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Abstract: We consider a differential system coupled to a hysteresis operator of Preisach type. It

is assumed that the system is equivariant with respect to an action of the group Γ × S 1 (where Γ

is a finite group) in the phase space. Moreover, there is a branch of symmetric relative equilibria.

We develop an application of the equivariant twisted topological degree, which detects branches of

relative periodic solutions bifurcating from the relative equilibrium at an equivariant Hopf bifurcation

point. These branches are classified according to their symmetric properties. The general theorem is

illustrated with an example, where equations of motion of an S 5 × S 1-equivariant electromechanical

system are coupled with the Prandtl–Ishlinskii hysteresis operator; this operator models the stress-

strain constitutive relation of an elastoplastic spring. Hysteresis operators are non-smooth but can be

differentiable at particular points. At the same time, applications of the equivariant degree require the

vector field to be differentiable at the bifurcation point. To satisfy this requirement, we construct Γ×S 1-

vector fields, for which the zero set consists of the relative equilibria and relative periodic solutions of

the system with the hysteresis operator, and ensure the differentiability at the zeros corresponding to

the relative equilibria. This construction is the main technical contribution of the paper.
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1. Introduction

Hysteresis operators are used as models of complex non-linear history-dependent constitutive

relations of materials and media. Examples include models of the stress-strain constitutive relation of

elastoplastic materials (e.g., Prandtl’s elastic-ideally plastic element [21]; Prandtl-Ishlinskii hysteresis

model and its generalizations [13]; rate-independent yield criteria [14, 20]; Armstrong-Frederick [7],

Chaboche [15], Mroz nonlinear hardening rules [17]); related models of dry friction and creep-

fatigue damage counting (Maxwell-slip friction model [1]; rainflow-counting algorithm of calculating

fatigue [23]); magnetizing field-magnetization constitutive laws of magnetic materials (Preisach

independent domain model [22]; Bouc-Wen, Jiles-Atherton, Stoner-Wohlfarth models [8, 24, 26];

Krasnosel’skii-Pokrovskii and Mayergoyz-Friedman models [11,16]); pressure-saturation constitutive

equations of flows through porous media (Parlange and Mualem hysteresis models [18, 19]); models

of smart materials such as piezoelectric, ferroelectric and magnetostrictive materials, shape-memory

alloys and shape-memory polymers with coupled mechanical, magneto-electric and temperature

variables [6, 9].

The defining property of hysteresis operators is rate-independence [25], i.e., a hysteresis operator

commutes with invertible transformations of time. As such, hysteresis operators are non-smooth.

In engineering applications, constitutive relations between physical quantities are coupled to

differential equations of motion, resulting in a smooth dynamical system if the constitutive relation

is smooth. For instance, the harmonic oscillator equation is obtained by coupling Newton’s second

law with the linear constitutive relation between the stress and strain variables (Hooke’s law). On the

other hand, coupling equations of motion to a constitutive relation in the form of a hysteresis operator

leads to a non-smooth dynamical system. The phase space of this system is typically a metric space

lacking linear structure. Naturally, effective tools for the analysis of existence problems for non-smooth

dynamical systems are provided by topological degree methods.

Several variants of equivariant degree adapt the Brouwer and Schauder topological degrees to

symmetric settings. Their application relies on the differentiability of the vector field at its zeros

because the classification of solutions according to their symmetric properties is based on the

linearization. In particular, given a Γ-equivariant dynamical system with a finite symmetry group

Γ, the twisted equivariant degree is suitable for detecting branches of periodic orbits characterized by

different twisted symmetries.

The required differentiability at particular points can sometimes be warranted for non-smooth vector

fields associated with operator-differential systems with hysteresis operators. In [2], a restriction of

a hysteresis operator to the space of periodic functions was shown to be differentiable on constant

functions. This restriction was sufficient for developing an application of the twisted degree to the

Γ-equivariant Hopf bifurcation problem.

In this work, the method of [2] is extended to Γ × S 1-equivariant systems, i.e., we establish the

existence of symmetric branches of the so-called relative periodic solutions (with their associated

symmetries) bifurcating from a symmetric relative equilibrium. Moreover, these branches belong

to the phase space of the operator-differential system, while in [2] the branches are located in the

extended phase space. Adapting the method of [2] to this Γ×S 1-equivariant setting, we revise specifics

of the construction of the hysteresis operator in the space of periodic functions and the proof of its

differentiability on relative equilibrium solutions.
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The paper is organized as follows: Section 2 presents preliminaries, which include the definition

and basic properties of the Preisach hysteresis operator and an operator-differential system with this

operator; the construction of the restriction of the Preisach operator to the space of periodic continuous

functions; and, a reformulation of the periodic problem using this restriction. Further, we discuss the

conditions that warrant S 1-equivariance and Γ×S 1-equivariance of the operator-differential system and

define the equivariant Hopf bifurcation point where a branch of relative periodic solutions bifurcates

from a branch of relative equilibria. Sections 3 and 4 present the main result (Theorem 3.2) and

an example of its application to an S 5 × S 1-equivariant model of an electromechanical system with

plastic hysteresis (Propositions 4.2 and 4.3), respectively. Appendix A includes a brief overview

of the properties of the Preisach operator related to the periodic problem. Specifically, Lemma

A.3 and Corollary A.4 ensure that the restriction of the Preisach operator to the space of periodic

functions has zero derivative on constant functions. In addition, we recall the definition of the Prandtl–

Ishlinskii operator (an operator of Preisach type) and adapt Theorem 3.2 to equations with this operator

(Theorem A.6), preparing the proof of the example. Appendix B contains the proofs. It begins with

abstract Theorem B.10 (presented here for completeness; see, [3, 4]), which underpins the following

proof of Theorem 3.2 and is based on the application of the twisted equivariant degree. The further

steps of the proof focus on the construction of the equivariant vector field with the zero set consisting

of relative equilibria and relative periodic solutions. This construction ensures the differentiability

at the bifurcation point, thus allowing us to compute the linearization and use Theorem B.10. The

appendix concludes with the derivation of Propositions 4.2, 4.3 from Theorem A.6. The isotypic

crossing numbers for this illustrative example are obtained numerically.

2. Preliminaries

2.1. Preisach operator

The Preisach model of hysteresis was originally defined using a superposition of elementary

relay operators [22]. Here we use an alternative definition following the geometric construction by

Krasnsel’skii, Pokrovskii [11] and the representation theorem by Krejčı́ [12]. Denote by V0 the

class of all the continuous piecewise continuously differentiable and piecewise monotone functions

v = v(ξ) : [0, d]→ R such that

v(0) = 0; |v′(ξ)| ≡ 1 a.e. (2.1)

The functions v(·) ∈ V0 are referred to as states of the Preisach model.

Let I be an infinite time interval I = [t0,∞) or a finite time interval I = [t0, te]. Denote byM(I;R)

the set of all the continuous piecewise monotone inputs x = x(t) : I → R. Now, we consider the direct

product ofM(I;R) with the state space V0 as the domain of the input-state operator of the Preisach

model, which is completely defined on this domain by the two simple rules:

• If an input x(t) increases on an interval [t1, t2], then the evolution of the normalized state on this

interval is determined by

v(t, ξ) = max{−ξ, v(t1, ξ) − x(t) + x(t1)}, ξ ∈ [0, d]; (2.2)

• If x(t) decreases on [t1, t2], then for t ∈ [t1, t2],

v(t, ξ) = min{ξ, v(t1, ξ) − x(t) + x(t1)}, ξ ∈ [0, d]. (2.3)
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Given any initial state v0(·) ∈ V0 (the state at t = t0) and any input x(·) ∈ M(I;R), these rules are

successively applied on the intervals of monotonicity of the input to obtain the state v(t, ·) ∈ V0 at any

moment t ∈ I. We use the notation

v(t, ·) = (Υ[t0, v0(·)]x)(t), t ≥ t0, (2.4)

for this state.

Next, we endow the state space and the space of inputs with a metric. Namely, we set

‖v‖∞ = max
0≤ξ≤d

|v(ξ)|, v ∈ V0.

Thus, the state spaceV0 becomes a subset of the Banach space C([0, d];R) equipped with the standard

sup-norm ‖ · ‖∞. Similarly, we endow the set M(I;R) of piecewise monotone inputs with the sup-

norm, i.e., M(I;R) ⊂ C(I;R) (in case of the infinite interval I = [t0,∞), we consider the family of

seminorms ‖x‖C([t0 ,τ];R) = maxt∈[t0 ,τ] |x(t)| in C(I;R) ∋ x). It turns out that for every initial state v0 ∈ V0

and every input x ∈ M(I;R), the function v : I → V0 defined by (2.4) belongs to C(I;V0). Hence, (2.4)

defines a map Υ : V0 × M(I;R) → C(I;V0) (with the arguments v0 ∈ V0, x ∈ M(I;R)) called the

input-state operator of the Preisach model. Moreover, this map is globally Lipschitz continuous (see,

for example, [11]): for an arbitrary pair of initial states v1
0
, v2

0
∈ V0 and an arbitrary pair of inputs

x1, x2 ∈ M(I;R) the states

vk(t, ·) = (Υ[t0, v
k
0(·)]xk)(t), (k = 1, 2) (2.5)

satisfy for each τ ∈ I the estimate

max
t0≤t≤τ

‖v1(t, ·) − v2(t, ·)‖∞ ≤ ‖v
1
0(·) − v2

0(·)‖∞ + 2 max
t0≤t≤τ
|x1(t) − x2(t)|. (2.6)

The Lipschitz continuity property (2.6) allows one to extend the input-state operator (2.4) by

continuity from its domainM(I;R)×V0 ∋ (x, v0) to the closure of this domain in C(I;R)×C([0, d];R).

We keep the same notation (2.4) for this continuous extension, and wherever we refer to the input-state

operator of the Preisach model, this continuous extension is meant. As the setM(I;R) of the piecewise

monotone continuous inputs is dense in C(I;R), the extended input-state operator (2.4) is defined for

every continuous input x and every initial state v0 from the closure V of the set V0 in C([0, d];R). The

state space V ⊂ C([0, d];R) thus consists of all the functions v : [0, d]→ R that satisfy

v(0) = 0; |v(ξ1) − v(ξ2)| ≤ |ξ1 − ξ2|, 0 ≤ ξ1, ξ2 ≤ d. (2.7)

The extended input-state operator Υ satisfies the Lipschitz condition (2.6) on its domainD = C(I;R)×

V ∋ (x, v0), hence Υ is a Lipschitz continuous operator from the product space C(I;R)×V to the space

C(I;V) of mappings v(·) : I → V, which is endowed with sup-seminorms

‖v(·)‖C([t0 ,τ];V) = max
t∈[t0 ,τ]

‖v(t, ·)‖∞ = max
0≤ξ≤d, t∈[t0 ,τ]

|v(t, ξ)|, (v = v(t, ξ)).

Finally, the output of the Preisach model is a scalar-valued function y = y(t) (t ∈ I) of time defined

as follows. Consider the domain

Π = {(u, ξ) ∈ R2 : u ∈ R, ξ ∈ [0, d]}
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and a bounded integrable non-negative function q : Π → R+ (called the Preisach density function).

Define the so-called state-output functional Φ : R ×V→ R by

Φ(x0, v(·)) = 2

∫ d

0

dξ

∫ v(ξ)+x0

−∞

q(u, ξ) du, x0 ∈ R, v(·) ∈ V. (2.8)

Then, the output is related to the input and state by

y(t) = Φ
(
x(t), v(t, ·)

)
, t ≥ t0. (2.9)

In other words, the input-output operator of the Preisach model assigns the output y : I → R to an

initial state v0 ∈ V and an input x ∈ C(I;R) according to (2.4), (2.9). For this operator, we use the

notation

y(t) = (P[t0, v0(·)]x)(t), t ≥ t0. (2.10)

Since the function v(·, ·) : R × [0, d] × R defined by (2.4) is continuous, the output (2.9) is also

continuous. Hence the input-output operator (2.10) maps the product space V×C(I;R) ∋ (v0, x) to the

state of outputs C(I;R) ∋ y. Because, by definition, this operator is a composition of the state-output

functional Φ and the input-state operator Υ, the global Lipschitz continuity of the functional (2.8) and

relation (2.6) imply the global Lipschitz continuity of the input-output operator on its domain:

‖(P[t0, v
1
0]x1)(·) − (P[t0, v

2
0]x2)(·)‖C([t0 ,τ];R) ≤ K

(
‖v1

0 − v2
0‖∞ + ‖x1 − x2‖C([t0 ,τ];R)

)
. (2.11)

Due to (2.11), for any fixed initial state v0 ∈ V, the operator (2.10) taking inputs of the Preisach model

to its outputs, is Lipschitz continuous in the space C(I;R). However, this operator is not differentiable

in the space of continuous functions with the uniform norm, neither in other natural functional spaces.

2.2. Differential system

Let us consider a system of the form

ż1 = F1

(
y1, z1, z2, . . . , zn

)
,

ż2 = F2

(
y2, z1, z2, . . . , zn

)
,

...

żn = Fn

(
yn, z1, z2, . . . , zn

)
,

(2.12)

where żk(·) is the derivative of zk(·); the function yk(·) is the output of the Preisach operator, and the

input of this operator is related to the variable zk ∈ R
mk by the relation xk(t) = bk • zk(t), where ‘•’ is a

scalar product in Rmk . In other words, Eq (2.12) is coupled to equations

xk(t) = bk • zk(t), (2.13)

vk(t, ·) = (Υ[t0, v
k(t0, ·)]xk)(t), (2.14)

yk(t) = Φ
(
xk(t), v

k(t, ·)
)
, k = 1, . . . , n, (2.15)

where (2.14) and (2.15) are the input-state and the state-output relations of the k-th Preisach operator,

respectively. The functions Fk : R × RN → Rmk , where N = m1 + · · · + mn, RN = Rm1 ⊕ · · · ⊕ Rmn , are

assumed to be Lipschitz continuous.
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Remark 2.1. In (2.15), we use the same density function q : Π → R for all the Preisach operators

(equivalently, all n Preisach operators have the same state-output functional Φ). This is sufficient for

our presentation but similarly one can deal with n Preisach operators having different density functions

qk, which define different functionals Φk.

Define v := (v1, ..., vn) ∈ Vn := V × · · · × V (n times), where vk is interpreted as the state of the

k-th Preisach operator. A solution to system (2.12)–(2.15) on an interval I = [t0, t1) is a mapping

(z, v) : I → RN × Vn, with a continuously differentiable component z and a continuous component

v. That is, Eq (2.12) holds pointwise, (z(t), v(t, ·)) ∈ RN × Vn for each t ∈ I, and both sides of these

equations are continuous functions of t for any solution. Thus, the product U = RN ×Vn is considered

to be the natural phase space for system (2.12)–(2.15). A few standard facts about solutions and the

initial-value problem for system (2.12)–(2.15) are recounted in A.4 of Appendix A.

2.3. Periodic solutions

The simplest solutions of system (2.12)–(2.15) are stationary (equilibrium) solutions, i.e., solutions

of the form (z(t), v(t)) = (z0, v0) ∈ RN ×Vn for all t. The rate-independence property (A.1) of the input-

state and input-output operators of the Preisach model (see Appendix A) implies that the state (2.14)

and output (2.15) are constant for any constant input x ≡ x0 and any initial state v0.

A solution (z(t), v(t, ·)) to system (2.12)–(2.15) defined on a time interval t ≥ t0 is called periodic

with a period T if both components are T -periodic, i.e., z(t + T ) = z(t), v(t + T, ·) = v(t, ·) for all t ≥ t0.

The periodic conditions

z(t0) = z(t0 + T ), v(t0, ·) = v(t0 + T, ·),

which include the state, ensure periodicity of the solution and periodicity of the outputs (2.15) of the

Preisach operators. Without loss of generality, we set t0 = 0 and use the spaces of periodic functions

Cper([0, T ];R) := {x ∈ C([0, T ];R) : x(0) = x(T )},

Cper([0, T ];RN) := {z ∈ C([0, T ];RN) : z(0) = z(T )}

with the sup-norm. We identify T -periodic functions with their restriction to the interval [0, T ].

Periodic solutions can also be extended to the whole time axis in the sense that a restriction of such

periodic extension to any left-bounded interval [t0,∞) is a periodic solution.

Let us define a one-parameter family of operators P̂T
λ : Cper([0, T ];R) → Cper([0, T ];R) where

λ ∈ [0, 1], each mapping a periofic input to a periodic output of the Preisach model. To this end, we

consider the states

v+(ξ) = ξ, v−(ξ) = −ξ, 0 ≤ ξ ≤ d, (2.16)

define the operators P̂T
1
, P̂T

0
: Cper([0, T ];R)→ Cper([0, T ];R) by

(P̂T
1 x)(t) = (P[0, v̄x

+]x)(t), (P̂T
0 x)(t) = (P[0, v̄x

−]x)(t) (2.17)

with

v̄x
+ = (Υ[0, v+]x)(T ), v̄x

− = (Υ[0, v−]x)(T ) (2.18)

and put

P̂T
λ = λP̂

T
1 + (1 − λ)P̂T

0 , λ ∈ [0, 1]. (2.19)
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Note that from the congruency property of the Preisach operator (cf. (A.5) and (A.6)), it follows that

∂

∂t

(
(P̂T

1 x)(t) − (P̂T
0 x)(t)

)
= 0, t ∈ [0, T ],

which implies

(P̂T
λ x)(t) − (P̂T

0 x)(t) = λ
(
P[0, v+]x)(T ) − P[0, v−]x)(T )

)
, t ∈ [0, T ], (2.20)

for any λ ∈ [0, 1] and x ∈ Cper([0, T ];R). In particular, P̂T
λ
= P̂T

0
for all λ if osc x ≥ 2d, where

osc x = max x(t) − min x(t). On the other hand, if the opposite inequality osc x < 2d holds and the

function q : Π → R in (2.8) is strictly positive, then any two operators P̂T
λ1

and P̂T
λ2

with λ1 , λ2 differ

by a non-zero constant. Now, given an input x ∈ Cper([0, T ];R), we partition the state space V of the

Preisach operator into subsets Vλ,x defined as follows. We write v0 ∈ Vλ,x if

(P[0, v0]x)(T ) − (P[0, v−]x)(T ) = λ
(
(P[0, v+]x)(T ) − (P[0, v−]x)(T )

)
. (2.21)

Lemma 2.2. Suppose (2.15) is the state-output functional (2.8) with a nonnegative Preisach density

function q : Π→ R+. Then, for any x ∈ Cper([0, T ];R), one has

V =
⋃

λ∈[0,1]

Vλ,x.

Further, if

(P[0, v+]x)(T ) = (P[0, v−]x)(T ), (2.22)

then Vλ,x = V for each λ. On the other hand, if

(P[0, v+]x)(T ) > (P[0, v−]x)(T ), (2.23)

then

Vλ,x , ∅ for each λ ∈ [0, 1]; Vλ1,x ∩ Vλ2,x = ∅ for λ1 , λ2,

and the subset Vλ,x of V depends continuously on x ∈ Cper([0, T ];R) and λ ∈ [0, 1] in the Hausdorff

metric.

Proof. Preisach input-state operator has the following monotonicity property:

x1(·) ≥ x2(·), x1(t0) + v1
0(·) ≥ x2(t0) + v2

0(·) ⇒ x1(·) + v1(·, ·) ≥ x2(·) + v2(·, ·), (2.24)

where the states vk(·, ·) are defined by (2.5), and the inequalities are satisfied pointwise for all t ∈ I,

ξ ∈ [0, d]. Indeed, for monotone inputs, (2.24) follows from (2.2), (2.3) of the input-state operator.

The extension procedure described in Section 2.1 ensures that (2.24) holds for arbitrary inputs x1, x2 ∈

C(I;R) and initial states v1
0
, v2

0
∈ V. For q ≥ 0, relations (2.8) and (2.24) imply a similar monotonicity

property for the input-output operator:

x1 ≥ x2, x1(t0) + v1
0 ≥ x2(t0) + v2

0 ⇒ P[t0, v
1
0]x1 ≥ P[t0, v

2
0]x2, (2.25)

where all the inequalities again hold pointwise for all t ∈ I, ξ ∈ [0, d].
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Relations (2.7) ensure that every state v0 ∈ V satisfies v−(ξ) ≤ v0(ξ) ≤ v+(ξ) on ξ ∈ [0, d]. Therefore,

monotonicity property (2.25) implies

(P[0, v−]x)(T ) ≤ (P[0, v0]x)(T ) ≤ (P[0, v+]x)(T ), v0 ∈ V,

for any input x ∈ Cper([0, T ];R). Due to these inequalities, if (2.22) holds, then (2.21) is satisfied

for all λ ∈ [0, 1], v0 ∈ V, i.e., Vλ,x = V for each λ. On the other hand, if (2.23) holds, then (2.21)

defines λ = λ(v0) ∈ [0, 1] uniquely for each v0 ∈ V. In the latter case, due to continuity of the Preisach

operator, the map (P[0, ·]x)(T ) : V → R (with a fixed x ∈ Cper([0, T ];R)) is continuous, and so is the

map λ : V → [0, 1] defined by (2.21). Since (2.21) implies λ(v−) = 0 and λ(v+) = 1, the segment

{v ∈ V : v = (1− s)v− + sv+, s ∈ [0, 1]} is mapped onto the segment [0, 1] by the map λ(·). Finally, the

continuity of the Preisach operator implies that Vλ,x depends continuously on x and λ in the Hausdorff

metric. �

The following lemma follows from Lemma 2.2 and further properties of the Preisach operator, see

relations (A.3)–(A.6) in Appendix A.

Lemma 2.3. Suppose (2.15) is the state-output functional (2.8) with a nonnegative Preisach density

function q : Π → R+. Let λk ∈ [0, 1] for each k = 1, . . . , n. A function z(t) = (z1(t), ..., zn(t)) ∈

Cper([0, T ];RN) is a solution to system

żk = Fk

(
P̂T
λk

(bk • zk), z1, . . . , zn

)
, (k = 1, ..., n) (2.26)

if and only if system (2.12)–(2.15) has a class of periodic solutions (z(·), v(·)) of period T , where the

components of v(·) = (v1(·), ..., vn(·)) are defined by

vk(t, ·) = (Υ[0, v̄vk
0
,xk

(·)]xk)(t), v̄vk
0
,xk

(·) = (Υ[0, vk
0(·)]xk)(T ), (t ≥ 0), (2.27)

where xk(·) = bk • zk(·) (k = 1, ..., n) and the parameter vk
0

in (2.27) ranges over the set of states Vλk,xk

for each k = 1, . . . , n.

According to Lemma 2.3, a periodic solution is generally embedded into a connected set of such

solutions, and the z-components of the solutions from this set form an m-parametric set with m ≤ n. In

particular, m = n if the Preisach density function q : Π → R is strictly positive and osc xk < 2d for all

k = 1, . . . , n.

2.4. Equivariant notation

We will need some basic equivariant notation. Let H be a subgroup of a (compact Lie) group G.

We denote by (H) the conjugacy class of H in G. The set of congugacy classes has a natural partial

order defined by

(H) ≤ (K) ⇔ ∃g∈G gHg−1 ⊂ K. (2.28)

If G acts on a space X, then X is called a G-space, the set G(x) := {gx : g ∈ G} ⊂ X is called the orbit

of x ∈ X, the subgroup Gx := {g ∈ G : gx = x} is called the isotropy group or the symmetry group of

x ∈ X, and the conjugacy class (Gx) is called the orbit type of x ∈ X. If (Gx) = (H), then G(x) is called

an (H)-orbit. Any maximal element with respect to partial order (2.28) on the set

Ψ(G, X \ {0}) := {(H) ≤ (G) : ∃x∈X\{0} (Gx) = (H)}
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is called a maximal orbit type. If (Gx) ≥ (H) for a subgroup H ⊂ G, then x ∈ X is said to have

symmetries at least (H). The subspace XH := {x ∈ X : (Gx) ≥ (H)} of X is called the (H)-fixed-point

subspace.

Given two G-spaces X and Y , a continuous map f : X → Y is called G-equivariant if f (gx) = g f (x)

for each x ∈ X and g ∈ G.

2.5. Relative equilibria of an S 1-equivariant system

For the rest of this paper, we restrict further consideration to equations with one Preisach operator:

ż = F(y, z), z ∈ V := RN , (2.29)

x(t) = b • z(t), (2.30)

v(t, ·) = (Υ[t0, v(t0, ·)]x)(t), (2.31)

y(t) = Φ
(
x(t), v(t, ·)

)
, (2.32)

with a continuous function F : R × V → V . The results can be extended to systems (2.12)–(2.15) with

multiple Preisach operators in a straightforward fashion.

In what follows, system (2.29)–(2.32) is assumed to be (spatially) S 1-equivariant. More precisely,

let V = RN be an orthogonal S 1-representation such that the S 1-action on V is given by a

homomorphism R : S 1 → O(N) and satisfies

eiτz = eτJz for all eiτ ∈ S 1, z ∈ V, (2.33)

where O(N) is the orthogonal group and J is the infinitesimal operator

J = lim
τ→0

1

τ

[
R(eiτ) − Id

]
(2.34)

of the subgroup R(S 1) ⊂ O(N). Let V = V0 ⊕ V1 ⊕ · · · ⊕ Vℓ be the S 1-isotypic decomposition of V ,

where V0 = VS 1

and Vk, k > 0, is modeled on the S 1-irreducible representation C with the S 1-action

given by the complex multiplication, i.e., eiτa := eikτ · a (a ∈ C). Then, each of the components Vk,

k > 0, has a natural complex structure such that eiτz = eikτ · z, Jz = ik · z for z ∈ Vk, and V0 is the kernel

of J. Further, the state space V ×V of system (2.29)–(2.32) is an isometric S 1-representation with the

action given by

eiτ(z, v0) =
(
eτJz, v0

)
, (z, v0) ∈ V ×V; eiτ ∈ S 1, (2.35)

i.e., the action of S 1 on the state space V of the Preisach operator is trivial.

Let us assume that the function F(α, ·) : V → V is S 1-equivariant for each α, i.e.,

F
(
α, eτJz

)
= eτJF(α, z), z ∈ V, α ∈ R, eiτ ∈ S 1. (2.36)

Moreover,

JT b = 0, (2.37)

where JT is the adjoint (transpose) map for J (cf. (2.30)). These assumptions ensure that system (2.29)–

(2.32) is S 1-equivariant. Therefore, it can have solutions of the form

(z(t), v(t)) =
(
eωtJzo, v0

)
, (2.38)
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for which the input, state and output of the Preisach operator are constant in time. In particular, for

such a solution, (2.37) implies that input (2.30) equals

x(t) = b • z(t) = b • eωtJzo = b • zo, t ≥ t0.

Hence, by Lemma 2.2, the state satisfies

v(t) = v0 ∈ Vλ,x0
, x0 = b • zo, t ≥ t0,

for some λ ∈ [0, 1], and the corresponding constant output (2.32) according to (2.21) equals

y(t) = (1 − λ)Φ
(
b • zo, v−

)
+ λΦ

(
b • zo, v+

)
, t ≥ t0. (2.39)

Substituting Eqs (2.38) and (2.39) into (2.29) and using (2.36) gives the algebraic system

ωJzo = F(α, zo), α = (1 − λ)Φ
(
b • zo, v−

)
+ λΦ

(
b • zo, v+

)
(2.40)

with unknown λ ∈ [0, 1], ω ∈ R, zo ∈ V and a free parameter α. This system is also S 1-equivariant,

and its solutions come in S 1-orbits (α, λ, ω, eτJzo), eiτ ∈ S 1.

In particular, if (2.40) holds for a zo ∈ V0 = VS 1

(in which case Jzo = 0), then (zo, v0) is an

equilibrium of system (2.29)–(2.32) for every state v0 ∈ Vλ,x0
with x0 = b • zo.

On the other hand, solutions (α, λ, ω, zo) of Eq (2.40) with zo
< V0 come as one-dimensional orbits

(α, λ, ω, S 1(zo)). In this case, Jzo
, 0.

Definition 2.4. If (α, λ, ω, zo) is a solution of Eq (2.40) with zo
< V0, then (α, λ, ω, S 1(zo)) is called a

relative equilibrium of system (2.29)–(2.32).

If (α, λ, ω, S 1(zo)) is a relative equilibrium with ω , 0, then (S 1(zo), v0) is the trajectory for the

time-periodic solutions

(z(t), v(t)) = (e(ωt+τ)Jzo, v0), t ∈ R, eiτ ∈ S 1,

in the phase space V × V of system (2.29)–(2.32) for each v0 ∈ Vλ,x0
. These solutions are called

rotating waves. If ω = 0, then (S 1(zo), v0) is called a frozen wave because it consists of equilibrium

states (eτJzo, v0), eiτ ∈ S 1, for each v0 ∈ Vλ,x0
. Note that the first equation of system (2.40) doesn’t

include λ, and the second equation is linear in λ.

Suppose that F is differentiable with respect to z, and the derivative DzF is continuous. As we know,

if (αo, λo, ωo, S
1(zo)) is a relative equilibrium, then due to S 1-equivariance, the eigenvector Jzo of the

map DzF(αo, z
o) − ωoJ belongs to its kernel. We introduce the following definition.

Definition 2.5. A relative equilibrium (αo, λo, ωo, S
1(zo)) of system (2.29)–(2.32) is called regular if

zero is a simple eigenvalue of DzF(αo, z
o) − ωoJ and λo ∈ (0, 1).

Assume that (αo, λo, ωo, S
1(zo)) is a regular relative equilibrium of system (2.29)–(2.32). Then, by

the Implicit Function Theorem, there is an open neighborhood A of αo and a continuous curve

(α, λO(α), ωO(α), zO(α)) ∈ A × (0, 1) × R × {z ∈ V : (z − zo) • Jzo = 0} (2.41)

of solutions to system (2.40) such that λO(αo) = λo, ωO(αo) = ωo, zO(αo) = zo and the kernel

of DzF(α, zO(α)) − ωO(α)J is one-dimensional for each α ∈ A. The corresponding set O :=(
α, λO(α), ωO(λ), S 1(zO(α)

)
, α ∈ A, of regular relative equilibria will be referred to as a (continuous)

branch of relative equilibria.
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2.6. Relative periodic solutions

Relative periodic solutions of an S 1-equivariant system (2.29)–(2.32) are solutions of the form

(z(t), v(t)) =
(
eωtJζ(t), v(t)

)
, t ∈ R, (2.42)

with an a priori unknown ω ∈ R, where ζ : R → V and v : R → V are T -periodic functions of an

a priori unknown period T . Condition (2.37) ensures that the input (2.30) of the Preisach operator in

system (2.29)–(2.32) is periodic if z(t) = eωtJζ(t) with a periodic ζ(·).

The following statement adapts Lemma 2.3 to the S 1-equivariant setting; the proof is omitted.

Lemma 2.6. Let conditions (2.36) and (2.37) hold. Then, a periodic function ζ(·) ∈ Cper([0, T ];RN) is

a solution to the equation

ζ̇ = F
(
P̂T
λ (b • ζ), ζ

)
− ωJζ (2.43)

for a given λ ∈ [0, 1] if and only if system (2.29)–(2.32) has a class of relative periodic solutions (2.42)

with the initial state v(t0) ranging over the set Vλ,x, where x(·) = b • z(·) = b • ζ(·).

For further discussion, it is convenient to normalize the period of the function ζ(·) by introducing

the parameter β = 2π/T and adjusting the time scale. As such, the T -periodic problem for Eq (2.43) is

equivalent to 2π-periodic problem

βζ̇ = F
(
P̂2π
λ (b • ζ), ζ

)
− ωJζ (2.44)

with a priori unknown parameters β and ω, where ζ(·) ∈ Cper([0, 2π];R
N) is a solution of (2.44) if and

only if ζ(βt) ∈ Cper([0, T ];RN) is a solution of (2.43) for T = 2π/β.

Equations (2.40) and (2.44), can be matched using the notation

α = P̂2π
λ (b • ζ)(0). (2.45)

More precisely, relative equilibria of system (2.29)–(2.32), system (2.43)–(2.45) and system (2.44)-

(2.45) are defined by the same Eq (2.40). In Appendix B, we define a bifurcation of a branch of non-

trivial solutions from a branch of trivial solutions for an equation in a metric space (see Definitions B.7

and B.8). When adapted to this abstract setting, stationary solutions

(α, λ, ω, β, ζ(·)) ∈ E := A × [0, 1] × R × (0,∞) × Cper([0, 2π];R
N)

of system (2.44)-(2.45), where ζ(·) = zo
< V0 for all t ∈ [0, 2π] and (α, λ, ω, zo) is a solution of (2.40),

identify with the set M ⊂ E of trivial solutions; non-stationary solutions of (2.44)-(2.45) identify with

the set S ⊂ E of non-trivial solutions. A trivial solution is called regular if the corresponding relative

equilibrium is regular according to Definition 2.5. Each trivial solution (αo, λo, ωo, βo, z
o) ∈ M is

embedded into the set of trivial solutions (αo, λo, ωo, β, e
τJzo) ∈ M with arbitrary β > 0 and τ ∈ R.

Lemma 2.6 relates the stationary and non-stationary solutions of system (2.44)-(2.45) to relative

equilibria and relative periodic solutions of system (2.29)–(2.32), respectively. As such, combining

Lemma 2.6 with Definition B.7 leads to the following definition of a branch of relative periodic

solutions bifurcating from a branch of relative equilibria of system (2.29)–(2.32).
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Definition 2.7. Let conditions (2.36) and (2.37) hold. Let M be the set of all stationary solutions of

system (2.44)-(2.45) and S ⊂ E the set of all non-stationary 2π-periodic solutions of this system. A

non-empty set C ⊂ S is called a branch of non-stationary periodic solutions if C = S ∩D where D is

a connected component of S . Moreover, if the set C contains a stationary solution (αo, λo, ωo, β0, z
o) ∈

M, then we say that the branch C bifurcates from the set of stationary solutions at the bifurcation point

(αo, λo, ωo, β0, z
o). Equivalently, we say that a Hopf bifurcation of relative periodic solutions (2.42) of

system (2.29)–(2.32) occurs from its relative equilibrium (αo, λo, ωo, S
1(zo)) with the limit frequency

βo and the limit period 2π/βo.

This definition is extended to a Γ × S 1-equivariant setting in the next subsection.

2.7. Γ × S 1-equivariant systems

Now, we additionally assume equivariance with respect to an action of a finite group Γ. Let V = RN

be an orthogonal Γ×S 1-representation, where the S 1-action on V is given by (2.33), (2.34). We denote

G := Γ × S 1. Hence, the phase space V × V of system (2.29)–(2.32) is an isometric G-representation

with the action given by

(γ, eiτ)(z, v) =
(
eτJ(γz), v

)
, (z, v) ∈ V ×V; (γ, eiτ) ∈ Γ × S 1

(cf. (2.35)). Suppose that the function F(·, α) : V → V in (2.29) is G-equivariant for each α:

F
(
α, eτJγ z

)
= eτJγ F(α, z), z ∈ V; (γ, eiτ) ∈ Γ × S 1. (2.46)

Further, in addition to (2.37), we assume that

γT b = b, γ ∈ Γ, (2.47)

where γT is the adjoint (transpose) map of map γ. Conditions (2.37), (2.46), (2.47) ensure the G-

equivariance of system (2.29)–(2.32).

The element (γ, eiτ) ∈ Γ × S 1 = G is a symmetry of a relative equilibrium (2.38) if

eτJγzo = zo.

The element (γ, eiτ, eiθ) ∈ Γ × S 1 × S 1 = G × S 1 is a spatio-temporal symmetry of a relative periodic

solution (2.42) if

eτJγζ(t + θ) = ζ(t), t ∈ R. (2.48)

If ζ(·) is non-stationary, a twisted (one-folded) subgroup of G×S 1 consisting of all the spatio-temporal

symmetries of the solution (2.42), together with all the conjugate subgroups, constitute a twisted orbit

type. We are interested in the equivariant Hopf bifurcation of relative periodic solutions, including the

classification of their orbit types, from a relative equilibrium, which has a group of symmetriesH ≤ G.

Lemma 2.6 combined with Definition B.8 extends Definition 2.7 to this setting.

Definition 2.8. Let conditions (2.36), (2.46) and (2.47) hold. Using the notation of Section 2.4 and

Definition 2.7, given subgroups H ≤ G = Γ × S 1 and H ≤ G := H × S 1 ≤ G × S 1, a set C ⊂ S H is

called a branch of non-stationary periodic solutions with symmetries at least (H) if C = S H∩D where
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D is a connected component of S
H

. Moreover, we say that an equivariant Hopf bifurcation of relative

periodic solutions of system (2.29)–(2.32) with the limit frequency βo (and the limit period 2π/βo)

occurs from a relative equilibrium (αo, λo, ωo, S
1(zo)) if a branch C ⊂ S H of non-stationary periodic

solutions with symmetries at least (H) bifurcates from the stationary solution (αo, λo, ωo, βo, z
o) ∈ MH ,

which is called a Hopf bifurcation point. In this case, αo can also be called the bifurcation point when

this doesn’t lead to a confusion.

3. Main result

Let conditions (2.37), (2.46), and (2.47) hold. Suppose O = (α, λO(α), ωO(α), S 1(zO(α)), α ∈ A, is a

branch of regular relative equilibria of system (2.29)–(2.32), i.e., the Jacobi matrix

A(α) = DzF(α, zO(α)) (3.1)

depends continuously on α ∈ A and the matrix A(α) − ωO(α)J has a simple zero eigenvalue with the

eigenvector JzO(α), see Section 2.5. We further assume that these regular relative equilibria admit a

twisted group symmetry H ≤ G (due to equivariance, the twisted symmetry group H is the same for

all the relative equilibria from the branch).

Let us put G := H × S 1 and consider the G-isotypic decomposition

Vc = V0 ⊕ V1 ⊕ · · · ⊕ Vp, (3.2)

where S 1-action is given by the complex multiplication. Due to equivariance, each isotypic component

Vl is invariant for the map A(α) and for J. Therefore, the characteristic polynomial

P(α, µ) = det
(
µ Id + ωO(α)J − A(α)

)
, µ ∈ C, (3.3)

of the matrix A(α) − ωO(α)J admits the factorization

P(α, µ) =

p∏

l=0

Pl(α, µ), (3.4)

where the factor

Pl(α, µ) = det
(
(µ Id + ωO(α)J − A(α))|Vl

)
, µ ∈ C, (3.5)

is the characteristic polynomial for the restriction of the matrix A(α)−ωO(α)J to the isotypic component

Vl.

Suppose that

P(αo, iβo) = 0 for some βo > 0 (3.6)

and

P(α, ikβ) , 0, 0 < |α − αo| + |β − βo| < δ, k ∈ N, (3.7)

for a sufficiently small δ > 0 such that (αo − δ, αo + δ) ⊂ A. Then, each so-called Vl-isotypic crossing

number is well-defined by

t1,l(αo, βo) = t−1,l(αo, βo) − t+1,l(αo, βo), (3.8)
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where t+
1,l

(αo, βo) (resp. t−
1,l

(αo, βo)) equals the number of roots µ of the polynomial Pl(α + δ, ·) (resp.

Pl(α − δ, ·)), counted with their multiplicities, which satisfy Re µ > 0, |µ − iβo| < δ for any sufficiently

small δ > 0. Assumption (3.7) ensures that the integers t±
1,l

(αo, βo) are independent of a particular

choice of a sufficiently small δ.

Remark 3.1. Due to equivariance, the linearization at any point eτJzO(α) of the relative equilibrium

S 1(zO(α)) results in the same characteristic polynomial ϕ(α, ·) and the same isotypic crossing

numbers (3.8).

Theorem 3.2. Suppose that Γ × S 1-equivariance assumptions (2.37), (2.46)

and (2.47) are satisfied for system (2.29)–(2.32), where the state-output

functional (2.32) is given by (2.8) with a density function q ≥ 0. Assume that

(α, λO(α), ωO(α), S 1(zO(α))), α ∈ A = (αo − δ, αo + δ), is a branch of regular relative equilibria, which

admit a group of symmetries (H), whereH ≤ G = Γ× S 1. Let conditions (3.6) and (3.7) hold, and the

state-output functional satisfy

Φ
(
b • zO(αo), v−

)
< Φ

(
b • zO(αo), v+

)
. (3.9)

Let G = H × S 1, let (H) be a maximal twisted orbit type in the G-representation Vc and MH be the

set of all G-isotypic components Vl in (3.2), in which (H) is an orbit type. Assume that there exists

Vl′ ∈ M
H such that:

(i) (H) is a maximal twisted orbit type in Vl′;

(ii) t1,l′(αo, βo) , 0;

(iii) t1,l(αo, βo) · t1,l′(αo, βo) ≥ 0 for all Vl ∈ M
H (cf. (3.8)).

Then, a branch of relative periodic solutions with symmetries at least (H) bifurcates from the branch

of relative equilibria at the Hopf bifurcation point (αo, λO(αo), ωO(αo), βo, zO(αo)).

The proof is presented in Appendix B.

Remark 3.3. Condition (3.9) ensures that ∂λO/∂α(αo) > 0 due to the second equation in (2.40).

4. Example

4.1. S 1-equivariant electromechanical oscillator

In this section, we consider an example of system (2.29)–(2.32). We use equations of motion of

an electromechanical system with plastic hysteresis. This system is obtained by coupling n identical

electromechanical rotors (motors) of mass m and a passive rotor of mass m0 via elastic mechanical

connections, see Figure 1. The mass of each rotor is concentrated at one point, and all the point masses

m and m0 rotate in a horizontal plane around the same pivot.

Let us start with equations of motion for a single rotor of mass m sketched in Figure 2:

Cu̇ + w − σ1u + σ2u3 = j,

Lẇ + κθ̇ = u,

mρ2θ̈ + 2mρρ̇θ̇ = κw − γρ2θ̇,

mρ̈ − mρθ̇2 = −σ(ρ − ρ0) − γρ̇.

(4.1)
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Figure 1. S n-symmetric coupling of n = 5 point masses m and point mass m0 modeled by

Eq (4.4).
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Figure 2. S 1-spatially equivariant electro-mechanical oscillator.

Here u is the voltage across the capacitor with the capacitance C; w denotes the current through

the motor and the inductor with the inductance L; the active circuit element composed of the battery

and the tunnel diode is assumed to have the cubic current-voltage characteristic i = −σ1u + σ2u3

with σ2 > 0; j is the constant current from the DC current source. The motor’s point mass m has

polar coordinates (θ, ρ), where θ is the polar angle. The term −σ(ρ − ρ0) is the linear elastic force with

Young’s modulusσ; and, γρ̇ and γρθ̇ are the radial component and the torque component of the friction

force, respectively, with the viscous damping coefficient γ. Further, for simplicity, let us assume that

all losses are due to friction, while the losses associated with electrical resistance and conversion of the

electrical energy into the mechanical energy are negligible. Hence, umw = τθ̇, where um is the voltage
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applied to the motor and τ is the torque which is proportional to the current, τ = κw, where κ is the

motor torque constant.

System (4.1) is spatially S 1-equivariant with respect to the group S 1 of shifts of the angular variable

θ. Since the system is also autonomous, i.e., invariant with respect to time shifts, a periodic problem

for Eq (4.1) is S 1 × S 1-equivariant.

If the mechanical component is disconnected, i.e., κ = 0, then the electrical circuit is the van der Pol

oscillator which sustains self-oscillations for σ1 > 0. Therefore, considering σ1 := α as a bifurcation

parameter with the other parameters fixed, the supercritical Hopf bifurcation occurs at α0 = 0. On the

other hand, the electro-mechanical system (4.1) with κ > 0 admits a relative equilibrium defined by the

equations

θ̇ = const, ρ = const, w = const, u = const,

which imply

mρθ̇2 = σ(ρ − ρ0), u = κθ̇, κw = γθ̇, w − σ1u + σ2u3 = j. (4.2)

Next, we consider a passive rotor represented by a point mass m0 with the polar coordinates (Θ,R).

We assume the presence of a plasticity effect in the link connecting the point mass m0 to the pivot

point. This effect produces hysteresis with the associated energy losses. It can be taken into account

by introducing a hysteresis operator into the equations of motion. Specifically, we use the standard

Prandtl–Ishlinskii model of the constitutive relation between stress and strain in the elastoplastic

material of the link [10,11,13,21]. The Prandtl–Ishlinskii hysteresis operator is essentially the Preisach

operator with a modified state-output functional (A.13), see Subsection A.5 of Appendix A. Under

these assumptions, the equations of motion of the passive rotor modeled by a point mass m0 attached

to a rotating weightless elastoplastic rod read as

m0R2Θ̈ + 2m0RṘΘ̇ = −γR2Θ̇,

m0R̈ − m0RΘ̇2 = −P[t0, v0]R − γṘ
(4.3)

with the Prandtl–Ishlinskii hysteresis operator P given by (2.4), (2.9) and (A.13).

Remark 4.1. The Prandtl–Ishlinskii operator P[t0, v0]R in (4.3) can be replaced by P[t0, v0](R − R0)

with an arbitrary constant R0 because the Prandtl–Ishlinskii operator by definition satisfies the identity

P[t0, v0]x = P[t0, v0](x + c).
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4.2. Coupled S n × S 1-equivariant electromechanical system

The system of n motors and a passive rotor shown in Figure 1 can be modeled by equations of

motion (4.3) coupled to n copies of Eq (4.1):

m0R2Θ̈ + 2m0RṘΘ̇ = −γR2Θ̇ + δR
n∑

j=1

ρ j sin(θ j − Θ),

m0R̈ − m0RΘ̇2 = −P[t0, v0]R − γṘ + δ
n∑

j=1

(
ρ j cos(θ j − Θ) − R

)
,

Cu̇k + wk − σ1uk + σ2u3
k
= j,

Lẇk + κθ̇k = uk,

mρ2
k
θ̈k + 2mρkρ̇kθ̇k = κwk − γρ

2
k
θ̇k + δρkR sin(Θ − θk) + ερk

n∑
j=1

ρ j sin(θ j − θk),

mρ̈k − mρkθ̇
2
k
= −σ(ρk − ρ0) − γρ̇k + δ

(
R cos(Θ − θk) − ρk

)

+ ε
n∑

j=1

(
ρ j cos(θ j − θk) − ρk

)

(4.4)

with k = 1, . . . , n, where R,Θ and ρk, θk are the polar coordinates of the point masses m0 and mk,

respectively; δ and ε are stiffnesses of the elastic links between the masses; the variables uk,wk and

the other parameters are defined above in Subsection 4.1. One can see that system (4.4) is spatially

Γ × S 1-equivariant where S 1 is the group of simultaneous shifts Θ → Θ + c, θk → θk + c, k ∈ Zn, of

all the angular variables by the same value c ∈ [0, 2π), and the symmetric group Γ = S n permutes the

indices k.

By inspection, system (4.4) admits a fully synchronized fully symmetric relative equilibrium

solution defined by the relations

θ1 = · · · = θn = ω∗t, Θ = ω∗t − φ∗, R = R∗,

ρ1 = · · · = ρn = ρ∗, u1 = · · · = un = u∗, w1 = · · · = wn = w∗,

γω∗R∗ = nδρ∗ sinφ∗, u∗ = κω∗, w∗ − σ1u∗ + σ2u3
∗ = j,

−m0ω
2
∗R∗ = −α + nδ(ρ∗ cosφ∗ − R∗), κw∗ = γω∗ρ

2
∗ + δρ∗R∗ sinφ∗,

−mω2
∗ρ∗ = −σ(ρ∗ − ρ0) + δ(R∗ cos φ∗ − ρ∗),

(4.5)

where α equals the constant output of the Prandtl–Ishlinskii operator P. Further, α is a related to the

initial state v0 ∈ V, which is a free parameter:

α = −

∫ d

0

q̂(ξ)v0(ξ) dξ ∈ [−α∗, α∗], α∗ =

∫ d

0

ξq̂(ξ) dξ. (4.6)

(cf. (A.12) and (A.13)). Theorem 3.2 can be used to analyze symmetries of branches of relative

periodic solutions bifurcating from the branch O of relative equilibria (4.5), which have symmetry

group H = S n × {1} ≤ S n × S 1. More precisely, we adapt this theorem to systems with the Prandtl–

Ishlinskii state-output functional in Subsection A.6 of Appendix A (see Theorem A.6).

4.3. Example

As an example, let us consider system (4.4) for n = 5. Relative equilibria (4.5) admit the group

symmetry H = S 5 × {1} ≤ G = S 5 × S 1. To apply Theorem 3.2 to the branch O of these relative
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equilibria, one needs to evaluate the spectrum of the linearization of system (4.4), and its dependence on

the parameter α (cf. (3.4) and (4.6)). We do it numerically for a specific parameter set given in Tables 1

and 2. Based on this computation, Theorem 3.2 (and its adapted version Theorem A.6) predicts the

existence of multiple branches of relative periodic solutions (with their associated symmetry groups)

bifurcating from the branch of relative equilibria O. Propositions 4.2 and 4.3 list a few of these

branches. Their symmetry groups are subgroups of G = H × S 1 = S 5 × {1} × S 1. In particular,

the following symbols are used for selected twisted subgroups of G (where where S n is the symmetric

group, Dn is the dihedral group and ξm := e
2πi
m ):

S5 := S 5 × {1} × {1};

D6 := D6 × {1} × {1};

S4 := S 4 × {1} × {1};

D
d
6 := {((12), 1, 1), ((125), 1, 1), ((34), 1,−1)} = {((125)(34), 1,−1), ((12), 1, 1)} ;

D
d
4 := {((24), 1, 1), ((35), 1, 1), ((2345), 1,−1)} = {((2345), 1,−1), ((24), 1, 1)} ;

Z
t1

5
:= {((12345), 1, ξ5)} ,

Z
t1

4
:= {((2345), 1, ξ4)} ;

Z
t2

6
:= {((34), 1, 1), ((125), 1, ξ3)} = {((125)(34), 1, ξ3)} .

Proposition 4.2. Consider system (4.4) with n = 5, j = 0 and the other parameters specified in the

caption of Table 1. This system has the (S 5)-symmetric branch O of relative equilibria with ωO = 0

(frozen waves, cf. Definition 2.4) given by

θ1 = · · · = θn = Θ = 0, φ∗ = 0, u1 = · · · = un = 0, w1 = · · · = wn = 0,

R = ρ0 −
α

5σ
− α

5δ
, ρ1 = · · · = ρn = ρ0 −

α
5σ
,

(4.7)

and several branches of relative periodic solutions bifurcating from O at different points α (cf.

Definition 2.8). In particular, these branches of relative periodic solutions include:

• a branch with symmetry at least (S5) bifurcating from O at α ≈ −2.29532 with the limit frequency

βo ≈ 1.06;

• branches with symmetries at least (D6), (S4), (Dd
6
), (Dd

4
), (Z

t1

4
), (Zt

5
), (Z

t2

6
) bifurcating from O at

α ≈ −0.8973 with the limit frequency βo ≈ 0.811.

Table 1. Number of unstable eigenvalues in each isotypic component along the (S 5)-

symmetric branch O of relative equilibria (4.7) of system (4.4) with n = 5, j = 0, σ1 = 0.2,

ǫ = 0.1; the other parameters C, L, δ, σ2, γ, κ,m,m0, ρ0, σ, κ are equal to unity.

Intervals of values of the parameter α

[-5,-2.2955] [-2.295,-0.8975] [-0.897, 0.25]

V0 2 0 0

V1 8 8 0
1⊕

j=0

V j 10 8 8
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Symmetries of other branches of relative periodic solutions bifurcating from the branchO of relative

equilibria (4.7), and from other branches of relative equilibria, can be classified in a similar manner.

Proposition 4.3. Consider system (4.4) with n = 5 and the parameters specified in the caption of Table

2. This system has an (S 5)-symmetric branch O of relative equilibria (4.5) with ωO(α) , 0 (rotating

waves, cf. Definition 2.4) and several branches of relative periodic solutions bifurcating from O at

different points α. In particular, these branches of relative periodic solutions include:

• a branch with symmetry at least (S5) bifurcating from O at α ≈ −4.6401 with the limit frequency

βo ≈ 0.94;

• branches with symmetries at least (D6), (S4), (Dd
6
), (Dd

4
), (Z

t1

4
), (Zt

5
), (Z

t2

6
) bifurcating from O at

α ≈ −4.5636 with the limit frequency βo ≈ 1.06.

Table 2. Number of unstable eigenvalues in each isotypic component along the (S 5)-

symmetric branch O of relative equilibria (4.5) of system (4.4) with n = 5, j = 1; the

other parameters are the same as for Table 1.

Intervals of values of the parameter α

[-5,-4.645] [-4.64,-4.565] [-4.56, 0.25]

V0 2 0 0

V1 8 8 0
1⊕

j=0

V j 10 8 8

In B.5 of Appendix B, we outline how the above bifurcations can be deduced from Theorems 3.2

and A.6. We find the isotypic decomposition of the S 5 × S 1-representation Vc = V0 ⊕ V1 (cf. (3.2)),

list maximal orbit types in each S 5 × S 1-isotypic component V j, obtain the characteristic polynomial

ϕ j associated with each V j (cf. (3.5)) and verify (numerically) that the roots of these polynomials

satisfy conditions (ii) and (iii) of the theorem. Tables 1 and 2 illustrate how the roots ϕ j cross the

imaginary axis as the bifurcation parameter α is varied. An entry of a given cell indicates the number

of unstable roots of the polynomial ϕ j, which is associated with the isotypic component V j (shown in

the left column), for the corresponding interval of α-values (shown in the upper row). One can see

the changes of the dimension of the unstable manifold as α increases. An entry of the table is circled

to indicate a “jump” in the number of unstable roots at a Hopf bifurcation point. The conclusions of

Propositions 4.2 and 4.3 are based on these tables.

5. Conclusions

We considered an application of the equivariant topological degree to the Γ × S 1-equivariant

Hopf bifurcation in differential systems with a hysteresis operator. This application allows one to

classify branches of relative periodic solutions bifurcating from a relative equilibrium according to

their symmetries. We identified a set of conditions that ensure the Γ × S 1-equivariance. By adapting a

method that had been used earlier to analyze the Γ-equivariant Hopf bifurcation, we constructed Γ×S 1-

equivariant vector fields that have zeros at the relative periodic solutions. These vector fields, although
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non-differentiable on a dense subset of their domain due to hysteresis terms, are still differentiable at

the relative equilibria, which is sufficient for an effective computation of the topological degree. The

results formulated for systems with the Preisach hysteresis operator were illustrated using equations of

motion of an electro-mechanical system with the Prandtl–Ishlinskii operator model of an elastoplastic

component.
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6. D. Davino, P. Krejčı́, C. Visone, Fully coupled modeling of magneto-mechanical

hysteresis through ‘thermodynamic’ compatibility, Smart Mater. Struct., 22 (2013), 095009.

https://doi.org/10.1088/0964-1726/22/9/095009

Mathematics in Engineering Volume 7, Issue 2, 61–95.

https://dx.doi.org/https://doi.org/10.1109/TAC.2005.858676
https://dx.doi.org/https://doi.org/10.1007/s10884-012-9271-4
https://dx.doi.org/https://doi.org/10.3934/dcds.2006.15.983
https://dx.doi.org/https://doi.org/10.1007/978-1-4612-4048-8
https://dx.doi.org/https://doi.org/10.1088/0964-1726/22/9/095009


81

7. C. O. Frederick, P. J. Armstrong, A mathematical representation of the multiaxial Bauschinger

effect, Mat. High Temp., 24 (2007), 1–26. https://doi.org/10.1179/096034007X207589

8. D. C. Jiles, D. L. Atherton, Theory of ferromagnetic hysteresis (invited), J. Appl. Phys., 55 (1984),

2115–2120. https://doi.org/10.1063/1.333582
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Appendix

Appendix A: Properties of Preisach operator

A.1. General properties of hysteresis operators

The following properties of input-state operator (2.4) and input-output operator (2.10) play an

important rule.

Causality. The state (2.4) at a moment t′ ≥ t0 depends on the values of the input x = x(t) on the

segment t0 ≤ t ≤ t′ only and does not depend on the future values of x. More precisely, for two inputs

x1, x2 ∈ C([t0,∞);R) and any initial state v0 ∈ V,

x1(t) = x2(t) for t0 ≤ t ≤ t′ ⇒ (Υ[t0, v0]x1)(t) = (Υ[t0, v0]x2)(t) for t0 ≤ t ≤ t′.

Rate-independence. This property is considered to be the defining property of hysteresis

operators [25]. It says that changing the time scale of the input results in the same change of the

time scale of state function (2.4) and output (2.10). More specifically, for any continuous increasing

change of time

τ : [t′,∞)→ [t0,∞) such that τ(t′) = t0,

any input x ∈ C([t0,∞);R) and initial state v0 ∈ V, define

x̃(t) = x(τ(t)), t ≥ t′.

Then,

(Υ[t′, v0]x̃)(t) = (Υ[t0, v0]x)(τ(t)), t ≥ t′. (A.1)

Semigroup property. Given an input x ∈ C([t0,∞);R) and t′ > t0, define the restriction xt′ ∈

C([t′,∞);R) of the input to the interval t ≥ t′ by xt′(t) = x(t). The input-state operator satisfies

(Υ[t0, v0]x)(t) =
(
Υ[t′, (Υ[t0, v0]x)(t′)]xt′

)
(t), t ≥ t′. (A.2)

Causality and rate-independence of input-state operator (2.4) imply the same properties of input-

output operator (2.10).

Remark A.1. The above properties are used as a general definition of a hysteresis operator.

Definition A.2. An input-state operator (2.4) and input-output operator (2.10) defined by (2.9) are

called hysteresis operators if the operator (2.4) is causal, rate-independent and satisfies the semi-group

property.

This definition is adapted from [11, 25]. Equivalent definitions based on discrete time sequences

were used in [5].
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A.2. Monocyclic property and congruency of hysteresis loops

The following properties of the input-state-output operators are important for analyzing periodic

inputs, states and outputs. If an input x : [t0,∞)→ R is periodic (with a period T ), i.e.,

x(t + T ) = x(t) for all t ≥ t0,

then for any initial state v0 ∈ V, the variable state (2.4) and the output (2.10) are periodic after the first

period:

(Υ[t0, v0]x)(t + T ) = (Υ[t0, v0]x)(t) for t ≥ t0 + T, (A.3)

(P[t0, v0]x)(t + T ) = (P[t0, v0]x)(t) for t ≥ t0 + T. (A.4)

Moreover, for any pair of initial states v1
0, v

2
0 ∈ V,

∂

∂t

(
(Υ[t0, v

1
0]x)(t) − (Υ[t0, v

2
0]x)(t)

)
= 0 for t ≥ t0 + T, (A.5)

d

dt

(
(P[t0, v

1
0]x)(t) − (P[t0, v

2
0]x)(t)

)
= 0 for t ≥ t0 + T. (A.6)

Note that relations (A.3)–(A.6) are generally not true for t0 ≤ t ≤ t0 + T . The partial differentiation is

used in (A.5) because the function v = v(t, ξ) defined by (2.4) is a function of two variables t and ξ.

Relations (A.3) and (A.4) are referred to as the monocyclic property of the Preisach operator.

Equalities (A.5) and (A.6) are known as the congruency property of hysteresis loops, which is one

of the two characteristic properties of the Preisach model according to the identification theorem by

Mayergoyz [16]. Equalities (A.3)–(A.6) are a consequence of Eqs (2.2) and (2.3).

A.3. Differentiability on constant solutions

The Preisach operator P is not differentiable on an everywhere dense subset of its domain. The

same is true for the operator P̂T
λ

defined by relations (2.16)–(2.19). However, these operators are

differentiable on constant inputs, allowing the linearization of system (2.29)–(2.32) on its relative

equilibria, which is crucial for the statement and proof of Theorem 3.2.

Lemma A.3. For any λ ∈ [0, 1], the operator P̂T
λ

defined by (2.16)–(2.19) is globally Lipschitz

continuous in its domain Cper([0, T ];R) and satisfies the global estimate

max
t,s∈[0,T ]

∣∣∣(P̂T
λ x)(t) − (P̂T

λ x)(s)
∣∣∣ ≤ K0 max

t,s∈[0,T ]

∣∣∣x(t) − x(s)
∣∣∣2. (A.7)

The Lipschitz continuity of the operator P̂T
λ

follows from the monocyclic and congruency properties

of the input-output operator of the Preisach model (cf. (A.3)–(A.6)) and the Lipschitz estimate (2.11).

Relation (A.7) derives from the definition of the operator P̂T
λ

, and the monotonicity property (2.25) of

the Preisach operator.

Given an xo ∈ R, let the Preisach state-output functional satisfy Φ(xo, v−) < Φ(xo, v+) and let

Φ(xo, v−) < α < Φ(xo, v+) (A.8)
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(cf. (2.16), (3.9)). Condition (A.8) ensures that there exists a continuous functional Λα : Bε(xo) →

(0, 1) defined on a sufficiently small ball Bε(xo) = {x ∈ Cper([0, T ];R) : |x(t) − xo| < ε, t ∈ [0, T ]} such

that

x ∈ Bε(xo), λ = Λα(x) ⇒ (P̂T
λ x)(0) = α, (A.9)

and Λα depends continuously on α.

Lemma A.3 implies the following statement.

Corollary A.4. If (A.8) holds, then relations x ∈ Bε(xo), λ = Λα(x) imply

‖P̂T
λ x − α‖C([0,T ];R) ≤ K0 max

t,s∈[0,T ]

∣∣∣x(t) − x(s)
∣∣∣2 ≤ 4K0‖x − xo‖

2
C([0,T ];R).

The operator P̂T
λ maps any constant (stationary) input to a constant output, hence the constant input

x ≡ xo is mapped to the constant output (P̂T
λ

xo) ≡ α for λ = Λα(xo). Therefore, Corollary A.4 implies

‖P̂T
Λα(x) x − P̂T

Λα(xo)xo‖C([0,T ];R) ≤ 4K0‖x − xo‖
2
C([0,T ];R).

In other words, the operator P̂T
Λα(·)

(·) has the zero derivative on the constant inputs x ≡ xo

satisfying (A.8).

A.4. Initial value problem

Initial conditions for system (2.12)–(2.15) include an initial value for the variable z,

z(t0) = (z1(t0), ..., zn(t0)) = z0 ∈ R
N ,

and a collection of initial states

v(t0, ·) = (v1(t0, ·), ..., v
n(t0, ·)) = v0(·) ∈ Vn

of Preisach operators (2.14) at an initial moment t0. The phase space is endowed with the natural metric

induced by the metric of V.

It is important to note that solutions are not extendable backwards in time (an attempt at backward

extension leads to non-uniqueness). However, most other standard facts of the theory of ordinary

differential equations are valid for system (2.12)–(2.15). In particular, the local existence and forward

uniqueness result from the Lipschitz estimate (2.11) for a sufficiently small interval [t0, t0 + δ). Hence,

any initial moment t0 and any initial point (z0, v0(·)) of the phase space U = RN × Vn define a solution

(z(·), v(·, ·)) : I → U starting from this initial point at t = t0 and extending to some interval I = [t0, t1) ∋

t. This can be proved, for example, using the Picard–Lindelöf type of argument, or by applying the

contraction mapping principle to the integral equation, which is equivalent to system (2.12)–(2.15).

Further, every solution is extendable to a maximum interval Imax = [t0, t1), either finite or infinite, and

if the maximal interval is finite, then |z(t)| → ∞ as t → t1. Standard linear estimates of the function

F = (F1, . . . , Fn) : RN → RN ensure that the maximal interval is infinite. For example, the global

estimate |F(z)| ≤ a1|z|+ a2 ensures that Imax = [t0,∞). Due to semigroup property (A.2) of the Preisach

hysteresis operator, the solutions of system (2.12)–(2.15) induce a continuous semi-flow in the phase

space U of this system. Since the Preisach operator is rate-independent (see Appendix A), it commutes

with time shifts t → t + c, which implies that system (2.12)–(2.15) is autonomous.
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A.5. Prandtl–Ishlinskii operator

Let us recall that a hysteresis operator is, in general, a composition of an input-state operator

and a state-output functional. The Prandtl–Ishlinskii and Preisach hysteresis models have the same

input-state operator (2.5). Krejčı́’s representation theorem proves that the state-output functional

of the Prandtl–Ishlinskii hysteresis operator is the sum of a linear functional and the state-output

functional (2.8) of the Preisach operator of a particular type [12]. Let us consider a class of state-output

functionals, which includes the state-output functionals of both the Preisach and Prandtl–Ishlinskii

models. To this end, let us rewrite formula (2.8) equivalently as

Φ
(
x0, v(·)

)
=

∫ d

0

dξ

(
2

∫ v(ξ)+x0

−∞

q̃od(ξ, u) du + 2

∫ v(ξ)+x0

0

q̃ev(ξ, u) du

+

∫ ∞

−∞

q̃ev(ξ, u) du

)
,

where

q̃(ξ, u) = q(u − ξ, u + ξ)

and

q̃od(ξ, u) =
q̃(ξ, u) − q̃(ξ,−u)

2
, q̃ev(ξ, u) =

q̃(ξ, u) + q̃(ξ,−u)

2
. (A.10)

Replacing the integral
∫ ∞
−∞

q̃ev(ξ, u) du by its Cauchy principal value in the above formula, and adding

the linear function κx0, we define the class of functionals

Φ
(
x0, v(·)

)
= κ x0 (A.11)

+

∫ d

0

dξ

(
2

∫ v(ξ)+x0

−∞

q̃od(ξ, u) du + 2

∫ v(ξ)+x0

0

q̃ev(ξ, u) du + p.v.

∫ ∞

−∞

q̃ev(ξ, u) du

)
,

for which the Preisach state-output functional (2.8) is a particular case. On the other hand, as shown

in [12], the Prandt–Ishlinskii operator is the composition of the operator (2.4) and the functional (A.11)

with q̃od, q̃ev given by (A.10) and

q̃(ξ, u) = −
q̂(ξ)

2
, κ =

∫ d

0

q̂(ξ) dξ, (A.12)

where a bounded integrable function q̂ : [0, d]→ R+ is known as the loading curve. Substituting (A.12)

into (A.11), one can see that the state-output functional of the Prandtl–Ishlinskii operator is simply

Φ
(
x0, v(·)

)
= −

∫ d

0

v(ξ)q̂(ξ) dξ. (A.13)

Remark A.5. A straightforward modification of the proof shows that the statement of Lemmas 2.2

and 2.3 remains valid if the state-output functional (2.9) is defined by Eq (A.11) or Eq (A.13) with a

nonnegative density function q̂ : [0, d] → R+ rather than by Eq (2.8), in other words, if the Preisach

operator is replaced by the Prandtl–Ishliskii operator.

Mathematics in Engineering Volume 7, Issue 2, 61–95.



86

A.6. Equivariant Hopf bifurcation of relative periodic solutions for systems with Prandtl–Ishlinskii

operator

Theorem 3.2 can be extended to systems (2.29)–(2.32), where the Preisach state-output

functional (2.8) in (2.32) is replaced by the more general functional (A.11). To this end, one naturally

needs to adapt the definition (3.1) of the matrix A(α) and replace it with the following definition:

A(α) = κDαF(α, zO(α)) + DzF(α, zO(α)), (A.14)

where κ is the coefficient of the linear term in (A.11). Then, the conditions of Theorem 3.2 ensure

the existence of a branch of relative periodic solutions with symmetries at least (H), bifurcating

from the branch of relative equilibria. As particular cases, this statement includes systems with the

Preisach state-output functional (2.8) (in the case, κ = 0) and the Prandtl–Ishlinskii state-output

functional (A.13). More specifically, the following statement holds for systems with the Prandtl–

Ishlinskii operator.

Theorem A.6. Let Eqs (2.29)–(2.32) satisfy the Γ × S 1-equivariance assumptions (2.37), (2.46),

and (2.47), where the state-output functional (2.32) is given by Eq (A.13) with a positive density

function q̂ : [0, d]→ R+. Let this system have a branch of regular relative equilibria

O =
{(
α, λO(α), ωO(α), S 1(zO(α))

)
, α ∈ (αo − δ, αo + δ)

}
,

which admit a group of symmetries (H), where H ≤ G = Γ × S 1. Set G = H × S 1, define the

matrix A(α) by (A.14) with κ =
∫ d

0
q̂(ξ) dξ, assume that the characteristic polynomial ϕ of the matrix

A(α) − ωO(α)J satisfies conditions (3.6), (3.7), and consider the factorization (3.4) induced by the

G-isotypic decomposition (3.2) with the associated G-isotypic crossing numbers t1, j(αo, βo). Given a

maximal twisted orbit type (H) in the G-representation (3.2) and the set of all G-isotypic components

V j, in which (H) is an orbit type, assume that conditions (i)–(iii) of Theorem 3.2 hold for V j′ ∈ M
H.

Then, a branch of relative periodic solutions with symmetries at least (H) bifurcates from the branch

of relative equilibria O at the bifurcation point (αo, λO(αo), ωO(αo), βo, zO(αo)).

This theorem is a straightforward modification of Theorem 3.2, hence we omit the proof.

Appendix B: Equivariant Hopf bifurcation

B.1. Bifurcation from a trivial solution

In this and the following subsections we present an abstract Theorem B.10, which serves as a basis

for the proof of Theorems 3.2 and A.6. Theorems 3.2 is proved in Subsections B.3 and B.4. B.5

outlines the proof of Propositions 4.2 and 4.3.

Let G := H × S 1, whereH is a finite group (one can use any compact Lie group). We assume that

a Banach space E is an isometric G-representation and consider the G-representation R2 × E, where G

acts trivially on the parameter space R2.

Let F : R2 × E→ E be a completely continuous G-equivariant vector field:

F (η, gu) = gF (η, u), g ∈ G, (η, u) ∈ R2 × E. (B.1)

Assume that

F (η, 0) = 0, η ∈ R2. (B.2)
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The points (η, 0) ∈ R2 × E will be called trivial solutions of the equation

F (η, u) = 0, η ∈ R2, u ∈ E. (B.3)

We denote by

M := {(η, 0) ∈ R2 × E : F (η, 0) = 0}

the set of trivial solutions and by

S := {(η, u) ∈ R2 × E : F (η, u) = 0, u , 0} = F
−1(0) \M

the set of all non-trivial solutions to Eq (B.3).

In what follows, Ω denotes the closure of a set Ω.

Definition B.7. A non-empty set C ⊂ S is called a branch of non-trivial solutions to Eq (B.3) if

C = S ∩ D where D is a connected component of S. Moreover, if (ηo, 0) ∈ C , then we say that the

branch C bifurcates from the trivial solution (ηo, 0) and (ηo, 0) is a bifurcation point for Eq (B.3).

In a symmetric setting (cf. Subsection 2.4), given a subgroup H ≤ G and a set Ω ⊂ R2 × E, the

notation ΩH is used for the subset ΩH ⊂ Ω of all H-symmetric points:

ΩH := {(η, u) ∈ Ω : hu = u, h ∈ H}.

Definition B.8. Under the assumptions of Definition B.7, for a given subgroup H ≤ G, a set C ′ ⊂ SH

is called a branch with symmetries at least (H) if C ′ = SH ∩ D ′ where D ′ is a connected component

of SH. Moreover, if (ηo, 0) ∈ C ′, then we say that C ′ bifurcates from the point (ηo, 0).

Assume that F is differentiable with respect to u onM, the derivative A (η) := DuF (η, 0) : E→ E

depends continuously on η ∈ R2 and

lim
(η′,u)→(η,0)

‖F (η′, u) −A (η′)u‖

‖u‖
= 0, η ∈ R2. (B.4)

Definition B.9. A point (ηo, 0) is called critical for Eq (B.3) ifA(ηo) : E→ E is not an isomorphism.

Let L ⊂ M be the set of all critical points inM, i.e.,

L := {(η, 0) : A (η) : E→ E is not an isomorphism}. (B.5)

One can show that if (ηo, 0) is a bifurcation point, then it must be critical for (B.3), i.e., (ηo, 0) ∈ L .

Below we consider an isolated critical point (ηo, 0). In other words, it is assumed that

{(η, 0) ∈ L : |η − ηo| < δ} = {(ηo, 0)} (B.6)

for some δ > 0. We assume that the restriction A (ηo)|
ES 1 of A (ηo) to the subspace ES 1

where the group

S 1 acts trivially is a bijection:

A (ηo)|
ES 1 is an isomorphism. (B.7)

An isolated critical point (ηo, 0) satisfying (B.7) is called regular.
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B.2. Bifurcation invariant

The existence of branches of non-trivial solutions bifurcating from an isolated critical point (ηo, 0)

of the field F can be proved using topological (bifurcation) invariants such as the Brouwer degree,

S 1-equivariant degree or, in a symmetric setting, their equivariant counterparts—equivariant Brouwer

degree and twisted equivariant degree [3]. If the bifurcation invariant associated with (ηo, 0) is different

from zero, then there is a branch C of non-trivial solutions to (B.3) bifurcating from the trivial solution

(ηo, 0). Moreover, in the equivariant setting, the bifurcation invariant contains information about

symmetries (H) of branches C H of non-trivial solutions bifurcating from (ηo, 0).

The computation of the bifurcation invariant is based on the linearization A of the field F at the

critical point and the so-called crossing numbers of the linearization. To be specific, let us consider a

G-isotypic decomposition

E = ES 1

⊕

∞⊕

k=1

p⊕

l=0

Vk,l (B.8)

with

E
S 1

=

r⊕

l=0

V0,l, (B.9)

where each G-isotypic component Vk,l is assumed to be finite. Here Vk,l is modeled on a G-irreducible

representation Vk,l, i.e.,

Vk,l ≃ Vk,l ⊕ · · · ⊕ Vk,l︸            ︷︷            ︸
mk,l times

, (B.10)

where {V0,l}l=0,1,...,r ∪ {Vk,l}k≥1, l=0,1,...,p is a complete list of pairwise non-equivalent irreducible G-

representations and

mk,l := dim Vk,l/dim Vk,l. (B.11)

Since the field F is G-equivariant, so is the linear map A (η) : E → E (for every η ∈ R2), therefore

each subspace Vk,l is invariant for A (η), and the finite-dimensional restriction

Ak,l(η) := A (η)|Vk,l
(B.12)

is well-defined. Notice that subspaces Vk,l with k ≥ 1 have a natural complex structure induced

by the S 1-action. Moreover, the irreducible G-representation Vk,l is also an irreducible complex H-

representation, and as such, Vk,l is a complex absolutely irreducible H-representation. Consequently,

the G-equivariant linear map Ak,l(η) : Vk,l → Vk,l can be identified with a complex matrix Ãk,l(η). Put

ϕk,l(η) := det
(
Ãk,l(η)

)
. (B.13)

By assumption, (ηo, 0) ∈ L is a regular isolated critical point, hence there exist l and k > 0 such

that Ak,l(ηo) is not an isomorphism, i.e.,

ϕk,l(ηo) = 0. (B.14)

We assume that in some coordinate system η = (α, β) ∈ R2, the point ηo = (αo, βo) satisfies βo > 0 and

the function ϕk,l(αo, ·) is analytic in a neighborhood of the point βo. Therefore, relation (B.14) implies

that

ϕk,l(αo, β) = (β − βo)mφo(β), (B.15)
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where m > 0 is the multiplicity of the isolated zero βo of the function ϕk,l(αo, ·), i.e., φ(βo) , 0.

Moreover, we assume that in some neighborhood of the point ηo = (αo, βo),

ϕk,l(α, β) =P(α, iβ)φ(α, β), (B.16)

where the polynomial

P(α, µ) = µm + a1(α)µm−1 + · · · + am(α) (B.17)

of degree m ≥ 1 depends continuously on α and satisfies

P(αo, µ) = (µ − iβo)m; (B.18)

and, the continuous function φ satisfies

φ(αo, β) = (−i)mφo(β), φ(αo, βo) , 0. (B.19)

Notice that formulas (B.16)–(B.19) are in agreement with (B.15) at α = αo; the complex i is used

in (B.16) merely to mathch the standard setting of the Hopf bifurcation problem; polynomial (B.17) is

called the characteristic polynomial for the map A |Vk,l
.

The isotypic crossing number tk,l(αo, βo) associated with the G-isotypic component Vk,l is the number

of roots µ j(α) of the characteristic polynomial, which cross the imaginary axis through the point iβo

from the left to the right half-plane of the complex plane C, minus the number of roots crossing the

imaginary axis from right to left through the same point, as the parameter α increases from αo − δ to

αo + δ (for a sufficiently small δ). More precisely, the assumption that (ηo, 0) = (αo, βo, 0) is an isolated

critical point of A (η) = A (α, β) (cf. (B.6)) and relation (B.18) ensure that all the m roots µ j(α) of

P(α, ·) satisfy

ℜe µ j(α) , 0, j = 1, . . . ,m, 0 < |α − αo| ≤ δ (B.20)

for a sufficiently small δ > 0, and the isotypic crossing number associated with Vk,l equals

tk,l(αo, βo) = t−k,l(αo, βo) − t+k,l(αo, βo), (B.21)

where t−
k,l

(αo, βo) (respectively, t+
k,l

(αo, βo)) is the number of roots µ j(αo − δ) (respectively, µ j(αo + δ)),

counted with their multiplicities, which satisfyℜe µ j < 0, i.e.,

t−k,l(αo, βo) := #{ j : ℜe µ j(αo − δ) < 0, j = 1, . . . ,m}, (B.22)

t+k,l(αo, βo) := #{ j : ℜe µ j(αo + δ) < 0, j = 1, . . . ,m} (B.23)

with #S denoting the cardinality of the set S . Due to the continuous dependence of the roots on α, the

integers t±
k,l

(αo, βo) are independent of a particular choice of δ such that (B.20) holds.

Theorem B.10. Let the field F : R2 × E→ E satisfy assumptions (B.1), (B.2) and (B.4). Let (ηo, 0) ∈

L be a regular isolated critical point for Eq (B.3). Assume that (H) is a maximal orbit type in
⊕p

l=0
Vk,l

for some k ≥ 1, and

(i) tk,l(ηo) , 0 for at least one l ∈ {0, 1, . . . , p} such that (H) is an orbit type in Vk,l;

(ii) tk,l(ηo) · tk,l′(ηo) ≥ 0 for every l′ ∈ {0, 1, . . . , p} such that (H) is an orbit type in Vk,l′ .
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Then, there exists a branch C of non-trivial solutions with symmetries at least (H), which bifurcates

from the critical point (ηo, 0) of Eq (B.3).

We refer an interested reader for the proof to [3, 4].

Remark B.11. Consider an isometricH-representation V = RN with aH-isotypic decomposition

V = Ṽ0 ⊕ Ṽ1 ⊕ · · · ⊕ Ṽr, (B.24)

where the H-isotypic component Ṽl is modeled on an irreducible H-representation V0,l (we assume

that {V0,l}
r
l=0

is a complete list of real irreducible H-representations with V0,0 being the trivial

representation). Let G = H × S 1. Consider the complexification Vc of the H-representation V as

the G-representation with the S 1-action given by k-folding

eiθu := eikθ · u, eiθ ∈ S 1, u ∈ Vc,

where ‘·’ stands for the complex multiplication. Let

Vc = V0 ⊕ V1 ⊕ · · · ⊕ Vp (B.25)

be a G-isotypic decomposition, where the G-isotypic component Vl is modeled on an irreducible G-

representation Vk,l
*. Let E = Cper([0, 2π]; V), then E is an isometric G-representation with the action

given by (
(γ, eiθ)u

)
(t) := γu(t + θ), γ ∈ H , eiθ ∈ S 1, u ∈ E. (B.26)

Using the standard Fourier modes decomposition of the space E, one obtains G-isotypic

decomposition (B.8) and (B.9) in which V0,l � Ṽl stands for the subspace of constant Ṽl-valued

functions and subspaces Vk,l � Vl for k ≥ 1 are defined by

Vk,l := {u ∈ E : u(t) = a cos(kt) + b sin(kt), a, b ∈ V, a − ib ∈ Vl, t ∈ R} . (B.27)

Accordingly, the spatio-temporal symmetry group of a non-constant periodic function u : R → V of

minimal period T > 0 is the twisted subgroup H ≤ G = H × S 1 defined by

H :=
{
(γ, eiθ) ∈ H × S 1 : ∀t∈R γu

(
t + θT

2π

)
= u(t)

}
. (B.28)

B.3. Proof of Theorem 3.2: setting in functional spaces

Let O = (α, λO(α), ωO(α), zO(α)), α ∈ A, be the branch of regular stationary solutions (2.41) of

Eq (2.44). Following Lemma 2.6, we look for non-stationary 2π-periodic solutions (α, λ, ω, β, ζ) to

this equation, where α ∈ A is related to λ and ζ by Eq (2.45). In other words, λ is given by the implicit

function

λ = Λα(b • ζ) (B.29)

according to (A.9). Now, we write

ζ = zO(α) + u. (B.30)

*In the examples presented in this paper, Vl � Ṽc
l
, Vk,l � V c

0,l
and p = r, but it is not necessarily so in general.
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and set up a completely continuous vector field F (cf. Subsections B.1 and B.2) associated with the

2π-periodic problem for Eq (2.44) in the Sobolev space

E = W1,2
per([0, 2π]; V) := {u ∈ W1,2([0, 2π]; V) : u(0) = u(2π)},

where u ∈ E is identified with its 2π-periodic extension.

The next step reflects the specifics of the bifurcation of relative periodic solutions from a relative

equilibrium. In order to extract a unique (up to time shifts) representative from the S 1-orbit

(α, λ, ω, β, eiφζ(·)), φ ∈ R, of solutions, we impose a constraint on ζ. The assumption that stationary

solutions (2.41) are regular (see Definition 2.5) implies that the kernel of the linear map (matrix)

DzF(α, zO(α))−ωO(α)J is the one-dimensional linear span of the vector JzO(α) for any α ∈ U . Denote

by g†(α) the adjoint eigenvector corresponding to the simple zero eigenvalue of the adjoint (transpose)

map DzF(α, zO(α))T − ωO(α)JT :

DzF(α, zO(α))T g†(α) − ωO(α)JT g†(α) = 0, g†(α) • JzO(α) = 1, α ∈ U .

One way to impose the constraint is to require that

ω = Wα(u) := ωO(α) + g†(α) •
1

2π

∫ 2π

0

u(t) dt, u ∈ E. (B.31)

To construct the vector field F , set E = L2([0, 2π]; V) and define the differentiation operator L :

E → E by Lu = u̇. Notice that the natural embedding i : E → E is compact and the operator

i + L : E→ E has a bounded inverse (i + L)−1 : E → E, i.e., the periodic problem

u̇ + u = f , u(0) = u(2π)

has a unique solution u = (i+ L)−1 f ∈ E for any f ∈ E. Further, define the operator NF : A×E → E by

NF(α, u)(t) := F
(
P̂2π
λ (b • ζ), ζ

)
(t) − ωJζ(t),

where λ, ζ, ω are given by (B.29)–(B.31) and we use the natural embeddings E ⊂ Cper([0, 2π]; V) ⊂

E. Now, we can equivalently rewrite the 2π-periodic problem for (2.44) with the additional

constraint (B.31) as

u̇ + u = u + β−1NF(α, u),

and using the inverse (i + L)−1 as

u = (i + L)−1(iu + β−1NF(α, u)), u ∈ E. (B.32)

Using the completely continuous vector field

F (η, u) = u − (i + L)−1(iu + β−1NF(α, u)), η = (α, β) ∈ A × R+, u ∈ E, (B.33)

Eq (B.32) is equivalent to (B.3).

Let G = H × S 1, where H is the symmetry group of zO(α). Then, each of the spaces E,

E is an isometric G-representation with the action given by (B.26), and the Γ × S 1-equivariance

assumptions (2.37), (2.46), and (2.47) imply the G-equivariance of the vector field (B.33) (with G

acting trivially on A × R+ ∋ ν).

Remark B.12. Observe that since F is H-equivariant (cf. (2.46)), from zO(α) ∈ VH it follows that

the linear map DzF(α, zO(α)) − ωO(α)J : V → V is H-equivariant as well, which implies that its

eigenvector satisfies JzO(α) ∈ VH for each α ∈ A.
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B.4. Proof of Theorem 3.2: linearization

Let us consider the linearization of the vector field (B.33) on its zero u = 0. Using theH-equivariant

Jacobi matrix A(α) = DzF(α, zO(α)) of F (cf. (3.1)), define the Nemytskii operator NA : A× E→ E by

(NA(α)u)(t) = A(α)u(t) − ωO(α)Ju(t) − JzO(α)g†(α) • u(t).

From Corollary A.4 and (B.31) of the affine functional Wα : E → R, it follows that the Fréchet

derivative of the vector field (B.33) (with respect to u) at u = 0 is the G-equivariant compact vector

field

A (η)u = u − (i + L)−1(i + β−1NA)u, η = (α, β) ∈ A × R+, u ∈ E. (B.34)

By inspection, the subspace ES 1

⊂ E of constant V-valued functions is invariant for A (η) : E → E,

and the spectrum σ
(
A (η)|

ES 1

)
of the restriction A (η)|

ES 1 to ES 1

is related to the spectrum σ
(
ωO(α)J −

A(α)
)

of the map ωO(α)J − A(α) : V → V by

σ
(
A (η)|

ES 1

)
= β−1σ

(
ωO(α)J − A(α)

)
∪ {β−1} \ {0},

hence A (η)|
ES 1 is an isomorphism, i.e., (B.7) holds. Moreover, zeros of A are solutions of the periodic

problem

βu̇ = A(α)u, u(0) = u(2π).

Now, let us consider a G-isotypic decomposition (B.25) and the associated G-representation (B.8)

of E with the isotypic components (B.27), which are all invariant for A (η), hence the restriction (B.12)

of A (η) to each G-isotypic component Vk,l is well-defined. By inspection, the corresponding

function (B.13) for the restriction A (η)|Vk,l
with k ≥ 1, l = 0, 1, . . . , p is given by

ϕk,l(α, β) = β
−1(1 + ik)−1 det

(
(ikβ Id + ωO(α)J − A(α))|Vl

)
, (B.35)

where (ωO(α)J−A(α))|Vl
is the restriction of the G-equivariant complexificationωO(α)J−A(α) : Vc →

Vc of the map ωO(α)J − A(α) : V → V to the G-isotypic component Vl of G-decomposition (B.25) of

the G-representation Vc. Since each subspace Vl is invariant for the G-equivariant map A(α)−ωO(α)J,

the characteristic polynomial (3.3) of this map admits factorization (3.4) and (3.5). Comparing (3.5)

and (B.35), one can see that

ϕk,l(α, β) = β
−1(1 + ik)−1Pl(α, ikβ).

Hence, conditions (3.6) and (3.7) ensure that (αo, βo, 0) is a regular isolated critical point for (B.34).

Moreover, for k = 1, the isotypic crossing number t1,l(αo, βo) is well-defined for each l = 0, 1, . . . , p

by Eqs (B.21)–(B.23). Due to (B.35), t1,l(αo, βo) equals the number of roots µl
j
(α) of the characteristic

polynomial Pl(α, ·), which cross the imaginary axis through the point iβo from the left to the right

half-plane of the complex plane C, minus the number of roots crossing the imaginary axis from right

to left through the same point, as the parameter α increases from αo − δ to αo + δ (for any sufficiently

small δ), i.e.,

t1,l(αo, βo) = #{ j : ℜe µl
j(αo − δ) < 0} − #{ j : ℜe µl

j(αo + δ) < 0}.

Hence Theorem 3.2 follows from Theorem B.10.
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B.5. Outline of the proof of Propositions 4.2 and 4.3

Theorem 3.2 can be used to analyze symmetries of branches of relative periodic solutions

bifurcating from the branch O of relative equilibria (4.5), which have symmetry group H = S 5 × {1}.

In order to compute the linearization (A.14) on the relative equilibrium, it is convenient to use

the Cartesian coordinates z = (z0, z1, . . . , zn)T with z0 = (X, Y, Ẋ, Ẏ), zk = (uk,wk, xk, yk, ẋk, ẏk),

k = 1, . . . , n = 5, where

X = R cosΘ, Y = R sinΘ, Ẋ = Ṙ cosΘ − Θ̇R sinΘ, Ẏ = Ṙ sinΘ + Θ̇R cosΘ,

xk = ρk cos θk, yk = ρk sin θk, ẋk = ρ̇k cos θk − θ̇kρk sin θk,

ẏk = ρ̇k sin θk + θ̇kρk cos θk.

Denote

V0 = R
4 ∋ z0; V = R6 ∋ zk; V = V0 ×V × · · · × V = R

6n+4 ∋ z. (B.36)

Then, the phase space of system (4.4) is V × V. In the Cartesian coordinates, matrix (A.14) has the

form

A(α) =



B0 C0 C0 . . . C0 C0

C B D . . . D D

C D B . . . D D
...
...
...
. . .

...
...

C D D . . . B D

C D D . . . D B



, (B.37)

where the matrces C0 : V → V0, C : V0 →V and D : V → V are given by

C0 :=
δ

m0



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


,

C :=
δ

m



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0



,

D :=
ε

m



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0



.

According to Eq (A.11), when calculating the matrix B0, one should replace the hysteresis term

P[t0, v0]R in the second equation of system (4.4) with the term κR, where κ is defined by (A.12).

Mathematics in Engineering Volume 7, Issue 2, 61–95.



94

We proceed with theH-isotypic decomposition of the space Vc forH = S 5 × {1}. Let V c
0
= C4 and

V c = C6 be the complexifications of the subspaces V0 and V , respectively, defined by (B.36). Then,

Vc = V c
0
×(V c)5 = C34. First, we consider the subgroup Z5 ≃ Z5×{1} ofH and describe the Z5-isotypic

decomposition of Vc. Namely, Vc = V0 ⊕ V1 ⊕ V2, where V0 = {(z0, z, z, z, z, z)T : z0 ∈ C
4, z ∈ C6}, and

V j = V+j ⊕ V−j with

V±j = {(0, z, ξ
± jz, ξ±2 jz, ξ±3 jz, ξ±4 jz)T : z ∈ C6}, j = 1, 2; ξ = e

2πi
5 ,

where ξ acts on vectors z0 = (z1
0
, z2

0
, z3

0
, z4

0
)T ∈ V c

0
, z = (z1, z2, z3, z4, z5, z6)T ∈ V c by

ξ



z1
0

z2
0

z3
0

z4
0


=



z1
0

cos
(

2πi
5

)
− z2

0
sin

(
2π
5

)

z1
0

sin
(

2π
5

)
+ z2

0
cos

(
2π
5

)

z3
0

cos
(

2π
5

)
− z4

0
sin

(
2π
5

)

z3
0

sin
(

2π
5

)
+ z4

0 cos
(

2π
5

)


,

ξ



z1

z2

z3

z4

z5

z6



=



z1

z2

z3 cos
(

2πi
5

)
− z4 sin

(
2π
5

)

z3 sin
(

2π
5

)
+ z4 cos

(
2π
5

)

z5 cos
(

2π
5

)
− z6 sin

(
2π
5

)

z5 sin
(

2π
5

)
+ z6 cos

(
2π
5

)



.

One can see that the matrix A(α) : Vc → Vc given by (B.37) preserves the Z5-isotypic components.

Indeed, by inspection,

A|V0
(z0, z, z, z, z, z)T

= (B0z0 + 5C0z,Cz0 + Bz,Cz0 + Bz,Cz0 + Bz,Cz0 + Bz,Cz0 + Bz)T ,
(B.38)

A|V±
j
(0, z, ξ± jz, ξ±2 jz, ξ±3 jz, ξ±4 jz)T

= (0, Bz, ξ± jBz, ξ±2 jBz, ξ±3 jBz, ξ±4 jBz)T ,
(B.39)

where the identity 1+ ξ + ξ2 + ξ3 + ξ4 = 0 is used to obtain the second equation. Using this Z5-isotypic

decomposition, one obtains the S 5-isotypic decomposition Vc = V0 ⊕ V1, where

V1 = V+1 ⊕ V−1 ⊕ V+2 ⊕ V−2 .

Furthermore, the restriction of the linearization to each of the two isotypic components V0 and V1 is

defined by relations (B.38) and (B.39). Hence, for theH-representation Vc, there are the following list

of maximal twisted types in the isotypic components:

(i) for V0: (S 5);

(ii) for V1: (D6), (S 4), (Dd
6
), (Dd

4
), (Z

t1

4
), (Z

t1

5
), (Z

t2

6
).

Put G := S 5 × {1} × S 1 = H × S 1. The natural S 1-action induced by the complex multiplication

converts the complexH-isotypic decomposition Vc = V0⊕V1 into the (real) G-isotypic decomposition

Vc = V0 ⊕ V1 with the maximal twisted orbit types listed in Proposition 4.2. Moreover, if (H) is a
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maximal twisted orbit type in a G-isotypic component V j, then (H) is a maximal twisted orbit type in

Vc itself.

Decomposition (3.4) has the form ϕ(α, ·) = ϕ0(α, ·)ϕ1(α, ·), where ϕ0(α, ·) is the characteristic

polynomial (of degree 10) of the matrix

(
B0 5C0

C B + 4D

)
− ωO(α)

(
J4 0

0 J6

)

(cf. (B.37)), where 0 denotes zero matrices,

J4 =

(
J 0

0 J

)
, J6 =



0 0 0

0 J 0

0 0 J

 with J =

(
0 −1

1 0

)
;

and, ϕ1(α, ·) = ϕ̃4(α, ·), where ϕ̃(α, ·) is the characteristic polynomial (of degree 6) of the matrix B−D−

ωO(α)J6. Tables 1 and 2 provide an evidence that conditions (ii) and (iii) of Theorem 3.2 are satisfied

for the roots of ϕ j at each bifurcation point listed in Propositions 4.2 and 4.3, hence this proposition

follows from Theorem A.6.
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