Mathematics in Engineering, 7(1): 13-34.
DOI:10.3934/mine.2025002

)
‘V’ Received: 18 November 2024
Z 7\

M iNg """ Revised: 25 January 2025

Accepted: 05 February 2025
http://www.aimspress.com/journal/mine Published: 13 February 2025

Research article

Optimization problems in rearrangement classes for fractional p-Laplacian
equations

Antonio Iannizzotto* and Giovanni Porru

Dipartimento di Matematica e Informatica, Universita degli Studi di Cagliari, Via Ospedale 72, 09124
Cagliari, Italy

* Correspondence: Email: antonio.iannizzotto @unica.it.

Abstract: We discuss two optimization problems related to the fractional p-Laplacian. First, we
prove the existence of at least one minimizer for the principal eigenvalue of the fractional p-Laplacian
with Dirichlet conditions, with a bounded weight function varying in a rearrangement class. Then,
we investigate the minimization of the energy functional for general nonlinear equations driven by the
same operator, as the reaction varies in a rearrangement class. In both cases, we provide a pointwise
relation between the optimizing datum and the corresponding solution.
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1. Introduction and main results

The present paper deals with some optimization problems related to elliptic equations of nonlinear,
nonlocal type, with data varying in rearrangement classes. For the reader’s convenience, we recall here
the basic definition, referring to Section 2 for details. Given a bounded smooth domain Q ¢ R" and a
non-negative function g, € L*(€2), we say that g € L>(€2) lies in the rearrangement class of g, denoted
G, ifforallt >0

lig > 1} = |{go > 1],

where we denote by |-| the N-dimensional Lebesgue measure of sets. We may define several functionals
® : G — R corresponding to variational problems, and study the optimization problems

min ®(g), max D(g).
mir (&) na (&)

We note that, since G is not a convex set, the problems above do not fall in the familiar case of convex
optimization, whatever the nature of ®. The following is a classical example. For all g € G consider
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the Dirichlet problem

—Au =g(x) inQ
u=0 on 0Q),

which, by classical results in the calculus of variations, admits a unique weak solution u, € Hé (). So

set
(D(g):fgugdx.
Q

The existence of a maximizer for @, i.e.,of adatum g € Gs.t. forallg € G

D(8) > O(g),

was proved in [3,4], while the existence of a minimizer was investigated in [5]. One challenging feature
of such problem is that, in general, the functional ® turns out to be continuous (in a suitable sense) but
the class G fails to be compact. Therefore, a possible strategy consists in optimizing ® over the closure
G of G in the sequential weak* topology of L=(Q) (a much larger, and convex, set), and then proving
that the maximizers and minimizers actually lie in G (which is far from being trivial).

In addition, due to the nature of the rearrangement equivalence and some functional inequalities, the
maximizer/minimizer ¢ may show some structural connection to the solution u, of the corresponding
variational problem. This has interesting consequences, for instance let g be the characteristic function
of some subdomain D, C €, then the optimal g is as well the characteristic function of some D c Q
with |[D| = |Dy|. Moreover, it is proved that g = 1 o u, in € for some nondecreasing 1, while by the
Dirichlet condition we have u, = 0 on Q. Therefore, any optimal domain D has a positive distance
from 0Q.

A similar approach applies to several variational problems and functionals. For instance, in [8] the
authors consider the following p-Laplacian equation with p > 1, g € [0, p):

—Apu = g(xu?! inQ
u=0 on 0Q,

which admits a unique non-negative solution u, € Wé”’ (Q), and study the maximum and minimum
over G of the functional

(I)(g):fgugdx.
Q

In [7], the following weighted eigenvalue problem is considered:

—Apu = Ag(X)|ulPu  inQ
u=>0 on 0Q.

It is well known that the problem above admits a principal eigenvalue A(g) > 0 (see [20]), and the
authors prove that the functional A(g) has a minimizer in G.

In recent years, several researchers have studied optimization problems related to elliptic equations
of fractional order (see [23] for a general introduction to such problems and the related variational
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methods). In the linear framework, the model operator is the s-fractional Laplacian with s € (0, 1),
defined by

(=A)’u(x) = Cy,; lim ux) — uy)

e20% Jpecy X — yIN+

b

where Cy; > 0 is a normalization constant. In [26], the following problem is examined:

(=A)’u + h(x,u) = g(x) inQ
u=0 in Q°,

where A(x, -) is nondecreasing and grows sublinearly in the second variable. The solution u, € H;(£2)
is unique and is the unique minimizer of the energy functional

_ 2
D(g) = ff Ju(x) u(y)l dxdy + f[H(x, u) —guldx
RNXRN |x y|N+2s Q

(where H(x, -) denotes the primitive of A(x, -)), so the authors investigate the minimization of ®(g) over
G. Besides, in [1], the following nonlocal eigenvalue problem is considered:

(=A)’u = Ag(x)u in Q
u=20 in Q°.

The authors prove, among other results, the existence of a minimizer g € G for the principal eigenvalue
A(g). Optimization of the principal eigenvalue of fractional operators has significant applications
in biomathematics, see [25]. In all the aforementioned problems, optimization in G also yields
representation formulas and qualitative properties (e.g., Steiner symmetry over convenient domains)
of the optimal data.

In the present paper, we focus on the following nonlinear, nonlocal operator:

Lyu(x) = lim " Ju(x) = u@)P > (w(x) — u(y)K(x,y) dy.
&= Bi(x

Here N>2,p>1,5€(0,1),and K : R x RV — R is a measurable kernel s.t. for a.e. x,y € RV,

(Kl) K(x’)’) = K(y’ X),
(K2) Ci < K(x, n)lx = y"*7 < C, (0 < C; < Cy).

If C; = C; = Cy,,; > 0 (a normalization constant varying from one reference to the other), Lg
reduces to the s-fractional p-Laplacian

s Ju(x) = u()IP > (u(x) - u(y))
(_A)pu(x) Cops hr(?* B0 |x — y|Ntps

which in turn coincides with the s-fractional Laplacian seen above for p = 2. The nonlinear operator
L arises from problems in game theory (see [2, 6]). Besides, the special case (—A); can be seen as
either an approximation of the classical p-Laplace operator for fixed p and s — 1~ (see [19]), or an
approximation of the fractional co-Laplacian for fixed s and p — oo, with applications to the problem
of Holder continuous extensions of functions (see [22]). Equations driven by the fractional p-Laplacian
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are the subject of a vast literature, dealing with existence, qualitative properties, and regularity of the
solutions (see for instance [13-15,24]).

Inspired by the cited references, we will examine two variational problems driven by Lk, set on
a bounded domain Q with C!'!-smooth boundary, with a datum g varying in a rearrangement class
G, and optimize the corresponding functionals. First, we consider the following nonlinear, nonlocal
eigenvalue problem:

(1.1)

Lyxu = Ag()u’>u in Q
u=~0 in Q°.

Let A(g) be the principal eigenvalue of (1.1), defined by

ffRNxRN lu(x) —u(y)IPK(x,y)dxdy
|, glul dx

A(g) = inf
u#0

2

and u, be the (unique) associated eigenfunction s.t. u, > 0 in Q and

fgugdx: 1.
Q

With such definitions, we will study the following optimization problem:
min A(g).
min A(g)

Precisely, we will prove that such problem admits at least one solution, that any solution actually
minimizes A(g) over the larger set G, while all minimizers over G lie in G, and finally that any minimal
weight can be represented as a nondecreasing function of the corresponding eigenfunction:

Theorem 1.1. Let Q C RY be a bounded domain with C*'-boundary, p > 1, s € (0,1), K : R¥ xRN —
R be_ measurable satisfying (K;), (K>), go € L*(Q), \ {0}, G be the rearrangement class of gy. For all
g € G, let A(g) be the principal eigenvalue of (1.1). Then,

(i) there exists g € G s.t. /l(§)_< A(g) forall g € G;
(ii) forall g asin (i)and g € G\ G, A(g) < A(g),
(iii) for all g as in (i) there exists a nondecreasing mapn : R — R s.t. § = noug in Q.

Then, we will focus on the following general nonlinear Dirichlet problem:

(1.2)

Lxu+ h(x,u) =g(x) inQ
u=20 in Q°,

where, in addition to the previous hypotheses, we assume that 7 : Q X R — R, is a Carathéodory
mapping satisfying the following conditions:

(hy) h(x,-)is nondecreasing in R for a.e. x € Q;
(hy) h(x,t) < Co(1 +|t]97") for a.e. x € Q and all € R, with Cy > 0 and g € (1, p).
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For all g € G problem (1.2) has a unique solution u,, with associated energy

1
V(g = — f f lug(x) — us (I’ K(x,y)dxdy + f [H(x,u,) — gu,] dx
P RNXRN Q

(where H(x,-) denotes the primitive of A(x,-)). Our second result deals with following optimization
problem:

g€ (g)

Theorem 1.2. Let Q C RY be a bounded domain with C''-boundary, p > 1, s € (0,1), K : RV xRN —
R be measurable satisfying (K;), (K3), h : Q X R — R, be a Carathéodory mapping satisfying (h;),
(hy), go € L7 (). \{0}, G be the rearrangement class of g. Forall g € é, let u, be the solution of (1.2)
and Y(g) be the associated energy. Then,

(i) there exists g € G s.t. ‘I’(g)_< Y(g) forallg € G;
(ii) forall g asin (i)and g € G\ G, Y(2) < Y(g);
(iii) for all g as in (i) there exists a nondecreasing mapn : R — R s.t. § = noug in Q.

Theorem 1.1 above extends [1, Theorem 1.1] to the nonlinear framework, which requires some
delicate arguments due to the non-Hilbertian structure of the problem. Similarly, Theorem 1.2
extends [26, Theorem 3.2], also introducing the structure property of minimizers in (iii).

The dual problems, i.e., maximization of A(g) and ¥(g) respectively, remain open for now.
The reason is easily understood, as soon as we recall that both A(g) and W¥(g) admit variational
characterizations as minima of convenient functions on the Sobolev space Wg’p (), so further
minimizing with respect to g conjures a ’double minimization’ problem. On the contrary, maximizing
A(g), Y(g), respectively, would result in a min-max problem, which requires a different approach.

The structure of the paper is the following: In Section 2 we recall some preliminaries on
rearrangement classes and fractional order equations; in Section 3 we deal with the eigenvalue
problem (1.1); and in Section 4 we deal with the general Dirichlet problem (1.2).

Notation. For all Q c R", we denote by |Q| the N-dimensional Lebesgue measure of Q and Q¢ =
RV \ Q. For all x € RY, r > 0 we denote by B,(x) the open ball centered at x with radius ». When
we say that g > 0 in Q, we mean g(x) > O for a.e. x € Q, and similar expressions. Whenever X is
a function space on the domain €, X, denotes the positive order cone of X. In any Banach space we
denote by — strong (or norm) convergence, by — weak convergence, and by = weak* convergence.
For all g € [1, o], we denote by || - ||, the norm of L/(€2). Finally, C denotes several positive constants,
varying from line to line.

2. Preliminaries

In this section we collect some necessary preliminary results on rearrangement classes and fractional
Sobolev spaces.
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2.1. Rearrangement classes

Let Q c RY (N > 2) be a bounded domain, gy € L¥(Q) bes.t.0 < go < MinQ (M > 0),and gy > 0
on some subset of ) with positive measure. We say that a function g € L*(Q)) is a rearrangement of
8o, denoted g ~ g, if forall 7 > 0

[ixeQ: gx)> 1| =|{xeQ: gox) > 1.
Also, we define the rearrangement class
G=1{gel”(Q): g~ gl

Clearly, 0 < g < M in Q for all g € G. Recalling that L¥(Q) is the topological dual of L'(2), we can
endow such space with the weak™* topology, characterized by the following type of convergence:

g — g = limfgnhdx:fghdxforallheLl(Q).
n Q Q

We denote by é the closure of G in L™ (Q) with respect to such topology. It is pr(ized in [3,4] that é is
a sequentially weakly* compact convex set, and that 0 < ¢ < M in Q for all g € G. Therefore, given a
sequentially weakly* continuous functional ® : G — R, there exist g,g € Gs.t. forallge G

D(g) < D(g) < D(B).

In general, the extrema are not attained at points of G. As usual, we say that @ is Gateaux differentiable
at g € G, if there exists a linear functional ®’(g) € L*(Q)* s.t. forallh e G
Og+1h—g)—-D
L 28+ 7 —g)) — D)

70" T

=(D'(g),h - g).

We remark that g € é being a minimizer (or_ maximizer) of @ does not imply ®’(g) = O in general.
Nevertheless, if @ is convex, then forall h € G

O(h) > O(g) +(D'(g), h - g),

with strict inequality if @ is strictly convex and & # g (see [27] for an introduction to convex
functionals and variational inequalities). Finally, let us recall a technical lemma on optimization of
linear functionals over G, which also provides a representation formula:

Lemma 2.1. Let h € L'(Q). Then,

(i) there exists g € G s.t. forall g € E

fghdx>fghdx;
Q Q

(i) if g is unique, then there exists a nondecreasing mapn: R — Rs.t. g =nohin Q.
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Proof. By [3, Theorems 1, 4], there exists g € G which maximizes the linear functional

g|—>fghdx
Q

over G. Given g € é \ G, we can find a sequence (g,) in G s.t. g, N g. For all n € N we have

fghdx>fgnhdx,

Q Q
fghdx>fghdx,
Q Q

thus proving (7). From [3, Theorem 5] we have (ii). O

so passing to the limit we get

2.2. Fractional Sobolev spaces

We recall some basic notions about the variational formulations of problems (1.1) and (1.2). For
p>1,5€(0,1),all open Q C R", and all measurable u : Q — R we define the Gagliardo seminorm

lu(x) — u(y)l” %

The corresponding fractional Sobolev space is defined by
WHP(Q) = {u € LP(Q) : [ul,p0 < .

If Q is bounded and with a C'!-smooth boundary, we incorporate the Dirichlet conditions by defining
the space

W,P(Q) = {ue WPRY): u=0inQ°},
endowed with the norm ||u||Wg.p(Q) = [ul;prv. This is a uniformly convex, separable Banach space
with dual W= (Q), s.t. C(Q) is a dense subset of W,”(€), and the embedding W, (Q) — LY(Q) is
compact for all g € [1, p}), where

N - ps

N
i P if ps <N
p:
) if ps> N.

For a detailed account on fractional Sobolev spaces, we refer the reader to [10,21]. Now let K :
R" x R¥ — R be a measurable kernel satisfying (K;) and (K,). We introduce an equivalent norm on
W, 7 () by setting

ae=] [[ - uorke )
RN xRN

We can now rephrase more carefully the definitions given in Section 1, by defining the operator Ly :
Wy () — W7 (Q) as the gradient of the C'-functional

[uly

P
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Equivalently, for all u, ¢ € W;"(Q) we set

(Lgu, @) = f fR . Ju(x) = w2 w(x) = u@)(@x) = e)K(x,y) dx dy.

Both problems that we are going to study belong to the following class of nonlinear, nonlocal Dirichlet
problems:

{LKu = f(x,u) inQ 2.0

u=20 in Q°,

where f : QXR — R is a Carathéodory mapping subject to the following subcritical growth conditions:
there exist C > 0, r € (1, p;) s.t. fora.e. x e Qand all € R

If(x, ) < C(L + e ™). (2.2)

We say that u € W,”(Q) is a weak solution of (2.1), if for all ¢ € W, (Q)

(Lku, @) = ff(x, u)g dx.
Q

There is a wide literature on problem (2.1), especially for the model case Lx = (—A)IS,, see for
instance [9, 14,16, 17,24]. We will only need to recall the following properties, which can be proved
adapting [16, Proposition 2.3] and [9, Theorem 1.5], respectively:

Lemma 2.2. Let f satisfy (2.2), u € W, (Q) be a weak solution of (2.1). Then, u € L*(Q).

Lemma 2.3. Let f satisfy (2.2), and 6 > 0, c € C(ﬁ)Jr be s.t. for a.e. x € Q and all t € [0, 9]
fOx, 0 = =,

Also, let u € Wy"(Q), be a weak solution of (2.2). Then, either u = 0, or u > 0 in Q.

We will not cope with regularity of the weak solutions here. In the model case of the fractional
p-Laplacian, under hypothesis (2.2), using Lemma 2.2 above and [15, Theorems 1.1, 2.7], it can be
seen that whenever u € W(‘;’p (Q) solves (2.1), we have u € C*(R) and there exist « € (0, s) depending
only on the data of the problem, s.t. the function

u

dist(-, )’

admits a a-Holder continuous extension to Q. The same result is not known for the general operator
Lk, except the linear case p = 2 with a special anisotropic kernel, see [28].
For future use, we prove here a technical lemma:

Lemma 2.4. Let (g,) be a sequence in é s.t. gn - g, (u,) be a bounded sequence in Wg’p (Q), r € [1, p).
Then, there exists u € W, "(Q) s.1. up to a subsequence

limfgnlunlrdxzfglulr.
n Q Q
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Proof. By the compact embedding W,”(Q) — L'(Q), passing if necessary to a subsequence we have
u, — uin L'(Q) and u,(x) — u(x) for a.e. x € Q, as n — oo. In particular |u|” € L'(Q), so

limf(gn —9lul"dx = 0.
nJa

Besides, recalling that 0 < g, < M in Q for all n € N, we have by Holder’s inequality

f [gnlun]” — glul") dx < fgnllunl’ — |ul"l dx + f(gn - Qlul" dx
Q Q Q

<c f [t ™ + Tty — i + f (g — @lul" dx
Q Q

< Cllletally™" + Noall;™ M, = ull + f(gn — Qlul" dx,
Q

and the latter tends to 0 as n — oo. |
3. Optimization of the principal eigenvalue

In this section we consider the_ eigenvalue problem (1.1) and prove Theorem 1.1. Let Q, p, s, K, g
be as in Section 1. For any g € G, as in Subsection 2.2 we say that u € WS”’ (Q) is a (weak) solution
of (1.1) if for all ¢ € W;"(Q)

(Lgu, @) =2 f glul’up dx.
Q

We say that 4 € R is an eigenvalue if (1.1) admits a solution u # 0, which is then called a A-
eigenfunction. Though a full description of the eigenvalues of (1.1) is missing, from [11, 12,22] we
know that for all g € L*(Q), there exists a principal eigenvalue A(g) > 0, namely the smallest positive
eigenvalue, which admits the following variational characterization:

p

A(g) = inf &

u#0 fg glulp dx

In addition, from [11] we know that A(g) is an isolated eigenvalue, simple, with constant sign

eigenfunctions, while for any eigenvalue 4 > A(g) the associated A-eigenfunctions change sign in Q.

So, recalling Lemma 2.3, there exists a unique normalized positive A(g)-eigenfunction u, € WS”’ (Q)
S.t.

(3.1

fgug,’ dx =1, [u]y = Ag).
Q

In particular g — A(g) defines a real-valued functional defined in the rearrangement class of weights G
(or in G), and we are interested in the minimizers of such functional. Equivalently, we may set for all

g€y )
S | Jo glul” dx|
87 e T ]2

and consider the maximization problem

max ®O(g).
na g

First, we want to maximize ®(g) over G, which is possible due to the following lemma:

Mathematics in Engineering Volume 7, Issue 1, 13-34.



22

Lemma 3.1. The functional ®(g) is sequentially weakly* continuous in G.

Proof. Let (g,) be a sequence in é s.t. g, N g, and for simplicity denote u, = u,, for all n € N, and
u = u,. We need to prove that ®(g,) — d(g). Since u” € L'(Q), we have

limfg,,updx:fgupdle.
noJa Q

Also, by definition of ® we have for all n € N

[y o]

D(g,) >
(&) il

and the latter tends to d(g) as n — oco. Therefore
liminf ®(g,) > ®(g). (3.2)

In particular, for all n € N we have
1
[unlk = ©(gn) > < C,

s0 (u,) is bounded in W;”(Q). By reflexivity and the compact embedding Wy (Q) < L?(Q), passing
to a subsequence we have u, — v in WS’” (), u, — vin LP(Q), and u,(x) — v(x) for a.e. x € £, as
n — oo. In particular, v > 0 in Q. By convexity we have

liminf [u,]3” > [v]7.

By Lemma 2.4 (with r = p) we also have

limfgnuﬁdx:fgvpdx.
"oJa Q

So we get
2 2
[fg guth dx] [fg gV’ dx]
lim sup ®(g,) = limsup > < 5 < O(g).
n n [uy, KP [V]Kp
This, besides (3.2), concludes the proof. O

Lemma 3.1, along with the compactness of G, proves that ®(g) admits a minimizer and a maximizer
in G. We next need to ensure that at least one maximizer lies in the smaller set G. In the next lemmas
we will investigate further properties of ©.

Lemma 3.2. The functional ®© is strictly convex in G.

Proof. We introduce an alternative expression for ®. Forall g € G, u € WP (Q), set
F(g,u) = 2fgu" dx — [u]?(p.
Q
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We fix ¢ € G and maximize F(g,-) over positive functions. For all u € Wy (@), \ {0} and 7 > 0, the
function

F(g,Tu) = 217 Lgu” dx — TZP[M]I;(

is differentiable in T with derivative

0
—F(g,Tu) = 2pt"! fgup dx — 2p‘r2”_l[u]§(p.
87’ )

So the maximum of 7 — F(g, Tu) is attained at

[fQ gu? dx]'l’

To(u) = >0,
[ulk
and amounts at )
[ fQ gu? dx]
F(g, to(uwu) = —
(]}
Maximizing further over u, we obtain
2
[ fQ guP dx]
sup F(g,u) = sup —.
u>0 wewgr@a\o) [uly

Noting that [|ul]x < [u]x for all u € W;”(Q), and recalling (3.1), we have for all g € G

D)= sup  F(gu = : (3.3)
ueW, P (), \{0} A(g)?
We claim that the supremum in (3.3) is attained at the unique function
~ ug
ity = 5 = To(ug)ug. (3.4)
A(g)”

Indeed, by normalization of u, we have

2 gl _ 1
Fleit) = 303 ngug AT T dw

For uniqueness, first consider a function u = tu, with 7 # 7¢(u,). By unique maximization in 7 we
have

1
Ag*
Besides, for all v € Wg’p (Q); \ {0} which is not a A(g)-eigenfunction, arguing as above with v replacing
u, and recalling that the infimum in (3.1) is attained only at principal eigenfunctions, we have

F(g’ Tug) < F(g’ TO(Mg)ug) = F(g’ ﬁg) =

[ ngv” dx]2 3 1
[v]ip A(g)?*

F(g’ V) < F(g’ TO(V)V) =

Mathematics in Engineering Volume 7, Issue 1, 13-34.
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So, it, 1s the unique maximizer of (3.3).
We now prove that @ is convex. Let g;,g, € G, 7 € (0, 1) and set

& =0-1)g +78,

SO g; € @ (a convex set, as seen in Subsection 2.1). For all u € Wg’p (Q); \ {0}, we have by (3.3)

F(ge,u) =2(1 - ‘r)fg;gluf7 dx + ZTngu” dx — [u]ép
= (I =DF (g1, u) + TF (g2, u) < (1 = 1)D(g1) + 7D(g2).
Taking the supremum over u and using (3.3) again,
D(gr) < (I -1)D(g1) + 7D(g2).

To prove that @ is strictly convex, we argue by contradiction, assuming that for some g; # g, as above
and 7€ (0,1)
D(gr) = (1 = )D(g1) + 7P(g2).

Set ii; = ity (i = 1,2) and it, = ii,, for brevity. Then, by (3.3) and the equality above
(1 =1)F(g1, i) + TF(g2,01;) = (1 = 1)F(gy1,011) + 7F (g2, i12).

Recalling that i; is the only maximizer of F(g;, -), the last inequality implies i1, = @i, = ii., as well as

O(g)) = F(g1,itr) = F(ga,ii;) = D(g2).

Therefore we have A(g;) = A(g,) = A. Moreover, i, > 0 is a A-eigenfunction with both weights g, g2,
ie., forall ¢ € W,"(Q)

/lfglitf_IQDd.X: <£Kaﬂ§0> = /lngi:tf—lSDdx'
Q Q

So g1ii?”" = g>i?”" in Q, which in turn, since @, > 0, implies g; = g» a.e. in Q, a contradiction. m|
The next lemma establishes differentiability of ®.

Lemma 3.3. The functional ® is Gateaux differentiable in G, and for all g,h € G
(@'(g),h—g)=2 f (h — g)ity dx,
Q

where i, is the principal eigenfunction normalized as in (3.4).

Proof. First, let (g,) be a sequence in G st g = g, and set for brevity i, = ii,,, it = it,. We claim that
lim f |it, — alP dx = 0. (3.5)
n Q
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Indeed, by normalization we have for all n € N
(@] = (g0,

and the latter is bounded from above, since ®(g) has a maximizer in é So, (i1,) is bounded in W(‘;’p (Q).
By uniform convexity and the compact embedding W,”(Q) < L’(Q), passing to a subsequence we
have &i, — vin W;"(Q), it, — v in L(Q), and &1,(x) — v(x) for a.e. x € Q, as n — oo (in particular
v > 01in Q). By convexity, we see that

liminf [&,]7 > [V

limfg,,ﬁfjdxzfgvpdx.
"oJa Q

By Lemma 3.1, we have ®(g,) — ®(g), so by (3.3) we get

By Lemma 2.4, we have

D(g) = lim F(gy, ity)
< 2lim fg,,ﬁfj dx — lim inf [#,]7”
nJg L
<2 L gv’ dx — [V
=F(g,v) < O(g).

Therefore v is a maximizer of F(g, -) over WS”’ (Q),, hence by uniqueness v = ii. Then we have i1, — i
in L7(Q), which is equivalent to (3.5).
We claim that for all n € N

0)+2 [ (g - 9 dx < 0(g,) < B9 +2 [ (5= )] d (3.6)
Indeed, by (3.3) we have
D(g) +2 L (gn — &)it" dx < D(gy)
= F(g, i,) + 2f9(gn — @ity dx
<D(g) +2 fQ (gn — )ity dx.
Now fix g,h € ?, g # h, and a sequence (7,,) in (0, 1) s.t. 7, — 0. By convexity of @, we have for all
neN

g=g+T(h—-g) €G.

Also, clearly g, = g. By (3.6), setting as usual i, = ii,, and & = ii,, we have for all n € N
21, [ (-9 dv <@g - 0(e) < 21, [ (h- @i a
Q Q
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Dividing by 7, > 0 and recalling (3.5), we get

lim 28+ Tu(h—2) - D) _, f (h— )i dix.
Q

n Tn

Note that 2i7 € L'(Q) c L*(Q)*, and by the arbitrariness of the sequence (,,) we deduce that ® is
Gateaux differentiable at g with

<®@m—@:2fm—@mm,

Q

which concludes the proof. O
We can now prove the main result of this section.

Proof of Theorem 1.1. We already know that ® has a maximizer g over G. Setw = Zﬁg € L'(Q), then
by Lemma 3.3 we have ®’(g) = w. Now we maximize on G the linear functional

g fgwdx.
Q

By Lemma 2.1 (i), there exists g € G s.t. forall g € @

fgwdefngx.

Q Q

f§de>fngx. (3.7)
Q Q

By Lemma 3.2, the functional ® is convex. Therefore, using also Lemma 3.3 and (3.7), we have

In particular we have

D(§) > D(g) + fg (& —@wdx > D(g).

Thus, g € G is as well a maximizer of @ over é which proves (i) since maximizers of ® and minimizers
of A(g) coincide. In addition, by the relation above we have

f(g—g)wx = 0.
Q

We will now prove that ¢ = g, arguing by contradiction. Assume g # g, then by the strict convexity of
® (Lemma 3.2 again) we have

m9>@@+ﬁ@—@mu=ma

against the maximality of 3. So, any maximizer of ® over G actually lies in G, which proves (ii).
Finally, let § € G be any maximizer of @ and set w = 2&‘; € L'(Q). By Lemmas 3.2 and 3.3, for all

gE€ G\ {2} we have
@@>@9>@@+L@—@mm
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hence

fgﬁzdx>fgv?/dx.
Q Q

Equivalently, § is the only maximizer over G of the linear functional above, induced by the function .
By Lemma 2.1 (ii), there exists a nondecreasing map 77 : R — R s.t. in Q
g=iow.
Now we recall (3.4) and the definition of W, and by setting for all > 0
2tP )
A@)*”
while n(¢) = n(0) for all # < 0, we immediately see that : R — R is a nondecreasing map s.t. § = nou,
in Q, thus proving (iii). O

n(e) = i

4. Optimization of the energy functional

In this section we consider problem (1.2) _and prove Theorem 1.2. Let Q, p, s, K, go be as in
Section 1, and A satisfy (h,), (h,). For any g € G, we say that u € W,;”(Q) is a weak solution of (1.2) if
for all € W, " (Q)

<£d@m%ﬂf

h(x,u)pdx = f gpdx.

Q Q

By classical results (see for instance [18] for the fractional p-Laplacian), for all g € G problem (1.2)
has a unique solution u, € W;”(Q). In addition, by Lemma 2.2 we have u, € L*(Q). Such solution
is the unique minimizer in W,”(Q) of the energy functional associated to (1.2). The corresponding
energy, depending on g € G, is given by

V4
g) = ek

+ f [H(x,u,) — gu,| dx,
Q

where for all (x,7) € Q X R we have set
!
H(x,1) = f h(x,7)dr.
0

We are interested in the minimizers of W(g) over G. Equivalently, we may set for all g € é, ue Wg’p Q)

[ul%

E(g,u) = f [gu — H(x,u)]dx — —
Q p
and maximize E(g, -) with respect to u, thus defining

O(g) = sup E(g,u) = E(g, up). 4.1)
ueWy"(Q)

So, as in Section 3, we are led to the maximization problem

max D(g).
na )

First, we prove the continuity of ©.
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Lemma 4.1. The functional ® is sequentially weakly* continuous in G.

Proof. Let (g,) be a sequence in G s.t. g, = g, and denote u, = u,,, u = u,. By (4.1), for all n € N we
have

D(g,) = E(gn, uy)
> E(gn,u)

= E(g,u) + fg (8n — udx
= O(g) + fg (8n — udx.
Passing to the limit as n — oo and using weak™ convergence, we get
limninf D(g,) > D(g) + lirrln fg(g,, —gudx = O(g). 4.2)
From (1.2) with datum g, and solution u,, multiplying by u, again, we get for all n € N
fg [gn = h(x, u) |y, dx = [u, 1. (4.3)

Since ||g,lle < M and by the continuous embedding W,”(Q) < L'(€), we have

| fQ gottn 2] < Cluy i,

with C > 0 independent of n. Also, by (h,) and the continuous embedding Wg’p (Q) — L1(Q), we have

‘ f h(x, )ity dx‘ <C f (it + 4l] dx < Cluy ] + Clu,]%.
Q Q
So (4.3) implies for all n € N
[un]} < Cluy)k + Clu,]%.

Recalling that ¢ < p, we deduce that (u,) is bounded in Wé’p (Q). Passing to a subsequence, we have
u, = vin Wy’ (Q), u, — vin LP(Q), and u,(x) — v(x) for a.e. x € Q, as n — co. By convexity we
have

limn inf [u,]% > [vI%-

limfgnundx:fgvdx. 4.4)
oJa Q

lime(x,un)dx:fH(x,v)dx. 4.5)
n Q Q

By Lemma 2.4 (with r = 1) we find

Finally, we have
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Indeed, applying (h,), Lagrange’s rule, and Holder’s inequality, we get for all n € N

f |H(x,u,) — H(x,v)| dx < cf [1+ 7" + VYl — vidx
Q Q

—1 -1
< Cllay = vlly + Clllea 12" + I et = L,

and the latter tends to 0 as n — oo, by the continuous embeddings of L”(Q) into L'(Q), LI(Q),
respectively, thus proving (4.5).
Next, we start from (4.1) and we apply (4.4) and (4.5):

lim sup ®(g,) = limsup E(g,, u,)

. o [l
< lim f[gnun — H(x,u,)] dx — liminf
n Q n
V1%
< f [gv — H(x,v)]dx - —= = E(g,V),
Q p
and the latter does not exceed ®(g), so
lim sup ®(g,) < O(g). 4.6)
Comparing (4.2) and (4.6), we have ®(g,) — ®(g), which concludes the proof. |

By Lemma 4.1, ® has both a minimizer and a maximizer over G. Next we prove strict convexity:
Lemma 4.2. The functional @ is strictly convex in G.

Proof. The convexity of ® follows as in Lemma 3.2, since ®(g) is the supremum of linear functionals
(in g). To prove strict convexity, we argue by contradiction. Let g1, g, € G be s.t. g1 # g», set for all
7e€(0,1)

gr=(0-1g +18€G,

and assume that for some 7 € (0, 1)

D(gr) = (1 = )D(g1) + 7D(g2).

As usual, set u; = u,, (i = 1,2) and u,; = u,, . By linearity of E(g,u,) in g and (4.1), the relation above
rephrases as
(I =1)E(g1,ur) + TE(g2, ur) = (1 = 7)E(g1, u1) + TE(g2, u).

Recalling that E(g;, u.) < E(g;,u;) (i = 1,2) and the uniqueness of the maximizer in (4.1), we deduce
uy = up = u.. Now test (1.2) with an arbitrary ¢ € W, (Q):

f gipdx = (Lgu., o) + f h(x,u:)pdx = f Q2pdx.
Q Q Q

So we have g; = g, a.e. in Q, a contradiction. Thus, ® is strictly convex. m|

The last property we need is differentiability.
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Lemma 4.3. The functional ® is Gateaux differentiable in G, and for all g,k € G
(@ (). k- g) = f K  gu, d.
Q

Proof. First, let (g,) be a sequence in G s.t. gn SN g, and let u,, = u,,, u = u,. From Lemma 4.1 we
know that ®(g,) tends to O(g), i.e.,
lim E(g,,, u,) = E(8, u). 4.7)
We further claim that
limf |, — u|’ dx = 0. 4.8)
T Ja
Indeed, we recall that for all n € N

[un]’,}.

E(gn’ U,) = f [gnun - H(x, l/ln)] dx —
Q

Therefore, by (4.7), uniform boundedness of (g,), (h,), and the compact embeddings of Wg’p () into
LY(Q), L1(Q), respectively, we have for all n € N

[,

P

<SC+ f [gnttn — H(x,u,)] dx < C + Clllually + uallf) < C + C([u ]k + [ualg)-
Q

Since 1 < g < p, the sequence (u,) is bounded in Wé’p (Q). Passing to a subsequence, we have u, — v
in W;7(Q), u, — v in LP(Q), and u,(x) — v(x) for a.e. x € Q, as n — co. Therefore, by convexity

lim inf[u, 1% > [v].
Also, by Lemma 2.4 and continuous embeddings we have
lim f [gntt, — H(x,u,)] dx = f [gv — H(x,v)] dx.
noJa Q

So, recalling (4.7), we get
E(g,u) =limE(g,,u,) < E(g,v),

which implies u = v by uniqueness of the maximizer in (4.1). So u, — u in L?(Q), which yields (4.8).
In addition, for all n € N we have

D(g) + j; (&gn —Qudx < O(g,) < D(g) + fg (8n — Quy dx. 4.9)

Indeed, by definition of ®(g) we have
D(g) + f (8n — Qudx = E(gyn, u) < D(g,)
Q

= E(g,u,) + fg (&n — Qu,dx < O(g) + fg (gn — &uy dx.

Mathematics in Engineering Volume 7, Issue 1, 13-34.



31

Now fix k € é \ {g} and a sequence (7,,) in (0, 1) s.t. 7, — 0 as n — oco. Set
gn=g+Ti(k—g €G,

so that g, = g. By (4.9) with such choice of g,, we have for all n € N

f(k—g)udx< O(g+ 1k —8) ~ 0(g) _ f(k—g)undx.
Q Q

Tn

Passing to the limit for n — oo, and noting that by (4.8) we have in particular u, — u in L'(Q), we get

lim 208 * Tulk — 8)) = D(g) _ f(k _ oudx.
Q

n Tl’l

By arbitrariness of (r,,), and noting that u € L'(Q) ¢ L*(Q)*, we see that ® is Gateaux differentiable
at g with

(@'(g).k—g) = f(k - gudx,
Q
which concludes the proof. O
We can now prove our optimization result, with a similar argument as in Section 3.

Proof of Theorem 1.2. By Lemma 4.1 and sequential weak* compactness of G, there exists g € G s.t.
forallge G

D(g) > D(g).
Set it = uz € W;"(Q), then by Lemma 4.3 we have for all k € G\ (3}

UV@Lk—@=“£%—gmdx

Since i € L'(Q), by Lemma 2.1 (i) there exists g € G s.t. forall g € G
fgﬁdx > fgﬁdx,
Q Q

f gidx > | gidx. (4.10)

By convexity of @ (Lemma 4.2) and (4.10), we have

in particular

@@>@@+lﬁ—@m&>@@

Therefore, ¢ € G is a maximizer of ® over G, which proves (i). In fact we have ¢ = g, otherwise by
strict convexity (Lemma 4.2 again) and (4.10) we would have

@@>@@+lﬁ—@MM>M9
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against maximality of g. Thus, any maximizer of ® over G actually lies in G, which proves (ii).
Finally, let § € G be a maximizer of ® and set it = u; € W;"(Q). As we have seen before, § is the only

g fgﬁdx,
Q

hence by Lemma 2.1 (ii) there exists a nondecreasing map 7 : R — R s.t. § = npo &t in Q, thus
proving (iii). m|

maximizer in G for the linear functional

Remark 4.4. Theorem 1.2 is analogous to Theorem 1.1 above, while in fact the problem is easier since
we do not need to consider normalization to ensure uniqueness, unlike in problem (1.1). On the other
hand, in this case we have no information on the sign of the solution u,.
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