , (2.9)

which compiles not only the states, but also the varying

process model parameters. Consider qk(·) as a nonlinear

map at instant k. Then, find an estimation law of the

following form:

ẑ(k + 1) = qk (ẑ(k), y(k), u(k), ρk, θk, ξk)

=

 fk(x̂(k), y(k), u(k), ρk, θ̂k, ξk)
gk(x̂(k), y(k), u(k), ρk, θ̂k, ξk)

 ,(2.10)

y(k) = hk(z(k), θk,wy(k)) , (2.11)

with ξk : N
(
0,Qξ(k)

)
, with Qξ(k) = diag{Qx(k) , (1 −

ε)Q1
y(k) + εQ2

y(k) , Qθ(k)}, encompassing all disturbances:

ξk =
[

wT
x (k) wT

y (k) wT
θ (k)

]T
. (2.12)

This estimation should minimise the sensitivity of ẑ to

wy and ensure that the expectation of estimation error

E((e(k)) = E (z(k) − ẑ(k)) has local asymptotic convergence

for any state error starting condition ex(0) = x(0) − x̂(0)
given within a basin of attraction Ω, which is equivalent to:

lim
k→∞

e(k) → 0 ,∀ex(0) ∈ Ω . (2.13)

In the sequel, Problem 1 is solved by the use of a
modified EMMF. More specifically, the Fischer information
of the regular EMMF in the a posterior co-variance matrix
is replaced by an approximation given by the derivative
of Huber’s function, which increases the flexibility of the
algorithm and speeds up its convergence rate. The benefits
of this modified version of the EMMF is discussed and
illustrated in [40, 41].

Remark 5. We note that the EMMF has been shown to
possess offset-free convergent robust filtering qualities [41],
which can be checked through a set of linear inequalities. If
such inequalities are verified, the estimates from the EMMF,
given in an augmented state form alike of z(k), retain low
sensitivity to measurement outliers.

Remark 6. The considered NLPV model presented in
Eqs (2.1)-(2.4) has affine parameter-dependence w.r.t. the
scheduling variable ρk. Anyhow, the method could directly
consider polynomial, polytopic and fractional parameter
dependencies, for which only the form of matrices A(·), B(·)
and C(·) have to be altered. Moreover, we note that the
proposed joint estimation problem, given in the recursive
form of Eq (2.10), is set to benefit from the availability
of the scheduling parameter data ρk, which coordinates the
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estimation function qk(·), as shown in the sequel. In contrast
to the nonlinear EMMF, the proposed NLPV EMMF uses an
explicit ρk-dependent time-varying function qk(·). As done
in other LPV identification methods [14], the scheduling
variable ρk data is used to provide more data to the filter,
which is potentially better than using a nonlinear EMMF that
disregards the knowledge of ρk.

Lemma 1. Consider a joint state and parameters estimation

law of the form given by Eq (2.10), in Problem 1. The

convergence of the estimation error e(k) can be analysed

with an associated ODE system. If this associated system is

locally asymptotically stable, which can be verified through

the direct Lyapunov method, then, the expectation of the

estimation error E (e(k)) converges.

Proof. Provided in the original paper by L. Ljung [25]. �

3. Robust estimation procedure for NLPV systems

In order to develop the proposed robust method for joint
estimation of states and parameters of affine NLPV systems
with explicit Lipchitz nonlinearities, given in the form of Eq
(2.1), the full expression for z(k), in terms of the nonlinear
maps qk(·) and hk(·) are detailed:

qk−1(·) =
[

(A0 + A1ρk−1)θk−1 0
]

z(k − 1)

+ (B0 + B1ρk−1)Ψ
([
Inx 0np

]
z(k − 1)

)
+

([
Inx 0ny 0np

]
ξk−1

)
, (3.1)

hk(·) =
[

(C0 + C1ρk)θk 0
]

z(k)

+
([

0nx Iny 0np

]
ξk

)
. (3.2)

Then, based on these expressions, the extended robust
filter (EMMF) [40] is proposed for the NLPV case. The
estimation of z(k), namely ẑ(k), addressing Problem 1, has
the following form:

P(k) = F(k − 1)P(k − 1)FT (k − 1)

+ L(k − 1)Qξ(k − 1)LT (k − 1)

= P(k) − K(k)Ψ(v(k))T KT (k) , (3.3)

K(k) = PT (k)HT (k)T T (k) , (3.4)

v(k) = T (k)
[
y(k) − hk(ẑ(k), θ̂k, 0)

]
, (3.5)

ẑ(k) = ẑ(k − 1) + K(k)Ψ(v(k)) , (3.6)

Ψ(v(k)) = col{ψ(v1(k)) . . . ψ(vny (k))}T , (3.7)

T (k) =
[
H(k)P(k)HT (k) + V(k)Q1

y(k)VT (k)
]− 1

2 , (3.8)

being implied that:

F(k) =
∂qk

∂z
|ẑ(k) =

 ∂ fk
∂x

∂ fk
∂θ

0nx Inp

 |x̂(k),θ̂(k) , (3.9)

L(k) =
∂qk

∂ξk
|ẑ(k) = Inx+np , (3.10)

H(k) =
∂hk

∂z
|ẑ(k) =

[
∂hk
∂x

∂hk
∂θ

]
|x̂(k),θ̂(k) , (3.11)

V(k) =
∂hk

∂wy
|ẑ(k) = Iny . (3.12)

For the outputs contaminated with outliers, the nonlinear
function ψ(·) issues a transformation upon v(k), with is
associated to the output prediction error. This nonlinearity
is a Huber’s influence function, as gives:

ψ(v j(k)) = min{||v j(k)|| , k j
ε}sign{v j(k)} , (3.13)

with its derivative with respect to v j(k) given by:

ψ̇(v j(k)) =

 1 , ||v j|| < k j
ε ,

0 , ||v j|| ≥ k j
ε .

(3.14)

Remark 7. The sign function is defined as usual, being
equal to identity for positive entries, null for null entries and
minus identity for negative entries.

Remark 8. The use of the nonlinear Huber’s influence
function, given in Eq (3.13), is set to assign less weight to
small quantities of larger residuals, such that the presence
of outliers does not have significant influence on the final
estimate ẑ(k), while giving unit weight to the main part of
the data population with moderate residuals.

The following block structured form of the EMMF
estimation gain and co-variance matrices are given:

K(k) =
[

N(k)T M(k)T
]T

, (3.15)

P(k) =

 P1(k) P2(k)

? P3(k)

 . (3.16)

Finally, the estimation law from Eq (3.6) is given in a
compact, recursive form, as follows:

ẑ(k) = ẑ(k − 1) +

 N(k)
M(k)

 Ψ(v(k)) , (3.17)
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which is directly equivalent to:

x̂(k) = fk−1

(
x̂(k − 1), u(k − 1), θ̂k−1

)
(3.18)

+ N(k)Ψ(v(k))

= A(ρk−1, θ̂k−1)x̂(k − 1)

+ B(ρk−1, θ̂k−1)Φ (x̂(k − 1)) u(k − 1) + N(k)Ψ(v(k)) ,

θ̂k = Cθθ̂k−1 + M(k)Ψ(v(k)) . (3.19)

We note how Eq (3.18) explicitly expresses the state and
parameter estimates w.r.t. previous scheduling parameters
data, benefiting from its availability. In a full nonlinear
formulation, as in the original EMMF, with unknown
scheduling parameter data ρk, the nonlinear map fk−1(·) is
only written in terms of x̂(k − 1), u(k − 1), and θ̂k−1.

Remark 9. The initial conditions for the estimation
algorithm are:

ẑ(0) = 0 ,

P(0) =

 P(x0) 0np

0nx P(θ0)

 .
(3.20)

These values (x̂(0) and θ0) represent some a priori

knowledge about the NLPV system variables. For the
case when these are not known, they can be chosen, for
simplicity, as null entries.

Remark 10. The main difference from the proposed joint
state and parameter estimation algorithm is the use of
Huber’s nonlinearity Ψ(·). Its insertion suitably transforms
the output prediction errors to penalize the presence of
outliers and, thus, eliminate their influence upon the
resulting estimation.

3.1. Convergence analysis

In order verify that the proposed joint state and parameter
estimation algorithm converges, i.e. limk→∞ e(k) → 0,
an associated ODE system is presented and its stability is
verified using a direct Lyapunov method over the associated
ODE from Lemma 1.

Lemma 2. The expectation of the joint parameter and

state estimation error derived from proposed method in Eqs

(3.18)-(3.19) is associated to an ODE system∗, which is

∗With ex(τ) = x(τ) − x̂(τ) and eθ(τ) = θ(τ) − θ̂(τ).

given by:

de(τ)
dτ

=

 dex(τ)
dτ)

deθ(τ)
dτ

 , (3.21)

dex(τ)
dτ

= f e
x (τ) , (3.22)

deθ(τ)
dτ

= f e
θ (τ) . (3.23)

The nonlinear functions f e
x (·) and f e

θ (·) derive from

the difference between the Lipschitz affine NLPV system

dynamics and the estimation from the algorithm, as follows:

f e
x (τ) = AAex(τ) + BA (Φ(x(τ)) − Φ(x̂(τ)) u

− N(τ)Ψ(v(τ)) , (3.24)

f e
θ (τ) = CAeθ(τ) − M(τ)Ψ(v(τ)) . (3.25)

Proof. The proof follows from [25]. Take a continuous
version of the discrete time system where τ = k′Ts,
where Ts is the sampling period of the NLPV system in Eq
(2.1). Then, taking k = k′

Ts
, the following continuous-time

approximation is valid: dr(τ)
dτ = r(k) − r(k − 1).

Firstly, take the dynamics of the parameter estimation
error, for which the parameter estimates are given by Eq
(3.19), considering wθ null:

eθ(k) = (Cθθk−1) −
(
Cθθ̂k−1 + M(k)Ψ(v(k))

)
.(3.26)

It directly follows that:

deθ(τ)
dτ

=

CA︷     ︸︸     ︷(
Cθ − Inp

)
eθ(τ) − M(τ)Ψ(v(τ)) , (3.27)

which asymptotically converges to some constant eθ due to
the construction of M(τ).

Then, take the dynamics of the state estimation error, for
which the state estimates are given by Eq (3.18):

ex(k) = x(k) − x̂(k) = A(ρk−1, θk−1)x(k)

+B(ρk−1, θk−1)Φ(x(k − 1))u(k − 1) − A(ρk−1, θ̂k−1)x̂(k)

−B(ρk−1, θ̂k−1)Φ(x̂(k − 1))u(k − 1) − N(k)Ψ(v(k)) ,

which, by exploiting the affine nature of A and B, leads to:

ex(k) = (A0 + A1ρk−1) eθ(k − 1)ex(k − 1)

+ (B0 + B1ρk−1) eθ(k − 1) (Φ(x(k − 1))) u(k − 1)
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− (B0 + B1ρk−1) eθ(k − 1) (Φ(x̂(k − 1))) u(k − 1)

− N(k)Ψ(v(k)) . (3.28)

Finally, since eθ(τ) = eθ and taking u(k−1) = u as constant,
one obtains:

dex(τ)
dτ

=

AA︷                     ︸︸                     ︷[
A0 + A1ρk−1 − Inx

]
eθ ex(τ)

+

BA︷                     ︸︸                     ︷[
B0 + B1ρk−1 − Inx

]
eθ (Φ(x(τ)) − Φ(x̂((τ))) u

− N(τ)Ψ(v(τ)) . (3.29)

This concludes the proof. �

Lemma 3. The ODE system of Eq (3.21) is locally

asymptotically stable for any real Lipschitz constant Γ if

there exists a positive definite matrix PL = PT
L � 0 and

a scalar εγ ∈ R such that the following LMI holds:
−εγΓ

T Γ BT
APL AT

ATA(τ)T PL

0 −εγInx 0
PLTA(τ)AA PLBA −

(
N(τ)T PL + PLN(τ)

)
 < 0 ,

T (τ)
[
(C0 + C1ρk) eθ

]
= TA(τ) .

Then, for any starting condition x(0) ∈ Ω, which is the sub-

level ellipsoid associated to PL, the proposed algorithm in

Eq (2.10) yields local asymptotically stability.

Proof. In order verify the stability property of the ODE
system of Eq (3.21), the direct Lyapunov method is used.
Assuming there exists some positive definite matrix PL,
consider the following positive definite candidate Lyapunov
function:

V(τ) = E
{
Ψ(v(τ))T PLΨ(v(τ))

}
. (3.30)

The local basin of attraction is given w.r.t. the
state error estimation ex(k), since the parameter error
eθ(k) asymptotically converges to some constant eθ by
construction (refer to the proof of Lemma 2). This basin of
attraction can be estimated as sub-level set ellipsoid related
to PL, i.e.:

Ω :=
{
x ∈ Rnx | xT PLx ≤ 0

}
. (3.31)

Differentiating V w.r.t. τ along the solution of the ODE
system, we get:

dV(τ)
dτ

= E
{

Ψ(v(τ)T PL
∂Ψ(v(τ))

∂τ

}
. (3.32)

Note that the latter term ∂Ψ(v(τ))
∂τ

can be expanded as
follows:

∂Ψ(v(τ))
∂τ

=
dΨ(v(τ))

dv
∂v(τ)
∂τ

. (3.33)

Moreover, note that v(τ) = T (τ)[C(ρk, θ(τ))x(τ) −
C(ρk, θ̂(τ))x̂(τ)]. Then, it holds for dT (τ)

dτ = 0 that:

v(τ) = T (τ)
[
(C0 + C1ρk) eθ

]︸                     ︷︷                     ︸
=TA(τ)

ex(τ) , (3.34)

dv(τ)
dτ

= −TA(τ)
dex(τ)

dτ
. (3.35)

Recall from previous development that ∂Ψ(v(τ))
∂v is naturally

bounded, i.e.:

0 <
∂Ψ(v(τ))

∂v
≤ Inx , (3.36)

which means that
(

dΨ(v(τ))
dτ ≤

dv(τ)
dτ

)
holds. Thus:

dV(τ)
dτ

≤ E
{

dv(τ)
dτ

T

PLΨ(v(τ)) + Ψ(v(τ))T PL
dv(τ)

dτ

}
,

dV(τ)
dτ

≤ E{
[
TA(τ)AAex(τ) + BA (Φ(x(τ)) − Φ(x̂(τ))) u

]T

PLΨ(v(τ))Ψ(v(τ))T PL[TA(τ)AAex(τ)

+BA (Φ(x(τ)) − Φ(x̂(τ))) u]} ,

Defining λ(τ) =
(
ex(τ)T [

(Φ(x(τ)) − Φ(x̂(τ))) u
]T

Ψ(v(τ))T
)T

,
it follows that:

dV(τ)
dτ

≤ E
{
λ(τ)T Mλλ(τ)

}
, (3.37)

with:

Mλ =


0 BT

APL AT
ATA(τ)T PL

0 0 0
PLTB(τ)AA PLBA −

(
N(τ)T PL + PLN(τ)

)
 .

The Lipschitz condition from Eq (2.5) holds as:

[
(Φ(x(τ)) − Φ(x̂(τ))) u

]T [
(Φ(x(τ)) − Φ(x̂(τ))) u

]
≤

ex(τ)T ΓT Γex(τ) , (3.38)
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which is analogous to:

λ(τ)T


−ΓT Γ 0 0

0 Inx 0
0 0 0

︸                  ︷︷                  ︸
MΓ

λ(τ) ≤ 0 . (3.39)

Since the direct Lyapunov method requires dV(τ)
dτ to be

nonpositive, the explicit nonlinearities can be overlapped
with the aid of the Lipschitz condition, taking:

dV(τ)
dτ

< 0 , (3.40)

εγ
(
λ(τ)T MΓλ(τ)

)
< 0 , (3.41)

dV(τ)
dτ

− εγ
(
λ(τ)T MΓλ(τ)

)
< 0 , (3.42)

for εγ being a (scalar) slack variable.

Finally, the S-procedure [7] can be applied to Eq (3.42),
considering λ(τ)T MΓλ(τ) = E

{
λ(τ)T MΓλ(τ)

}
. By doing so,

condition:

E
{
λ(τ)T

(
Mλ − εγMΓ

)
λ(τ)

}
< 0 (3.43)

is equivalently expressed in the form of the LMI in Lemma
3. Therefore, if the positive definite PL and a scalar εγ indeed
exists, the Lyapunov condition is verified and the proposed
algorithm guarantees offset-free joint state and parameter
estimation. This concludes the proof. �

Remark 11. We note that inequality (3.43) is a
potentially conservative sufficient condition that ensures
the convergence of the NLPV joint estimation algorithm.
Therefore, if there exists some positive definite PL which
verifies LMI in Lemma 3, the local zone of attraction
within which the ODE from Eq (3.21) displays asymptotic
convergence may be small. The size of this zone depends on
a series of matters, such as the model of the process and the
Lipschitz constant Γ. In Section 4, we show an illustration
of this attraction region for a suspension system example.

4. Experimental validation results

In this Section, we present experimental validation
results concerning the proposed joint parameter and state
estimation, considering Lipschitz NLPV in form of Eq (2.1).

Figure 1. INOVE 1/5-sized vehicle.

4.1. Semi-Active suspension test-rig

The identified process is that of a semi-active suspension
system. The used data is provided by the sensors of a
1/5-scaled vehicle mechatronic test-bench, equipped with
4 semi-active Electro-rheological (ER) dampers with the
force range of ± 50 N. This vehicle test-rig, shown in
Figure 1, allows testing under different configurations and
use-cases (for full details, refer to www.gipsa-lab.fr/
projet/inove). Each damper is controlled through a
PWM signal given within the [0 0.35] range†.Below each
wheel of the vehicle lies an OMRONT M linear servomotor
which is able to mimic various road type conditions, with a
maximal velocity threshold of 1.5 m/s.

4.2. Lipschitz NLPV model

In order to describe the vertical dynamics of this
experimental platform, a decoupled, quarter-car modelling
framework is followed: each corner of the vehicle is
represented by an individual set of equations. Each damper
is controlled seeking to minimise the effects of the road upon
the safety and comfort of the passengers on-board. The
dynamic coupling effects between the corners are neglected.
Through the sequel, the presented results are those from the
front-left corner test-bench.

Figure 2 shows a schematic diagram of the quarter-
car representation of a vehicle with four suspension units.
Each semi-active suspension system comprises a spring
with a stiffness parameter ks and a controlled damper of
variable damping coefficient c(·). The chassis body at
each side is represented by a sprung mass ms, which is

†These PWM modules operate at 25 kHz rate duty-cycles
and vary the electric field that is applied over each ER damper
chambers and, thus, change the ER fluid flows viscosity and the
delivered damping force.
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connected to the wheel-link, represented by the unsprung
mass mus. The wheel is represented by a spring with
stiffness kt. The vertical dynamics are described regarding
the displacements of the sprung and unsprung masses: zs(t)
and zus(t), respectively. The road profile is zr(t) a disturbance
signal to this system.

Figure 2. Vehicle corner with semi-active
suspension system.

The force provided by each ER damper is described
through a dynamic version [33] of the widely-used nonlinear
hyperbolic tangent model [19], as follows:

Fd(t) = k0zde f (t) + c0żde f (t) + FER(t) , (4.1)
dFER

dt
(t) = −

1
τ

FER(t) +
fc
τ

tanh(k1zde f (t) + c1żde f (t))u(t) ,

where zde f (t) = (zs(t) − zus(t)) represents the suspension
deflection and u(t) stands for duty cycle of a PWM signal
that regulates the ER damper. Regarding control purposes,
this PWM variable u(t) is the control input to the suspension
system.

The spring and tire forces are given by:

Fs(t) = kszde f (t) , (4.2)

Ft(t) = kt(zus(t) − zr(t)) . (4.3)

The dynamics of the sprung and unsprung masses are
obtained using regular laws of motion around an origin
equilibrium:

msz̈s(t) = −Fs(t) − Fd(t) , (4.4)

musz̈us(t) = Fs(t) + Fd(t) − Ft(t) . (4.5)

Table 1 presents the model parameter values and their
descriptions. The nominal values for spring stiffness,
passive damper stiffness and viscous damping coefficient
are provided by the manufacturers of these models. The
remaining values were previously identified using regular
state-of-the-art procedures [48].

We must stress that the damping characteristics of the
ER damper vary over time. According to the lifespan
of these components, the passive stiffness k0 and viscous
damping coefficient c0 have variations, for multiple reasons
[29, 31], such as small oil leakages, air pressure inside the
damper chamber, influence of external (high) temperatures,
etc. Therefore, we assume that these parameters should be
identified online and are subject to a random walk behaviour
and additive noise, in the fashion of Eq (2.8). Accordingly,
it is implied that:

θk =
[

k0k c0k

]T
, (4.6)

where θ0 comprises the values for k0 and c0 given in Table 1
(nominal values).

Table 1. Vehicle model parameters.

Parameter Description Value Unit

ms Sprung mass 2.27 kg
mus Unsprung mass 0.32 kg

ks Spring stiff. 1396 N/m

kt Tire stiff. 12270 N/m

k0 Passive damp. stiff. 170.4 N/m
c0 Viscous damp. coef. 68.83 N.s/m

k1 Hysteresis displ. coef. 218.16 N/m
c1 Hysteresis vel. ceof. 21 N.s/m
fc Dynamic yield force 28.07 N
τ Time constant 43 s

The two major control objectives [34] of semi-active
suspensions systems are: vehicle body isolation and
passenger comfort enhancement. These two goals are
physically conflicting: while stiff/high damping enhances
passenger comfort, smooth/low damping enables easier road
holding. An accurate knowledge of the actuator dynamics
(damping force delivered by the ER damper) is necessary
to correctly design control strategies regarding these two
objectives. Accordingly, the online estimation of parameters
θ is essential.

We note that the active hysteresis coefficients k1, c1 and
the dynamic yield force of the ER damper fc appear only in
the controlled part of the damper force FER(t), see Eq (4.1).
This means that possible variations upon these parameters
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(due to external factors, for instance) can be treated directly
as actuator loss of effectiveness, as done in previous papers
[29]. Therefore, their online estimation is not as important
as the one regarding the passive terms, present in Fd(t) −
FER(t), which directly appear in the dynamics and cannot be
indirectly accounted for.

Furthermore, as illustrates Table 1, we note that the tire
stiffness and spring stiffness values are much larger that
those for the damping coefficient, which means that the
model is not so sensible to their variations. Changes upon
the sprung mass and unsprung mass are usually accounted
for by robustness, since any suspension control requires the
tolerance of these parameters within a nominal interval [30],
since these parameters vary according to the amount of
vehicle passengers.

In order to cast this quarter-car suspension system
dynamics into a Lipschitz NLPV state-space model, the
system states are selected as follows:

x(t) =
[

zde f (t) żs(t) (zus(t) − zr(t)) żus FER(t)
]T

.

The available measurements of this system are the vertical
acceleration variables, given through on-boards sensors
(inertial units/accelerometers), as follows:

y(t) =
[

z̈s(t) z̈us(t)
]T

.

Then, considering wy as coloured measurement noise
and żr(t) as the load disturbance variable, an NLPV state-
space formulation is found with ρ = u(t) as the scheduling
variable:

ẋ(t) = Acx(t) + Bc(ρ)Φ(x(t)) + Dc1ω(t) ,

y(t) = Ccx(t) + Dc2ω(t) , (4.7)

where ω(t) =
[
żr(t) , wy(t)

]T
is a concise disturbance vector.

The nonlinearity is:

Φ (x(t)) = tanh (Γinx(t)) , (4.8)

with Γin = [k1, c1, 0,−c1, 0]. Notice that Eq. (4.8) verifies
a local Lipschitz condition in x, as expected by Assumption
1:

||Φ (x − x̂) || ≤ Γ||(x − x̂)|| ∀x, x̂ , (4.9)

with Γ = ||Γin|| is the smallest Lipchitz constant that verifies
Eq (4.9).

The state-space matrices Ac, Bc, Cc,Dc1 and Dc2 are given
by:

Ac =



0 1 0 −1 0
−(ks+k0k )

ms

−c0
ms

0
c0k
ms

− 1
ms

0 0 0 1 0
(ks+k0k )

mus

c0
mus

−kt
mus

−c0k
mus

1
mus

0 0 0 0 − 1
τ


,

Bc(ρ) =
[

0 0 0 0 fc
τ
ρ

]T
,

Dc1 =

 0 0 −1 0 0
0 0 0 0 0

T

,

Cc =

 −(ks+k0k )
ms

−c0k
ms

0 c0
ms

− 1
ms

(ks+k0k )
mus

c0k
mus

−kt
mus

−c0
mus

1
mus

 ,

Dc2 =

 0 0
0 0.01

 .

This model is Euler-discretized with a sampling period
of Ts = 5 ms, which is an operational constraint of the
considered test-bench. This leads to discrete-time Lipschitz
NLPV system of the form in Eq (2.1). W.r.t. to the original
problem setup model, the discretization implies A(·) = Inx +

TsAc(·), B(·) = TsBc(·) and C(·) = TsCc(·).
Regarding the previous notation, the road profile

derivative disturbance żr(t) stands for wx(t). We note that
in many modern cars, cameras (and adaptive estimation
algorithms) are used to preview the future road profiles, e.g.
[30,44,46]. This is trivial and widely seen in the automotive
suspension literature [30]. Thus, from the viewpoint of the
joint estimation algorithm, wx is a known variable.

4.3. Convergence verification

It must be remarked that the considered experimental test-
bench has physical limits to the motion variables (zs, żs,
etc.). Therefore, it is implied that the states x have upper
and lower limits; mathematically, this is expressed as a box-
type set constraint x ∈ X∀ t, where:

X :=
{
x = col{x j} ∈ R

nx | x j ≤ x j ≤ x j ∀ j ∈ N[1,nx]

}
.

The numerical values for these upper and lower (physical)
limits of the states are given below, in Table 2.
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Table 2. State admissible limits.

Description x j State x j x j

Suspension Deflection −0.6 m ≤x1 ≤ 0.6 m
Chassis Body Velocity −20 m/s ≤x2 ≤ 20 m/s

Tire Deflection −0.6 m ≤x3 ≤ 0.6 m
Wheel-Link Velocity −60 m/s ≤x4 ≤ 60 m/s

Controlled Damper Force −50 N ≤ x5 ≤ 50 N

Before presenting the actual estimation results obtained
with the proposed algorithm, its convergence property
regarding state estimation must be analysed. In fact,
state estimation convergence can be tested with the LMI
provided in Lemma 3. For the considered system, the
corresponding LMI is indeed verified, which ensures that
the Lyapunov convergence condition holds. The symmetric
positive definite matrix PL for which this LMI holds is the
following, with εγ = 8.02 10−8:

PL =

0.0515 0.0017 0.0186 −3.1e−11 1.58e−9

? 5.6e−5 6.14e−4 −2.9e−11 5.72e−11

? ? 0.0106 −5.06e−11 51.36e−9

? ? ? −6.31e−5 −1.29e−5

? ? ? ? 2.48e−4


.

The sub-level ellipsoid set of PL determines the zone of
attraction estimate for the proposed NLPV EMMF. This is,
for any starting condition x0 ∈ Ω, convergence is verified.
We note that the LMI problem from Lemma 3 is evaluated
offline within 2.10 s, using Matlab software and SDPT3
solver on an i5 CPU@2.4 GHz Macintosh with 8 GB of
RAM.

Regarding this matter, Figure 3 shows this zone of
attraction in three different 2D cuts: on the left-side,
the region of attraction for states x1 and x2 is given;
in the center, the region for states x3 and x4 is shown;
while on the right-side, the region for states x4 and x5

is exhibited. In this Figure, the (minimal and maximal)
physical limits of each state are also displayed (those in
Table 2). Clearly, for any physically possible x0, the
algorithm will ensure convergence, since all possible x0

are indeed contained inside Ω: X ⊂ Ω, which means

that ∀ x0 (x0 ∈ X → x0 ∈ Ω) and, thus, the proposed
solution is recursively feasible and ensures convergence
when applied to the considered suspension system process.

Figure 3. Zone of attraction of the proposed
algorithm.

4.4. Joint state and parameter estimation

For the application of the proposed algorithm, a real
input set comprising t = 5 s of vertical vehicle motions is
considered (i.e. k = 1000 iterations). The road profile zr(t)
represents a vehicle running in a straight line on a dry road
when it encounters a sequence of 13 mm bumps along its
four wheels. This real road profile zr(t) applied to the test-
bench through the controlled servomotors under the wheels
and its derivative (input of the NLPV model) wx(t) = żr(t)
are presented in Figure 4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

-2

0

2

4

6

8

10

12

d
z

r/d
t 
: 
R

o
a
d
 P

ro
fi
le

 V
a
ri
a
ti
o
n
 (

m
/s

2
)

10-3

w
x

z
r

Figure 4. Road profile scenario (Known
Disturbances).

The test-bed model is then fed with a PRBS signal
bounded within [0 , 0.3], which is given in Figure 5.
This input signal is of PRBS type in order to provide
frequency-rich output signals y (chassis body and wheel-
link accelerations). These outputs, which are corrupted with
coloured noise, are presented in Figure 6. As shown in
this Figure, we note that the measurement noise is quite
significant: the average noise-to-signal ratios for the chassis
body and wheel-link acceleration outputs are of roughly
10 % and 5 %, respectively.
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Figure 5. PRBS control input / scheduling
variable.
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Figure 6. Measured outputs, ε = 0.05.

The achieved estimation results are now presented. In
order to show the advantages of the proposed method
conceived for Lipschitz NLPV systems, it is compared
against: i) an extended Kalman filter [47], which is tuned
based on a tangent linerised model of the process around
the origin equilibrium; and ii) a robust EMMF [41], which
considers nonlinear process dynamics and does not make use
of the scheduling variable and does not take into account
the Lipschitz behaviour along the input trajectory. Through
the sequel, NLPV-MEMMF denotes the results achieved
with the proposed algorithm, EKF those obtained with a
the extended Kalman filter and RMMF those for the robust
nonlinear filter.

We note that the results comprise the application of these
methods for different degrees of contamination ε, as gives
Eq (2.6). For presentation simplicity, the estimation results
are shown only for ε = 0.05. Anyhow, we assess the results
considering other contamination levels through performance
indexes.

The following results, considering the joint estimation
of the NLPV system states x and the variations of the
damper force passive parameters θk, were elaborated on a
i5 CPU@2.4 GHz (2 Cores) Macintosh with 8 GB of RAM,
with the aid of Matlab. The average execution time required
to evaluate the recursive law given in Eq (2.10) is of 3.43 ms

per iteration, which means that the proposed method can be
used in online vehicle suspension applications, running on
embedded on-board micro-controllers.

Considering a ε = 0.05, Figure 7 shows the identification
of the varying parameters over the 5 s of data, while Figure
8 shows the estimation of the five system states. Clearly,
convergent state estimation results and adequate parameter
identification curves are obtained with the proposed method.
These results could certainly serve for the computation of
online state-feedback control laws, such as robust MPCs, for
instance.
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Figure 7. Parameters estimation, ε = 0.05.
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In order to quantify the performance of the proposed
tool against the other methods, Figures 9, 10 and 11
show, respectively the Mean Square Error (MSE) index (in
logarithmic scale) , computed as the squared mean 2-norm of
the deviance between real variables z and their estimations
ẑ (along the dataset), for different leves of contamination:
ε = 0.05, 0.1 and 0.2, respectively. Note that z comprises
states and parameters. Clearly, the smallest MSE results are
obtained with the proposed NLPV-EMMF method, for all
degrees of contamination, indicating the effectiveness of the
proposed tool. Recall that, in the logarithmic scale, results
closer to −∞ indicate smaller estimation errors.
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Figure 9. Joint parameter and state estimation:
mean square error for ε = 0.05.
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Figure 10. Joint parameter and state estimation:
mean square error for ε = 0.1.

Complementary, to quantify the identification
performance of the three methods regarding state and
parameter estimations separately, the Robust Akaike
criterion (RAC) [1] is considered. This criterion measures
the inconsistency between the probability density of
the estimation results against the exact probability
density of the parameter variations (random walk).
This criterion has a dynamic solution, as follows:
RAC(k) = ln

(
1

k−1

(
RAC(k − 1) + ||θk − θ̂k ||

2
))

.

Table 3 shows the means values obtained for the
parameter estimation considering the RAC index (RAC)
and the logarithmic Mean Square Error (MSE) for the state
estimation; both indexes are computed for the ε = 0.05
case. Evidently, the proposed NLPV-MEMMF achieves the
best results. This is very interesting and means that the
proposed solution can indeed serve for an online parameter
and state estimation tool for controlled Lipschitz NLPV
processes subject to inherent stochasticity, benefiting from
the availability of the scheduling parameter data and the
Lipschitz characteristic of Φ(x).

Table 3. Performance indexes: RAC (Parameter
Estimation) and MSE (State Estimation).

Method θ: (mean RAC) x: ln(MSE)

EKF 1.248 1.2211
RMMF −1.559 −1.2764

NLPV-MEMMF −3.402 −3.8948
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Figure 11. Joint parameter and state estimation:
mean square error for ε = 0.2.

The presented results have shown that the widely-
used extended Kalman filter (EKF) is very sensitive
to the presence of non-Gaussian noises, as opposed to
the proposed robust joint estimation algorithm (NLPV-
MEMMF). Also, it is clearly shown that the included
modifications to extended Masreliez-Martin filer (RMMF)
for joint estimation increase the practical usability and
convergence rate of the algorithm, which is now specially
tendered for Lipschitz NLPV systems. In order to show
robustness of the proposed robust joint estimation algorithm
for systems with parameter faults with respect to these other
conventional (and widely-used) joint estimation algorithms,
the algorithms are tested over 1000 random and independent
simulations, for different contamination degrees. Regarding
these tests, it is particularly important to note that NLPV-
MEMMF maintains its high performances regarding the
other methods, for all contamination degrees.

Table 4. Joint parameter and state MSE for
different degrees of contamination, 1000 random
tests.

Method Mean Best Worst Var.

ε = 0.05

EKF 1.325 −0.118 2.915 0.815

RMMF −2.555 −3.769 −0.890 0.217

NLPV-MEMMF −3.411 −3.916 −2.667 0.081
ε = 0.1

EKF 2.633 0.397 4.954 0.912

RMMF −2.201 −3.501 −0.935 0.214

NLPV-MEMMF −2.922 −3.647 −1.928 0.094
ε = 0.2

EKF 4.172 0.820 7.251 1.732

RMMF −1.147 0.071 1.359 0.544

NLPV-MEMMF −2.454 −3.066 −1.741 0.111
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To conclude this Section, Table 4 provides the statistical
data based on these random independent tests. Regarding
this Table, for the cases of levels of high contamination
degree (ε = 0.2), it can be seen that the worst results
obtained by NLPV-MEMMF are even better than the best
result obtained by other methods. It can be clearly
seen that the superiority of the proposed robust algorithm
is greater in higher degrees of contamination, since the
proposed method yields the least amount of variance in the
considered performance index. Also, it is important to notice
that, in presence of non-Gaussian noises, the proposed
NLPV-MEMMF is an attractive alternative solution which
outperforms other algorithms and, at the same time, has
reduced complexity in comparison with them.

5. Conclusions

This paper proposed a robust system identification
algorithm specific conceived for Nonlinear Parameter-
Varying models subject to stochasticity. The explicit
nonlinear term obeys a Lipschitz condition and the matrices
are affine on the scheduling parameters. The proposed
approach, based on a modified extended Masreliez-Martin
filter, jointly estimates the NLPV system states together
with the physical parameters with precision. The estimation
error asymptotically converges, despite the non-Gaussian
disturbances. The effectiveness of the proposed algorithm is
verified using real data from vehicle suspension mechatronic
test-bed. As illustrated, the method can effectively estimate
estates and stochastic parameter variations, becoming an
interesting option for online state-feedback control policies,
since it only uses output data. The major drawback of the
proposed method is that it requires the explicit time-varying
nonlinearity to be structurally known and Lipschitz, as well
as needing a linear parametrisation of a priori evaluated
basis functions. For future works, the Authors plan on
comparing the method against artificial neural networks and
genetic algorithms set for the structural discovery of the
model dynamics, which do not require such assumptions.
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S. Fergani, G. Buche, O. Sename, L. Dugard,
R. Morales-Menéndez, INOVE: a testbench for the
analysis and control of automotive vertical dynamics,
in 14th International Conference on Vehicle System

Dynamics, Identification and Anomalies, VSDIA, 2014,
pp–403.

49. Z. Wang, X. Liu, Y. Liu, J. Liang, V. Vinciotti,
An extended kalman filtering approach to modeling
nonlinear dynamic gene regulatory networks via short
gene expression time series, IEEE/ACM T. Comput. Bi.,
6 (2009), 410–419.

50. C.-Y. Wu, J.-H. Tsai, S.-M. Guo, L.-S. Shieh, J. I.
Canelon, F. Ebrahimzadeh, L. Wang, A novel on-
line observer/kalman filter identification method and
its application to input-constrained active fault-tolerant
tracker design for unknown stochastic systems, J.

Franklin I., 352 (2015), 1119–1151.

51. Y. Zhao, B. Huang, H. Su, J. Chu, Prediction error
method for identification of lpv models, J. Process

Contr., 22 (2012), 180–193.

c© 2021 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Modelling and Control Volume 1, Issue 1, 35–51.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Notation

	Background and problem formulation
	Problem formulation

	Robust estimation procedure for NLPV systems
	Convergence analysis

	Experimental validation results
	Semi-Active suspension test-rig
	Lipschitz NLPV model
	Convergence verification
	Joint state and parameter estimation

	Conclusions

