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Abstract: We consider a differential system coupled to a hysteresis operator of Preisach type. It
is assumed that the system is equivariant with respect to an action of the group I' x §! (where I’
is a finite group) in the phase space. Moreover, there is a branch of symmetric relative equilibria.
We develop an application of the equivariant twisted topological degree, which detects branches of
relative periodic solutions bifurcating from the relative equilibrium at an equivariant Hopf bifurcation
point. These branches are classified according to their symmetric properties. The general theorem is
illustrated with an example, where equations of motion of an S5 X S '-equivariant electromechanical
system are coupled with the Prandtl-Ishlinskii hysteresis operator; this operator models the stress-
strain constitutive relation of an elastoplastic spring. Hysteresis operators are non-smooth but can be
differentiable at particular points. At the same time, applications of the equivariant degree require the
vector field to be differentiable at the bifurcation point. To satisfy this requirement, we construct I'xS !-
vector fields, for which the zero set consists of the relative equilibria and relative periodic solutions of
the system with the hysteresis operator, and ensure the differentiability at the zeros corresponding to
the relative equilibria. This construction is the main technical contribution of the paper.
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1. Introduction

Hysteresis operators are used as models of complex non-linear history-dependent constitutive
relations of materials and media. Examples include models of the stress-strain constitutive relation of
elastoplastic materials (e.g., Prandtl’s elastic-ideally plastic element [21]; Prandtl-Ishlinskii hysteresis
model and its generalizations [13]; rate-independent yield criteria [14,20]; Armstrong-Frederick [7],
Chaboche [15], Mroz nonlinear hardening rules [17]); related models of dry friction and creep-
fatigue damage counting (Maxwell-slip friction model [1]; rainflow-counting algorithm of calculating
fatigue [23]); magnetizing field-magnetization constitutive laws of magnetic materials (Preisach
independent domain model [22]; Bouc-Wen, Jiles-Atherton, Stoner-Wohlfarth models [8, 24, 26];
Krasnosel’skii-Pokrovskii and Mayergoyz-Friedman models [11, 16]); pressure-saturation constitutive
equations of flows through porous media (Parlange and Mualem hysteresis models [18, 19]); models
of smart materials such as piezoelectric, ferroelectric and magnetostrictive materials, shape-memory
alloys and shape-memory polymers with coupled mechanical, magneto-electric and temperature
variables [6,9].

The defining property of hysteresis operators is rate-independence [25], i.e., a hysteresis operator
commutes with invertible transformations of time. As such, hysteresis operators are non-smooth.

In engineering applications, constitutive relations between physical quantities are coupled to
differential equations of motion, resulting in a smooth dynamical system if the constitutive relation
is smooth. For instance, the harmonic oscillator equation is obtained by coupling Newton’s second
law with the linear constitutive relation between the stress and strain variables (Hooke’s law). On the
other hand, coupling equations of motion to a constitutive relation in the form of a hysteresis operator
leads to a non-smooth dynamical system. The phase space of this system is typically a metric space
lacking linear structure. Naturally, effective tools for the analysis of existence problems for non-smooth
dynamical systems are provided by topological degree methods.

Several variants of equivariant degree adapt the Brouwer and Schauder topological degrees to
symmetric settings. Their application relies on the differentiability of the vector field at its zeros
because the classification of solutions according to their symmetric properties is based on the
linearization. In particular, given a I'-equivariant dynamical system with a finite symmetry group
I', the twisted equivariant degree is suitable for detecting branches of periodic orbits characterized by
different twisted symmetries.

The required differentiability at particular points can sometimes be warranted for non-smooth vector
fields associated with operator-differential systems with hysteresis operators. In [2], a restriction of
a hysteresis operator to the space of periodic functions was shown to be differentiable on constant
functions. This restriction was sufficient for developing an application of the twisted degree to the
I'-equivariant Hopf bifurcation problem.

In this work, the method of [2] is extended to I' x S !-equivariant systems, i.e., we establish the
existence of symmetric branches of the so-called relative periodic solutions (with their associated
symmetries) bifurcating from a symmetric relative equilibrium. Moreover, these branches belong
to the phase space of the operator-differential system, while in [2] the branches are located in the
extended phase space. Adapting the method of [2] to this I'x S !-equivariant setting, we revise specifics
of the construction of the hysteresis operator in the space of periodic functions and the proof of its
differentiability on relative equilibrium solutions.
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The paper is organized as follows: Section 2 presents preliminaries, which include the definition
and basic properties of the Preisach hysteresis operator and an operator-differential system with this
operator; the construction of the restriction of the Preisach operator to the space of periodic continuous
functions; and, a reformulation of the periodic problem using this restriction. Further, we discuss the
conditions that warrant S '-equivariance and I'x S ' -equivariance of the operator-differential system and
define the equivariant Hopf bifurcation point where a branch of relative periodic solutions bifurcates
from a branch of relative equilibria. Sections 3 and 4 present the main result (Theorem 3.2) and
an example of its application to an S5 X S '-equivariant model of an electromechanical system with
plastic hysteresis (Propositions 4.2 and 4.3), respectively. Appendix A includes a brief overview
of the properties of the Preisach operator related to the periodic problem. Specifically, Lemma
A.3 and Corollary A.4 ensure that the restriction of the Preisach operator to the space of periodic
functions has zero derivative on constant functions. In addition, we recall the definition of the Prandtl—
Ishlinskii operator (an operator of Preisach type) and adapt Theorem 3.2 to equations with this operator
(Theorem A.6), preparing the proof of the example. Appendix B contains the proofs. It begins with
abstract Theorem B.10 (presented here for completeness; see, [3,4]), which underpins the following
proof of Theorem 3.2 and is based on the application of the twisted equivariant degree. The further
steps of the proof focus on the construction of the equivariant vector field with the zero set consisting
of relative equilibria and relative periodic solutions. This construction ensures the differentiability
at the bifurcation point, thus allowing us to compute the linearization and use Theorem B.10. The
appendix concludes with the derivation of Propositions 4.2, 4.3 from Theorem A.6. The isotypic
crossing numbers for this illustrative example are obtained numerically.

2. Preliminaries

2.1. Preisach operator

The Preisach model of hysteresis was originally defined using a superposition of elementary
relay operators [22]. Here we use an alternative definition following the geometric construction by
Krasnsel’skii, Pokrovskii [11] and the representation theorem by Krej¢i [12]. Denote by 8B, the
class of all the continuous piecewise continuously differentiable and piecewise monotone functions
v =w(¢) :[0,d] — R such that

v(0) = 0; V=1 ae. 2.1

The functions v(-) € B are referred to as states of the Preisach model.

Let 7 be an infinite time interval I = [#;, co) or a finite time interval I = [y, t,]. Denote by M(I; R)
the set of all the continuous piecewise monotone inputs x = x(t) : I — R. Now, we consider the direct
product of M(I; R) with the state space B as the domain of the input-state operator of the Preisach
model, which is completely defined on this domain by the two simple rules:

e If an input x(¢) increases on an interval [#,, ,], then the evolution of the normalized state on this
interval is determined by

v(t, &) = max{=&, v(11, &) — x(1) + x(11)}, £ €[0,d]; (2.2)
e If x(¢) decreases on [#;, t,], then for ¢ € [1;, t5],
v(t, &) = minf{é, v(ty, &) — x(2) + x(11)}, £ €10,d]. (2.3)
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Given any initial state vo(-) € B, (the state at t = 1y) and any input x(-) € M(I;R), these rules are
successively applied on the intervals of monotonicity of the input to obtain the state v(z, -) € L at any
moment ¢ € I. We use the notation

V(t, ) = (T[t()’ VO(')]X)(I)’ t 21, (24)

for this state.
Next, we endow the state space and the space of inputs with a metric. Namely, we set

Ve = max |v(€)|, v € By.
IVl = max [v) 0

Thus, the state space B becomes a subset of the Banach space C([0, d]; R) equipped with the standard
sup-norm || - ||. Similarly, we endow the set M(/;R) of piecewise monotone inputs with the sup-
norm, i.e., M(I;R) c C(I;R) (in case of the infinite interval I = [ty, o), we consider the family of
seminorms [|x[|c(,1:r) = MaXsep, 71 [X(H)| in C(I; R) > x). It turns out that for every initial state vy € By
and every input x € M(I; R), the functionv : I — B defined by (2.4) belongs to C(I; B,). Hence, (2.4)
defines a map T : By X M([;R) — C(I;By) (with the arguments vy € By, x € M(I;R)) called the
input-state operator of the Preisach model. Moreover, this map is globally Lipschitz continuous (see,
for example, [11]): for an arbitrary pair of initial states vj,v: € B, and an arbitrary pair of inputs
X1, X» € M(I; R) the states

vilt, ) = (YLto, vo()x)(@), (k=1,2) (2.5)

satisfy for each 7 € I the estimate
max [[vi(z, -) = va(t, )l < [vg() = vo(lleo + 2 max |y (1) = x2(0)]. (2.6)
10<t<t 1h<t<tT

The Lipschitz continuity property (2.6) allows one to extend the input-state operator (2.4) by
continuity from its domain M(I; R) X B, > (x, vp) to the closure of this domain in C(/; R) X C([0, d]; R).
We keep the same notation (2.4) for this continuous extension, and wherever we refer to the input-state
operator of the Preisach model, this continuous extension is meant. As the set M(/; R) of the piecewise
monotone continuous inputs is dense in C(/; R), the extended input-state operator (2.4) is defined for
every continuous input x and every initial state vy from the closure ¥ of the set B in C([0, d]; R). The
state space B C C([0, d]; R) thus consists of all the functions v : [0, d] — R that satisfy

v(0) = 0; (&) —v(&)l < €1 = &2l 0<é,6<d 2.7

The extended input-state operator I satisfies the Lipschitz condition (2.6) on its domain © = C(I; R) X
B > (x,19), hence T is a Lipschitz continuous operator from the product space C(I; R) X B to the space
C(I;B) of mappings v(-) : I — B, which is endowed with sup-seminorms

V(- o = max |[v(t, )le = max  |[v(t, &), v = u(t, &)).
IVl o) te[tm]”( ll 0ce te[mﬂ|( o) ( (t,6))

Finally, the output of the Preisach model is a scalar-valued function y = y(¢) (¢ € I) of time defined
as follows. Consider the domain

M={u&eR*: uek £e[0,d]}
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and a bounded integrable non-negative function ¢ : I1 — R, (called the Preisach density function).
Define the so-called state-output functional ® : R x 8 — R by

v(€)+x0
D (x0, v(-)) = Zfddff qu,&)du,  xo €R, v(-) € V. (2.8)
0 —00
Then, the output is related to the input and state by

y(t) = O(x(t), v(t,-)), t>ty. (2.9

In other words, the input-output operator of the Preisach model assigns the outputy : I — R to an
initial state vo € ¥ and an input x € C(I;R) according to (2.4), (2.9). For this operator, we use the
notation

y(1) = (Plto, vo()]x)(1), 12 1. (2.10)

Since the function v(-,-) : R X [0,d] X R defined by (2.4) is continuous, the output (2.9) is also
continuous. Hence the input-output operator (2.10) maps the product space ¥ X C(I;R) > (vo, x) to the
state of outputs C(/;R) > y. Because, by definition, this operator is a composition of the state-output
functional ® and the input-state operator Y, the global Lipschitz continuity of the functional (2.8) and
relation (2.6) imply the global Lipschitz continuity of the input-output operator on its domain:

I(Plto, vo1x1)() = (Plto, vilx) Ol < Ko = Valle + X1 = Xallequo.am)- (2.11)

Due to (2.11), for any fixed initial state vy € B, the operator (2.10) taking inputs of the Preisach model
to its outputs, is Lipschitz continuous in the space C(I; R). However, this operator is not differentiable
in the space of continuous functions with the uniform norm, neither in other natural functional spaces.

2.2. Differential system

Let us consider a system of the form

Zl = Fl(bel’ZZ""’Zn)’

2 =F2(32,21,22, - - -+ Zn)s (2.12)

Zn = Fn(yna L19%25 e v - ,Zn),

where 7;(-) is the derivative of z;(-); the function y,(-) is the output of the Preisach operator, and the
input of this operator is related to the variable z; € R™ by the relation x;(7) = by e z;(t), where ‘@’ is a
scalar product in R™. In other words, Eq (2.12) is coupled to equations

Xi(t) = Dy @ Zi(1), (2.13)
vk(t’ ) = (T[t()’ vk(t()’ )]Xk)(t), (214)
(@ = OV (), k=1,...,n, (2.15)

where (2.14) and (2.15) are the input-state and the state-output relations of the k-th Preisach operator,
respectively. The functions F; : R X RY — R"™, where N =m; +-+-+m,, RN =R™ & ---®R™, are
assumed to be Lipschitz continuous.
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Remark 2.1. In (2.15), we use the same density function g : I — R for all the Preisach operators
(equivalently, all n Preisach operators have the same state-output functional ®). This is sufficient for
our presentation but similarly one can deal with n Preisach operators having different density functions
qx, which define different functionals ®.

Define v := (v',...,v") € B" := B x --- x B (n times), where V* is interpreted as the state of the
k-th Preisach operator. A solution to system (2.12)—(2.15) on an interval I = [#y,1;) is a mapping
(z,v) : I —» RN x B", with a continuously differentiable component z and a continuous component
v. That is, Eq (2.12) holds pointwise, (z(), v(z,-)) € RY x 8" for each ¢ € I, and both sides of these
equations are continuous functions of ¢ for any solution. Thus, the product il = RY x 8" is considered
to be the natural phase space for system (2.12)—(2.15). A few standard facts about solutions and the
initial-value problem for system (2.12)—(2.15) are recounted in A.4 of Appendix A.

2.3. Periodic solutions

The simplest solutions of system (2.12)—(2.15) are stationary (equilibrium) solutions, i.e., solutions
of the form (z(¢), v(t)) = (z9,vo) € RN x B" for all ¢. The rate-independence property (A.1) of the input-
state and input-output operators of the Preisach model (see Appendix A) implies that the state (2.14)
and output (2.15) are constant for any constant input x = x and any initial state v,.

A solution (z(?), v(¢, -)) to system (2.12)—(2.15) defined on a time interval ¢ > ¢, is called periodic
with a period T if both components are T-periodic, i.e., z(t + T) = z(t), v(t + T, -) = v(t, -) for all ¢ > 1.
The periodic conditions

2(to) = 2(to + T), v(to,") =v(to + T, "),

which include the state, ensure periodicity of the solution and periodicity of the outputs (2.15) of the
Preisach operators. Without loss of generality, we set 7, = 0 and use the spaces of periodic functions

Cper ([0, T;R) = {x € C([0,TI;R) : x(0) = x(T)},
Cper([0, T, RY) = {z € C([0, TT; RY) : 2(0) = (T}

with the sup-norm. We identify 7-periodic functions with their restriction to the interval [0, T].
Periodic solutions can also be extended to the whole time axis in the sense that a restriction of such
periodic extension to any left-bounded interval [#, o) is a periodic solution.

Let us define a one-parameter family of operators }A’f D Cper([0, T, R) — Cper([0, T]; R) where
A € [0, 1], each mapping a periofic input to a periodic output of the Preisach model. To this end, we
consider the states

vi(é) = ¢, v_(§) = ¢, 0<¢&<d, (2.16)
define the operators f’lT, f’g : Cper([0, T1;R) = Cper([0, T]; R) by
(PTx)(t) = (P[0, 7 1x)(0), (P{x)(1) = (P[0, 7" 1x)() (2.17)
with
vy = ("0, v ]x)(T), v = (T[0, v_]x)(T) (2.18)
and put
P =PT +(1-DPL,  ae]o,1]. (2.19)
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Note that from the congruency property of the Preisach operator (cf. (A.5) and (A.6)), it follows that
0, N
E((PTX)(t) - (Pyx)(n) = 0, 1€[0,T],
which implies
(PL0)(®) — (Pgx)(@) = A(PL0, v, 10)(T) = PO,v-1x)(T),  1€[0,T], (2.:20)

for any 4 € [0,1] and x € C,.([0,T];R). In particular, }A’f = f’g for all A if oscx > 2d, where

osc x = max x(¢#) — min x(#). On the other hand, if the opposite inequality osc x < 2d holds and the
function g : I1 — R in (2.8) is strictly positive, then any two operators f’;} and f’;z with A, # A, differ
by a non-zero constant. Now, given an input x € C,..([0, T']; R), we partition the state space T of the
Preisach operator into subsets ¥, , defined as follows. We write vy € B, if

(P10, volx)(T) = (P[0, v_1x)(T) = A((P[O, v, [x)(T) — (P[0, v_]x)(T)). (2.21)

Lemma 2.2. Suppose (2.15) is the state-output functional (2.8) with a nonnegative Preisach density
function q : 11 — R,. Then, for any x € Cp,([0,T];R), one has

8= 9.
A€[0,1]

Further, if
(P[0, v, 1x)(T) = (P[O, v_]x)(T), (2.22)

then B, . = B for each A. On the other hand, if
(P[0, v, 1X)(T) > (P[O, v_]x)(T), (2.23)

then
B #0 foreach A€][0,1]; BxNBr.=0 for A+ Ay,

and the subset B, , of B depends continuously on x € Cp, ([0, T];R) and A € [0, 1] in the Hausdorff
metric.

Proof. Preisach input-state operator has the following monotonicity property:
0() = 00), 1) + () = () +15() = 1) +nis0) = 06) + (o), (2.24)

where the states v(-,-) are defined by (2.5), and the inequalities are satisfied pointwise for all ¢ € 1,
¢ € [0,d]. Indeed, for monotone inputs, (2.24) follows from (2.2), (2.3) of the input-state operator.
The extension procedure described in Section 2.1 ensures that (2.24) holds for arbitrary inputs x;, x, €
C(I;R) and initial states v, vé € B. For g > 0, relations (2.8) and (2.24) imply a similar monotonicity
property for the input-output operator:

X1 > X2, xi1(fo) +vp = xa(te) +vy = Plto, vplxi = Plto, vilxa, (2.25)

where all the inequalities again hold pointwise for all # € I, ¢ € [0, d].
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Relations (2.7) ensure that every state vy € 8 satisfies v_(£) < vop(€) < v, (&) on € € [0, d]. Therefore,
monotonicity property (2.25) implies

(PO, v_]x)(T) < (P[0, volx)(T) < (P[0, v, ]x)(T), vo € B,

for any input x € C,.([0,T];R). Due to these inequalities, if (2.22) holds, then (2.21) is satisfied
forall 1 € [0,1], vy € B, i.e., B,, = BV for each 4. On the other hand, if (2.23) holds, then (2.21)
defines 4 = A(vy) € [0, 1] uniquely for each vy € 8. In the latter case, due to continuity of the Preisach
operator, the map (P[0, -]x)(T) : B — R (with a fixed x € C,,([0, T];R)) is continuous, and so is the
map 4 : B — [0, 1] defined by (2.21). Since (2.21) implies A(v_) = 0 and A(v,) = 1, the segment
fveB:v=_>0-sv_+sv,, se[0,1]}is mapped onto the segment [0, 1] by the map A(-). Finally, the
continuity of the Preisach operator implies that 8, , depends continuously on x and A in the Hausdorft
metric. O

The following lemma follows from Lemma 2.2 and further properties of the Preisach operator, see
relations (A.3)—(A.6) in Appendix A.

Lemma 2.3. Suppose (2.15) is the state-output functional (2.8) with a nonnegative Preisach density
function q : 11 — R,. Let A, € [0,1] for each k = 1,...,n. A function z(t) = (z,(¢),...,2,(t)) €
Cprer([0,TT; RN) is a solution to system

o= Fk(png(bk ® 1), 20, -1 2n) (k=1,..,n) (2.26)

if and only if system (2.12)—(2.15) has a class of periodic solutions (z(-), v(-)) of period T, where the
components of v(-) = (v'(*), ..., V() are defined by

V() = (00, 5, O1X0(@), By 1, () = (Y10, ()] )(T), (7 2 0), (2.27)

where xi(-) = by ® z;(+) (k = 1, ..., n) and the parameter v’é in (2.27) ranges over the set of states By,
foreachk=1,...,n.

According to Lemma 2.3, a periodic solution is generally embedded into a connected set of such
solutions, and the z-components of the solutions from this set form an m-parametric set with m < n. In
particular, m = n if the Preisach density function g : I1 — R is strictly positive and osc x; < 2d for all
k=1,...,n.

2.4. Equivariant notation

We will need some basic equivariant notation. Let H be a subgroup of a (compact Lie) group G.
We denote by (H) the conjugacy class of H in G. The set of congugacy classes has a natural partial
order defined by

(H)<(K) & d.c gHg' CK. (2.28)

If G acts on a space X, then X is called a G-space, the set G(x) := {gx : g € G} C X is called the orbit
of x € X, the subgroup G, := {g € G : gx = x} is called the isotropy group or the symmetry group of
x € X, and the conjugacy class (G,) is called the orbit type of x € X. If (G,) = (H), then G(x) is called
an (H)-orbit. Any maximal element with respect to partial order (2.28) on the set

Y(G, X\ {0 :={(H) < (G) : Tiexiy (Gx) = (H)}

Mathematics in Engineering Volume 7, Issue 2, 61-95.



69

is called a maximal orbit type. If (G,) > (H) for a subgroup H C G, then x € X is said to have
symmetries at least (H). The subspace X7 := {x € X : (G,) > (H)} of X is called the (H)-fixed-point
subspace.

Given two G-spaces X and Y, a continuous map f : X — Y is called G-equivariant if f(gx) = gf(x)
foreach x € X and g € G.

2.5. Relative equilibria of an S '-equivariant system

For the rest of this paper, we restrict further consideration to equations with one Preisach operator:

z=F(y,2), zeV:=RY, (2.29)
x(t) = b e z(1), (2.30)

v(t, -) = (Y[to, v(to, )1x)(0), (2.31)
y(t) = O(x(1), v(t,-)), (2.32)

with a continuous function F' : R X V — V. The results can be extended to systems (2.12)—(2.15) with
multiple Preisach operators in a straightforward fashion.

In what follows, system (2.29)—(2.32) is assumed to be (spatially) S !-equivariant. More precisely,
let V. = R be an orthogonal S'-representation such that the S'-action on V is given by a
homomorphism % : S' — O(N) and satisfies

ez=e"7 forall €7 eS! zeV, (2.33)

where O(N) is the orthogonal group and J is the infinitesimal operator

J = lim l[L@(.e"f) ~1d] (2.34)
™0 T

of the subgroup Z(S') ¢ O(N). LetV = Vo@ V,; @ --- @ V, be the S '-isotypic decomposition of V,
where Vo = VS' and V,, k > 0, is modeled on the S !-irreducible representation C with the S '-action
given by the complex multiplication, i.e., ea := €*" - a (a € C). Then, each of the components V;,
k > 0, has a natural complex structure such that "’z = e*" - z, Jz = ik - z for z € V, and V) is the kernel
of J. Further, the state space V X B of system (2.29)—(2.32) is an isometric S !-representation with the
action given by

e (z,vo) = (2, vy), (z,v) EVXD; €S, (2.35)

i.e., the action of S! on the state space ¥ of the Preisach operator is trivial.
Let us assume that the function F(a, ) : V —» Vis § 1—equivariant for each a, i.e.,

F(a,e”z) = ¢’ F(a,2), zeV, a€R, 7S (2.36)

Moreover,
J'h =0, (2.37)

where J7 is the adjoint (transpose) map for J (cf. (2.30)). These assumptions ensure that system (2.29)—
(2.32) is S -equivariant. Therefore, it can have solutions of the form

(20, (1)) = (e 2°, vo), (2.38)
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for which the input, state and output of the Preisach operator are constant in time. In particular, for
such a solution, (2.37) implies that input (2.30) equals

x(t)y=bez(t)y=bee"'2’ =bez’, t> to.
Hence, by Lemma 2.2, the state satisfies
v(t) = vo € B, xo=beZ’, t > t,
for some A € [0, 1], and the corresponding constant output (2.32) according to (2.21) equals
y@O) =1 -D0(bez’,v_)+ AD(be’,v,), t > 1. (2.39)
Substituting Eqs (2.38) and (2.39) into (2.29) and using (2.36) gives the algebraic system
wl?’ = F(@,7°), a=1-2DPbez’,v_)+AD(bez’,v,) (2.40)

with unknown A € [0,1], w € R, z° € V and a free parameter «. This system is also S '-equivariant,
and its solutions come in S '-orbits (a, A, w, €7/z°), e € S .

In particular, if (2.40) holds for a z° € V, = V5 1 (in which case Jz° = 0), then (z°,vp) is an
equilibrium of system (2.29)—(2.32) for every state vy € 8,,, with xo = b e z°.

On the other hand, solutions (@, 4, w, z°) of Eq (2.40) with z° ¢ V,; come as one-dimensional orbits
(@, A, w, S '(z°)). In this case, Jz° # 0.

Definition 2.4. If (o, A, w, z°) is a solution of Eq (2.40) with z° ¢ Vj, then (@, A, w, S '(z%)) is called a
relative equilibrium of system (2.29)—(2.32).

If (a, A, w,S'(z°)) is a relative equilibrium with w # 0, then (S'(z%), vo) is the trajectory for the
time-periodic solutions

@0, v(@®) = ("%, v),  1E€R, TS,

in the phase space V X ¥ of system (2.29)—(2.32) for each vy € 8,,,. These solutions are called
rotating waves. If w = 0, then (S'(z°), vy) is called a frozen wave because it consists of equilibrium
states (™%, vp), €7 € S, for each vy € B,,,. Note that the first equation of system (2.40) doesn’t
include A, and the second equation is linear in A.

Suppose that F is differentiable with respect to z, and the derivative D_F is continuous. As we know,
if (a,, Ay, Wy, S 1(z°)) is a relative equilibrium, then due to S '-equivariance, the eigenvector Jz° of the
map D,F(a,,7°) — w,J belongs to its kernel. We introduce the following definition.

Definition 2.5. A relative equilibrium («,, A,, w,, S '(z°)) of system (2.29)-(2.32) is called regular if
zero is a simple eigenvalue of D,F(a,,7°) — w,J and 4, € (0, 1).

Assume that (@, 4,, w,, S '(z°)) is a regular relative equilibrium of system (2.29)—(2.32). Then, by
the Implicit Function Theorem, there is an open neighborhood U of @, and a continuous curve

(@, do(@), wo(@),z0(@)) € AX (0, ) X RX{zeV:(z-2°)0J7° =0} (2.41)

of solutions to system (2.40) such that Ap(a,) = A,, wo(@,) = w,, zo(@,) = z° and the kernel
of D,F(a,zo(@)) — wo(a)J is one-dimensional for each @« € A. The corresponding set O :=
(a, Ao(@), wo(A), S (zo(@)), @ € A, of regular relative equilibria will be referred to as a (continuous)
branch of relative equilibria.
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2.6. Relative periodic solutions

Relative periodic solutions of an S'-equivariant system (2.29)—(2.32) are solutions of the form

(0, v(@®) = (e L@, v(1),  tEeR, (2.42)

with an a priori unknown w € R, where { : R —» Vand v : R — ¥ are T-periodic functions of an
a priori unknown period 7. Condition (2.37) ensures that the input (2.30) of the Preisach operator in
system (2.29)—(2.32) is periodic if z(f) = e“"/ /() with a periodic £(-).

The following statement adapts Lemma 2.3 to the S '-equivariant setting; the proof is omitted.

Lemma 2.6. Let conditions (2.36) and (2.37) hold. Then, a periodic function {(-) € Cp.,([0, T]; RM) is
a solution to the equation

{=F(Pi(be(),)—wil (2.43)

fora given A € [0, 1] if and only if system (2.29)—(2.32) has a class of relative periodic solutions (2.42)
with the initial state v(ty) ranging over the set B, ., where x(-) = b e z(-) = b ® [(-).

For further discussion, it is convenient to normalize the period of the function £(-) by introducing
the parameter 8 = 27r/T and adjusting the time scale. As such, the T-periodic problem for Eq (2.43) is
equivalent to 2z-periodic problem

B¢ = F(PT(be),0)—wll (2.44)

with a priori unknown parameters 8 and w, where {(-) € C,..([0, 2r]; RM) is a solution of (2.44) if and
only if £(Bt) € C,([0, T]; R") is a solution of (2.43) for T = 2x/p.
Equations (2.40) and (2.44), can be matched using the notation

a = P¥(b e 0)(0). (2.45)

More precisely, relative equilibria of system (2.29)—(2.32), system (2.43)—(2.45) and system (2.44)-
(2.45) are defined by the same Eq (2.40). In Appendix B, we define a bifurcation of a branch of non-
trivial solutions from a branch of trivial solutions for an equation in a metric space (see Definitions B.7
and B.8). When adapted to this abstract setting, stationary solutions

(@, ,w,B,£(:) € & :=Ax [0, 1] xR x (0, 0) X Cp, ([0, 27]; RY)

of system (2.44)-(2.45), where {(-) = z° ¢ V, for all t € [0, 2n] and (a, 4, w, z°) is a solution of (2.40),
identify with the set M C & of trivial solutions; non-stationary solutions of (2.44)-(2.45) identify with
the set . C & of non-trivial solutions. A trivial solution is called regular if the corresponding relative
equilibrium is regular according to Definition 2.5. Each trivial solution (a,, 4,, W,,B,,2°) € M is
embedded into the set of trivial solutions (a,, A,, w,,B,e”z°) € M with arbitrary 8 > 0 and 7 € R.
Lemma 2.6 relates the stationary and non-stationary solutions of system (2.44)-(2.45) to relative
equilibria and relative periodic solutions of system (2.29)—(2.32), respectively. As such, combining
Lemma 2.6 with Definition B.7 leads to the following definition of a branch of relative periodic
solutions bifurcating from a branch of relative equilibria of system (2.29)—(2.32).
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Definition 2.7. Let conditions (2.36) and (2.37) hold. Let M be the set of all stationary solutions of
system (2.44)-(2.45) and . C & the set of all non-stationary 27-periodic solutions of this system. A
non-empty set ¢ C . is called a branch of non-stationary periodic solutions if ¢ = .’N % where ¥ is
a connected component of . Moreover, if the set & contains a stationary solution (@,, 4,, W,, By, 2°) €
M, then we say that the branch & bifurcates from the set of stationary solutions at the bifurcation point
(ap, Aoy Wy, Po, 2°). Equivalently, we say that a Hopf bifurcation of relative periodic solutions (2.42) of
system (2.29)—(2.32) occurs from its relative equilibrium (a,, A,, w,, S '(z°)) with the limit frequency
B, and the limit period 27/8,,.

This definition is extended to a I' X S '-equivariant setting in the next subsection.

2.7. T x §'-equivariant systems

Now, we additionally assume equivariance with respect to an action of a finite group I'. Let V = R
be an orthogonal I" x S !-representation, where the S '-action on V is given by (2.33), (2.34). We denote
G :=T'x S'. Hence, the phase space V x B of system (2.29)—(2.32) is an isometric G-representation
with the action given by

(v, eD@v) = ((v), @y eVxT; (r.eH)elxs!
(cf. (2.35)). Suppose that the function F(-,a) : V — V in (2.29) is G-equivariant for each a:
F(a,e”yz) = ey F(a,2), zeV; (v, ellx S (2.46)
Further, in addition to (2.37), we assume that
y'b = b, yeT, (2.47)

where ! is the adjoint (transpose) map of map y. Conditions (2.37), (2.46), (2.47) ensure the G-
equivariance of system (2.29)—(2.32).
The element (y, ™) € I' x §! = G is a symmetry of a relative equilibrium (2.38) if

The element (y, e, e?) e T x S' x §! = G x S is a spatio-temporal symmetry of a relative periodic
solution (2.42) if
eyt +6) =), teR. (2.48)

If Z(-) is non-stationary, a twisted (one-folded) subgroup of Gx S consisting of all the spatio-temporal
symmetries of the solution (2.42), together with all the conjugate subgroups, constitute a twisted orbit
type. We are interested in the equivariant Hopf bifurcation of relative periodic solutions, including the
classification of their orbit types, from a relative equilibrium, which has a group of symmetries H < G.
Lemma 2.6 combined with Definition B.8 extends Definition 2.7 to this setting.

Definition 2.8. Let conditions (2.36), (2.46) and (2.47) hold. Using the notation of Section 2.4 and
Definition 2.7, given subgroups H < G =T'xS'and H <G :=H xS' < GxS!,aset € c Sis
called a branch of non-stationary periodic solutions with symmetries at least (H) if € = .7 N9 where
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2 is a connected component of ?H. Moreover, we say that an equivariant Hopf bifurcation of relative
periodic solutions of system (2.29)—(2.32) with the limit frequency S, (and the limit period 27/8,)
occurs from a relative equilibrium (a,, A,, w,, S (z°)) if a branch ¢’ c .## of non-stationary periodic
solutions with symmetries at least (H) bifurcates from the stationary solution (a,, Ao, W,, 8,,2°) € M*,
which is called a Hopf bifurcation point. In this case, a, can also be called the bifurcation point when
this doesn’t lead to a confusion.

3. Main result

Let conditions (2.37), (2.46), and (2.47) hold. Suppose O = (a, Ap(@), wo(@), S ' (zo(@)), @ € A, is a
branch of regular relative equilibria of system (2.29)—(2.32), i.e., the Jacobi matrix

A(a) = D F(a, zo(@)) 3.1

depends continuously on @ € U and the matrix A(a) — wp(a)J has a simple zero eigenvalue with the
eigenvector Jzp(@), see Section 2.5. We further assume that these regular relative equilibria admit a
twisted group symmetry H < G (due to equivariance, the twisted symmetry group H is the same for
all the relative equilibria from the branch).

Let us put G := H x S and consider the G-isotypic decomposition

Vi=VoeVie---aV,, (3.2)

where S '-action is given by the complex multiplication. Due to equivariance, each isotypic component
V) 1s invariant for the map A(«) and for J. Therefore, the characteristic polynomial

P(a,u) = det(uId + wo(a)J — A(a)), wpecC, (3.3)

of the matrix A(a) — wo(a)J admits the factorization

p
Plap) = | | Pite ), (34)
=0
where the factor
Pia, ) = det((uld + wol@)J —A@))ly,), wneC, (3.5

is the characteristic polynomial for the restriction of the matrix A(a)—wg(a)J to the isotypic component
V.
Suppose that
P(a,,iB,) =0 forsomep, >0 (3.6)

and
Pla,ikB) #0, O<|a—a,|+|8—-B, <0, keN, (3.7

for a sufficiently small § > 0 such that (@, — 9, @, + 6) C UA. Then, each so-called V;-isotypic crossing
number is well-defined by

tl,l(aongo) = tl_,[(aongo) - ttl(ao’ﬁo)’ (38)
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where til(a/o, Bo) (resp. t} (o, B,)) equals the number of roots u of the polynomial #(a + 9, -) (resp.
Pi(a — 9, -)), counted with their multiplicities, which satisfy Reu > 0, |u — i8,| < ¢ for any sufficiently

small 5§ > 0. Assumption (3.7) ensures that the integers t (,,[3,) are independent of a particular
choice of a sufficiently small ¢.

Remark 3.1. Due to equivariance, the linearization at any point e”’/zo(a) of the relative equilibrium
S(zo(a)) results in the same characteristic polynomial ¢(a,-) and the same isotypic crossing
numbers (3.8).

Theorem 3.2. Suppose that T x S'-equivariance  assumptions  (2.37), (2.46)
and (247) are satisfied for  system  (2.29)—(2.32), where  the  state-output
functional (2.32) is given by (2.8) with a density function q > O. Assume that
(a, o(@), wo(a), S (zo(@))), @ € A = (a, — 6, a, + 8), is a branch of regular relative equilibria, which
admit a group of symmetries (H), where H < G =T x S'. Let conditions (3.6) and (3.7) hold, and the
state-output functional satisfy

(b o zo(e,), v-) < (b @ z0(a,), v4). (3.9)

Let G = H x S, let (H) be a maximal twisted orbit type in the G-representation V¢ and ! be the
set of all G-isotypic components V; in (3.2), in which (H) is an orbit type. Assume that there exists
Vi € MY such that:

(1) (H) is a maximal twisted orbit type in Vy;

(ii) 1 (@00 B,) # O;

(iii) t1./(0, Bo) * trr (o, Bo) 2 0 for all Vi € M7 (cf: (3.8)).

Then, a branch of relative periodic solutions with symmetries at least (H) bifurcates from the branch
of relative equilibria at the Hopf bifurcation point (a,, 1o(@,), wo(@,), Bo, Zo(@,)).

The proof is presented in Appendix B.

Remark 3.3. Condition (3.9) ensures that d1p/da(a,) > 0 due to the second equation in (2.40).
4. Example

4.1. S'-equivariant electromechanical oscillator

In this section, we consider an example of system (2.29)—(2.32). We use equations of motion of
an electromechanical system with plastic hysteresis. This system is obtained by coupling n identical
electromechanical rotors (motors) of mass m and a passive rotor of mass m, via elastic mechanical
connections, see Figure 1. The mass of each rotor is concentrated at one point, and all the point masses
m and my rotate in a horizontal plane around the same pivot.

Let us start with equations of motion for a single rotor of mass m sketched in Figure 2:

Ci+w—ou+ou’ =],
Lw + k0 = u,
mp*0 + 2mppl = kw — yp*0,

mp — mpb* = —a(p — po) — yp-

4.1)
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Figure 1. S,-symmetric coupling of n = 5 point masses m and point mass m, modeled by
Eq (4.4).

i(H) u<::C

Figure 2. S !-spatially equivariant electro-mechanical oscillator.

Here u is the voltage across the capacitor with the capacitance C; w denotes the current through
the motor and the inductor with the inductance L; the active circuit element composed of the battery
and the tunnel diode is assumed to have the cubic current-voltage characteristic i = —oju + oo’
with o0, > 0; j is the constant current from the DC current source. The motor’s point mass m has
polar coordinates (6, p), where 6 is the polar angle. The term —o(p — py) is the linear elastic force with
Young’s modulus o-; and, yp and yp# are the radial component and the torque component of the friction
force, respectively, with the viscous damping coefficient y. Further, for simplicity, let us assume that
all losses are due to friction, while the losses associated with electrical resistance and conversion of the
electrical energy into the mechanical energy are negligible. Hence, u,,w = 16, where u,, is the voltage
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applied to the motor and 7 is the torque which is proportional to the current, 7 = xw, where « is the
motor torque constant.

System (4.1) is spatially S '-equivariant with respect to the group S! of shifts of the angular variable
6. Since the system is also autonomous, i.e., invariant with respect to time shifts, a periodic problem
for Eq (4.1)is S! x S '-equivariant.

If the mechanical component is disconnected, i.e., k = 0, then the electrical circuit is the van der Pol
oscillator which sustains self-oscillations for o; > 0. Therefore, considering oy := « as a bifurcation
parameter with the other parameters fixed, the supercritical Hopf bifurcation occurs at ¢y = 0. On the
other hand, the electro-mechanical system (4.1) with k > 0 admits a relative equilibrium defined by the
equations

6 = const, p = const, w =const, u= const,

which imply

mpt* = o(p — po), u = Kb, kw = 6, W— o+ o’ = . 4.2)

Next, we consider a passive rotor represented by a point mass m, with the polar coordinates (G, R).
We assume the presence of a plasticity effect in the link connecting the point mass my to the pivot
point. This effect produces hysteresis with the associated energy losses. It can be taken into account
by introducing a hysteresis operator into the equations of motion. Specifically, we use the standard
Prandtl-Ishlinskii model of the constitutive relation between stress and strain in the elastoplastic
material of the link [10,11,13,21]. The Prandtl-Ishlinskii hysteresis operator is essentially the Preisach
operator with a modified state-output functional (A.13), see Subsection A.5 of Appendix A. Under
these assumptions, the equations of motion of the passive rotor modeled by a point mass m, attached
to a rotating weightless elastoplastic rod read as

moR*® + 2myRRO = —yR?O,
moR — myRO®? = —PJ[ty, vo]R — YR

4.3)
with the Prandtl-Ishlinskii hysteresis operator P given by (2.4), (2.9) and (A.13).

Remark 4.1. The Prandtl-Ishlinskii operator P[?y, vo]R in (4.3) can be replaced by P[#y, vo](R — Ro)
with an arbitrary constant R, because the Prandtl-Ishlinskii operator by definition satisfies the identity

P[ty, volx = Plty, vol(x + ©).
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4.2. Coupled S, X S |-equivariant electromechanical system

The system of n motors and a passive rotor shown in Figure 1 can be modeled by equations of
motion (4.3) coupled to n copies of Eq (4.1):

moR*® + 2myRRO = —yR*® + 6R 3, p;sin(d; — ©),
j=1

moR — myRO* = —Pl1y,vo]R — YR + 6 Y, (p;cos(6; — ®) — R),
=

. 3 I
Ciy + wy — oy + 02Uy, = |,

Lw; + K@k = uy, 4.4)

mp20y + 2mpipib = kwi — Y0 + SpiR sin(® — 0y) + gpy 21 p;sin(@; — 6;),
j:

mpy. — mpid7 = =0 (o — po) — ¥Pr + 6(R cos(© — 6;) — py)
+e Zl(pj cos(0; — 6) — px)
J:

with k = 1,...,n, where R,® and py, 6; are the polar coordinates of the point masses m, and my,
respectively; 6 and e are stiffnesses of the elastic links between the masses; the variables uy, w; and
the other parameters are defined above in Subsection 4.1. One can see that system (4.4) is spatially
' x S'-equivariant where S is the group of simultaneous shifts ® — ® + ¢, 6, — 6; + ¢, k € Z,, of
all the angular variables by the same value ¢ € [0, 27), and the symmetric group I' = §,, permutes the
indices k.

By inspection, system (4.4) admits a fully synchronized fully symmetric relative equilibrium
solution defined by the relations

0, =---=0, = w.t, O =w.t—¢., R=R.,
P1L="""=pPp=pPs, Up == Uy = U, Wi = =W, =W,
Yw.R, = noép, sin ., U, = KW, W, — O Uy + azui =], 4.5)
—mow’R, = —a + nd(p, cos d, — R,), kw, = yw.p> + 6p.R, sin ¢,
—mw.p. = =0 (p. — po) + 6(R. cos ¢, — p.),

where a equals the constant output of the Prandtl-Ishlinskii operator P. Further, « is a related to the
initial state vy € B, which is a free parameter:

a = —f:@(f)\/o(f)dfe [, ],  a= f:ffi(f) dg. (4.6)

(cf. (A.12) and (A.13)). Theorem 3.2 can be used to analyze symmetries of branches of relative
periodic solutions bifurcating from the branch O of relative equilibria (4.5), which have symmetry
group H = S, x {1} < S, x S!. More precisely, we adapt this theorem to systems with the Prandtl—
Ishlinskii state-output functional in Subsection A.6 of Appendix A (see Theorem A.6).

4.3. Example

As an example, let us consider system (4.4) for n = 5. Relative equilibria (4.5) admit the group
symmetry H = S5 x {1} < G = S5 x S'. To apply Theorem 3.2 to the branch O of these relative
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equilibria, one needs to evaluate the spectrum of the linearization of system (4.4), and its dependence on
the parameter « (cf. (3.4) and (4.6)). We do it numerically for a specific parameter set given in Tables 1
and 2. Based on this computation, Theorem 3.2 (and its adapted version Theorem A.6) predicts the
existence of multiple branches of relative periodic solutions (with their associated symmetry groups)
bifurcating from the branch of relative equilibria O. Propositions 4.2 and 4.3 list a few of these
branches. Their symmetry groups are subgroups of G = H x S! = §5 x {1} x S'. In particular,
the following symbols are used for selected twisted subgroups of G (where where S, is the symmetric

2ni

group, D, is the dihedral group and &,, := e ):

S5 1= 85 x {1} x {1}
Dg := De x {1} x {1};
Sq =S x {1} x {1}
D§ := {((12), 1, 1), ((125), 1, 1), ((34), 1, = 1)} = {((125)(34), 1, =1), ((12), 1, D)} ;

D§ = {((24),1,1),((35), 1, 1), ((2345), 1, = 1)} = {((2345), 1, - 1), ((24), 1, 1)} ;
Zg :={((12345), 1,65},

Z) = {((2349), 1)}

Zg = {((34),1,1),((125), 1, &)} = {(125)(34), 1, &)}

Proposition 4.2. Consider system (4.4) with n = 5, j = 0 and the other parameters specified in the
caption of Table 1. This system has the (S 5)-symmetric branch O of relative equilibria with wo = 0
(frozen waves, cf. Definition 2.4) given by

6p=---=6,=0=0, ¢.=0, uyy=---=u,=0, w=---=w,=0,

o o 4.7)
R=po—5;—35 P1="""=Pu=p0" 55

and several branches of relative periodic solutions bifurcating from O at different points a (cf.
Definition 2.8). In particular, these branches of relative periodic solutions include:

e a branch with symmetry at least (Ss) bifurcating from O at a ~ —2.29532 with the limit frequency
B, = 1.06;

e branches with symmetries at least (Dg), (S4), (]Dg), (Dg), (Zf‘1 ), (Zts), (Zgz) bifurcating from O at
a ~ —0.8973 with the limit frequency 3, ~ 0.811.

Table 1. Number of unstable eigenvalues in each isotypic component along the (Ss)-
symmetric branch O of relative equilibria (4.7) of system (4.4) withn =5, j =0, 0, = 0.2,
€ = 0.1; the other parameters C, L, 6, 02, v, k, m, my, py, 0, % are equal to unity.

Intervals of values of the parameter a
[-5,-2.2955] [-2.295,-0.8975] [-0.897, 0.25]

Vo 2 (0) 0
Vi 8 8 (0)

1
DV, 10 8 8

j=0
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Symmetries of other branches of relative periodic solutions bifurcating from the branch O of relative
equilibria (4.7), and from other branches of relative equilibria, can be classified in a similar manner.

Proposition 4.3. Consider system (4.4) withn = 5 and the parameters specified in the caption of Table
2. This system has an (S 5)-symmetric branch O of relative equilibria (4.5) with wo(a) # 0 (rotating
waves, cf. Definition 2.4) and several branches of relative periodic solutions bifurcating from O at
different points «. In particular, these branches of relative periodic solutions include:

e a branch with symmetry at least (Ss) bifurcating from O at @ ~ —4.6401 with the limit frequency
,Bo ~ 0.94;

e branches with symmetries at least (Dg), (S4), (Dg), (Dg), (ZZ‘ ), (Zg), (Z?) bifurcating from O at
a = —4.5636 with the limit frequency 3, = 1.06.

Table 2. Number of unstable eigenvalues in each isotypic component along the (Ss)-
symmetric branch O of relative equilibria (4.5) of system (4.4) with n = 5, j = 1; the
other parameters are the same as for Table 1.

Intervals of values of the parameter «
[-5,-4.645] [-4.64,-4.565] [-4.56, 0.25]

Vo 2 (0) 0
Vi 8 8 (0)

1
DV, 10 8 8

J=0

In B.5 of Appendix B, we outline how the above bifurcations can be deduced from Theorems 3.2
and A.6. We find the isotypic decomposition of the S5 X S!-representation V¢ = V, @ V; (cf. (3.2)),
list maximal orbit types in each S5 x S '-isotypic component V;, obtain the characteristic polynomial
¢; associated with each V; (cf. (3.5)) and verify (numerically) that the roots of these polynomials
satisfy conditions (ii) and (iii) of the theorem. Tables 1 and 2 illustrate how the roots ¢; cross the
imaginary axis as the bifurcation parameter « is varied. An entry of a given cell indicates the number
of unstable roots of the polynomial ¢;, which is associated with the isotypic component V; (shown in
the left column), for the corresponding interval of @-values (shown in the upper row). One can see
the changes of the dimension of the unstable manifold as « increases. An entry of the table is circled
to indicate a “jump” in the number of unstable roots at a Hopf bifurcation point. The conclusions of
Propositions 4.2 and 4.3 are based on these tables.

5. Conclusions

We considered an application of the equivariant topological degree to the I' x S'-equivariant
Hopf bifurcation in differential systems with a hysteresis operator. This application allows one to
classify branches of relative periodic solutions bifurcating from a relative equilibrium according to
their symmetries. We identified a set of conditions that ensure the I' x S '-equivariance. By adapting a
method that had been used earlier to analyze the I'-equivariant Hopf bifurcation, we constructed I'xS !-
equivariant vector fields that have zeros at the relative periodic solutions. These vector fields, although
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non-differentiable on a dense subset of their domain due to hysteresis terms, are still differentiable at
the relative equilibria, which is sufficient for an effective computation of the topological degree. The
results formulated for systems with the Preisach hysteresis operator were illustrated using equations of
motion of an electro-mechanical system with the Prandtl-Ishlinskii operator model of an elastoplastic
component.
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Appendix

Appendix A: Properties of Preisach operator
A.1. General properties of hysteresis operators

The following properties of input-state operator (2.4) and input-output operator (2.10) play an
important rule.

Causality. The state (2.4) at a moment ¢ > £, depends on the values of the input x = x(¢) on the
segment ) < ¢t < ¢’ only and does not depend on the future values of x. More precisely, for two inputs
X1, X € C([ty, 00); R) and any initial state vy € B,

x1(0) = x2(t) for tg <t <t = (Y[t volx1)(®) = (Y[tg, volx2)(t) for ty <t <t

Rate-independence.  This property is considered to be the defining property of hysteresis
operators [25]. It says that changing the time scale of the input results in the same change of the
time scale of state function (2.4) and output (2.10). More specifically, for any continuous increasing
change of time

T :[t',00) = [tp,0) suchthat 7(¢') = 1,

any input x € C([fy, o0); R) and initial state vy € ¥, define
X(1) = x(1(r)), t>r.

Then,
([, volX)(®) = (CTto, volx)(z (), =71 (A.1)

Semigroup property. Given an input x € C([ty,0);R) and ' > ¢, define the restriction x, €
C([?', 00); R) of the input to the interval # > t’ by x,(t) = x(¢). The input-state operator satisfies

(Y[to, volx)(®) = (Y[, (Y[to, volX)(t )Xy )(1), t=>7. (A.2)

Causality and rate-independence of input-state operator (2.4) imply the same properties of input-
output operator (2.10).

Remark A.1. The above properties are used as a general definition of a hysteresis operator.

Definition A.2. An input-state operator (2.4) and input-output operator (2.10) defined by (2.9) are
called hysteresis operators if the operator (2.4) is causal, rate-independent and satisfies the semi-group

property.

This definition is adapted from [11,25]. Equivalent definitions based on discrete time sequences
were used in [5].
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A.2. Monocyclic property and congruency of hysteresis loops

The following properties of the input-state-output operators are important for analyzing periodic
inputs, states and outputs. If an input x : [#y, o) — R is periodic (with a period 7)), i.e.,

x(t+T) = x(t) forall t> 1,

then for any initial state vy € B, the variable state (2.4) and the output (2.10) are periodic after the first
period:
(C[tg, volx)(@ + T) = (X[ty, volx)(t) for t >ty + T, (A.3)

(P[l(), V()])C)(t + T) = (P[to,Vo]X)(l) for ¢t > to+T. (A4)

Moreover, for any pair of initial states v}, vj € B,

%((‘I’[to, volX)(®) — (T[to, vé]x)(t)) =0 for t >t +T, (AS5)

%((P[to,vé]x)(t) — (Plto, Vi10)(®)) = O for ¢ > 1o+ T. (A.6)

Note that relations (A.3)—(A.6) are generally not true for ) < t < #, + T. The partial differentiation is
used in (A.5) because the function v = v(¢, £) defined by (2.4) is a function of two variables ¢ and &.

Relations (A.3) and (A.4) are referred to as the monocyclic property of the Preisach operator.
Equalities (A.5) and (A.6) are known as the congruency property of hysteresis loops, which is one
of the two characteristic properties of the Preisach model according to the identification theorem by
Mayergoyz [16]. Equalities (A.3)—(A.6) are a consequence of Eqgs (2.2) and (2.3).

A.3. Differentiability on constant solutions

The Preisach operator P is not differentiable on an everywhere dense subset of its domain. The
same is true for the operator PAT defined by relations (2.16)—(2.19). However, these operators are
differentiable on constant inputs, allowing the linearization of system (2.29)—(2.32) on its relative
equilibria, which is crucial for the statement and proof of Theorem 3.2.

Lemma A.3. For any A € [0,1], the operator }A’; defined by (2.16)—(2.19) is globally Lipschitz
continuous in its domain C,..([0, T]; R) and satisfies the global estimate

ST o
t’?el[%’);]kp/lx)(t) (PTx)(9)| < Ko t,?3£§]|x(t) x(s)| " (A7)

The Lipschitz continuity of the operator f’; follows from the monocyclic and congruency properties
of the input-output operator of the Preisach model (cf. (A.3)—(A.6)) and the Lipschitz estimate (2.11).
Relation (A.7) derives from the definition of the operator P?, and the monotonicity property (2.25) of
the Preisach operator.

Given an x, € R, let the Preisach state-output functional satisfy ®(x,,v_) < ®(x,,v,) and let

O(x,,v.) < a < O(x,,Vv,) (A.8)
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(cf. (2.16), (3.9)). Condition (A.8) ensures that there exists a continuous functional A, : Bg(x,) —
(0, 1) defined on a sufficiently small ball B.(x,) = {x € Cp.,.([0, T;R) : |x(?) — x,| < &, t € [0, T]} such
that

X € Bo(x,), A=Ao(x) = (PTx)(0) =a, (A.9)

and A, depends continuously on a.
Lemma A.3 implies the following statement.

Corollary A.4. If (A.8) holds, then relations x € B.(x,), A = Ay (x) imply

AT 2 2
IP7x = alleqoriz) < Ko max [x(0) = x()] < 4Kollx = xolleqo e

The operator }A’g maps any constant (stationary) input to a constant output, hence the constant input
X = x, 1s mapped to the constant output (}A’fxo) = «a for 4 = A,(x,). Therefore, Corollary A.4 implies

ST ST 2
||PAa(x)x - PAa(xo)onC([O,T];R) < 4Kpl|x - xo”(;([o,r];R)-

In other words, the operator PIT\Q(.)(-) has the zero derivative on the constant inputs x = x,
satisfying (A.8).

A.4. Initial value problem

Initial conditions for system (2.12)—(2.15) include an initial value for the variable z,

2(to) = (21(t0)s s 2a(t0)) = 20 € RY,

and a collection of initial states
W(to, ) = (v' (2o, ), .y V'(20, *)) = vo(-) € B"

of Preisach operators (2.14) at an initial moment #y,. The phase space is endowed with the natural metric
induced by the metric of V.

It is important to note that solutions are not extendable backwards in time (an attempt at backward
extension leads to non-uniqueness). However, most other standard facts of the theory of ordinary
differential equations are valid for system (2.12)—(2.15). In particular, the local existence and forward
uniqueness result from the Lipschitz estimate (2.11) for a sufficiently small interval [7y, o + ). Hence,
any initial moment ¢y and any initial point (z, vo(+)) of the phase space U = RY x 8" define a solution
(z(+), v(-,+)) : I — U starting from this initial point at ¢ = #;, and extending to some interval I = [ty, ;) 3
t. This can be proved, for example, using the Picard—-Lindelof type of argument, or by applying the
contraction mapping principle to the integral equation, which is equivalent to system (2.12)—(2.15).
Further, every solution is extendable to a maximum interval 7., = [ty, #;), either finite or infinite, and
if the maximal interval is finite, then |z(f)] — oo as t — ¢;. Standard linear estimates of the function
F = (Fy,...,F,) : RY — RY ensure that the maximal interval is infinite. For example, the global
estimate |F(z)| < a|z] + a, ensures that 1,,,, = [fy, o). Due to semigroup property (A.2) of the Preisach
hysteresis operator, the solutions of system (2.12)—(2.15) induce a continuous semi-flow in the phase
space U of this system. Since the Preisach operator is rate-independent (see Appendix A), it commutes
with time shifts  — 7 + ¢, which implies that system (2.12)—(2.15) is autonomous.
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A.5. Prandtl-Ishlinskii operator

Let us recall that a hysteresis operator is, in general, a composition of an input-state operator
and a state-output functional. The Prandtl-Ishlinskii and Preisach hysteresis models have the same
input-state operator (2.5). Krej¢i’s representation theorem proves that the state-output functional
of the Prandtl-Ishlinskii hysteresis operator is the sum of a linear functional and the state-output
functional (2.8) of the Preisach operator of a particular type [12]. Let us consider a class of state-output
functionals, which includes the state-output functionals of both the Preisach and Prandtl-Ishlinskii
models. To this end, let us rewrite formula (2.8) equivalently as

V(§)+x0 V(§)+x0
(D(Xo, V()) = f df (2 f QOd(f’ Lt) du+?2 ﬁ (?ev(f’ Lt) du
+ fw Ger(&, 1) du),
where
g€ u)=qu—-&u+¢)
and 3 5 5 5
Zlod(f, I/t) — q(f’ Lt) _Zq(f’ —l/t)’ éev(f, l/l) — Q(f, Lt) +2(](§, —l/t). (AlO)

Replacing the integral f_ 0; Gev(é, u) du by its Cauchy principal value in the above formula, and adding
the linear function »x,, we define the class of functionals

D(xp, v(+)) = % xg (A.11)

d V(€)+x0 V(€)+x0 0o
+f d¢ (Zf Goa(&, u) du + 2f Gev(&, 1) du + P-V-f Gev(&, 1) du),
0 —00 0 —00

for which the Preisach state-output functional (2.8) is a particular case. On the other hand, as shown
in [12], the Prandt—Ishlinskii operator is the composition of the operator (2.4) and the functional (A.11)
with §,4, Gey given by (A.10) and

~ 4(6) ‘.
den=-12. - [“aeae (A12)
0
where a bounded integrable function g : [0, d] — R, is known as the loading curve. Substituting (A.12)

into (A.11), one can see that the state-output functional of the Prandtl-Ishlinskii operator is simply

d
me»:—ﬁv@m@%. A13)

Remark A.5. A straightforward modification of the proof shows that the statement of Lemmas 2.2
and 2.3 remains valid if the state-output functional (2.9) is defined by Eq (A.11) or Eq (A.13) with a
nonnegative density function g : [0,d] — R, rather than by Eq (2.8), in other words, if the Preisach
operator is replaced by the Prandtl-Ishliskii operator.
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A.6. Equivariant Hopf bifurcation of relative periodic solutions for systems with Prandtl-Ishlinskii
operator

Theorem 3.2 can be extended to systems (2.29)—(2.32), where the Preisach state-output
functional (2.8) in (2.32) is replaced by the more general functional (A.11). To this end, one naturally
needs to adapt the definition (3.1) of the matrix A(@) and replace it with the following definition:

A(a) = xD,F(a, zo(@)) + D, F(a, zo(a)), (A.14)

where x is the coefficient of the linear term in (A.11). Then, the conditions of Theorem 3.2 ensure
the existence of a branch of relative periodic solutions with symmetries at least (H), bifurcating
from the branch of relative equilibria. As particular cases, this statement includes systems with the
Preisach state-output functional (2.8) (in the case, k = 0) and the Prandtl-Ishlinskii state-output
functional (A.13). More specifically, the following statement holds for systems with the Prandtl—
Ishlinskii operator.

Theorem A.6. Let Egs (2.29)—(2.32) satisfy the T x S'-equivariance assumptions (2.37), (2.46),
and (2.47), where the state-output functional (2.32) is given by Eq (A.13) with a positive density
function ¢ : [0,d] — R,. Let this system have a branch of regular relative equilibria

0 = {(@, A0(@), wo(@), S ' (z0(@))), @ € (a, = 6,0 + 6)

which admit a group of symmetries (H), where H < G = T x S'. Set G = H x S, define the
matrix A(a) by (A.14) with x = fod q(&) d¢, assume that the characteristic polynomial ¢ of the matrix
A(a) — wo(a)J satisfies conditions (3.6), (3.7), and consider the factorization (3.4) induced by the
G-isotypic decomposition (3.2) with the associated G-isotypic crossing numbers t, j(a,,[,). Given a
maximal twisted orbit type (H) in the G-representation (3.2) and the set of all G-isotypic components
V;, in which (H) is an orbit type, assume that conditions (1)—(iii) of Theorem 3.2 hold for V; € MmH.
Then, a branch of relative periodic solutions with symmetries at least (H) bifurcates from the branch
of relative equilibria O at the bifurcation point (a,, 1o(@,), wWo(@,), By, 20(@,)).

This theorem is a straightforward modification of Theorem 3.2, hence we omit the proof.

Appendix B: Equivariant Hopf bifurcation
B.1. Bifurcation from a trivial solution

In this and the following subsections we present an abstract Theorem B.10, which serves as a basis
for the proof of Theorems 3.2 and A.6. Theorems 3.2 is proved in Subsections B.3 and B.4. B.5
outlines the proof of Propositions 4.2 and 4.3.

Let G := H x S, where H is a finite group (one can use any compact Lie group). We assume that
a Banach space E is an isometric G-representation and consider the G-representation R? x E, where G
acts trivially on the parameter space R?.

Let .# : R? X E — E be a completely continuous G-equivariant vector field:

F(n,gu) =g Fm,u), ge€G, (nu)eR*xE. (B.1)

Assume that
F(1,0) =0, n e R%. (B.2)
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The points (,0) € R? x E will be called trivial solutions of the equation
F(n,u) =0, neR? uek. (B.3)

We denote by
M:={(1n,0)eR*xE: .Z(,0) =0}

the set of trivial solutions and by
={(mu) eR*XE: F(,u) =0,u+ 0} =.F'(0)\ M
the set of all non-trivial solutions to Eq (B.3).
In what follows, Q denotes the closure of a set Q.

Definition B.7. A non-empty set 4 C S is called a branch of non-trivial solutions to Eq (B.3) if
€ = SN 2 where 7 is a connected component of S. Moreover, if (1,,0) € %, then we say that the
branch & bifurcates from the trivial solution (17,, 0) and (1,, 0) is a bifurcation point for Eq (B.3).

In a symmetric setting (cf. Subsection 2.4), given a subgroup H < G and a set Q c R? x E, the
notation Q is used for the subset QF c Q of all H-symmetric points:

={(nu) e Q:hu=uheH)}.

Definition B.8. Under the assumptions of Definition B.7, for a given subgroup H < G, aset ¢’ c S”
is called a branch with symmetries at least (H) if ¢ = S N 9’ where 2’ is a connected component
of SH. Moreover, if (1,,0) € €”, then we say that ¢” bifurcates from the point (17, 0).

Assume that .% is differentiable with respect to u on M, the derivative <7 (n) := D,.% (n,0) : E —» E
depends continuously on n € R? and

|7 (7', u) — < (i Jul

7 )= (1,0) [|a|

=0, n e R (B.4)
Definition B.9. A point (1,, 0) is called critical for Eq (B.3) if A(7,) : E — E is not an isomorphism.

Let .2 c M be the set of all critical points in M, i.e.,
={(n,0): &/(n) : E - E is not an isomorphism}. (B.5)

One can show that if (77,, 0) is a bifurcation point, then it must be critical for (B.3), i.e., (1,,0) € .Z.
Below we consider an isolated critical point (1,,0). In other words, it is assumed that

{(1,0) € Z : In—n,| < 6} = {(n,,0)} (B.6)

for some 6 > 0. We assume that the restriction .7 (1), )| 51 of 7 (1,) to the subspace ES' where the group
S ! acts trivially is a bijection:
2/ (No)|zs1 18 an isomorphism. (B.7)

An isolated critical point (7,, 0) satisfying (B.7) is called regular.
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B.2. Bifurcation invariant

The existence of branches of non-trivial solutions bifurcating from an isolated critical point (7, 0)
of the field .# can be proved using topological (bifurcation) invariants such as the Brouwer degree,
S !-equivariant degree or, in a symmetric setting, their equivariant counterparts—equivariant Brouwer
degree and twisted equivariant degree [3]. If the bifurcation invariant associated with (7, 0) is different
from zero, then there is a branch % of non-trivial solutions to (B.3) bifurcating from the trivial solution
(1,,0). Moreover, in the equivariant setting, the bifurcation invariant contains information about
symmetries (H) of branches €# of non-trivial solutions bifurcating from (1,, 0).

The computation of the bifurcation invariant is based on the linearization o7 of the field .% at the
critical point and the so-called crossing numbers of the linearization. To be specific, let us consider a

G-isotypic decomposition
o p
E=E" o (DD Vi (B.8)
k=1 1=0
with

B = v (B.9)
=0

where each G-isotypic component V;; is assumed to be finite. Here V;; is modeled on a G-irreducible
representation 7, i.e.,
Vii = V@ ® Vi, (B.10)
————

my; times

..........

representations and
my; = dim Vk,l/dim %’1. (Bll)

Since the field . is G-equivariant, so is the linear map ./ (17) : E — E (for every 5 € R?), therefore
each subspace V;, is invariant for .7 (1), and the finite-dimensional restriction

() = A (Mly,, (B.12)

is well-defined. Notice that subspaces V;; with k > 1 have a natural complex structure induced
by the S'-action. Moreover, the irreducible G-representation ¥, is also an irreducible complex H-
representation, and as such, 7%, is a complex absolutely irreducible H-representation. Consequently,
the G-equivariant linear map 2% (1) : Vi, — Vi, can be identified with a complex matrix .27 (7). Put

() = det(:Zy (). (B.13)

By assumption, (1,,0) € .Z is a regular isolated critical point, hence there exist / and k > 0 such
that .27 ,(1,) is not an isomorphism, i.e.,

@ri1(1,) = 0. (B.14)

We assume that in some coordinate system 1 = («, 8) € R?, the point 17, = (a,, 8,) satisfies 8, > 0 and
the function ¢y (@,, -) is analytic in a neighborhood of the point 5,. Therefore, relation (B.14) implies
that

Oi(@o, B) = (B = Bo)" $o(B), (B.15)
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where m > 0 is the multiplicity of the isolated zero S, of the function ¢ (a,,"), i.e., ¢(B,) # 0.
Moreover, we assume that in some neighborhood of the point n, = (a,, 8,),

ori(a, ) = P(a,iB)d(a,p), (B.16)

where the polynomial
Pla,p) = 1"+ ay(@p" " + - + au(@) (B.17)

of degree m > 1 depends continuously on @ and satisfies

Do, i) = (= 1Bo)"; (B.18)

and, the continuous function ¢ satisfies

¢(Q0,ﬁ) = (_i)’n¢0(ﬁ)’ ¢(a0’180) # 0. (B19)

Notice that formulas (B.16)—(B.19) are in agreement with (B.15) at « = «,; the complex i is used
in (B.16) merely to mathch the standard setting of the Hopf bifurcation problem; polynomial (B.17) is
called the characteristic polynomial for the map <7y,

The isotypic crossing number t; (e,, 8,) associated with the G-isotypic component V;; is the number
of roots uj(a) of the characteristic polynomial, which cross the imaginary axis through the point i3,
from the left to the right half-plane of the complex plane C, minus the number of roots crossing the
imaginary axis from right to left through the same point, as the parameter « increases from @, — ¢ to
a, + 0 (for a sufficiently small 6). More precisely, the assumption that (17,, 0) = (a,,B,,0) is an isolated
critical point of &7 () = </ (,p) (cf. (B.6)) and relation (B.18) ensure that all the m roots u;(a) of
P (a, ) satisfy

Repi(@)#0, j=1,....m, O0<|a—a,/<0o (B.20)

for a sufficiently small 6 > 0, and the isotypic crossing number associated with V;; equals

tk,l(ao’ﬁo) = tlzl(a'oaﬁo) - tlzl(ao’ﬁo)’ (le)

where t,;l(ozo, Bo) (respectively, t,:l(ozo, B,)) 1s the number of roots (@, — o) (respectively, u;(a, + 0)),
counted with their multiplicities, which satisty Reu; <0, i.e.,

(@, Bo) = #{j: Repj(a, —0) <0, j=1,...,m}, (B.22)
ty (@0, B,) = #j: Repj(a, +6) <0, j=1,...,m} (B.23)

with #S denoting the cardinality of the set S. Due to the continuous dependence of the roots on a, the
integers ti (., B,) are independent of a particular choice of ¢ such that (B.20) holds.

Theorem B.10. Let the field .7 : R?> x E — E satisfy assumptions (B.1), (B.2) and (B.4). Let (,,0) €
L be a regular isolated critical point for Eq (B.3). Assume that (H) is a maximal orbit type in @LO Vi
for some k > 1, and

(1) ti(n,) # O for at least one | € {0, 1,. .., p} such that (H) is an orbit type in V;
(1) te (o) - ter(m,) = 0 for every I’ € {0, 1,. .., p} such that (H) is an orbit type in Vi p.

Mathematics in Engineering Volume 7, Issue 2, 61-95.



90

Then, there exists a branch € of non-trivial solutions with symmetries at least (H), which bifurcates
from the critical point (n,,,0) of Eq (B.3).

We refer an interested reader for the proof to [3,4].

Remark B.11. Consider an isometric /{-representation V = R" with a H-isotypic decomposition
v=VieVie eV, (B.24)

where the H-isotypic component V; is modeled on an irreducible H-representation %;; (we assume
that {7,})_, is a complete list of real irreducible JH-representations with 7;, being the trivial
representation). Let G = H x S'. Consider the complexification V¢ of the H-representation V as
the G-representation with the S !-action given by k-folding

u=e*-u, eSS, ueve,
where ‘-’ stands for the complex multiplication. Let
Vi=VooVie---aV, (B.25)

be a G-isotypic decomposition, where the G-isotypic component V; is modeled on an irreducible G-
representation 7;,*. Let E = C,..([0,2n]; V), then E is an isometric G-representation with the action
given by

((y, eu)t) = yut+0), yeH, e’eS' ueck. (B.26)
Using the standard Fourier modes decomposition of the space [E, one obtains G-isotypic

decomposition (B.8) and (B.9) in which V,; = V, stands for the subspace of constant V,-valued
functions and subspaces V;; = V, for k > 1 are defined by

Vii :={u € E:u() = acos(kt) + bsin(kt), a,be V, a—ib eV, t e R}. (B.27)

Accordingly, the spatio-temporal symmetry group of a non-constant periodic function u : R — V of
minimal period T > 0 is the twisted subgroup H < G = H x S defined by

H:={(y,e) e HXS" : Vi yu(t+ L) = u@). (B.28)

B.3. Proof of Theorem 3.2: setting in functional spaces

Let O = (a, Ap(@), wo(@), zo(@)), @ € A, be the branch of regular stationary solutions (2.41) of
Eq (2.44). Following Lemma 2.6, we look for non-stationary 2n-periodic solutions (a, 4, w, 5, {) to
this equation, where a € U is related to A and £ by Eq (2.45). In other words, A is given by the implicit
function

A=A, (be ) (B.29)

according to (A.9). Now, we write
{ =z0(@) + u. (B.30)

*In the examples presented in this paper, V; = \7,‘ s Vi = ¥ and p = r, but it is not necessarily so in general.
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and set up a completely continuous vector field .% (cf. Subsections B.1 and B.2) associated with the
2n-periodic problem for Eq (2.44) in the Sobolev space

E = W2([0,2n]; V) := {u € W0, 27]; V) : u(0) = u(2r)},

per

where u € E is identified with its 2r-periodic extension.

The next step reflects the specifics of the bifurcation of relative periodic solutions from a relative
equilibrium. In order to extract a unique (up to time shifts) representative from the S '-orbit
(a, A, w,B,e%(-), ¢ € R, of solutions, we impose a constraint on /. The assumption that stationary
solutions (2.41) are regular (see Definition 2.5) implies that the kernel of the linear map (matrix)
D.F(a, zo(@)) — wo(a)J is the one-dimensional linear span of the vector Jzp(@) for any a € % . Denote
by g'(@) the adjoint eigenvector corresponding to the simple zero eigenvalue of the adjoint (transpose)
map D_F(«, zo(a))! — wo(a)JT:

D.F(a,20(@) g" (@) ~wo(@)J"g"(@) =0, g'(@)eJz@) =1, acZ.

One way to impose the constraint is to require that

27
w=W,(u) := wo(a) + gT(a) ° % f u(t)dt, ue€kE. (B.31)
0

To construct the vector field .%, set & = L*([0, 2xr]; V) and define the differentiation operator L :
E — & by Lu = i. Notice that the natural embedding i : E — & is compact and the operator
i+ L : E — & has abounded inverse (i + L)™' : & — E, i.e., the periodic problem
u+u=f, u0)=uln)
has a unique solution u = (i+ L)™' f € E for any f € &. Further, define the operator N : AXE — E by

Nr(a, u)(®) := F(PY (b ¢ 0),0)() — wJ (1),

where 4, {, w are given by (B.29)—(B.31) and we use the natural embeddings E C C,..([0,2x]; V) C
&. Now, we can equivalently rewrite the 2n-periodic problem for (2.44) with the additional
constraint (B.31) as

u+u=u +,8_1NF(a, u),

and using the inverse (i + L)™' as
u=(G+L)"Gu+pB 'Np(a,u)), ucE. (B.32)
Using the completely continuous vector field
Fmu)=u—(G+L) " '(u+p ' 'Ne(a,u), n=(a,p)eUAXR,, uck, (B.33)

Eq (B.32) is equivalent to (B.3).

Let G = H x S', where H is the symmetry group of zp(a). Then, each of the spaces E,
& is an isometric G-representation with the action given by (B.26), and the I' x S !-equivariance
assumptions (2.37), (2.46), and (2.47) imply the G-equivariance of the vector field (B.33) (with G
acting trivially on A X R, 3 v).

Remark B.12. Observe that since F is H-equivariant (cf. (2.46)), from zo(a) € V* it follows that
the linear map D, F(a, zp(@)) — wo(a@)J : V. — V is H-equivariant as well, which implies that its
eigenvector satisfies Jzp(a) € V*H for each o € .
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B.4. Proof of Theorem 3.2: linearization

Let us consider the linearization of the vector field (B.33) on its zero u = 0. Using the H-equivariant
Jacobi matrix A(e@) = D,F(a, zo(@)) of F (cf. (3.1)), define the Nemytskii operator Ny : A X E — & by

(Na(@)u)(t) = Al@)u(r) = wol@)Ju(t) — Jzo(@)g' (@) » u(t).

From Corollary A.4 and (B.31) of the affine functional W, : E — R, it follows that the Fréchet
derivative of the vector field (B.33) (with respect to u) at u = 0 is the G-equivariant compact vector
field

dMu=u-G+L)7"'G+B'Nou, n=(a,) e AxR,, uckE. (B.34)

By inspection, the subspace ES ' € E of constant V-valued functions is invariant for .o/ (n) :E - E,
and the spectrum o(% (1))|s1 ) of the restriction .7 ()]s to ES' is related to the spectrum o (wo(@)J —
A(a)) of the map wo(a@)J —A(a) : V — V by

o (A (Pgs1) = B o (wola)d — A(@) U {71\ {0},

hence &7 (M)|gst 1s an isomorphism, i.e., (B.7) holds. Moreover, zeros of </ are solutions of the periodic
problem

Bi = A()u, u(0) = u2n).

Now, let us consider a G-isotypic decomposition (B.25) and the associated G-representation (B.8)
of E with the isotypic components (B.27), which are all invariant for .<7 (1), hence the restriction (B.12)
of o7/(n) to each G-isotypic component V;; is well-defined. By inspection, the corresponding
function (B.13) for the restriction 27 (n)ly,, withk > 1,1=0,1,..., pis given by

o, B) =B (1 +ik)™" det((ikB1d + wo(a)J — A(@))ly,), (B.35)

where (wo(a@)J —A(a))ly, is the restriction of the G-equivariant complexification wo(a)J —A(a) : V¢ —
V¢ of the map wp(a)J — A(a) : V — V to the G-isotypic component V; of G-decomposition (B.25) of
the G-representation V°. Since each subspace V, is invariant for the G-equivariant map A(a) — wo(a)J,
the characteristic polynomial (3.3) of this map admits factorization (3.4) and (3.5). Comparing (3.5)
and (B.35), one can see that

o, B) =B (1 + ik)™ Pyla, ikB).

Hence, conditions (3.6) and (3.7) ensure that (a,,f3,,0) is a regular isolated critical point for (B.34).
Moreover, for k = 1, the isotypic crossing number t; (a,,[,) is well-defined for each / = 0,1,...,p
by Eqgs (B.21)—(B.23). Due to (B.35), t; (@,,8,) equals the number of roots ,u?(oz) of the characteristic
polynomial #(e, -), which cross the imaginary axis through the point i3, from the left to the right
half-plane of the complex plane C, minus the number of roots crossing the imaginary axis from right
to left through the same point, as the parameter « increases from @, — 6 to @, + ¢ (for any sufficiently
small 0), i.e.,

(@0, Bo) = #j : Reilfar, — 6) < O} = #(j : Repli(a, +6) < 0).

Hence Theorem 3.2 follows from Theorem B.10.
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B.5. Outline of the proof of Propositions 4.2 and 4.3

Theorem 3.2 can be used to analyze symmetries of branches of relative periodic solutions
bifurcating from the branch O of relative equilibria (4.5), which have symmetry group H = S5 x {1}.
In order to compute the linearization (A.14) on the relative equilibrium, it is convenient to use
the Cartesian coordinates z = (20,21,...,2,) With 20 = X, YL X, V), 7 = (g, Wi, Xt Vioo Xk Vi),
k=1,...,n=15, where

X =Rcos®, Y =Rsin®, X = Rcos® — ORsin®, Y = Rsin® + ORcos O,
X = Pk COS Hk, Vi = Pk sin Hk, ka = pk COS Hk - gkpk sin Qk,
yk = pk sin o, + ékpk cos 6.

Denote
Vo=R*37; V=R3z: V=VyxVx---xV=R""">4g (B.36)

Then, the phase space of system (4.4) is V X 8. In the Cartesian coordinates, matrix (A.14) has the
form

By Cy Cy ... Cy Cy
C B D ... D D
¢cC D B ... D D
Ala) = , (B.37)
¢C D D ... B D
C D D ... D B

where the matrces Cy : V — V,, C: Vo —» Vand D : V — V are given by

000000
C0::£000000
me| 0 0100 0]
000100
0000
0000
|0 00 0
C=looo0ol
1000
0100
000000
00000 O
H._£[000000
' 00000 O
001000
000100

According to Eq (A.11), when calculating the matrix By, one should replace the hysteresis term
P[ty, vo]R in the second equation of system (4.4) with the term %R, where x is defined by (A.12).
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We proceed with the H-isotypic decomposition of the space V¢ for H = S5 x {1}. Let ¥ = C* and
¥¢ = C% be the complexifications of the subspaces ¥, and ¥, respectively, defined by (B.36). Then,
Ve = ”//ch(”f/")5 = C*. First, we consider the subgroup Zs ~ Zsx {1} of H and describe the Zs-isotypic
decomposition of V¢. Namely, V¢ = V, ® V| @ V,, where V) = {(20,2,2,2,2,2)7 : 20 € C*, z € C%}, and
Vi=V;eV; with

2mi

VE=((0,2,692,6%2,¢%,6%)7 1 2eCY), j=1,2; £=e¥,

where ¢ acts on vectors zo = (20, 2, 2, 29)" € ¥, 2= (2, 2%,2,24,2, 28" € ¥ by

2 zb cos (&) - 2 sin (Z)
: Z§ _ z(;) sin(zz?”) + zécos (}—”) ,

ZQ 75 €OS (;”) — ZoSIn (?"

o z; sin (2?”) + 73 COS (25—”

z! ;

2 z

2 Z3 cos (%) — z*sin (2?”)
& # || 2 sin (2?”) + 7% cos (25—”)

z 2> cos (25—”) -8 sin(zs—”)

2° 21 (2_,,)

5

2 sin (?) +7°cos
b

One can see that the matrix A(a) : V¢ — V¢ given by (B.37) preserves the Zs-isotypic components.
Indeed, by inspection,

AlV()(ZO’ 2,252, %, Z)T (B 38)
= (Byzo + 5Cyz, Czo + Bz, Czo + Bz, Czo + Bz, Czo + Bz, Czo + B7)T, '
Aly:(0, 2,5z, £z, €37z, 4T

. ) i . B.
— (O, BZ, é';ijBZ, fiszZ, §i3jBZ’ §i4]BZ)T’ ( 39)

where the identity 1 + &+ &2 + &3 + & = 0 is used to obtain the second equation. Using this Zs-isotypic
decomposition, one obtains the S s-isotypic decomposition V¢ = V, @ V|, where

Vi=VieVieV,aV,.

Furthermore, the restriction of the linearization to each of the two isotypic components V,, and V| is
defined by relations (B.38) and (B.39). Hence, for the H-representation V¢, there are the following list
of maximal twisted types in the isotypic components:

(@) for Vo:  (S5);

(i) for Vi (D), (S4), (D), (DY), (Z), (Z), (Zg).

Put G := S5 x {1} xS' = H x S!. The natural S'-action induced by the complex multiplication
converts the complex H-isotypic decomposition V¢ = V,, @V into the (real) G-isotypic decomposition
V¢ =V, @ V, with the maximal twisted orbit types listed in Proposition 4.2. Moreover, if (H) is a
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maximal twisted orbit type in a G-isotypic component V;, then (H) is a maximal twisted orbit type in

Ve itself.

Decomposition (3.4) has the form ¢(a, ) = ¢o(a, )¢i(a,-), where gy(a,-) is the characteristic

polynomial (of degree 10) of the matrix

By 5C, | _ @ Ji 0
C B+4D |~ 0 g

(cf. (B.37)), where 0 denotes zero matrices,

0 0O
(3 0 B ~ ) ~_ (0 -1},
J4—(0 S), Jo=10 3 0] with \5—( ),

00 3 Lo

and, (@, ) = $*(a, -), where @(a, -) is the characteristic polynomial (of degree 6) of the matrix B—D—
wo(a)Js. Tables 1 and 2 provide an evidence that conditions (ii) and (iii) of Theorem 3.2 are satisfied
for the roots of ¢; at each bifurcation point listed in Propositions 4.2 and 4.3, hence this proposition

follows from Theorem A.6.
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