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Abstract: This paper investigates the well-posedness of contact discontinuity solutions and the
vanishing pressure limit for the Aw–Rascle traffic flow model with general pressure functions. The
well-posedness problem is formulated as a free boundary problem, where initial discontinuities
propagate along linearly degenerate characteristics. To address vacuum degeneracy, a condition at
density jump points is introduced, ensuring a uniform lower bound for density. The Lagrangian
coordinate transformation is applied to fix the contact discontinuity.The well-posedness of contact
discontinuity solutions is established, showing that compressive initial data leads to finite-time blow-
up of the velocity gradient, while rarefactive initial data ensures global existence. For the vanishing
pressure limit, uniform estimates of velocity gradients and density are derived via level set argument.
The contact discontinuity solutions of the Aw–Rascle system are shown to converge to those of
the pressureless Euler equations, with matched convergence rates for characteristic triangles and
discontinuity lines. Furthermore, under the conditions of pressure, enhanced regularity in non-
discontinuous regions yields convergence of blow-up times.
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1. Introduction

In this paper, we consider the Aw–Rascle traffic flow model proposed by Aw and Rascle [1]:ρt + (ρu)x = 0,
(ρ (u + P))t + (ρu (u + P))x = 0,

(1.1)

where t > 0 and x represent time and space, ρ, u, P are density, velocity, and pressure respectively. The
pressure P is the function of density ρ and the small parameter ε > 0, satisfying limε→0 P (ρ, ε) = 0.
Here we consider the general pressure

P (ρ, ε) = ε2 p (ρ) . (1.2)

In the paper, for ρ > 0, p ∈ C2 (R+) satisfies the following conditions:

p′ (ρ) > 0, 2p′ (ρ) + ρp′′ (ρ) > 0, lim
ρ→+∞

p (ρ) = +∞, lim
ρ→0

p (ρ) = k. (1.3)

And for different k we have the following two cases:
Case 1: If k is a finite constant, by (1.1)2 − ε

2k(1.1)1, (1.1) are equivalent toρt + (ρu)x = 0,(
ρ
(
u + ε2 (p (ρ) − k)

))
t
+

(
ρu

(
u + ε2 (p (ρ) − k)

))
x

= 0.

Therefore, we can take k = 0, otherwise we can let p̃ (ρ) = p (ρ)−k, then the form of (1.1) is unchanged.
In this case, we have limρ→0 p (ρ) = 0, which includes γ-law: p (ρ) = ργ with γ ≥ 1.

Case 2: If k = −∞, then limρ→0 p (ρ) = −∞, which includes p (ρ) = ln ρ. To define the inital date,
we need to introduce Lips(R) to denote the set of piecewise Lipschitz functions:

Definition 1.1. For each f is belongs to Lips(R), there exists a finite set {xi}
n
i=1 of the first kind of

discontinuity points, in which xi < xi+1 for any i = 1, · · · , n − 1, such that f is Lipschitz function on
(xi, xi+1). Respectively, f is belongs to C1

s , if f is C1 function on each (xi, xi+1).

Here, {xi}
n
i=1 is called partition points set. By the Lipschitz continuous at each subinterval, at each

partition point xi, there exists the left limit limx→x−i f (x) = f
(
x−i

)
and the right limit limx→x+

i
f (x) =

f
(
x+

i

)
, but may not be equal. And,

[
f
]
(xi) = f

(
x+

i

)
− f

(
x−i

)
is the jump of f at xi.

The initial data of (1.1) can be given as

(ρ, u) |t=0 = (ρ0, u0) , (1.4)

where both ρ0 and u0 are bounded, ρ0 ∈ LipS (R) , u0 ∈ Lip (R) and ρ0 ≥ ρ0 > 0. At each partition
point xi of density ρ0, following conditions are introduce for the low bounded of density:

• ε-condition: If ρ0(x−i ) < ρ0(x+
i ) at xi, for x > xi,

u0 (xi) + ε2 p (ρ0)
(
x−i

)
> u0 (x) . (1.5)
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• 0-condition: If ρ0(x−i ) < ρ0(x+
i ) at xi, for x > xi,

u0 (xi) > u0 (x) . (1.6)

The necessary and sufficient of above conditions will be discussed in Sections 3 and 4. And, 0-
condition is the joint of ε-condition for ε > 0.

Remark 1.2. The discontinuous points of ρ are of the first kind. If the function f ∈ Lips(R), then f
can be decomposed into

f = fJ + fC, (1.7)

where fJ represents the jump part of function f ; fC represents the absolutely continuous part of the
function f and is a Lipschitz continuous function.

Remark 1.3. If the curve x (t; x0, 0) is from the initial discontinuity point (x0, 0), the discontinuity will
propagate along this curve. On the other hand, according to the Rankine-Hugoniot condition, [u] = 0
leads to

dx
dt

=

[
ρu

][
ρ
] = u. (1.8)

Then, the discontinuous curve x (t; x0, 0) satisfies dx(t;x0,0)
dt = u (x (t; x0, 0) , t)

x (0; x0, 0) = x0.
(1.9)

For fixed ε > 0, the two eigenvalues of Aw–Rascle model consist: the genuinely nonlinear one, and
the linearly degenerate one. For the well-posedness of Aw–Rascle model, we start with local existence
and gradient blow-up.

For the local existence, if the solution is C1 function without vacuum, (1.1) is equivalent to strict
hyperbolic system. In this case, the local existence of various types of function spaces, including C1

function class, H s function class and BV function class, has been studied. Under the condition of
ρ > 0 in the whole space, Li and Yu [13] could provide the local well-posedness of one-dimensional
C1 solutions on each compact characteristic triangle.

For gradient blow-up of conservation laws, in 1964, Lax [12] proved this conclusion for one-
dimensional 2×2 genuinely nonlinear hyperbolic system. The results show that for a strictly hyperbolic
system, if the initial value is a small smooth perturbation near a constant state, then the initial
compression in any genuinely nonlinear characteristic field will produce a gradient blow-up in finite
time. John [11], Li et al. [14, 15], and Liu [16] have proven the generation of shock waves for n × n
conservation law equations under different conditions.

The Riemann problem of (1.1) with p (ρ) = ργ was solved in [1]. Pan and Han [18] introduced
the Chaplygin pressure function into the Aw–Rascle traffic model and solved the respective Riemann
problem. It is noticeable that under the generalized Rankine–Hugoniot condition and entropy
condition, they establish the existence and uniqueness of δ-wave. Cheng and Yang [6] solved the
Riemann problem for the Aw–Rascle model with the modified Chaplygin gas pressure. Godvik and
Hanche-Olsen [8] proved the existence of the weak entropy solution for the Cauchy problem with
vacuum. By the compensated compactness method, Lu [17] proved the global existence of bounded
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entropy weak solutions for the Cauchy problem of general nonsymmetric systems of Keyfitz–Kranzer
type. When the parameter n = 1, the system is the Aw–Rascle model.

When the pressure P (ρ) ≡ 0 in the Aw–Rascle model, the equations are simplified to pressureless
Euler equations: ρt + (ρu)x = 0,

(ρu)t +
(
ρu2

)
x

= 0.
(1.10)

The system (1.3) was used to describe both the process of the motion of free particles sticking under
collision [3] and the formation of large scale in the universe [21, 25]. The research on the pressureless
Euler equations mainly focuses on the well-posedness of weak solutions. Brenier and Grenier [3] and
Weinan et al. [25] independently obtained the existence of global weak solutions, and E-Sinai obtained
the explicit expression of weak solutions by using the generalized variational principle. Wang et al. [24]
prove the global existence of generalized solution to the L∞ initial data. Boudin [2] proved that the
weak solution is the limit of the solution of the viscous pressureless Euler equations. Furthermore,
Huang [9] proved the existence of entropy solutions for general pressureless Euler equations. Wang
and Ding [23] proved the uniqueness of the weak solution of the Cauchy problem satisfying the Oleinik
entropy condition when the initial value ρ0 is a bounded measurable function. Bouchut and James [7]
also obtained similar results. Huang and Wang [10] proved the uniqueness of the weak solution when
the initial value is the Radon measure.

To consider the relationship between the Aw–Rascle model and the pressureless Euler equations,
a natural idea is the vanishing pressure limit, which considers limits of ε → 0 as the pressure in the
form of (1.2). The first study of vanishing pressure limit is on the Riemann solution of the isentropic
Euler equations by Chen and Liu [4], the limiting solution in which includes δ-wave by concentration
and vacuum by cavitation. Later, they extended the above result to the full Euler case [5]. Recently,
Peng and Wang [19] studied the case of C1 solutions by a new level set argument. They showed that:
For compressive initial data, the continuous solutions converge to a mass-concentrated solution of the
pressureless Euler system; For rarefaction initial data, the solutions instead converge globally to a
continuous solution. In [20], the authors studied the hypersonic limitation for C1 solution, and showed
the convergence of blow-up time. For the Aw–Rascle model, Shen and Sun [22] proved that as ε→ 0,
the Riemann solutions of the perturbed Aw–Rascle system converge to the ones of the pressureless
Euler equations (1.10). Pan and Han [18] proved that for the Riemann problem, as the Chaplygin
pressure P (ρ) = − ε

ρ
vanishes, the Riemann solutions of the Aw–Rascle traffic model converge to the

respective solutions of the pressureless gas dynamics model (1.10).
This paper addresses two fundamental problems for the Aw–Rascle traffic flow model: (i) the well-

posedness of contact discontinuity solutions with initial velocity u0 and piecewise Lipschitz initial
density ρ0 satisfying the ε-condition, and (ii) the vanishing pressure limit as ε → 0. For problem (i),
the analysis begins by establishing a strictly positive lower bound for the density through a partition
of the domain, and Lagrangian coordinate transformations. This lower bound leads to a dichotomy:
Compressive initial data induce finite time velocity gradient blow-up, whereas rarefactive initial data
guarantee global existence of solutions. For problem (ii), uniform density estimates independent of
ε are derived via level set argument. It is proven that Aw–Rascle solutions converge to pressureless
Euler solutions as ε → 0: compressive data lead to mass-concentrated solutions, while rarefactive
data yield globally regular solutions, with matching O(ε2) convergence rates for velocity fields and
characteristic triangles. Furthermore, under the conditions of pressure, convergence of the blow-up
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time is established through enhanced regularity analysis in non-discontinuous regions.
We have the following two theorems.

Theorem 1.4. For fixed ε > 0, and (1.1)–(1.4), if limρ→0 p (ρ) satisfies one of the following two cases:
Case 1: limρ→0 p (ρ) = 0 and the initial data satisfies the ε-condition;
Case 2: limρ→0 p (ρ) = −∞;
then there exists a time T ε

b such that on R×
[
0,T ε

b

)
, there exists contacted discontinuity solution (ρε, uε)

satisfying:
(1) If infx∈R u′0 (x) ≥ 0, T ε

b = +∞, the solution exists globally,

ρε ∈ Lips (R × [0,+∞)) , uε ∈ Lip (R × [0,+∞)) .

(2) If infx∈R u′0 (x) < 0, T ε
b is finite and there exists at least one Xε

b such that as (x, t) →
(
Xε

b,T
ε
b

)
,

uεx (x, t)→ −∞ while ρε (x, t) is upper and lower bounded. And the solution stands

ρε ∈ Lips
(
R ×

[
0,T ε

b
))
, uε ∈ Lip

(
R ×

[
0,T ε

b
))
.

And, Γε =
{
(x, t) ∈ R ×

[
0,T ε

b

)
: x = xε2 (t)

}
is the discontinuous curve and

(
xε2

)′
(t) is a Lipschitz

function with respect to t, satisfying

dxε2 (t)
dt

= uε
(
xε2 (t) , t

)
.

Theorem 1.5. For ε > 0, (ρε, uε) are the unique solution of (1.1)–(1.4) with 0−condition on R×
[
0,T ε

b

)
.

And, (ρ̄, ū) are the unique solution of (1.10) with initial data (1.4) on R × [0,Tb).
(1) For any 0 < T∗ < Tb, there exists a ε∗ > 0, such that, for 0 < ε < ε∗, T∗ < T ε

b . As ε→ 0,

ρε → ρ̄ in M (R × [0,T∗]) , uε → ū in Lip (R × [0,T∗]) .

And, Tb ≤ lim
ε→0 T ε

b . Furthermore, there are the following convergence rates: For i = 1, 2,

|uε − ū| ∼ O
(
ε2

)
,

∣∣∣λεi − ū
∣∣∣ ∼ O

(
ε2

)
,

∣∣∣xε2 − x̄
∣∣∣ ∼ O

(
ε2

)
,

where λi are the eigenvalues of (1.1); xε2 and x̄ are the discontinuity lines of (1.1) and (1.10)
respectively.

(2) If ρ0 ∈ C1
s (R), u0 ∈ C1 (R), I (ρ) := 2ρp′(ρ)+(ρ)2 p′′(ρ)

(ρp′(ρ))2 satisfies following conditions:

(a) I (ρ) is an increasing function with respect to ρ;

(b) There exists a small δ such that
∫ δ

0
I(s)
s2 ds = +∞.

Then, the blow-up time convergences: limε→0 T ε
b = Tb.

Comparing with classical solutions of the compressible Euler equations, contact discontinuity
solutions of the Aw–Rascle model and their vanishing pressure limits pose unique analytical
challenges. First, the characteristic structure of the Aw–Rascle system, comprising both a linearly
degenerate field and a genuinely nonlinear field, induces distinct regularity properties in Riemann
invariants, with initial discontinuities propagating along linearly degenerate characteristic curves.
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Second, the coupling between evolving discontinuity curves and the solution itself characterizes
the problem as a free boundary problem. Third, density-dependent degeneracy in the Riccati-type
equations governing the system necessitates new density lower-bound estimation, distinct from those
for the compressible Euler equations. Fourth, discontinuities inherently reduce solution regularity,
mandating uniform estimates in tailored function spaces to rigorously establish convergence. Finally,
precise analysis of blow-up times requires delicate estimates in non-discontinuity regions, where
enhanced regularity can be exploited.

To overcome these challenges, three key ideas are introduced: (i) Lagrangian coordinate
transformations: that map evolving discontinuity curves to the fixed boundaries; (ii) Density Lower
bound analysis: the derivatives of Riemann invariants in smooth regions and the jump condition
analysis at discontinuities; (iii) Time-directional derivative techniques: avoiding spatial discontinuities
in Lagrangian. Level set argument are further developed to track invariant derivatives and establish
uniform estimates for the vanishing pressure limit.

The paper is organized as follows: Section 2 proves the existence of classical solutions to the
Aw–Rascle system through Lagrangian coordinate transformations, on avoiding vacuum formation.
Section 3 establishes the well-posedness of contact discontinuity solutions using uniform L∞ estimates
for time-directional derivatives in Lagrangian coordinates. Section 4 studies the vanishing pressure
limit, while Section 5 quantifies blow-up time convergence via modulus of continuity estimates in non-
discontinuity domains. Finally, Section 6 determines sharp convergence rates (O(ε2) ) for characteristic
curves and Riemann invariants.

2. The well-posedness of Aw–Rascle model with C1 initial data

2.1. Lagrangian coordinates

In this section, we consider the Lagrangian transformations for fixed ε > 0 that does not involve
estimations, so we drop ε of (ρε, uε).

The eigenvalues of (1.1) are λ1 = u − ε2ρp′ (ρ) ,
λ2 = u,

(2.1)

and Riemann invariants are w = u,

z = u + ε2 p (ρ) ,
(2.2)

while p (ρ) can be represented by Riemann invariants as p (ρ) = z−u
ε2 . Then, for ρ > 0, (1.1) is equivalent

to ut +
(
u − ε2ρp′ (ρ)

)
ux = 0,(

u + ε2 p (ρ)
)

t
+ u

(
u + ε2 p (ρ)

)
x

= 0.
(2.3)

The derivatives along the charismatics are: For i = 1, 2,

Di = ∂t + λi∂x, (2.4)
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and the respective characteristic lines passing through
(
x̃, t̃

)
are defined as:dxi(t;x̃,t̃)

dt = λi
(
xi

(
t; x̃, t̃

)
, t
)
,

xi
(
t̃; x̃, t̃

)
= x̃.

(2.5)

Combining (2.1) and (2.3), we have D1u = 0,
D2z = 0.

(2.6)

Since the eigenvalue λ1 is genuinely nonlinear and λ2 is linearly degenerate, there will be contact
discontinuity in density along the second family of eigenvalues. So we consider the following
Lagrangian transformation: Let τ = t and d

dτ x (τ; y) = u (x (τ; y) , τ) ,
x (0; y) = y.

(2.7)

Let u (x (τ; y) , τ) = v (y, τ), J = ∂x
∂y is the Jacobian determinant of the coordinate transformation

satisfying:  ∂
∂τ

J = vy (y, τ) ,
J (y, 0) = 1.

(2.8)

In Lagrangian coordinates, we denote

g (y, τ) := ρ (x (τ; y) , τ) , Z (y, τ) := z (x (τ; y) , τ) , (2.9)

and Z (y, τ) = v (y, τ) + ε2 p (g (y, τ)).
Next, for the relationship between J and g, in Lagrangian coordinates, (1.1)1 is equivalent to

gτ + gJ−1Jτ = 0, (2.10)

which equals to (ln(gJ))τ = 0. For g > 0, integrating on τ leads to

J (y, τ) =
g0 (y)

g (y, τ)
, (2.11)

where g0(y) = g(y, 0) is the initial density. Combining with (2.8), in Lagrangian coordinates, (2.3) is
equivalent to 

Jτ = vy,

vτ + µvy = 0,
Zτ = 0,

(2.12)

where µ = −ε2gp′ (g) J−1 = − ε
2

g0
g2 p′ (g). And, the initial data are

(J, v,Z) |τ=0 = (1, v0 (y) ,Z0 (y)) . (2.13)

In the Lagrangian coordinates, one could introduce following direction derivative:

D = ∂τ + µ∂y, (2.14)
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and the characteristic line passing through (ỹ, τ̃) dy1(τ;ỹ,τ̃)
dτ = µ (y1 (τ; ỹ, τ̃) , τ) ,

y1 (τ̃; ỹ, τ̃) = ỹ.
(2.15)

Along the characteristic line, (2.12)2 is equivalent to

Dv = 0, (2.16)

which leads to
v (y, τ) = v0 (y1 (0; y, τ)) . (2.17)

And, by (2.12)3, one could have
Z(y, τ) = Z0(y). (2.18)

By the expression of p we have

p (g(y, τ)) =
Z(y, τ) − v(y, τ)

ε2 =
Z0(y) − v0 (y1 (0; y, τ))

ε2 . (2.19)

If g(y, τ) > 0,

g = p−1
(
p (g0(y)) +

v0(y) − v (y, τ)
ε2

)
. (2.20)

Remark 2.1. If absence of vacuum (g(y, τ) > 0), the density g are uniquely determined by the velocity
field v(y, τ) and Lagrangian coordinate y. Consequently, the velocity field v is governed by the transport
equation:

vτ + µ (v, y) vy = 0. (2.21)

For initial data containing jump, the coefficient µ(v, y) becomes discontinuous along y-direction. This
necessitates estimating v through time τ-derivatives via Lagrangian evolution instead of spatial y-
derivatives, thereby avoiding the jumps. Since the ε-condition in this paper ensures that the density
has a lower bound at jump. The structure of (2.21) is the basis of the regularity of the solution in this
paper. Even in the presence of contact discontinuities, its structure enables deriving the appropriate
gradient estimates.

And in Lagrangian coordinates, ε-condition and 0-condition equivalence to:

• ε-condition: If g0(y−i ) < g0(y+
i ) at jump point yi, for y > yi,

v0(yi) + ε2 p (g0)
(
y−i

)
> v0 (y) . (2.22)

• 0-condition: If g0(y−i ) < g0(y+
i ) at jump point yi, for y > yi

v0 (yi) > y0 (y) . (2.23)

In the paper, we do not distinguish the ε-condition and 0-condition in the Eulerian coordinates or
Lagrangian coordinates.
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2.2. The well-posedness and blow-up C1 solutions

In this section, we consider v0, Z0 ∈ C1, by [13], we could have the local existence of C1 solution
with g(y, τ) > 0 for (2.12)-(2.13). Next, we further consider the sharp life-span of C1 solution of (1.1)–
(1.3). First, we have the following lemma.

Lemma 2.2. For the C1 solution (Jε, vε,Zε) of (2.12)-(2.13), gε is upper bounded with respect to ε; vε

is uniformly bounded with respect to ε.

Proof. By (2.17),
min
y∈R

v0(y) ≤ vε(y, τ) ≤ max
y∈R

v0(y). (2.24)

On the other hand, for p (gε)

p (gε (y, τ)) =
Zε (y, τ) − vε (y, τ)

ε2

=
ε2 p (g0 (y)) + v0 (y) − v0

(
yε1 (0; y, τ)

)
ε2

≤ max
y∈R

p (g0) +
2 maxy∈R v0

ε2 ≤ C (ε) . (2.25)

Combining (1.3), gε has an upper bound with respect to ε, denoted by ḡε. �

We have the following lower bound estimate for density gε.

Proposition 2.3. For the C1 solutions (Jε, vε,Zε) of (2.12)-(2.13), gε has a uniform lower bound

gε (y, τ) ≥
A1

1 + A2Bτ
, (2.26)

where A1 = miny∈R g0, A2 = maxy∈R g0, B = maxy∈R
((Zε0)

′)+

g0
with ( f )+ = max( f , 0).

Proof. To estimate gε

p′ (gε) Dgε = Dp (gε) =
1
ε2 DZε =

1
ε2

(
Zε
τ + µεZε

y

)
=

1
ε2µ

εZε
y = −g−1

0 (gε)2 p′ (gε)
(
Zε

0
)

y . (2.27)

Then, we have
Dgε = −g−1

0 (gε)2 (
Zε

0
)

y . (2.28)

Dividing both sides of the above equation by (gε)2, by the definition of B, we have

D
(

1
gε

)
=

(
Zε

0

)
y

g0
≤ B. (2.29)

Integrating s from 0 to τ along the characteristic line yε1 (τ; y, τ)

gε (y, τ) ≥
g0

(
yε1 (0; y, τ)

)
1 + g0

(
yε1 (0; y, τ)

)
Bτ
≥

A1

1 + A2Bτ
. (2.30)

�
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So for the C1 initial data, we have the following proposition.

Proposition 2.4. For fixed ε > 0 and (1.1)–(1.3), (ρ0, u0) ∈
(
C1 (R)

)2
, there exists a time T ε

b such that

on R ×
[
0,T ε

b

)
:

(1) If infx∈R u′0 (x) ≥ 0, T ε
b = +∞, the solution exists globally, (ρε, uε) ∈ (C1 (R × [0,+∞)))2.

(2) If infx∈R u′0 (x) < 0, T ε
b is finite and there exists at least one Xε

b such that as (x, t) →
(
Xε

b,T
ε
b

)
,

uεx (x, t) → −∞ while ρε (x, t) is upper and lower bounded. And the solution stands (ρε, uε) ∈
(C1

(
R ×

[
0,T ε

b

))
)2.

Proof. Since the lower bound of density, by Remark 2.1, we just need to consider the gradient of vε.
Taking ∂τ on (2.12)2 leads to

D
(
vετ

)
=

(
vετ

)
τ + µε

(
vετ

)
y = −µετv

ε
y. (2.31)

To compute µετv
ε
y, we have

gετ = −gε (Jε)−1 vεy = −
(gε)2 vεy

g0
=

(gε)2 vετ
g0µε

= −
vετ

ε2 p′ (gε)
, (2.32)

which indicates

µετv
ε
y = −

ε2

g0

(
(gε)2 p′ (gε)

)
τ

vεy

= −
ε2

g0

(
2gεp′ (gε) + (gε)2 p′′ (gε)

)
gετv

ε
y

=
2gεp′ (gε) + (gε)2 p′′ (gε)

ε2 (gεp′ (gε))2

(
vετ

)2 . (2.33)

By

I (g) :=
2gp′ (g) + (g)2 p′′ (g)

(gp′ (g))2 ,

one could get

D
(
vετ

)
= −

I (gε)
ε2

(
vετ

)2 . (2.34)

Since D
(
vετ

)
≤ 0, vετ is upper bounded:

vετ(y, τ) ≤ max
y∈R

vετ(y, 0).

Next, we focus on the lower bound of vετ. Dividing both sides of the above formula by
(
vετ

)2, we have

D
(
−

1
vετ

)
= D

− 1
ε2gεp′ (gε) (Jε)−1 vεy

 = −
I (gε)
ε2 . (2.35)

Integrating s from 0 to τ along the characteristic line yε1 (τ; ξ, 0)

1(
gεp′ (gε) (Jε)−1 vεy

) (
yε1 (τ; ξ, 0) , τ

) − 1(
g0 p′ (g0) v′0

)
(ξ)

=
1
ε2

∫ τ

0
I
(
gε

(
yε1 (s; ξ, 0) , s

))
ds. (2.36)
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By (2.36), we have

(
gεp′ (gε) (Jε)−1 vεy

) (
yε1 (τ; ξ, 0) , τ

)
=

(
g0 p′ (g0) v′0

)
(ξ)

1 +
(
g0 p′ (g0) v′0

)
(ξ)

∫ τ

0
I
(
gε

(
yε1 (s; ξ, 0) , s

))
ds
. (2.37)

If v′0 (ξ) ≥ 0, by (2.37), we have
(Jε)−1 vεy

(
yε1 (τ; ξ, 0) , τ

)
≥ 0

for all τ ≥ 0. If v′0 (ξ) < 0, we need to estimate
∫ τ

0
I
(
gε

(
yε1 (s; ξ, 0) , s

))
ds. By (2.25) and (2.26), for gε,

we have
A1

1 + A2Bτ
≤ gε (y, τ) ≤ ḡε. (2.38)

Then, since p (gε) ∈ C2 (R+) , for gε ∈
[

A1
1+A2Bτ , ḡ

ε
]
, by (1.3), a positive lower bound Iε such that

I (gε) ≥ Iε > 0. (2.39)

Then we have the following inequality:∫ τ

0
I
(
gε

(
yε1 (s; ξ, 0) , s

))
ds ≥

∫ τ

0
Iεds. (2.40)

Thus, if v′0 (ξ) < 0, when τ increases from 0 to some T ε
b (ξ), we have

1 +
(
g0 p′ (g0) v′0

)
(ξ)

∫ T ε
b (ξ)

0
I
(
gε

(
yε1 (s; ξ, 0) , s

))
ds = 0, (2.41)

which indicate (Jε)−1 vεy → −∞ as τ→ T ε
b (ξ).

For ξ run over all the points satisfying v′0 (ξ) < 0, we could have the minimum life-span

T ε
b := inf

{
T ε

b (ξ)
}
> 0. (2.42)

In Lagrangian coordinates, for fixed ε > 0, gε is upper and lower bounded in
[
0,T ε

b

)
, so the global

solution exists if and only if, for y ∈ R
v′0 (y) ≥ 0. (2.43)

On the other side, if v′0 (y) < 0, (Jε)−1 vεy will goes to −∞ in the finite time. Then, there exists at least
one point

(
Yε

b ,T
ε
b

)
such that on R ×

[
0,T ε

b

)
, as (y, τ)→

(
Yε

b ,T
ε
b

)
,

(Jε)−1 vεy → −∞. (2.44)

Next, we want to discuss the transformation of the solution between the Lagrangian coordinates and
the Eulerian coordinates. For y ∈ [−L, L], there is a characteristic triangle{

(y, τ) | −L ≤ y ≤ yε1 (s; L, 0) , 0 ≤ s ≤ τ
}
, (2.45)

where yε1 (τ; L, 0) = −L. And, in the characteristic triangle, each (y, τ) has a unique (x, t) satisfying d
dt x (t; y) = vε (y, t) ,
x (0; y) = y,

(2.46)
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which could be expressed as

x(y, τ) = y +

∫ τ

0
vε(y, s)ds. (2.47)

We let L→ +∞, for any y ∈ R, each (y, τ) has a unique (x, t) by (2.46). According to the transformation
of Eulerian coordinates and Lagrangian coordinates, we haveuεx = (Jε)−1 vεy,

uεt = −
(
vε − ε2gεp′ (gε)

)
(Jε)−1 vεy.

(2.48)

And, for ρε we have ρεx = (Jε)−1 gεy = (Jε)−1 v′0+ε2 p′(g0)g′0−vεy
ε2 p′(gε) ,

ρεt = −vε (Jε)−1 gεy − gε (Jε)−1 vεy.
(2.49)

In Eulerian coordinates, for fixed ε > 0, uε and ρε is upper and lower bounded in
[
0,T ε

b

)
, so the

global solution exists if and only if, for x ∈ R

u′0 (x) ≥ 0. (2.50)

On the contrary, if u′0 (x) < 0, uεx will goes to −∞ in the finite time. Then, respecting to
(
Yε

b ,T
ε
b

)
, there

exists
(
Xε

b,T
ε
b

)
such that on R ×

[
0,T ε

b

)
, as (x, t)→

(
Xε

b,T
ε
b

)
, uεx (x, t)→ −∞.

Further, modulus of continuity estimates of the solution see [13]. �

3. The well-posedness contact discontinuous solution

In this section we consider the Eq (1.1) with piecewise Lipshcitzs initial data (2.13), where
v0 ∈ Lip (R) and Z0 ∈ Lips (R). Without loss of generality, we can assume that Z0 only has a jump
discontinuity at y = 0.

3.1. The lower bound of density

First, we would to clarify the influence of the jump. Here, we denote the characteristic line starting
from y = 0 as yε1(τ), which is defined in (2.15). And the characteristic line leading back from (ỹ, τ̃)
to the initial data is denoted as yε1 (s; ỹ, τ̃). For whether the characteristic line yε1 (s; ỹ, τ̃) crosses the
discontinuity line or not, we can divide Ω := R × [0,+∞) into the following regions:

Ω = Ω+ ∪Ωε
I ∪Ωε

q ∪ {y = 0} , (3.1)

where
Ω+ = {(y, τ) | y > 0, τ ≥ 0} , Ωε

I =
{
(y, τ) | yε1 (τ) ≤ y < 0, τ ≥ 0

}
,

and
Ωε
q =

{
(y, τ) | y < yε1 (τ) , τ ≥ 0

}
.

For (ỹ, τ̃) ∈ Ω+∪Ωε
q

, yε1 (s; ỹ, τ̃) does not cross the discontinuity line. From the proof of Proposition 2.4,
we can obtain the local existence of Lipschitz solutions in the characteristic triangle of domain Ω+∪Ωε

q
.

Mathematics in Engineering Volume 7, Issue 3, 316–349.



328

For (ỹ, τ̃) ∈ Ωε
I , its backward characteristic line yε1 (s; ỹ, τ̃) must reach (0, τ0). So for v (ỹ, τ̃) and Zε (ỹ, τ̃)

we have
v (ỹ, τ̃) = v (0, τ0) , Zε (ỹ, τ̃) = Zε

0 (ỹ) . (3.2)

Therefore, if g > 0, then g in Ωε
I can be expressed as

gε (ỹ, τ̃) = p−1
(
Zε

0 (ỹ) − v (0, τ0)
ε2

)
. (3.3)

Without loss of generality, for different jump cases where Zε
0 has only one discontinuity at y = 0, we

discuss the lower bound estimate of density for different regions. The key point is based on the results
of Proposition 2.3, we have the following proposition.

Proposition 3.1. For fixed ε > 0 and the solutions (Jε, vε,Zε) of (2.12)-(2.13):
Case 1: limg→0 p (g) = 0 and the initial data satisfies the ε-condition;
Case 2: limg→0 p (g) = −∞ ( ε-condition is not required);
then gε has a lower bound with respect to ε.

Proof. (1) Region Ω+ ∪Ωε
q

: For any point (ỹ, τ̃) in Ω+ ∪Ωε
q

, by the method in Proposition 2.3, we can
get the uniform lower bound estimate of density:

gε (y, τ) ≥
A1

1 + A2Bτ
. (3.4)

where A1 = miny∈R g0, A2 = maxy∈R g0, and B can be defined as

B =

(
Lip

(
Zε

0

))
+

g0
, (3.5)

here
(
Zε

0

)
C

= Zε
0 −

(
Zε

0

)
J

is the absolute continuous part of Z0, and
(
Lip(Zε

0)
)
+

is the Lipschitzs constant

of
(
Zε

0

)
C

without decreasing.

(2) The discontinuous curve y = 0: If g0(0−) > g0(0+) at y = 0, since v0 is continuous, this means
Z0(0−) > Z0(0+). By (2.29), similar to the case in Ω+ ∪ Ωε

q
, there exists a constant B such that the

density has a lower bound (3.4).
Otherwise, if g0(0−) < g0(0+), which means Z0(0−) < Z0(0+), for (0, τ̃) and p (gε (0−, τ̃)), we have

p
(
gε

(
0−, τ̃

))
=

Zε
0 (0−) − v0

(
yε1 (0; 0, τ̃)

)
ε2 . (3.6)

For (3.6), we need to discuss the following two cases:
Case 1: limg→0 p (g) = 0 and the initial data satisfies the ε-condition. By (1.5), there exists a

constant Aε which may depend on ε such that

p
(
gε

(
0−, τ̃

))
≥ Aε > 0. (3.7)

So we have
gε

(
0+, τ̃

)
> gε

(
0−, τ̃

)
≥ p−1 (Aε) > 0. (3.8)
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Case 2: limg→0 p (g) = −∞. By (3.6), for p(g) we have

p
(
gε

(
0−, τ̃

))
= p

(
g0(0−)

)
+

v0(0) − v0

(
yε1 (0; 0, τ̃)

)
ε2 ≥ p

(
g0

)
−

2 maxy∈R |v0(y)|
ε2 > −∞. (3.9)

By (1.3), gε (0−, τ̃) has a lower bound with respect to ε.

(3) Region Ωε
I : For any point (ỹ, τ̃) ∈ Ωε

I , its backward characteristic line must reach (0, τ0),

yε1 (τ0; ỹ, τ̃) = 0, (3.10)

by (2.29) we have

D
(

1
gε

)
=

(
Zε

0

)
y

g0
. (3.11)

Integrating s from τ0 to τ̃ along the characteristic line yε1 (τ; ỹ, τ̃), there exists a constant B such that

B =

(
Lip

(
Zε

0

))
+

g0
, (3.12)

such that

1
gε (ỹ, τ̃)

−
1

min0≤τ0≤τ̃ gε (0−, τ0)
≤

1
gε (ỹ, τ̃)

−
1

gε (0−, τ0)
=

∫ τ̃

τ0

(
Lip

(
Zε

0

))
+

g0
ds ≤ B (τ̃ − τ0) . (3.13)

So for fixed ε, we have

gε (ỹ, τ0) ≥
Aε

1

1 + Aε
1Bτ

, (3.14)

where

Aε
1 = min

0≤τ0≤τ̃
gε

(
0−, τ0

)
, B =

(
Lip

(
Zε

0

))
+

g0
.

Combining the three cases, we obtain that the density has a uniform lower bound in Ω under the
Lagrangian coordinate, denoted by gε.

gε := min
{

A1

1 + A2Bτ
, p−1 (Aε) ,

Aε
1

1 + Aε
1Bτ

}
. (3.15)

�

Remark 3.2. For limg→0 p (g) = 0, if the assumption in (1.5) becomes an equality, there exists at least
one point y0 > 0 such that

Zε
0
(
0−

)
= v0 (y0) . (3.16)

Then there exists a time T ε
y0

such that

yε1
(
T ε

y0
; y0, 0

)
= 0. (3.17)
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So we have

p
(
gε

(
0−,T ε

y0

))
=

Zε
(
0−,T ε

y0

)
− v

(
yε1

(
T ε

y0
; y0, 0

)
,T ε

y0

)
ε2 =

Zε
0 (0−) − v0 (y0)

ε2 = 0. (3.18)

This means there exists a finite time T ε
y0

such that

gε
(
0−,T ε

y0

)
= 0. (3.19)

Based on the above discussion, (1.5) is a necessary and sufficient condition for the absence of vacuum.

Remark 3.3. For the case of limg→0 p (g) = −∞, we do not need to use ε-condition to get the lower
bound of density.

3.2. The well-posedness of Aw–Rascle model

Based on the above discussion, we prove Theorem 1.4.

Proof. By (2.37), in Eulerian coordinates, we have

uεx
(
xε1 (t; η, 0) , t

)
=

1

ρεp′ (ρε)
(
xε1 (t; η, 0) , t

) · (
ρ0 p′ (ρ0) u′0

)
(η)

1 +
(
ρ0 p′ (ρ0) u′0

)
(η)

∫ t

0
I
(
ρε

(
xε1 (s; η, 0) , s

))
ds
. (3.20)

If u′0 (η) ≥ 0, by (3.20), we have uεx
(
xε1 (t; η, 0) , t

)
≥ 0 for all t ≥ 0. If u′0 (η) < 0, we need to estimate∫ τ

0
I
(
ρε

(
xε1 (s; η, 0) , s

))
ds. By Proposition 3.1 and (2.25), for ρε, we have

ρε ≤ ρε
(
xε1 (t; η, 0) , t

)
≤ ρ̄ε. (3.21)

Then, since p (ρε) ∈ C2 (R+) , for ρε ∈
[
ρε, ρ̄ε

]
, I (ρε) has a lower bound Iε such that

I (ρε) ≥ Iε. (3.22)

Then we have the following inequality:∫ t

0
I
(
ρε

(
xε1 (s; η, 0) , s

))
ds ≥

∫ t

0
Iεds. (3.23)

Thus, if u′0 (η) < 0, when t increases from 0 to some T ε
b (η), we have

1 +
(
ρ0 p′ (ρ0) u′0

)
(η)

∫ T ε
b (η)

0
I
(
ρε

(
xε1 (s; η, 0) , s

))
ds = 0, (3.24)

which indicate (Jε)−1 vεy → −∞ as τ→ T ε
b (η).

To consider η ∈ R, we could introduce the minimum life-span

T ε
b := inf

{
T ε

b (η)
}
> 0, (3.25)

Mathematics in Engineering Volume 7, Issue 3, 316–349.



331

where η run over all the points satisfying u′0 (η) < 0. In Eulerian coordinates, for fixed ε > 0, ρε is
upper and lower bounded in

[
0,T ε

b

)
, so the global solution exists if and only if, for x ∈ R

u′0 (x) ≥ 0. (3.26)

On the other side, if u′0 (x) < 0, uεx will goes to −∞ in the finite time. Then, there exists
(
Xε

b,T
ε
b

)
such

that on R ×
[
0,T ε

b

)
, as (x, t) →

(
Xε

b,T
ε
b

)
, uεx (x, t) → −∞. Therefore, by (2.48) and (2.49), ρε and uε

satisfy

ρε ∈ Lips
(
R ×

[
0,T ε

b
))
, uε ∈ Lip

(
R ×

[
0,T ε

b
))
. (3.27)

Next, we consider the regularity of discontinuous line. The discontinuous line in Eulerian
coordinates is

dxε2 (t)
dt

= uε
(
xε2 (t) , t

)
, (3.28)

which has the following implicit expression

xε2 (t) = x0 +

∫ t

0
uε

(
xε2 (s) , s

)
ds. (3.29)

Therefore, by (3.29), for h > 0, t ≥ 0, we have∣∣∣(xε2)′ (t + h) −
(
xε2

)′ (t)∣∣∣ =
∣∣∣uε (xε2 (t + h) , t + h

)
− uε

(
xε2 (t) , t

)∣∣∣
≤ Lip(uε)

(∣∣∣xε2 (t + h) − xε2 (t)
∣∣∣ + h

)
≤ Lip(uε) (‖u‖L∞ + 1) h. (3.30)

So (xε)′ is a Lipschitz function with respect to t.
�

Remark 3.4. We have proved the well-posedness of the contacted discontinuity solution where ρ0 has
one contact discontinuity. For a general piecewise Lipschitz functions function ρ0, we can follow the
above idea. Since the discontinuity points where [ρ0] > 0 are separable, we can repeat the above
procedure for each characteristic triangle containing only one such discontinuity. Then we can glue
the fragments together to establish local existence. By repeating this procedure, we can extend the
solution’s existence time forward until a nonlinear singularity appears. Therefore we proved the well-
posedness for general piecewise Lipschitz functions ρ0.

For fixed ε > 0, if the initial data are ρ0, u0 ∈ C1, by the method in [13], for a point (x, t) in the
domain R ×

[
0,T ε

b

)
, we can obtain the uniform modulus of continuity estimation of ux and ut, and then

obtain the existence of C1 solution. However, for the case where there is a discontinuity, since the
backward characteristic line of the point in the region Ω+∪Ωε

q
does not pass through the discontinuity,

the regularity of the solution in the region can be improved to C1 by the uniform modulus of continuity
estimation. However, the backward characteristic line of the points in the region Ωε

I will pass through
the discontinuity, we cannot obtain the uniform modulus of continuity estimation of ux and ut along
the spatial direction, so the Lipschitz regularity is optimal.
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3.3. Pressureless fluid case

The blow-up of pressureless fluid in Eulerian coordinates can refer to [19], and we have similar
argument in Lagrangian coordinates. For a smooth solution (ρ̄, ū) of (1.10), (1.10)2 is equivalent to
Burgers’ equation

ūt + ūūx = 0. (3.31)

For pressureless fluid, we introduce the following derivative

D0 = ∂t + ū∂x. (3.32)

And the characteristic line passing through
(
x̃, t̃

)
is defined as dx̄(t;x̃,t̃)

dt = ū
(
x̄
(
t; x̃, t̃

)
, t
)
,

x̄
(
t̃; x̃, t̃

)
= x̃.

(3.33)

Under the Lagrangian transformation, the Eq (1.10) is equivalent toJ̄τ = v̄y,

v̄τ = 0.
(3.34)

and the respective initial data are (
J̄, v̄

)
|τ=0 = (1, v0 (y)) . (3.35)

Next, for the smooth solution
(
J̄, v̄

)
of (3.34). By (3.34)2 we have

v̄ (y, τ) = v0 (y) and v̄y(y, τ) = v′0(y). (3.36)

Integrating the first equation in (3.34), we have

J̄ (y, τ) = 1 + v′0 (y) τ. (3.37)

Combining (2.11),

ḡ (y, τ) =
g0(y)
J(y, τ)

=
g0 (y)

1 + v′0 (y) τ
. (3.38)

Then, by (3.36) and (3.37), one could get

J̄−1v̄y (y, τ) =
v′0 (y)

1 + v′0 (y) τ
. (3.39)

According to (3.39), if v′0 (y) < 0, when τ increases from 0 to some Tb (y), such that

1 + v′0 (y) Tb (y) = 0, (3.40)

which indicate J̄−1v̄y → −∞ and ḡ→ +∞ as τ→ Tb(y).
For y run over all the points such that v′0 (y) < 0, we could have the minimum life-span

Tb := inf {Tb (y)} = inf
{
−

1
v′0 (y)

}
> 0. (3.41)
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Thus, from (3.39), we see that singularity of v̄y first happens at τ = Tb. When τ → Tb, there is a
point such that ḡ goes to +∞, which corresponds to the mass concentration.

According to the transformation of Eulerian coordinates and Lagrangian coordinates, we haveūx = J̄−1v̄y,

ūt = −v̄J̄−1v̄y.
(3.42)

Therefore, in Eulerian coordinates, we have

ρ̄ (x̄ (t; x, 0) , t) =
ρ0 (x)

1 + u′0 (x) t
, (3.43)

and

ūx (x̄ (t; x, 0) , t) =
u′0 (x)

1 + u′0 (x) t
. (3.44)

According to the above discussion, for t ∈ [0,Tb), if

ρ0 ∈ Lips (R) , u0 ∈ Lip (R) , (3.45)

then ρ̄ ∈ Lips (R × [0,Tb)), ū ∈ Lip (R × [0,Tb)).
Based on the above discussion, for the case of pressureless fluid, similar to Theorem 1.4, we have

the following proposition.

Proposition 3.5. For (1.10) with initial data (3.45), there exists a time Tb such that on R×[0,Tb), there
exists a solution (ρ̄, ū) satisfying

(1) If infx∈R u′0(x) ≥ 0, the solution exists globally. For ρ̄ and ū, there are

ρ̄ ∈ Lips (R × [0,+∞)) , ū ∈ Lip (R × [0,+∞)) . (3.46)

(2) If infx∈R u′0 (x) < 0, there exists a finite Tb and at least one Xb such that as (x, t) → (Xb,Tb),
ūx (x, t)→ −∞ and ρ̄ (x, t)→ +∞. And the solution stands

ρ̄ ∈ Lips (R × [0,Tb)) , ū ∈ Lip (R × [0,Tb)) . (3.47)

And, Γ̄ = {(x, t) ∈ R × [0,Tb) : x = x̄ (t)} is the discontinuous curve and x̄′ (t) is a Lipschitz function
with respect to t, satisfying

dx̄ (t)
dt

= ū (x̄ (t) , t) . (3.48)

4. On vanishing pressure limit

From the above discussion, we know that for Aw–Rascle model, if u′0 < 0 initially, ux will goes to
−∞ in finite time. In this section, for any fixed T , as ε → 0, we consider the convergence of vε and gε

on R × [0,T ] in Lagrangian coordinates. Without loss of generality, we assume that ε < 1. First, we
introduce the level set on the lower bound of (Jε)−1 vεy:

mε (τ) := inf
y∈R

{
(Jε)−1 vεy (y, τ)

}
. (4.1)
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For any fixed ε > 0 and the compressive initial data, there exists a finite life-span T ε
b defined in

Proposition 2.4, which is +∞ for the rarefaction initial data. And we have

lim
τ↑T ε

b

mε (τ) = −∞. (4.2)

Further, for M > 0, we define τεM

τεM = sup
{
s : −M ≤ inf

τ∈[0,s]
mε (τ) , s ≤ T

}
. (4.3)

According to the definition,
{
τεM

}
is a monotone sequence with respect to M, and

lim
M→+∞

τεM = min
{
T ε

b ,T
}

=: τεb. (4.4)

First, we need to proof that the density has a uniform lower bound with respect to ε, and we have
the following proposition.

Proposition 4.1. For any ε > 0 and the solution (Jε, vε,Zε) of (2.12)-(2.13) with 0−condition, gε has
a uniform lower bound with respect to ε.

Proof. (1) Region Ω+ ∪ Ωε
q

: For any point (ỹ, τ̃) in Ω+ ∪ Ωε
q

, by Proposition 3.1, the density has a
uniform lower bound:

gε (y, τ) ≥
A1

1 + A2Bτ
. (4.5)

where A1 = miny∈R g0, A2 = maxy∈R g0, and B can be defined as

B =

(
Lip

(
Zε

0

))
+

g0
, (4.6)

here
(
Zε

0

)
C

= Zε
0 −

(
Zε

0

)
J

is the absolute continuous part of Z0, and
(
Lip

(
Zε

0

))
+

is the Lipschitzs constant
of the continuous part of Zε

0 without decreasing.

(2) The discontinuous curve y = 0: If g0(0−) > g0(0+) at y = 0. Since v0 is continuous, Z0(0−) > Z0(0+).
By (2.29), similar to the case in Ω+ ∪ Ωε

q
, there exists a constant B such that the density has a lower

bound (3.4).
If g0(0−) < g0(0+) at y = 0, for (0, τ̃) and p (gε (0−, τ̃)), we have

p
(
gε

(
0−, τ̃

))
=

Zε
0 (0−) − v0

(
yε1 (0; 0, τ̃)

)
ε2 = p

(
g0

(
0−

))
+

v0 (0−) − v0

(
yε1 (0; 0, τ̃)

)
ε2 . (4.7)

By (1.6), we have
p
(
gε

(
0−, τ̃

))
≥ p

(
g0

(
0−

))
≥ p

(
g0

)
. (4.8)

So we have
gε

(
0+, τ̃

)
> gε

(
0−, τ̃

)
≥ g0. (4.9)

(3) Region Ωε
I : For any point (ỹ, τ̃) ∈ Ωε

I , by Proposition 3.1, we have

gε (ỹ, τ̃) ≥
min gε (0−, τ0)

1 + min gε (0−, τ0) B (τ̃ − τ0)
≥

A′1
1 + A′1Bτ

, (4.10)
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where

A′1 = min gε
(
0−, τ0

)
, B =

(
Lip

(
Zε

0

))
+

g0
.

Combining the above cases, we obtain that the density has a lower bound in Ω under the Lagrangian
coordinate, denoted by g:

g := min
{

A1

1 + A2Bτ
, g0,

A′1
1 + A′1Bτ

}
. (4.11)

�

Remark 4.2. In order to get a uniform lower bound of gε, for constant M, we need

p (gε (y, τ)) = p (g0(y)) +
v0(y) − v0

(
yε1 (0; y, τ)

)
ε2 ≥ M > −∞. (4.12)

The above equation is equivalent to

v0(y) ≥ v0
(
yε1 (0; y, τ)

)
+ ε2 (M − p (g0(y))) . (4.13)

As ε → 0, the above equation is equivalent to the 0-condition, which is necessary and sufficient for
both limg→0 p (g) = 0 case and limg→0 p (g) = −∞ case.

For fixed sufficiently large M, let τM := lim
ε→0 τ

ε
M, see Lemma 4.5 for specific proof. Next, we

have the following L∞ estimates lemma.

Lemma 4.3 (L∞ uniform estimations). On R ×
[
0, τM

]
, for any ε > 0, gε has uniform bound with

respect to ε in L∞
(
R ×

[
0, τM

])
; and vε has uniform bound with respect to ε in Lip

(
R ×

[
0, τM

])
.

Proof. On R ×
[
0, τM

]
, we have

ln
gε (y, τ)
g0 (y)

=

∫ τ

0
(ln gε (y, s))τ ds = −

∫ τ

0
(Jε)−1 vεy (y, s) ds ≤ MT. (4.14)

Therefore, on R ×
[
0, τM

]
, let ḡ0 := maxy∈R g0 we obtain the uniform upper bound of gε.

gε ≤ ḡ0eMT =: ḡM. (4.15)

Combining (4.11), then gε has uniform bound with respect to ε on R ×
[
0, τM

]
:

g ≤ gε ≤ ḡM. (4.16)

By (2.17), vε has uniform bound with respect to ε

min
y∈R

v0(y) ≤ vε(y, τ) ≤ max
y∈R

v0(y). (4.17)

Next, we estimate the bound of (Jε)−1 vεy, due to

D
(
vετ

)
= −

I (gε)
ε2

(
vετ

)2
≤ 0. (4.18)
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So we have
ε2

(
gεp′ (gε) (Jε)−1 vεy

)
(y, τ) ≤ ε2 (

g0 p′ (g0) v′0
) (

yε1 (0; y, τ)
)
. (4.19)

gε is uniformly bounded for any ε and p ∈ C2 (R+), so p′ (gε) is uniformly bounded. So we obtain the
uniform upper bound of (Jε)−1 vεy on R ×

[
0, τM

]
(
(Jε)−1 vεy

)
(y, τ) ≤

(
g0 p′ (g0) v′0

) (
yε1 (0; y, τ)

)
(gεp′ (gε)) (y, τ)

≤ C1 (M) , (4.20)

On the other hand, due to
(Jε)−1 vεy ≥ −M, (4.21)

on R ×
[
0, τM

]
, we have ∥∥∥(Jε)−1 vεy

∥∥∥
∞
≤ max {C1 (M) ,M} ≤ C (M) . (4.22)

�

According to the transformation of Eulerian coordinates and Lagrangian coordinates, we haveuεx = (Jε)−1 vεy,

uεt = −
(
vε − ε2gεp′ (gε)

)
(Jε)−1 vεy.

(4.23)

Correspondingly we have the following lemma.

Lemma 4.4. On R×
[
0, tM

]
, for any ε > 0, ρε has uniform bound with respect to ε in L∞

(
R ×

[
0, tM

])
;

and uε has uniform bound with respect to ε in Lip
(
R ×

[
0, tM

])
.

Before we discuss the convergence of ρε and uε, we need to estimate the uniform lower bound of tεM
with respect to ε, which means that for M large enough, tεM does not go to 0 as ε goes to 0.

Lemma 4.5. For M is large enough, tεM has a uniform positive lower bound.

Proof. This claim is obviously true for u′0 ≥ 0, we then prove it by contradiction for u′0 < 0. If the
claim is false, we can find a subsequence {εn} such that tεn

M → 0 as n → ∞. By (2.37), in Eulerian
coordinates, we can find a point

(
xεn

M, t
εn
M

)
such that

−M = uεn
x

(
xεn

M, t
εn
M

)
=

1

(ρεn p′ (ρεn))
(
xεn

M, t
εn
M

) · (
ρ0 p′ (ρ0) u′0

) (
xεn

1

(
0; xεn

M, t
εn
M

))
1 +

(
ρ0 p′ (ρ0) u′0

) (
xεn

1

(
0; xεn

M, t
εn
M

)) ∫ tεn
M

0
I
(
ρεn

(
xεn

M, s
))

ds
. (4.24)

For εn > 0, ρεn has uniform upper and lower bounds

ρ ≤ ρεn ≤ ρ̄0eMtεn
M . (4.25)

Therefore, for ρεn ∈
[
ρ, ρ̄0eMtεn

M

]
, I(ρ) is a continuous function respect to ρ, I (ρεn) has a uniform upper

and lower bounds. By condition (1.3) satisfied by p (ρ), we have(
ρ2 p′ (ρ)

)′
= 2ρp′ (ρ) + ρ2 p′′ (ρ) > 0. (4.26)
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Combining the (4.25) and monotonicity of ρ2 p′ (ρ), we have

ρεn p′ (ρεn) =
(ρεn)2 p′ (ρεn)

ρεn
≥

(
ρ
)2

p′
(
ρ
)

ρ̄0eMtεn
M

. (4.27)

So, as n→ ∞,

−M ≥
ρ̄0eMtεn

M(
ρ
)2

p′
(
ρ
) · minx∈R

(
ρ0 p′ (ρ0) u′0

)
1 +

(
ρ0 p′ (ρ0) u′0

) (
xεn

1

(
0; xεn

M, t
εn
M

)) ∫ tεn
M

0
I
(
ρεn

(
xεn

M, s
))

ds

→
ρ̄0 ·minx∈R

(
ρ0 p′ (ρ0) u′0

)
(
ρ
)2

p′
(
ρ
) . (4.28)

On the other hand, when M is sufficiently large

ρ̄0 ·minx∈R

(
ρ0 p′ (ρ0) u′0

)
(
ρ
)2

p′
(
ρ
) ≥ −M. (4.29)

This contradicts with (4.28). Therefore, for each fix M large enough, tεM has a uniformly positive lower
bound, denoted by T . �

Based on the uniform estimates discussed above, we then prove Theorem 1.5(1). There is a uniform
domain defined as tM := lim

ε→0 tεM. For the compact set H ⊂ R ×
[
0, tM

]
, the estimates we did above

are uniform in H, we have

uε → ū in Lip (H) , ρε → ρ̄ in M (H) . (4.30)

As ε→ 0, combine the (2.5) and the convergence of (uε, ρε), we have

xε (t)→ x̄ (t) , (4.31)

where x̄ (t) is a Lipschitz function with respect to t.

Remark 4.6. In Lagrangian coordinates, for τ ≤ τM and any point (y, τ) in Ωε
I , when ε is sufficiently

small, the backward characteristic line of this point is included in Ω−. That is, when ε→ 0, Ωε
q
→ Ω−

and Ω = Ω̄+ ∪Ω−.

Next, we consider the consistency. For ε > 0 and ϕ ∈ C∞c (H), we have∫ ∞

0

∫
R

ρεϕt + ρεuεϕxdxdt +

∫
R

ρ0ϕ (x, 0) dx = 0, (4.32)

∫ ∞

0

∫
R

ρε
(
uε + ε2 p (ρε)

)
ϕt + ρεuε

(
uε + ε2 p (ρε)

)
ϕxdxdt

+

∫
R

ρ0

(
u0 + ε2 p (ρ0)

)
ϕ (x, 0) dx = 0. (4.33)
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As ε→ 0, by the convergence of (ρε, uε), the above equalities turn to∫ ∞

0

∫
R

ρ̄ϕt + ρ̄ūϕxdxdt +

∫
R

ρ0ϕ (x, 0) dx = 0, (4.34)

∫ ∞

0

∫
R

ρ̄ūϕt + ρ̄ū2ϕxdxdt +

∫
R

ρ0u0ϕ (x, 0) dx = 0, (4.35)

which show (ρ̄, ū) satisfies (1.10) with initial value (1.4) in H. Finally, we consider the convergence of
uεx. For ϕ ∈ C∞c (H), as ε→ 0,∫ ∞

0

∫
R

(
uεx − ūx

)
ϕdxdt = −

∫ ∞

0

∫
R

(uε − ū)ϕxdxdt → 0. (4.36)

So we have uεx ⇀ ūx. Since for each H, uεx are uniformly bounded respect to ε, then uεx → ūx in L∞(H).
Then, in Lagrangian coordinates, we could have as ε→ 0

mε (τ)→ m (τ) := inf
y∈R

{
J̄−1v̄y (y, τ)

}
and lim

τ↑Tb
m (τ) = −∞, (4.37)

where Tb is defined in (3.41). Similar to τεM, for M > 0, we could introduce

τM = sup
{
s : −M ≤ inf

τ∈[0,s]
m (τ) , s ≤ T

}
. (4.38)

According to the definition, {τM} is a monotone sequence with respect to M, and as M → ∞

lim
M→+∞

τM = min {Tb,T } =: τb. (4.39)

By the convergence of the level set, we have

lim
ε→0

τεM = τM. (4.40)

Next, we shows that

Tb ≤ lim
ε→0

T ε
b . (4.41)

Since τεM ≤ T ε
b . So we have

lim
M→+∞

lim
ε→0

τεM ≤ lim
M→+∞

lim
ε→0

T ε
b . (4.42)

The left hand side holds

lim
M→+∞

lim
ε→0

τεM = lim
M→+∞

τM = Tb. (4.43)

So we get (4.41).
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5. Convergence of blow-up time

In this section, if ρ0 ∈ C1
s (R), u0 ∈ C1 (R), we can further obtain the convergence of the blow-up

time T ε
b . First, we need to introduce the non-discontinuous regions as:

Ωε
M = Ω+ ∪Ωε

q.

Similar to the previous definition, we define

m̄ε (τ) := inf
(y,τ)∈Ωε

M

{
(Jε)−1 vεy (y, τ)

}
. (5.1)

For any fixed ε > 0 and the compressive initial data, there exists a finite life-span T̄ ε
b , which is +∞ for

the rarefaction initial data. And we have

lim
τ↑T̄ ε

b

m̄ε (τ) = −∞. (5.2)

Further, for M > 0, we define τ̄εM

τ̄εM = sup
{
s : −M ≤ inf

τ∈[0,s]
m̄ε (τ) , s ≤ T

}
. (5.3)

According to the definition,
{
τ̄εM

}
is a monotone sequence with respect to M, and

lim
M→+∞

τ̄εM = min
{
T̄ ε

b ,T
}

=: τ̄εb. (5.4)

Before discussing the convergence of the blow-up time, we need to discuss the modulus of continuity
estimation in Ωε

M.
The modulus of continuity of a function f (x, t) is defined by the following non-negative function:

η ( f | ε) (s) = sup {| f (x1, s) − f (x2, s)| : s ∈ [0, t] , |x1 − x2| < ε} . (5.5)

For modulus of continuity, there are the following properties, for more details please refer to [13].

Lemma 5.1. For modulus of continuity
(1) If ε1 < ε2, η ( f | ε1) < η ( f | ε2).
(2) For any positive number C, η ( f | Cε) ≤ (C + 1) η ( f | ε).
(3) For f and g that are two continuous functions, η ( f ± g | ε) ≤ η ( f | ε)+η (g | ε), and η ( f g | ε) ≤

η ( f | ε) ‖g‖L∞ + η (g | ε) ‖ f ‖L∞ .
(4) If f ∈ Cα, 0 < α ≤ 1, if and only if there exists a constant L such that η ( f | ε) ≤ Lεα.

Define
η ( f1, f2, . . . , fn | ε) (t) := max {η ( fi | ε) (t) : i = 1, . . . , n} . (5.6)

By definition, η ( f1, f2, . . . , fn | ε) (t) has similar properties in Lemma 5.1. So we have the following
lemma:

Lemma 5.2. If u0 ∈ C1(R) and g0 ∈ C1(R− ∪ R+). Then on the Ωε
M, the modulus of continuity of

(Jε)−1 vεy and vετ is uniform, which means (Jε)−1 vεy and vετ is equi-continuous.
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Proof. By (1.1), we have the following equation

D
( vεy

Jε

)
= −

(
2 +

gεp′′(gε)
p′(gε)

) ( vεy
Jε

)2

+

(
1 +

gεp′′(gε)
p′(gε)

)
gε

g0
Zε

y

vεy
Jε
. (5.7)

And vτ can be expressed by
vεy
Jε and the lower order terms. Thus we only need to prove the modulus

of continuity of
vεy
Jε . To prove this, we first prove the modulus of continuity of the characteristics line.

Then combine with the regularity of the lower order terms, we obtain the modulus of continuity of
vεy
Jε .

By the Lemma 4.4, we have that gε and Jε are uniformly Lipschitzs functions on the Ωε
M. Thus for

the characteristic line, for ε > 0 and |ỹ1 − ỹ2| < ε, without loss of generality, we assume s < τ∣∣∣yε1 (τ; ỹ1, s) − yε1 (τ; ỹ2, s)
∣∣∣

≤ |ỹ1 − ỹ2| +

∫ τ

s

∣∣∣µε (yε1 (
s′; ỹ1, s

)
, s′

)
− µε

(
yε1

(
s′; ỹ2, s

)
, s′

)∣∣∣ ds′

≤ |ỹ1 − ỹ2| + C (M)
∫ τ

s

∣∣∣yε1 (
s′; ỹ1, s

)
− yε1

(
s′; ỹ2, s

)∣∣∣ ds′. (5.8)

By Grönwall’s inequality, we conclude that∣∣∣yε1 (τ; ỹ1, s) − yε1 (τ; ỹ2, s)
∣∣∣ ≤ |ỹ1 − ỹ2| eC(M)(τ−s)

≤ |ỹ1 − ỹ2| eC(M)τ. (5.9)

Then we consider the modulus of continuity of
vεy
Jε . We consider the estimation on two directions:

characteristic direction and y-direction. For characteristic direction, because gε and vε are uniform
bounded in C1(Ωε

M),

∣∣∣∣∣∣ vεyJε
(
yε1 (τ1; ỹ, τ̃) , τ1

)
−

vεy
Jε

(
yε1 (τ2; ỹ, τ̃) , τ2

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ τ2

τ1

D
( vεy

Jε

)
ds

∣∣∣∣∣∣ ≤ C (M) |τ1 − τ2| . (5.10)

Now we consider the y−direction in which we need the (5.9). For convenient, we use the denotation
Y i (s) =

(
yi (s) , s

)
=

(
yε1 (s; ỹi, 0) , s

)
. Thus for any (ỹi, 0) ∈ Ωε

M, i = 1, 2. Let

G (gε) =
gεp′′(gε)

p′(gε)
. (5.11)

By (5.7) we have∣∣∣∣∣∣ vεyJε
(
Y1 (τ)

)
−

vεy
Jε

(
Y2 (τ)

)∣∣∣∣∣∣
≤

∣∣∣v′0 (ỹ1) − v′0 (ỹ2)
∣∣∣ + C(M)

∫ τ

0

∣∣∣∣(Zε
0
)

y

(
y1 (s)

)
−

(
Zε

0
)

y

(
y2 (s)

)∣∣∣∣ ds

+C (M)
∫ τ

0

(∣∣∣∣gε (Y1 (s)
)
− gε

(
Y2 (s)

)∣∣∣∣ +
∣∣∣∣G (

gε
(
Y1 (s)

))
−G

(
gε

(
Y2 (s)

))∣∣∣∣) ds

+C (M)
∫ τ

0

∣∣∣∣∣∣ vεyJε
(
Y1 (s)

)
−

vεy
Jε

(
Y2 (s)

)∣∣∣∣∣∣ ds
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≤ η
(
v′0

∣∣∣ |ỹ1 − ỹ2|
)

(0) + C(M)
∫ τ

0
η
((

Zε
0
)

y

∣∣∣∣ ∣∣∣y1 (s) − y2 (s)
∣∣∣) (0) ds

+C(M)
∫ τ

0

(
η
(
gε

∣∣∣∣ ∣∣∣Y1 (s) − Y2 (s)
∣∣∣) (s) + η

(
G (gε)

∣∣∣∣ ∣∣∣Y1 (s) − Y2 (s)
∣∣∣) (s)

)
ds

+C(M)
∫ τ

0
η

( vεy
Jε

∣∣∣∣ ∣∣∣Y1 (s) − Y2 (s)
∣∣∣) (s) ds. (5.12)

For first term we have
η
(
v′0

∣∣∣ |ỹ1 − ỹ2|
)

(0) ≤ η
(
v′0|ε

)
(0) . (5.13)

The second term we have

η
((

Zε
0
)

y

∣∣∣∣ ∣∣∣y1 (s) − y2 (s)
∣∣∣) (0) ≤ η

((
Zε

0
)

y

∣∣∣∣eC(M)sε
)

(0) ≤
(
eC(M)s + 1

)
η
((

Zε
0
)

y

∣∣∣∣ε) (0) . (5.14)

For the third term we have

η
(
gε

∣∣∣∣ ∣∣∣Y1 (s) − Y2 (s)
∣∣∣) (s) ≤ C(M)

∣∣∣y1 (s) − y2 (s)
∣∣∣ ≤ C(M)eC(M)sε, (5.15)

and

η
(
G (gε)

∣∣∣∣ ∣∣∣Y1 (s) − Y2 (s)
∣∣∣) (s) ≤ η

(
G (gε)

∣∣∣∣C(M)eC(M)sε
)

(s) ≤
(
C(M)eC(M)s + 1

)
η
(
G
∣∣∣∣ε) (s) . (5.16)

For the last term, we have

η

( vεy
Jε

∣∣∣∣ ∣∣∣Y1 (s) − Y2 (s)
∣∣∣) (s) ≤ η

( vεy
Jε

∣∣∣∣eC(M)sε

)
(s) ≤

(
eC(M)s + 1

)
η

( vεy
Jε

∣∣∣∣ε) (s) . (5.17)

There exists a constant C′(M) such that

η

( vεy
Jε

∣∣∣∣ε) (s) ≤C′(M)
((
ε + η

(
v′0,

(
Zε

0
)

y

∣∣∣∣ε) (0)
)

+

∫ τ

0
η
(
G
∣∣∣∣ε) (s) ds

)
+ C′(M)

∫ τ

0
η

( vεy
Jε

∣∣∣∣ε) (s) ds. (5.18)

For any ε > 0, because ỹi are chosen arbitrary on the Ωε
M. Through the Grönwall’s inequality, the

above inequality equals to

η

( vεy
Jε

∣∣∣∣∣ε) ≤ C′(M)eC′(M)T
(
ε + η

(
v′0,

(
Zε

0
)

y

∣∣∣∣ε) (0) +

∫ τ

0
η
(
G
∣∣∣∣ε) (s) ds

)
. (5.19)

Since G is a continuous function, the modulus of continuity of
vεy
Jε on Ωε

M is uniform. �

For a compact set H ⊂ Ωε
M, we could lift the convergence as (Jε)−1 vεy → J̄−1v̄y in C (H) as ε → 0.

Then, for (y, τ) ∈ H, we could have as ε→ 0,

m̄ε (τ)→ m (τ) . (5.20)

By the convergence of the level set, we have

lim
ε→0

τ̄εM = τM. (5.21)

Furthermore, we consider the convergence of the blow-up time for I(g) satisfying the following
conditions:
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(a) I (g) is a increasing function with respect to g;

(b) There exists a small δ such that
∫ δ

0
I(s)
s2 ds = +∞.

For example, p(g) = ln g meets the above conditions. Using the idea in [20], we have the following
lemma.

Lemma 5.3. For M > 0, if I(g) meet the above conditions (1) and (2), then we have

lim
ε→0

T ε
b = Tb. (5.22)

Proof. Case 1: inf
{
v′0 (y)

}
≥ 0.

In this case, Tb = +∞. Let αε := gεp′ (gε) (Jε)−1 vεy, by (2.37)

αε (y, 0) = α0 (y) = g0 p′ (g0) v′0 (y) ≥ 0. (5.23)

In this case we want to show limε→0 T ε
b = +∞. If the claim is false, we can find a subsequence {εn}

such that
{
T εn

b

}
is bounded. For any εn, there exist yεn

1 defined by (2.15) such that when τ ↑ T εn
b ,

lim
τ↑T εn

b

αεn = −∞, (5.24)

which

1 + αεn
(
yεn

1 (0; y, τ) , 0
) ∫ T εn

b

0
I
(
gεn

(
yεn

1 (s; y, τ) , s
))

ds = 0. (5.25)

The above equation is equivalent to

−
1

αεn
(
yεn

1 (0; y, τ)
) =

∫ T εn
b

0
I
(
gεn

(
yεn

1 (s; y, τ) , s
))

ds. (5.26)

The right hand side is uniformly bounded by a finite positive constant∫ T εn
b

0
I
(
gεn

(
yεn

1 (s; y, τ) , s
))

ds ≤ C. (5.27)

For αεn

αεn
(
yεn

1 (0; y, τ)
)
≤ −

1
C
< 0. (5.28)

This contradicts with (5.23), so we have

lim
ε→0

T ε
b = +∞ = Tb. (5.29)

Case 2: inf
{
v′0 (y)

}
< 0.

For large M, we first proof that T̄ ε
b is uniformly bounded. If the claim is false, we can find a

subsequence {εn} such that T̄ εn
b → +∞ as n → +∞. And there exist yεn

1 defined by (2.15) such that
when τ ↑ T̄ εn

b ,

1 + αεn
(
yεn

1 (0; y, τ) , 0
) ∫ T̄ εn

b

0
I
(
gεn

(
yεn

1 (s; y, τ) , s
))

ds = 0. (5.30)
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By (4.11) and the monotonicity of I(ρ), there exists a constant C such that

C ≥ −
1

αεn
(
yεn

1 (0; y, τ)
) =

∫ T̄ εn
b

0
I
(
gεn

(
yεn

1 (s; y, τ) , s
))

ds ≥
∫ T̄ εn

b

0
I
(

A1

1 + A2Bs

)
ds. (5.31)

Let n→ ∞ we have

C ≥
∫ +∞

0
I
(

A1

1 + A2Bs

)
ds = A2B

∫ +∞

0
I
( A1

1 + s

)
ds. (5.32)

The definitions of A1, A2 and B, see Proposition 4.1. Let y = A1
1+s , we have

C ≥ A1A2B
∫ A1

0

I (y)
y2 ds = A2B

∫ +∞

0
I
( A1

1 + s

)
ds. (5.33)

On the other hand, there exists δ such that∫ δ

0

I (y)
y2 ds = +∞. (5.34)

This contradicts with (5.33), so T̄ ε
b is bounded with respect to ε.

We set
− 2δ0 := inf

{
v′0

}
< 0, (5.35)

where δ0 is a constant independent from ε. When ε is small enough such that

ε2
∥∥∥(p (g0))y

∥∥∥
L∞
<
δ0

2
. (5.36)

Then on Ωε
M there exists yε1 (s; ỹ, 0)

v′0 (ỹ) = −2δ0, (5.37)

when ε < ε0 is small enough, ỹ and yε1
(
T̄ ε

b ; ỹ, 0
)

are close enough such that for y ∈
[
yε1

(
T̄ ε

b ; ỹ, 0
)
, ỹ

]
,

v′0 (y) ≤ −
3
2
δ0. (5.38)

For y ∈
[
yε1

(
T̄ ε

b ; ỹ, 0
)
, ỹ

]
, we have(

Zε
0
)

y (y) = v′0 (y) + ε2 (p (g0 (y)))y ≤ −δ0. (5.39)

Next, we want to show, for ε small enough, there exists M0 independent of M such that

T̄ ε
b − τ̄

ε
M ≤

M0

M
. (5.40)

For gε, we have ∫ T̄ ε
b

τ̄εM

D
(

1
gε

) (
yε1 (s; ỹ, 0) , s

)
ds =

∫ T̄ ε
b

τ̄εM

g−1
0

(
Zε

0
)

y
(
yε1 (s; ỹ, 0) , s

)
ds. (5.41)
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The above equation is equivalent to

1

gε
(
yε1

(
τ̄εM; ỹ, 0

)
, τ̄εM

) ≥ 1

gε
(
yε1

(
τ̄εM; ỹ, 0

)
, τ̄εM

) − 1

gε
(
yε1

(
T̄ ε

b ; ỹ, 0
)
, T̄ ε

b

)
=

∫ T̄ ε
b

τ̄εM

−g−1
0

(
Zε

0
)

y
(
yε1 (s; ỹ, 0)

)
≥

δ0

ḡ0

(
T̄ ε

b − τ̄
ε
M

)
. (5.42)

When M is large enough, by the convergence of (gε, vε) and the explicit expression of (ḡ, v̄), we have
for τ ∈ [0, τM] ∣∣∣∣∣∣∣∣ J̄−1v̄y (ỹ, τM)

gε
(
yε1

(
τ̄εM; ỹ, 0

)
, τ̄εM

)
∣∣∣∣∣∣∣∣→

∣∣∣∣∣∣v′0 (y)
g0 (y)

∣∣∣∣∣∣ . (5.43)

There exists M0 independent of M such that∣∣∣∣∣∣v′0 (y)
g0 (y)

∣∣∣∣∣∣ < M0

2
. (5.44)

Then, for ε small enough ∣∣∣∣∣∣∣∣ J̄−1v̄y (ỹ, τM)

gε
(
yε1

(
τ̄εM, ỹ, 0

)
, τ̄εM

)
∣∣∣∣∣∣∣∣ < M0. (5.45)

Thus
1

gε
(
yε1

(
τ̄εM, ỹ, 0

)
, τ̄εM

) < M0∣∣∣J̄−1v̄y (ỹ, τM)
∣∣∣ =

M0

M
. (5.46)

By (5.42) and (5.46) we obtain the following inequality

T̄ ε
b − τ̄

ε
M ≤

ḡ0

δ0
·

M0

M
. (5.47)

Next, we prove that limε→0 T̄ ε
b = Tb. There exists y such that

τM = −
1

v′0 (y)
−

1
M
, Tb = −

1
v′0 (y)

. (5.48)

Thus we have
|τM − Tb| ≤

1
M
. (5.49)

Then we can choose M large enough such that∣∣∣T̄ ε
b − τ̄

ε
M

∣∣∣ + |τM − Tb| <
δ

2
. (5.50)

Since (gε, vε) uniformly converges to (ḡ, v̄) on any level set, there exists ε1 such that for ε ∈ (0, ε1], we
have ∣∣∣τ̄εM − τM

∣∣∣ < δ

2
. (5.51)
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Combined with the above discussion, when M is sufficiently large, for any δ > 0, there exists ε1 such
that for ε ∈ (0, ε1] ∣∣∣T̄ ε

b − Tb

∣∣∣ ≤ ∣∣∣T̄ ε
b − τ̄

ε
M

∣∣∣ +
∣∣∣τ̄εM − τM

∣∣∣ + |τM − Tb| < δ. (5.52)

Therefore, we have
lim
ε→0

T̄ ε
b = Tb. (5.53)

Finally, we need to prove limε→0 T ε
b = Tb. By the definition of T̄ ε

b , we have

Tb = lim
ε→0

T̄ ε
b ≥ lim

ε→0
T ε

b ≥ lim
ε→0

T ε
b . (5.54)

On the other hand, by (4.41) we have
Tb ≤ lim

ε→0
T ε

b . (5.55)

Therefore, we have
lim
ε→0

T ε
b = lim

ε→0
T ε

b = lim
ε→0

T ε
b = Tb. (5.56)

�

6. Convergence rates

In this section, we will consider the convergence rates of solution on each [0, tM] in Eulerian
coordinates. For uε and zε, we have the following lemma.

Lemma 6.1. For M > 0, on R × [0, tM], uε ∼ zε ∼ λε1 ∼ λ
ε
2 ∼ x̄ ∼ xε2 ∼ ū

(
O

(
ε2

))
.

Remark 6.2. λε1 ∼ λ
ε
2 ∼ ū

(
O

(
ε2

))
, the characteristics triangle vanishing as the ε2 order.

Proof. In order to simplify the calculation, we set
xε1 (s) = xε1

(
s; x̃, t̃

)
,

xε2 (s) = xε2
(
s; x̃, t̃

)
,

x̄ε (s) = x̄ε
(
s; x̃, t̃

)
,

(6.1)

which are defined at (2.5) and (3.33). On R × [0, tM]∣∣∣xε1 (s) − xε2 (s)
∣∣∣ =

∣∣∣∣∣∫ s

t̃

(
λε1

(
xε1 (t) , t

)
− λε2

(
xε2 (t) , t

))
dt

∣∣∣∣∣
≤

∫ s

t̃

∣∣∣λε1 (
xε1 (t) , t

)
− λε2

(
xε2 (t) , t

)∣∣∣ dt

≤

∫ s

t̃

∣∣∣uε (xε1 (t) , t
)
− uε

(
xε2 (t) , t

)∣∣∣ dt + C′ (M) sε2

≤ C′′ (M)
∫ s

t̃

∣∣∣xε1 (t) − xε2 (t)
∣∣∣ dt + C′ (M) sε2. (6.2)

By Grönwall’s inequality∣∣∣xε1 (s) − xε2 (s)
∣∣∣ ≤ C′ (M) sε2

(
eC′′(M)(s−t̃) − 1

)
≤ C (M) ε2. (6.3)
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Here, C (M) is a uniform constant with respect to ε. Thus, we can see the different characteristic lines
converge with the rate O

(
ε2

)
on R × [0, tM]. Then we can have the following estimate of zε and uε∣∣∣zε (xε2 (t) , t

)
− uε

(
xε1 (t) , t

)∣∣∣ ≤ ∣∣∣uε (xε2 (t) , t
)
− uε

(
xε1 (t) , t

)∣∣∣ + C′ (M) ε2

≤ C′′ (M)
∣∣∣xε1 (s) − xε2 (s)

∣∣∣ + C′ (M) ε2

≤
(
C′′ (M) C (M) + C′ (M)

)
ε2

≤ C′′′(M)ε2. (6.4)

It means that zε converges to uε with the rate of ε2. By the same way, we can prove that λε1 ∼ λ
ε
2 ∼ zε ∼

uε
(
O

(
ε2

))
on R × [0, tM]. Next, we consider the convergence rate of uε to ū,

∣∣∣x̄ (s) − xε1 (s; x̄ (0) , 0)
∣∣∣ ≤ ∫ s

0

∣∣∣ū (x̄ (t) , t) − λε1
(
xε1 (t; x̄ (0) , 0) , t

)∣∣∣ dt

≤

∫ s

0

∣∣∣ū (x̄ (t) , t) − uε
(
xε1 (t; x̄ (0) , 0) , t

)∣∣∣ dt + C′ (M) sε2

≤

∫ s

0
|u0 (x̄ (0)) − u0 (x̄ (0))| ds + C′ (M) sε2

≤ C (M) ε2. (6.5)

Then, we can have the following estimate of uε and ū∣∣∣uε (x̃, t̃) − ū
(
x̃, t̃

)∣∣∣ ≤ ∣∣∣uε (x̃, t̃) − uε
(
xε1

(
t̃; x̄ (0) , 0

)
, t̃
)∣∣∣ +

∣∣∣uε (xε1 (
t̃; x̄ (0) , 0

)
, t̃
)
− ū

(
x̄
(
t̃
)
, t̃
)∣∣∣

≤
∣∣∣uε (x̃, t̃) − uε

(
xε1

(
t̃; x̄ (0) , 0

)
, t̃
)∣∣∣ + |u0 (x̄ (0)) − u0 (x̄ (0))|

≤ C′′ (M)
∣∣∣x̃ − xε1

(
t̃; x̄ (0) , 0

)∣∣∣
≤ C′′ (M)

∣∣∣x̄ (
t̃
)
− xε1

(
t̃; x̄ (0) , 0

)∣∣∣
≤ C′′ (M) C (M) ε2. (6.6)

We conclude that zε ∼ uε ∼ ū
(
O

(
ε2

))
.

Finally, we prove the convergence of discontinuous lines x̄(t) and xε1(t). Without loss of generality,
we consider that there is only one discontinuity at x = 0, and discuss the convergence of the
discontinuity lines passing through 0. For the case of separable discontinuous points, we have similar
results. By (6.6) and the uniform boundedness of uεx, we have∣∣∣x̄ (s; 0, 0) − xε2 (s; 0, 0)

∣∣∣
≤

∫ s

0

∣∣∣ū (x̄ (t; 0, 0) , t) − uε
(
xε2 (t; 0, 0) , t

)∣∣∣ dt

≤

∫ s

0
|ū (x̄ (t; 0, 0) , t) − uε (x̄ (t; 0, 0) , t)| +

∣∣∣uε (x̄ (t; 0, 0) , t) − uε
(
xε2 (t; 0, 0) , t

)∣∣∣ dt

≤ C(M)sε2 +

∫ s

0

∣∣∣uε (x̄ (t; 0, 0) , t) − uε
(
xε2 (t; 0, 0) , t

)∣∣∣ dt

≤ C(M)sε2 + C′(M)
∫ s

0

∣∣∣x̄ (t; 0, 0) − xε2 (t; 0, 0)
∣∣∣ dt. (6.7)
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By Grönwall’s inequality∣∣∣x̄ (s; 0, 0) − xε2 (s; 0, 0)
∣∣∣ ≤ C(M)sε2eC′(M)s ≤ C′′(M)ε2. (6.8)

We conclude that the discontinuous lines converges at the rate of ε2. �

7. Conclusions

This paper investigates the well-posedness of contact discontinuity solutions and the vanishing
pressure limit for the Aw-Rascle traffic flow model.

For the well-posedness of contact discontinuity solutions, the Lagrangian coordinate transformation
is employed to fix the discontinuity boundary. A novel method establishes the positive lower bound
of density at the discontinuity, governed by a necessary and sufficient ε-condition based on the initial
density jump. The result show: rarefactive initial data yields global solutions; compressive data causes
finite-time singularity. The discontinuity curve is C1 with a Lipschitz tangent. Well-posedness for the
pressureless fluid model is also proven.

For the vanishing pressure limit to the pressureless fluid model, a 0-condition ensures the uniform
lower bound of density during the limit. By employing level sets in the Lagrangian coordinates,
uniform boundedness estimates for density and velocity derivatives are derived, proving convergence
of the solutions. For a class of pressure functions, blow-up times away from the discontinuity converge
as the pressure vanishes. Finally, we establish the convergence rate of the solution.
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