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Abstract: We discuss two optimization problems related to the fractional p-Laplacian. First, we
prove the existence of at least one minimizer for the principal eigenvalue of the fractional p-Laplacian
with Dirichlet conditions, with a bounded weight function varying in a rearrangement class. Then,
we investigate the minimization of the energy functional for general nonlinear equations driven by the
same operator, as the reaction varies in a rearrangement class. In both cases, we provide a pointwise
relation between the optimizing datum and the corresponding solution.
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1. Introduction and main results

The present paper deals with some optimization problems related to elliptic equations of nonlinear,
nonlocal type, with data varying in rearrangement classes. For the reader’s convenience, we recall here
the basic definition, referring to Section 2 for details. Given a bounded smooth domain Ω ⊂ RN and a
non-negative function g0 ∈ L∞(Ω), we say that g ∈ L∞(Ω) lies in the rearrangement class of g0, denoted
G, if for all t > 0 ∣∣∣{g > t}

∣∣∣ =
∣∣∣{g0 > t}

∣∣∣,
where we denote by |·| the N-dimensional Lebesgue measure of sets. We may define several functionals
Φ : G → R corresponding to variational problems, and study the optimization problems

min
g∈G

Φ(g), max
g∈G

Φ(g).

We note that, since G is not a convex set, the problems above do not fall in the familiar case of convex
optimization, whatever the nature of Φ. The following is a classical example. For all g ∈ G consider
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the Dirichlet problem −∆u = g(x) in Ω

u = 0 on ∂Ω,

which, by classical results in the calculus of variations, admits a unique weak solution ug ∈ H1
0(Ω). So

set

Φ(g) =

∫
Ω

gug dx.

The existence of a maximizer for Φ, i.e., of a datum ĝ ∈ G s.t. for all g ∈ G

Φ(ĝ) > Φ(g),

was proved in [3,4], while the existence of a minimizer was investigated in [5]. One challenging feature
of such problem is that, in general, the functional Φ turns out to be continuous (in a suitable sense) but
the class G fails to be compact. Therefore, a possible strategy consists in optimizing Φ over the closure
G of G in the sequential weak* topology of L∞(Ω) (a much larger, and convex, set), and then proving
that the maximizers and minimizers actually lie in G (which is far from being trivial).

In addition, due to the nature of the rearrangement equivalence and some functional inequalities, the
maximizer/minimizer g may show some structural connection to the solution ug of the corresponding
variational problem. This has interesting consequences, for instance let g0 be the characteristic function
of some subdomain D0 ⊂ Ω, then the optimal g is as well the characteristic function of some D ⊂ Ω

with |D| = |D0|. Moreover, it is proved that g = η ◦ ug in Ω for some nondecreasing η, while by the
Dirichlet condition we have ug = 0 on ∂Ω. Therefore, any optimal domain D has a positive distance
from ∂Ω.

A similar approach applies to several variational problems and functionals. For instance, in [8] the
authors consider the following p-Laplacian equation with p > 1, q ∈ [0, p):−∆pu = g(x)uq−1 in Ω

u = 0 on ∂Ω,

which admits a unique non-negative solution ug ∈ W1,p
0 (Ω), and study the maximum and minimum

over G of the functional

Φ(g) =

∫
Ω

guq
g dx.

In [7], the following weighted eigenvalue problem is considered:−∆pu = λg(x)|u|p−2u in Ω

u = 0 on ∂Ω.

It is well known that the problem above admits a principal eigenvalue λ(g) > 0 (see [20]), and the
authors prove that the functional λ(g) has a minimizer in G.

In recent years, several researchers have studied optimization problems related to elliptic equations
of fractional order (see [23] for a general introduction to such problems and the related variational
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methods). In the linear framework, the model operator is the s-fractional Laplacian with s ∈ (0, 1),
defined by

(−∆)su(x) = CN,s lim
ε→0+

∫
Bc
ε(x)

u(x) − u(y)
|x − y|N+2s dy,

where CN,s > 0 is a normalization constant. In [26], the following problem is examined:(−∆)su + h(x, u) = g(x) in Ω

u = 0 in Ωc,

where h(x, ·) is nondecreasing and grows sublinearly in the second variable. The solution ug ∈ H s
0(Ω)

is unique and is the unique minimizer of the energy functional

Φ(g) =
1
2

"
RN×RN

|u(x) − u(y)|2

|x − y|N+2s dx dy +

∫
Ω

[H(x, u) − gu] dx

(where H(x, ·) denotes the primitive of h(x, ·)), so the authors investigate the minimization of Φ(g) over
G. Besides, in [1], the following nonlocal eigenvalue problem is considered:(−∆)su = λg(x)u in Ω

u = 0 in Ωc.

The authors prove, among other results, the existence of a minimizer g ∈ G for the principal eigenvalue
λ(g). Optimization of the principal eigenvalue of fractional operators has significant applications
in biomathematics, see [25]. In all the aforementioned problems, optimization in G also yields
representation formulas and qualitative properties (e.g., Steiner symmetry over convenient domains)
of the optimal data.

In the present paper, we focus on the following nonlinear, nonlocal operator:

LKu(x) = lim
ε→0+

∫
Bc
ε(x)
|u(x) − u(y)|p−2(u(x) − u(y))K(x, y) dy.

Here N > 2, p > 1, s ∈ (0, 1), and K : RN × RN → R is a measurable kernel s.t. for a.e. x, y ∈ RN ,

(K1) K(x, y) = K(y, x);
(K2) C1 6 K(x, y)|x − y|N+ps 6 C2 (0 < C1 6 C2).

If C1 = C2 = CN,p,s > 0 (a normalization constant varying from one reference to the other), LK

reduces to the s-fractional p-Laplacian

(−∆)s
pu(x) = CN,p,s lim

ε→0+

∫
Bc
ε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps dy,

which in turn coincides with the s-fractional Laplacian seen above for p = 2. The nonlinear operator
LK arises from problems in game theory (see [2, 6]). Besides, the special case (−∆)s

p can be seen as
either an approximation of the classical p-Laplace operator for fixed p and s → 1− (see [19]), or an
approximation of the fractional ∞-Laplacian for fixed s and p → ∞, with applications to the problem
of Hölder continuous extensions of functions (see [22]). Equations driven by the fractional p-Laplacian
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are the subject of a vast literature, dealing with existence, qualitative properties, and regularity of the
solutions (see for instance [13–15, 24]).

Inspired by the cited references, we will examine two variational problems driven by LK , set on
a bounded domain Ω with C1,1-smooth boundary, with a datum g varying in a rearrangement class
G, and optimize the corresponding functionals. First, we consider the following nonlinear, nonlocal
eigenvalue problem: LKu = λg(x)|u|p−2u in Ω

u = 0 in Ωc.
(1.1)

Let λ(g) be the principal eigenvalue of (1.1), defined by

λ(g) = inf
u,0

!
RN×RN |u(x) − u(y)|pK(x, y) dx dy∫

Ω
g|u|p dx

,

and ug be the (unique) associated eigenfunction s.t. ug > 0 in Ω and∫
Ω

gup
g dx = 1.

With such definitions, we will study the following optimization problem:

min
g∈G

λ(g).

Precisely, we will prove that such problem admits at least one solution, that any solution actually
minimizes λ(g) over the larger set G, while all minimizers over G lie in G, and finally that any minimal
weight can be represented as a nondecreasing function of the corresponding eigenfunction:

Theorem 1.1. Let Ω ⊂ RN be a bounded domain with C1,1-boundary, p > 1, s ∈ (0, 1), K : RN ×RN →

R be measurable satisfying (K1), (K2), g0 ∈ L∞(Ω)+ \ {0}, G be the rearrangement class of g0. For all
g ∈ G, let λ(g) be the principal eigenvalue of (1.1). Then,

(i) there exists ĝ ∈ G s.t. λ(ĝ) 6 λ(g) for all g ∈ G;
(ii) for all ĝ as in (i) and g ∈ G \ G, λ(ĝ) < λ(g);

(iii) for all ĝ as in (i) there exists a nondecreasing map η : R→ R s.t. ĝ = η ◦ uĝ in Ω.

Then, we will focus on the following general nonlinear Dirichlet problem:LKu + h(x, u) = g(x) in Ω

u = 0 in Ωc,
(1.2)

where, in addition to the previous hypotheses, we assume that h : Ω × R → R+ is a Carathéodory
mapping satisfying the following conditions:

(h1) h(x, ·) is nondecreasing in R for a.e. x ∈ Ω;
(h2) h(x, t) 6 C0(1 + |t|q−1) for a.e. x ∈ Ω and all t ∈ R, with C0 > 0 and q ∈ (1, p).
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For all g ∈ G problem (1.2) has a unique solution ug, with associated energy

Ψ(g) =
1
p

"
RN×RN

|ug(x) − ug(y)|pK(x, y) dx dy +

∫
Ω

[
H(x, ug) − gug] dx

(where H(x, ·) denotes the primitive of h(x, ·)). Our second result deals with following optimization
problem:

min
g∈G

Ψ(g),

and is stated as follows:

Theorem 1.2. Let Ω ⊂ RN be a bounded domain with C1,1-boundary, p > 1, s ∈ (0, 1), K : RN ×RN →

R be measurable satisfying (K1), (K2), h : Ω × R → R+ be a Carathéodory mapping satisfying (h1),
(h2), g0 ∈ L∞(Ω)+ \{0}, G be the rearrangement class of g0. For all g ∈ G, let ug be the solution of (1.2)
and Ψ(g) be the associated energy. Then,

(i) there exists ĝ ∈ G s.t. Ψ(ĝ) 6 Ψ(g) for all g ∈ G;
(ii) for all ĝ as in (i) and g ∈ G \ G, Ψ(ĝ) < Ψ(g);

(iii) for all ĝ as in (i) there exists a nondecreasing map η : R→ R s.t. ĝ = η ◦ uĝ in Ω.

Theorem 1.1 above extends [1, Theorem 1.1] to the nonlinear framework, which requires some
delicate arguments due to the non-Hilbertian structure of the problem. Similarly, Theorem 1.2
extends [26, Theorem 3.2], also introducing the structure property of minimizers in (iii).

The dual problems, i.e., maximization of λ(g) and Ψ(g) respectively, remain open for now.
The reason is easily understood, as soon as we recall that both λ(g) and Ψ(g) admit variational
characterizations as minima of convenient functions on the Sobolev space W s,p

0 (Ω), so further
minimizing with respect to g conjures a ’double minimization’ problem. On the contrary, maximizing
λ(g), Ψ(g), respectively, would result in a min-max problem, which requires a different approach.

The structure of the paper is the following: In Section 2 we recall some preliminaries on
rearrangement classes and fractional order equations; in Section 3 we deal with the eigenvalue
problem (1.1); and in Section 4 we deal with the general Dirichlet problem (1.2).

Notation. For all Ω ⊂ RN , we denote by |Ω| the N-dimensional Lebesgue measure of Ω and Ωc =

RN \ Ω. For all x ∈ RN , r > 0 we denote by Br(x) the open ball centered at x with radius r. When
we say that g > 0 in Ω, we mean g(x) > 0 for a.e. x ∈ Ω, and similar expressions. Whenever X is
a function space on the domain Ω, X+ denotes the positive order cone of X. In any Banach space we
denote by→ strong (or norm) convergence, by ⇀ weak convergence, and by

∗
⇀ weak* convergence.

For all q ∈ [1,∞], we denote by ‖ · ‖q the norm of Lq(Ω). Finally, C denotes several positive constants,
varying from line to line.

2. Preliminaries

In this section we collect some necessary preliminary results on rearrangement classes and fractional
Sobolev spaces.
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2.1. Rearrangement classes

Let Ω ⊂ RN (N > 2) be a bounded domain, g0 ∈ L∞(Ω) be s.t. 0 6 g0 6 M in Ω (M > 0), and g0 > 0
on some subset of Ω with positive measure. We say that a function g ∈ L∞(Ω) is a rearrangement of
g0, denoted g ∼ g0, if for all t > 0∣∣∣{x ∈ Ω : g(x) > t}

∣∣∣ =
∣∣∣{x ∈ Ω : g0(x) > t}

∣∣∣.
Also, we define the rearrangement class

G =
{
g ∈ L∞(Ω) : g ∼ g0

}
.

Clearly, 0 6 g 6 M in Ω for all g ∈ G. Recalling that L∞(Ω) is the topological dual of L1(Ω), we can
endow such space with the weak* topology, characterized by the following type of convergence:

gn
∗
⇀ g ⇐⇒ lim

n

∫
Ω

gnh dx =

∫
Ω

gh dx for all h ∈ L1(Ω).

We denote by G the closure of G in L∞(Ω) with respect to such topology. It is proved in [3,4] that G is
a sequentially weakly* compact convex set, and that 0 6 g 6 M in Ω for all g ∈ G. Therefore, given a
sequentially weakly* continuous functional Φ : G → R, there exist ǧ, ĝ ∈ G s.t. for all g ∈ G

Φ(ǧ) 6 Φ(g) 6 Φ(ĝ).

In general, the extrema are not attained at points of G. As usual, we say that Φ is Gâteaux differentiable
at g ∈ G, if there exists a linear functional Φ′(g) ∈ L∞(Ω)∗ s.t. for all h ∈ G

lim
τ→0+

Φ(g + τ(h − g)) − Φ(g)
τ

= 〈Φ′(g), h − g〉.

We remark that g ∈ G being a minimizer (or maximizer) of Φ does not imply Φ′(g) = 0 in general.
Nevertheless, if Φ is convex, then for all h ∈ G

Φ(h) > Φ(g) + 〈Φ′(g), h − g〉,

with strict inequality if Φ is strictly convex and h , g (see [27] for an introduction to convex
functionals and variational inequalities). Finally, let us recall a technical lemma on optimization of
linear functionals over G, which also provides a representation formula:

Lemma 2.1. Let h ∈ L1(Ω). Then,

(i) there exists ĝ ∈ G s.t. for all g ∈ G ∫
Ω

ĝh dx >
∫

Ω

gh dx;

(ii) if ĝ is unique, then there exists a nondecreasing map η : R→ R s.t. ĝ = η ◦ h in Ω.
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Proof. By [3, Theorems 1, 4], there exists ĝ ∈ G which maximizes the linear functional

g 7→
∫

Ω

gh dx

over G. Given g ∈ G \ G, we can find a sequence (gn) in G s.t. gn
∗
⇀ g. For all n ∈ N we have∫

Ω

ĝh dx >
∫

Ω

gnh dx,

so passing to the limit we get ∫
Ω

ĝh dx >
∫

Ω

gh dx,

thus proving (i). From [3, Theorem 5] we have (ii). �

2.2. Fractional Sobolev spaces

We recall some basic notions about the variational formulations of problems (1.1) and (1.2). For
p > 1, s ∈ (0, 1), all open Ω ⊆ RN , and all measurable u : Ω→ R we define the Gagliardo seminorm

[u]s,p,Ω =
["

Ω×Ω

|u(x) − u(y)|p

|x − y|N+ps dx dy
] 1

p
.

The corresponding fractional Sobolev space is defined by

W s,p(Ω) =
{
u ∈ Lp(Ω) : [u]s,p,Ω < ∞

}
.

If Ω is bounded and with a C1,1-smooth boundary, we incorporate the Dirichlet conditions by defining
the space

W s,p
0 (Ω) =

{
u ∈ W s,p(RN) : u = 0 in Ωc},

endowed with the norm ‖u‖W s,p
0 (Ω) = [u]s,p,RN . This is a uniformly convex, separable Banach space

with dual W−s,p′(Ω), s.t. C∞c (Ω) is a dense subset of W s,p
0 (Ω), and the embedding W s,p

0 (Ω) ↪→ Lq(Ω) is
compact for all q ∈ [1, p∗s), where

p∗s =


N p

N − ps
if ps < N

∞ if ps > N.

For a detailed account on fractional Sobolev spaces, we refer the reader to [10, 21]. Now let K :
Rn × RN → R be a measurable kernel satisfying (K1) and (K2). We introduce an equivalent norm on
W s,p

0 (Ω) by setting

[u]K =
["

RN×RN
|u(x) − u(y)|pK(x, y) dx dy

] 1
p
.

We can now rephrase more carefully the definitions given in Section 1, by defining the operator LK :
W s,p

0 (Ω)→ W−s,p′(Ω) as the gradient of the C1-functional

u 7→
[u]p

K

p
.
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Equivalently, for all u, ϕ ∈ W s,p
0 (Ω) we set

〈LKu, ϕ〉 =

"
RN×RN

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))K(x, y) dx dy.

Both problems that we are going to study belong to the following class of nonlinear, nonlocal Dirichlet
problems: LKu = f (x, u) in Ω

u = 0 in Ωc,
(2.1)

where f : Ω×R→ R is a Carathéodory mapping subject to the following subcritical growth conditions:
there exist C > 0, r ∈ (1, p∗s) s.t. for a.e. x ∈ Ω and all t ∈ R

| f (x, t)| 6 C(1 + |t|r−1). (2.2)

We say that u ∈ W s,p
0 (Ω) is a weak solution of (2.1), if for all ϕ ∈ W s,p

0 (Ω)

〈LKu, ϕ〉 =

∫
Ω

f (x, u)ϕ dx.

There is a wide literature on problem (2.1), especially for the model case LK = (−∆)s
p, see for

instance [9, 14, 16, 17, 24]. We will only need to recall the following properties, which can be proved
adapting [16, Proposition 2.3] and [9, Theorem 1.5], respectively:

Lemma 2.2. Let f satisfy (2.2), u ∈ W s,p
0 (Ω) be a weak solution of (2.1). Then, u ∈ L∞(Ω).

Lemma 2.3. Let f satisfy (2.2), and δ > 0, c ∈ C(Ω)+ be s.t. for a.e. x ∈ Ω and all t ∈ [0, δ]

f (x, t) > −c(x)tp−1.

Also, let u ∈ W s,p
0 (Ω)+ be a weak solution of (2.2). Then, either u = 0, or u > 0 in Ω.

We will not cope with regularity of the weak solutions here. In the model case of the fractional
p-Laplacian, under hypothesis (2.2), using Lemma 2.2 above and [15, Theorems 1.1, 2.7], it can be
seen that whenever u ∈ W s,p

0 (Ω) solves (2.1), we have u ∈ C s(RN) and there exist α ∈ (0, s) depending
only on the data of the problem, s.t. the function

u
dist(·,Ωc)s

admits a α-Hölder continuous extension to Ω. The same result is not known for the general operator
LK , except the linear case p = 2 with a special anisotropic kernel, see [28].

For future use, we prove here a technical lemma:

Lemma 2.4. Let (gn) be a sequence inG s.t. gn
∗
⇀ g, (un) be a bounded sequence in W s,p

0 (Ω), r ∈ [1, p∗s).
Then, there exists u ∈ W s,p

0 (Ω) s.t. up to a subsequence

lim
n

∫
Ω

gn|un|
r dx =

∫
Ω

g|u|r.
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Proof. By the compact embedding W s,p
0 (Ω) ↪→ Lr(Ω), passing if necessary to a subsequence we have

un → u in Lr(Ω) and un(x)→ u(x) for a.e. x ∈ Ω, as n→ ∞. In particular |u|r ∈ L1(Ω), so

lim
n

∫
Ω

(gn − g)|u|r dx = 0.

Besides, recalling that 0 6 gn 6 M in Ω for all n ∈ N, we have by Hölder’s inequality∫
Ω

[
gn|un|

r − g|u|r
]
dx 6

∫
Ω

gn||un|
r − |u|r| dx +

∫
Ω

(gn − g)|u|r dx

6 C
∫

Ω

[
|un|

r−1 + |u|r−1]|un − u| dx +

∫
Ω

(gn − g)|u|r dx

6 C
[
‖un‖

r−1
r + ‖u‖r−1

r
]
‖un − u‖r +

∫
Ω

(gn − g)|u|r dx,

and the latter tends to 0 as n→ ∞. �

3. Optimization of the principal eigenvalue

In this section we consider the eigenvalue problem (1.1) and prove Theorem 1.1. Let Ω, p, s, K, g0

be as in Section 1. For any g ∈ G, as in Subsection 2.2 we say that u ∈ W s,p
0 (Ω) is a (weak) solution

of (1.1) if for all ϕ ∈ W s,p
0 (Ω)

〈LKu, ϕ〉 = λ

∫
Ω

g|u|p−2uϕ dx.

We say that λ ∈ R is an eigenvalue if (1.1) admits a solution u , 0, which is then called a λ-
eigenfunction. Though a full description of the eigenvalues of (1.1) is missing, from [11, 12, 22] we
know that for all g ∈ L∞(Ω)+ there exists a principal eigenvalue λ(g) > 0, namely the smallest positive
eigenvalue, which admits the following variational characterization:

λ(g) = inf
u,0

[u]p
K∫

Ω
g|u|p dx

. (3.1)

In addition, from [11] we know that λ(g) is an isolated eigenvalue, simple, with constant sign
eigenfunctions, while for any eigenvalue λ > λ(g) the associated λ-eigenfunctions change sign in Ω.
So, recalling Lemma 2.3, there exists a unique normalized positive λ(g)-eigenfunction ug ∈ W s,p

0 (Ω)
s.t. ∫

Ω

gup
g dx = 1, [ug]p

K = λ(g).

In particular g 7→ λ(g) defines a real-valued functional defined in the rearrangement class of weights G
(or in G), and we are interested in the minimizers of such functional. Equivalently, we may set for all
g ∈ G

Φ(g) =
1

λ(g)2 = sup
u,0

[ ∫
Ω

g|u|p dx
]2

[u]2p
K

,

and consider the maximization problem
max
g∈G

Φ(g).

First, we want to maximize Φ(g) over G, which is possible due to the following lemma:
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Lemma 3.1. The functional Φ(g) is sequentially weakly* continuous in G.

Proof. Let (gn) be a sequence in G s.t. gn
∗
⇀ g, and for simplicity denote un = ugn for all n ∈ N, and

u = ug. We need to prove that Φ(gn)→ Φ(g). Since up ∈ L1(Ω), we have

lim
n

∫
Ω

gnup dx =

∫
Ω

gup dx = 1.

Also, by definition of Φ we have for all n ∈ N

Φ(gn) >

[ ∫
Ω

gnup dx
]2

[u]2p
K

,

and the latter tends to Φ(g) as n→ ∞. Therefore

lim inf
n

Φ(gn) > Φ(g). (3.2)

In particular, for all n ∈ N we have
[un]K = Φ(gn)−

1
2p 6 C,

so (un) is bounded in W s,p
0 (Ω). By reflexivity and the compact embedding W s,p

0 (Ω) ↪→ Lp(Ω), passing
to a subsequence we have un ⇀ v in W s,p

0 (Ω), un → v in Lp(Ω), and un(x) → v(x) for a.e. x ∈ Ω, as
n→ ∞. In particular, v > 0 in Ω. By convexity we have

lim inf
n

[un]2p
K > [v]2p

K .

By Lemma 2.4 (with r = p) we also have

lim
n

∫
Ω

gnup
n dx =

∫
Ω

gvp dx.

So we get

lim sup
n

Φ(gn) = lim sup
n

[ ∫
Ω

gnup
n dx

]2

[un]2p
K

6

[ ∫
Ω

gvp dx
]2

[v]2p
K

6 Φ(g).

This, besides (3.2), concludes the proof. �

Lemma 3.1, along with the compactness of G, proves that Φ(g) admits a minimizer and a maximizer
in G. We next need to ensure that at least one maximizer lies in the smaller set G. In the next lemmas
we will investigate further properties of Φ.

Lemma 3.2. The functional Φ is strictly convex in G.

Proof. We introduce an alternative expression for Φ. For all g ∈ G, u ∈ W s,p
0 (Ω)+ set

F(g, u) = 2
∫

Ω

gup dx − [u]2p
K .
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We fix g ∈ G and maximize F(g, ·) over positive functions. For all u ∈ W s,p
0 (Ω)+ \ {0} and τ > 0, the

function
F(g, τu) = 2τp

∫
Ω

gup dx − τ2p[u]p
K

is differentiable in τ with derivative

∂

∂τ
F(g, τu) = 2pτp−1

∫
Ω

gup dx − 2pτ2p−1[u]2p
K .

So the maximum of τ 7→ F(g, τu) is attained at

τ0(u) =

[ ∫
Ω

gup dx
] 1

p

[u]2
K

> 0,

and amounts at

F(g, τ0(u)u) =

[ ∫
Ω

gup dx
]2

[u]2p
K

.

Maximizing further over u, we obtain

sup
u>0

F(g, u) = sup
u∈W s,p

0 (Ω)+\{0}

[ ∫
Ω

gup dx
]2

[u]2p
K

.

Noting that [|u|]K 6 [u]K for all u ∈ W s,p
0 (Ω), and recalling (3.1), we have for all g ∈ G

Φ(g) = sup
u∈W s,p

0 (Ω)+\{0}
F(g, u) =

1
λ(g)2 . (3.3)

We claim that the supremum in (3.3) is attained at the unique function

ũg =
ug

λ(g)
2
p

= τ0(ug)ug. (3.4)

Indeed, by normalization of ug we have

F(g, ũg) =
2

λ(g)2

∫
Ω

gup
g dx −

[ug]2p
K

λ(g)4 =
1

λ(g)2 .

For uniqueness, first consider a function u = τug with τ , τ0(ug). By unique maximization in τ we
have

F(g, τug) < F(g, τ0(ug)ug) = F(g, ũg) =
1

λ(g)2 .

Besides, for all v ∈ W s,p
0 (Ω)+ \ {0} which is not a λ(g)-eigenfunction, arguing as above with v replacing

u, and recalling that the infimum in (3.1) is attained only at principal eigenfunctions, we have

F(g, v) 6 F(g, τ0(v)v) =

[ ∫
Ω

gvp dx
]2

[v]2p
K

<
1

λ(g)2 .
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So, ũg is the unique maximizer of (3.3).
We now prove that Φ is convex. Let g1, g2 ∈ G, τ ∈ (0, 1) and set

gτ = (1 − τ)g1 + τg2,

so gτ ∈ G (a convex set, as seen in Subsection 2.1). For all u ∈ W s,p
0 (Ω)+ \ {0}, we have by (3.3)

F(gτ, u) = 2(1 − τ)
∫

Ω

g1up dx + 2τ
∫

Ω

g2up dx − [u]2p
K

= (1 − τ)F(g1, u) + τF(g2, u) 6 (1 − τ)Φ(g1) + τΦ(g2).

Taking the supremum over u and using (3.3) again,

Φ(gτ) 6 (1 − τ)Φ(g1) + τΦ(g2).

To prove that Φ is strictly convex, we argue by contradiction, assuming that for some g1 , g2 as above
and τ ∈ (0, 1)

Φ(gτ) = (1 − τ)Φ(g1) + τΦ(g2).

Set ũi = ũgi (i = 1, 2) and ũτ = ũgτ for brevity. Then, by (3.3) and the equality above

(1 − τ)F(g1, ũτ) + τF(g2, ũτ) = (1 − τ)F(g1, ũ1) + τF(g2, ũ2).

Recalling that ũi is the only maximizer of F(gi, ·), the last inequality implies ũ1 = ũ2 = ũτ, as well as

Φ(g1) = F(g1, ũτ) = F(g2, ũτ) = Φ(g2).

Therefore we have λ(g1) = λ(g2) = λ. Moreover, ũτ > 0 is a λ-eigenfunction with both weights g1, g2,
i.e., for all ϕ ∈ W s,p

0 (Ω)

λ

∫
Ω

g1ũp−1
τ ϕ dx = 〈LK ũτ, ϕ〉 = λ

∫
Ω

g2ũp−1
τ ϕ dx.

So g1ũp−1
τ = g2ũp−1

τ in Ω, which in turn, since ũτ > 0, implies g1 = g2 a.e. in Ω, a contradiction. �

The next lemma establishes differentiability of Φ.

Lemma 3.3. The functional Φ is Gâteaux differentiable in G, and for all g, h ∈ G

〈Φ′(g), h − g〉 = 2
∫

Ω

(h − g)ũp
g dx,

where ũg is the principal eigenfunction normalized as in (3.4).

Proof. First, let (gn) be a sequence in G s.t. gn
∗
⇀ g, and set for brevity ũn = ũgn , ũ = ũg. We claim that

lim
n

∫
Ω

|ũn − ũ|p dx = 0. (3.5)
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Indeed, by normalization we have for all n ∈ N

[ũn]2p
K = Φ(gn),

and the latter is bounded from above, since Φ(g) has a maximizer in G. So, (ũn) is bounded in W s,p
0 (Ω).

By uniform convexity and the compact embedding W s,p
0 (Ω) ↪→ Lp(Ω), passing to a subsequence we

have ũn ⇀ v in W s,p
0 (Ω), ũn → v in Lp(Ω), and ũn(x) → v(x) for a.e. x ∈ Ω, as n → ∞ (in particular

v > 0 in Ω). By convexity, we see that

lim inf
n

[ũn]2p
K > [v]2p

K .

By Lemma 2.4, we have

lim
n

∫
Ω

gnũp
n dx =

∫
Ω

gvp dx.

By Lemma 3.1, we have Φ(gn)→ Φ(g), so by (3.3) we get

Φ(g) = lim
n

F(gn, ũn)

6 2 lim
n

∫
Ω

gnũp
n dx − lim inf

n
[ũn]2p

K

6 2
∫

Ω

gvp dx − [v]2p
K

= F(g, v) 6 Φ(g).

Therefore v is a maximizer of F(g, ·) over W s,p
0 (Ω)+, hence by uniqueness v = ũ. Then we have ũn → ũ

in Lp(Ω), which is equivalent to (3.5).
We claim that for all n ∈ N

Φ(g) + 2
∫

Ω

(gn − g)ũp dx 6 Φ(gn) 6 Φ(g) + 2
∫

Ω

(gn − g)ũp
n dx. (3.6)

Indeed, by (3.3) we have

Φ(g) + 2
∫

Ω

(gn − g)ũp dx 6 Φ(gn)

= F(g, ũn) + 2
∫

Ω

(gn − g)ũp
n dx

6 Φ(g) + 2
∫

Ω

(gn − g)ũp
n dx.

Now fix g, h ∈ G, g , h, and a sequence (τn) in (0, 1) s.t. τn → 0. By convexity of G, we have for all
n ∈ N

gn = g + τn(h − g) ∈ G.

Also, clearly gn
∗
⇀ g. By (3.6), setting as usual ũn = ũgn and ũ = ũg, we have for all n ∈ N

2τn

∫
Ω

(h − g)ũp dx 6 Φ(gn) − Φ(g) 6 2τn

∫
Ω

(h − g)ũp
n dx.
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Dividing by τn > 0 and recalling (3.5), we get

lim
n

Φ(g + τn(h − g)) − Φ(g)
τn

= 2
∫

Ω

(h − g)ũp dx.

Note that 2ũp ∈ L1(Ω) ⊂ L∞(Ω)∗, and by the arbitrariness of the sequence (τn) we deduce that Φ is
Gâteaux differentiable at g with

〈Φ′(g), h − g〉 = 2
∫

Ω

(h − g)ũp dx,

which concludes the proof. �

We can now prove the main result of this section.

Proof of Theorem 1.1. We already know that Φ has a maximizer ḡ over G. Set w̄ = 2ũp
ḡ ∈ L1(Ω), then

by Lemma 3.3 we have Φ′(ḡ) = w̄. Now we maximize on G the linear functional

g 7→
∫

Ω

gw̄ dx.

By Lemma 2.1 (i), there exists ĝ ∈ G s.t. for all g ∈ G∫
Ω

ĝw̄ dx >
∫

Ω

gw̄ dx.

In particular we have ∫
Ω

ĝw̄ dx >
∫

Ω

ḡw̄ dx. (3.7)

By Lemma 3.2, the functional Φ is convex. Therefore, using also Lemma 3.3 and (3.7), we have

Φ(ĝ) > Φ(ḡ) +

∫
Ω

(ĝ − ḡ)w̄ dx > Φ(ḡ).

Thus, ĝ ∈ G is as well a maximizer of Φ overG, which proves (i) since maximizers of Φ and minimizers
of λ(g) coincide. In addition, by the relation above we have∫

Ω

(ĝ − ḡ)w̄ dx = 0.

We will now prove that ĝ = ḡ, arguing by contradiction. Assume ĝ , ḡ, then by the strict convexity of
Φ (Lemma 3.2 again) we have

Φ(ĝ) > Φ(ḡ) +

∫
Ω

(ĝ − ḡ)w̄ dx = Φ(ḡ),

against the maximality of ḡ. So, any maximizer of Φ over G actually lies in G, which proves (ii).
Finally, let ĝ ∈ G be any maximizer of Φ and set ŵ = 2ũp

ĝ ∈ L1(Ω). By Lemmas 3.2 and 3.3, for all
g ∈ G \ {ĝ} we have

Φ(ĝ) > Φ(g) > Φ(ĝ) +

∫
Ω

(g − ĝ)ŵ dx,
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hence ∫
Ω

ĝŵ dx >
∫

Ω

gŵ dx.

Equivalently, ĝ is the only maximizer over G of the linear functional above, induced by the function ŵ.
By Lemma 2.1 (ii), there exists a nondecreasing map η̃ : R→ R s.t. in Ω

ĝ = η̃ ◦ ŵ.

Now we recall (3.4) and the definition of ŵ, and by setting for all t > 0

η(t) = η̃
( 2tp

λ(ĝ)2

)
,

while η(t) = η(0) for all t < 0, we immediately see that η : R→ R is a nondecreasing map s.t. ĝ = η◦uĝ

in Ω, thus proving (iii). �

4. Optimization of the energy functional

In this section we consider problem (1.2) and prove Theorem 1.2. Let Ω, p, s, K, g0 be as in
Section 1, and h satisfy (h1), (h2). For any g ∈ G, we say that u ∈ W s,p

0 (Ω) is a weak solution of (1.2) if
for all ϕ ∈ W s,p

0 (Ω)

〈LK(u), ϕ〉 +
∫

Ω

h(x, u)ϕ dx =

∫
Ω

gϕ dx.

By classical results (see for instance [18] for the fractional p-Laplacian), for all g ∈ G problem (1.2)
has a unique solution ug ∈ W s,p

0 (Ω). In addition, by Lemma 2.2 we have ug ∈ L∞(Ω). Such solution
is the unique minimizer in W s,p

0 (Ω) of the energy functional associated to (1.2). The corresponding
energy, depending on g ∈ G, is given by

Ψ(g) =
[ug]p

K

p
+

∫
Ω

[
H(x, ug) − gug

]
dx,

where for all (x, t) ∈ Ω × R we have set

H(x, t) =

∫ t

0
h(x, τ) dτ.

We are interested in the minimizers of Ψ(g) overG. Equivalently, we may set for all g ∈ G, u ∈ W s,p
0 (Ω)

E(g, u) =

∫
Ω

[
gu − H(x, u)

]
dx −

[u]p
K

p
,

and maximize E(g, ·) with respect to u, thus defining

Φ(g) = sup
u∈W s,p

0 (Ω)
E(g, u) = E(g, ug). (4.1)

So, as in Section 3, we are led to the maximization problem

max
g∈G

Φ(g).

First, we prove the continuity of Φ.
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Lemma 4.1. The functional Φ is sequentially weakly* continuous in G.

Proof. Let (gn) be a sequence in G s.t. gn
∗
⇀ g, and denote un = ugn , u = ug. By (4.1), for all n ∈ N we

have

Φ(gn) = E(gn, un)

> E(gn, u)

= E(g, u) +

∫
Ω

(gn − g)u dx

= Φ(g) +

∫
Ω

(gn − g)u dx.

Passing to the limit as n→ ∞ and using weak* convergence, we get

lim inf
n

Φ(gn) > Φ(g) + lim
n

∫
Ω

(gn − g)u dx = Φ(g). (4.2)

From (1.2) with datum gn and solution un, multiplying by un again, we get for all n ∈ N∫
Ω

[
gn − h(x, un)

]
un dx = [un]p

K . (4.3)

Since ‖gn‖∞ 6 M and by the continuous embedding W s,p
0 (Ω) ↪→ L1(Ω), we have∣∣∣∣ ∫

Ω

gnun dx
∣∣∣∣ 6 C[un]K ,

with C > 0 independent of n. Also, by (h2) and the continuous embedding W s,p
0 (Ω) ↪→ Lq(Ω), we have∣∣∣∣ ∫

Ω

h(x, un)un dx
∣∣∣∣ 6 C

∫
Ω

[
|un| + |un|

q] dx 6 C[un]K + C[un]q
K .

So (4.3) implies for all n ∈ N
[un]p

K 6 C[un]K + C[un]q
K .

Recalling that q < p, we deduce that (un) is bounded in W s,p
0 (Ω). Passing to a subsequence, we have

un ⇀ v in W s,p
0 (Ω), un → v in Lp(Ω), and un(x) → v(x) for a.e. x ∈ Ω, as n → ∞. By convexity we

have
lim inf

n
[un]p

K > [v]p
K .

By Lemma 2.4 (with r = 1) we find

lim
n

∫
Ω

gnun dx =

∫
Ω

gv dx. (4.4)

Finally, we have

lim
n

∫
Ω

H(x, un) dx =

∫
Ω

H(x, v) dx. (4.5)
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Indeed, applying (h2), Lagrange’s rule, and Hölder’s inequality, we get for all n ∈ N∫
Ω

∣∣∣H(x, un) − H(x, v)
∣∣∣ dx 6 C

∫
Ω

[
1 + |un|

q−1 + |v|q−1]|un − v| dx

6 C‖un − v‖1 + C
[
‖un‖

q−1
q + ‖v‖q−1

q
]
‖un − v‖q,

and the latter tends to 0 as n → ∞, by the continuous embeddings of Lp(Ω) into L1(Ω), Lq(Ω),
respectively, thus proving (4.5).

Next, we start from (4.1) and we apply (4.4) and (4.5):

lim sup
n

Φ(gn) = lim sup
n

E(gn, un)

6 lim
n

∫
Ω

[gnun − H(x, un)
]
dx − lim inf

n

[un]p
K

p

6

∫
Ω

[
gv − H(x, v)

]
dx −

[v]p
K

p
= E(g, v),

and the latter does not exceed Φ(g), so

lim sup
n

Φ(gn) 6 Φ(g). (4.6)

Comparing (4.2) and (4.6), we have Φ(gn)→ Φ(g), which concludes the proof. �

By Lemma 4.1, Φ has both a minimizer and a maximizer over G. Next we prove strict convexity:

Lemma 4.2. The functional Φ is strictly convex in G.

Proof. The convexity of Φ follows as in Lemma 3.2, since Φ(g) is the supremum of linear functionals
(in g). To prove strict convexity, we argue by contradiction. Let g1, g2 ∈ G be s.t. g1 , g2, set for all
τ ∈ (0, 1)

gτ = (1 − τ)g1 + τg2 ∈ G,

and assume that for some τ ∈ (0, 1)

Φ(gτ) = (1 − τ)Φ(g1) + τΦ(g2).

As usual, set ui = ugi (i = 1, 2) and uτ = ugτ . By linearity of E(g, uτ) in g and (4.1), the relation above
rephrases as

(1 − τ)E(g1, uτ) + τE(g2, uτ) = (1 − τ)E(g1, u1) + τE(g2, u2).

Recalling that E(gi, uτ) 6 E(gi, ui) (i = 1, 2) and the uniqueness of the maximizer in (4.1), we deduce
u1 = u2 = uτ. Now test (1.2) with an arbitrary ϕ ∈ W s,p

0 (Ω):∫
Ω

g1ϕ dx = 〈LKuτ, ϕ〉 +
∫

Ω

h(x, uτ)ϕ dx =

∫
Ω

g2ϕ dx.

So we have g1 = g2 a.e. in Ω, a contradiction. Thus, Φ is strictly convex. �

The last property we need is differentiability.
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Lemma 4.3. The functional Φ is Gâteaux differentiable in G, and for all g, k ∈ G

〈Φ′(g), k − g〉 =

∫
Ω

(k − g)ug dx.

Proof. First, let (gn) be a sequence in G s.t. gn
∗
⇀ g, and let un = ugn , u = ug. From Lemma 4.1 we

know that Φ(gn) tends to Φ(g), i.e.,

lim
n

E(gn, un) = E(g, u). (4.7)

We further claim that
lim

n

∫
Ω

|un − u|p dx = 0. (4.8)

Indeed, we recall that for all n ∈ N

E(gn, un) =

∫
Ω

[
gnun − H(x, un)

]
dx −

[un]p
K

p
.

Therefore, by (4.7), uniform boundedness of (gn), (h2), and the compact embeddings of W s,p
0 (Ω) into

L1(Ω), Lq(Ω), respectively, we have for all n ∈ N

[un]p
K

p
6 C +

∫
Ω

[
gnun − H(x, un)

]
dx 6 C + C(‖un‖1 + ‖un‖

q
q) 6 C + C([un]K + [un]q

K).

Since 1 < q < p, the sequence (un) is bounded in W s,p
0 (Ω). Passing to a subsequence, we have un ⇀ v

in W s,p
0 (Ω), un → v in Lp(Ω), and un(x)→ v(x) for a.e. x ∈ Ω, as n→ ∞. Therefore, by convexity

lim inf
n

[un]p
K > [v]p

K .

Also, by Lemma 2.4 and continuous embeddings we have

lim
n

∫
Ω

[
gnun − H(x, un)

]
dx =

∫
Ω

[
gv − H(x, v)

]
dx.

So, recalling (4.7), we get
E(g, u) = lim

n
E(gn, un) 6 E(g, v),

which implies u = v by uniqueness of the maximizer in (4.1). So un → u in Lp(Ω), which yields (4.8).
In addition, for all n ∈ N we have

Φ(g) +

∫
Ω

(gn − g)u dx 6 Φ(gn) 6 Φ(g) +

∫
Ω

(gn − g)un dx. (4.9)

Indeed, by definition of Φ(g) we have

Φ(g) +

∫
Ω

(gn − g)u dx = E(gn, u) 6 Φ(gn)

= E(g, un) +

∫
Ω

(gn − g)un dx 6 Φ(g) +

∫
Ω

(gn − g)un dx.
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Now fix k ∈ G \ {g} and a sequence (τn) in (0, 1) s.t. τn → 0 as n→ ∞. Set

gn = g + τn(k − g) ∈ G,

so that gn
∗
⇀ g. By (4.9) with such choice of gn, we have for all n ∈ N∫

Ω

(k − g)u dx 6
Φ(g + τn(k − g)) − Φ(g)

τn
6

∫
Ω

(k − g)un dx.

Passing to the limit for n→ ∞, and noting that by (4.8) we have in particular un → u in L1(Ω), we get

lim
n

Φ(g + τn(k − g)) − Φ(g)
τn

=

∫
Ω

(k − g)u dx.

By arbitrariness of (τn), and noting that u ∈ L1(Ω) ⊂ L∞(Ω)∗, we see that Φ is Gâteaux differentiable
at g with

〈Φ′(g), k − g〉 =

∫
Ω

(k − g)u dx,

which concludes the proof. �

We can now prove our optimization result, with a similar argument as in Section 3.

Proof of Theorem 1.2. By Lemma 4.1 and sequential weak* compactness of G, there exists ḡ ∈ G s.t.
for all g ∈ G

Φ(ḡ) > Φ(g).

Set ū = uḡ ∈ W s,p
0 (Ω), then by Lemma 4.3 we have for all k ∈ G \ {ḡ}

〈Φ′(ḡ), k − ḡ〉 =

∫
Ω

(k − ḡ)ū dx.

Since ū ∈ L1(Ω), by Lemma 2.1 (i) there exists ĝ ∈ G s.t. for all g ∈ G∫
Ω

ĝū dx >
∫

Ω

gū dx,

in particular ∫
Ω

ĝū dx >
∫

Ω

ḡū dx. (4.10)

By convexity of Φ (Lemma 4.2) and (4.10), we have

Φ(ĝ) > Φ(ḡ) +

∫
Ω

(ĝ − ḡ)ū dx > Φ(ḡ).

Therefore, ĝ ∈ G is a maximizer of Φ over G, which proves (i). In fact we have ĝ = ḡ, otherwise by
strict convexity (Lemma 4.2 again) and (4.10) we would have

Φ(ĝ) > Φ(ḡ) +

∫
Ω

(ĝ − ḡ)ū dx > Φ(ḡ),
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against maximality of ḡ. Thus, any maximizer of Φ over G actually lies in G, which proves (ii).
Finally, let ĝ ∈ G be a maximizer of Φ and set û = uĝ ∈ W s,p

0 (Ω). As we have seen before, ĝ is the only
maximizer in G for the linear functional

g 7→
∫

Ω

gû dx,

hence by Lemma 2.1 (ii) there exists a nondecreasing map η : R → R s.t. ĝ = η ◦ û in Ω, thus
proving (iii). �

Remark 4.4. Theorem 1.2 is analogous to Theorem 1.1 above, while in fact the problem is easier since
we do not need to consider normalization to ensure uniqueness, unlike in problem (1.1). On the other
hand, in this case we have no information on the sign of the solution ug.
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