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1. Introduction

Let BR be the Euclidean ball in R2 centered at the origin with radius R > 0. We aim in this work at
studying quantitative propagation of smallness for solutions to the two-dimensional elliptic equation
in divergence form

∇ · (A(z)∇u(z)) = 0 in B4, (1.1)

or solutions to the equation in nondivergence form∑2

j,k=1
a jk(z)∂x j∂xku(z) = 0 in B4. (1.2)

Here z = (x1, x2) ∈ R2, and the real symmetric matrix A(z) = (a jk(z))2×2 is elliptic, that is, there is some
constant Λ > 1 such that

Λ−1|ξ|2 ≤
∑2

j,k=1
a jk(z)ξ jξk ≤ Λ|ξ|2 for any ξ ∈ R2, z ∈ B4. (1.3)
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When focusing on the properties of the gradient ∇u for u solving (1.1), we have to suppose that the
leading coefficients are Hölder continuous, that is, there is some constant γ ∈ (0, 1] such that

|a jk(z) − a jk(z′)| ≤ Λ|z − z′|γ for any j, k ∈ {1, 2}, z, z′ ∈ B4. (1.4)

We recall that solutions to (1.1) are those functions lying H1
loc(B4) satisfying (1.1) in the sense

of distributions, and solutions to (1.2) are those functions lying H2
loc(B4) satisfying (1.2) almost

everywhere.
The goal of the present note is to show the propagation of smallness for solutions from any ω ⊂ B1

lying on a line with Hδ(ω) > 0, and propagation of smallness for gradients from any Ω ⊂ B1 with
Hδ(Ω) > 0, for any fixed δ > 0. Here we denote by Hδ the δ-dimensional Hausdorff content, that is,
for a subset E ⊂ R2,

Hδ(E) := inf
{∑

j∈N
rδj : E ⊂ ∪ j(z j + Br j), z j ∈ R

2}.*
The Hausdorff content is an outer measure that is always finite for bounded sets and smaller than the
Hausdorff measure. It is worth noting that Hδ(E) = 0 if and only if the δ-dimensional Hausdorff
measure of E vanishes; see for instance [23, Lemma 4.6].

Theorem 1.1. Let δ > 0 and ω ⊂ B1 ∩ l0 satisfy Hδ(ω) > 0 for some line l0 in R2 with the normal
vector e0. There exist some constants C and α > 0 depending only on Λ, δ andHδ(ω) such that for any
solution u of (1.1) subject to (1.3) with A∇u · e0 = 0 on B1 ∩ l0, we have

supB1
|u| ≤ C supω |u|

α supB2
|u|1−α.

Theorem 1.2. Let δ > 0 and Ω ⊂ B1 satisfy Hδ(Ω) > 0. There exist some constants C and α > 0
depending only on Λ, δ, γ and Hδ(Ω) such that for any solution u of (1.1) subject to (1.3) and (1.4),
we have

supB1
|∇u| ≤ C supΩ |∇u|α supB2

|∇u|1−α.

The same estimate holds for any u solving (1.2) subject to (1.3) only.

The above results are related to the unique continuation property for two-dimensional elliptic
equations with bounded measurable coefficients. The properties of equations in nondivergence and
divergence forms were proved in [8] (see also [6]) and [5], respectively. By contrast, it has been
known since [24, 26] that if the coefficients are Hölder continuous but not Lipschitz, then one is able
to construct a nontrivial solution, which vanishes on an open subset, to elliptic equations in either
non-divergence or divergence forms with dimensions greater than three.

The case in the plane is special owing to the theory of quasiregular mappings and the representation
theorem; see [3, 8, 9]. It reduces the analysis from solutions (or gradients) of elliptic equations to
holomorphic functions. The main idea of the proof of propagation of smallness for holomorphic
functions (see Proposition 2.3 below) is based on the complex analysis arguments used in [1, 18].
Two basic observations are that the ratio of a holomorphic function F and the polynomial sharing

*In some standard literature, such as [23], the δ-dimensional Hausdorff content is commonly denoted by Hδ
∞.
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the same zeros as F is holomorphic and non-vanishing, and the logarithm of modulus of a non-
vanishing holomorphic function is harmonic. The properties of harmonic functions and the Remez-
type inequality for holomorphic polynomials (in the version obtained in [10, 12]) then allow us to
derive propagation of smallness from wild sets. We also point out that once their gradients are
well-defined, the number of critical points of solutions can be computed by counting the zeros of
holomorphic functions, which allows for quantitative estimates of the size of the critical set. For the
smooth coefficients case, the computation can be found in [4,28], while discussions on the general case
are presented in [5].

Let us briefly discuss the higher-dimensional case. Consider the solution u to the elliptic equation
∇ · (A∇u) = 0 with Lipschitz coefficients in some domain of Rd for d ≥ 3. It was proved in [19] that
the propagation of smallness for u holds from sets of positive (d − 1 + δ)-Hausdorff content for any
δ > 0. The result is sharp in the sense that zeros of harmonic functions in Rd may have positive (d−1)-
Hausdorff content. The propagation of smallness for |∇u| from sets of positive (d − 1 − ε)-Hausdorff
content for some (small) ε > 0 was also obtained in [19]. The size of zeros of |∇u| has been studied
in certain settings since works such as [15, 16]. It is now known from [25] that this zero set has finite
(d − 2)-Hausdorff measure. On account of this, [19] further conjectured that the propagation result for
|∇u| should hold from sets of positive (d − 2 + δ)-Hausdorff content for any δ > 0. Some partial results
in the analytic setting can be found in [22]. One may refer to the review [20, Sections 7 and 8] for
further discussion in this direction.

In the two-dimensional setting, Theorem 1.2 provides propagation of smallness for gradients of
solutions to both divergence form equations with Hölder continuous coefficients and nondivergence
form equations with measurable coefficients, from sets of positive δ-dimensional Hausdorff content
for any δ > 0. We note that the result of Theorem 1.2 for divergence form equations with Lipschitz
coefficients has been obtained in the first version of this paper and in [11], which relied on the findings
in [4] or the utilization of isothermal coordinates.

The outline of the article is as follows: We prove Theorem 1.1 in Section 2 and Theorem 1.2 in
Section 3. Some remarks on applications of Theorem 1.1 to spectral inequalities and null controllability
of heat equations with rough coefficients are presented in Appendix.

In the rest of the article, the constant C > 0, which will appear in the proofs below and depend only
on Λ, δ, γ andHδ(ω) (orHδ(Ω)), may be changed line by line.

2. Propagation of smallness with rough coefficients

This section is devoted to the proof of Theorem 1.1. We first review the notion of A-harmonic
conjugate (or sometimes called stream function); one may refer to [3, 27]. Consider the solution u(z)
of (1.1) subject to (1.3), and identify z = x1 + ix2 for x1, x2 ∈ R. The A-harmonic conjugate v of u is
defined by

∇v =
( 0 −1

1 0
)

A∇u, (2.1)

so that v verifies the following elliptic equation,

∇ ·
(
det(A)−1A∇v

)
= ∇ ·

(( 0 −1
1 0

)
∇u

)
= 0,

Mathematics in Engineering Volume 7, Issue 1, 1–12.



4

where the fact that det(A)−1A = det(A)−1AT = −
( 0 −1

1 0
)

A−1 ( 0 −1
1 0

)
was used. Now that v ∈ H1

loc(B4) is
unique up to an additive constant, we may additionally assume that v(z0) = 0 for some z0 ∈ B1. Define
the function f : B4 → C by

f (z) := u(z) + iv(z).

By definition and (1.3), we have

|D f |2 = |∇u|2 + |A∇u|2 ≤ (Λ + Λ−1)A∇u · ∇u

= (Λ + Λ−1)
( 0 1
−1 0

)
∇v · ∇u = (Λ + Λ−1)J f ,

for the norm |D f |2 := |∇u|2 + |∇v|2 and the Jacobian J f := ∂x1u ∂x2v− ∂x2u ∂x1v. We are now positioned
to recall the concept of quasiregular mapping.

Definition 2.1. Let U be an open set in C and K ≥ 1 be a constant. A complex-valued function
f ∈ H1

loc(U) satisfying |D f |2 ≤ (K + K−1)J f almost everywhere in U is said to be a K-quasiregular
mapping on U.

The following representation theorem plays a pivotal role in two-dimensional elliptic theory, which
was first obtained in [8, §2 Representation Theorem] and [9, Theorem 4.4]. For our intended
applications, we refer to [27, II 2.1] or [3, Corollary 5.5.3], and formulate it as follows, which is
adequate for our needs.

Lemma 2.2. Let the constant K ≥ 1. Any K-quasiregular mapping f : B4 → C can be written as

f (z) = F ◦ χ(z).

Here F is holomorphic in B4, and χ : B4 → B4, with χ(z0) = 0, is a K-quasiconformal homeomorphism
satisfying

M−1 |z − z′|1/β ≤ |χ(z) − χ(z′)| ≤ M |z − z′|β for any z, z′ ∈ B4, (2.2)

where the exponent β = 1/K ∈ (0, 1] and the constant M > 1 depends only on K.

Let us turn to the main result of this section. It gives the corresponding quantitative propagation of
smallness for holomorphic functions.

Proposition 2.3. Let θ > 0, R ∈ (0, 1/4) and G ⊂ BR satisfy Hθ(G) > 0. There exists some constant
C > 0 depending only on θ andHθ(G) such that for any holomorphic function F in B5R, we have

supBR
|F| ≤ supG |F|

1
1+C supB4R

|F|
C

1+C .

Proof. Regarding to the holomorphic function F(ζ) for ζ ∈ B4R, we assume that N ∈ N and ζ1, . . . , ζN

are the zeros of F in B2R, listed with multiplicities, and ζ0 ∈ BR satisfies |F(ζ0)| = supBR
|F(ζ)|. Consider

the polynomial P(ζ) sharing the same zeros as F(ζ) in B2R so that their ratio h(ζ) is holomorphic and
non-vanishing in B2R; more precisely,

P(ζ) :=
∏N

k=1
(ζ − ζk), h(ζ) :=

F(ζ)
P(ζ)

.
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It follows that log |h(ζ)| is harmonic in B2R, and

|h(ζ0)| ≥ supBR
|F|. (2.3)

Moreover, by the maximum modulus principle, we have

supB4R
|h| ≤ sup∂B4R

|F| sup∂B4R
|P−1| ≤ CN supB4R

|F|. (2.4)

Applying the Harnack inequality to supB4R
log |h| − log |h(ζ)| yields that

supB4R
log |h| − infBR log |h| ≤ C supB4R

log |h| −C log |h(ζ0)|,

which is equivalent to

|h(ζ0)|C supB4R
|h| ≤ supB4R

|h|C infBR |h|.

Combining this with (2.3) and (2.4) implies that

supBR
|F|C supB4R

|h| ≤ CN supB4R
|F|C infBR |h|. (2.5)

Recall the Remez-type inequality (see [12, Theorem 4.3] or [13, Theorem 4.1]) for holomorphic
polynomials of degree N that

supBR
|P| ≤ (20/Hθ(G))N/θ supG |P|. (2.6)

Multiplying the inequalities (2.5) and (2.6), we deduce

supBR
|F|1+C ≤ CN supB4R

|F|C infBR |h| supG |P|

≤ CN supB4R
|F|C supG |F|.

Since Jensen’s formula shows that the number of zeros of F in B2R satisfies

N ≤ C supB4R
log (|F|/|F(ζ0)|) ,

we derive the desired result. �

Corollary 2.4. Let δ > 0 and Ω ⊂ B1 satisfy Hδ(Ω) > 0. There exist some constants C, α > 0
depending only on Λ, δ and Hδ(Ω) such that for any solution u of (1.1) subject to (1.3) with its A-
harmonic conjugate v satisfying v(z0) = 0 for some z0 ∈ B1, we have

supB1
|u| ≤ C supΩ |u + iv|α supB2

|u|1−α.

Proof. The derivation is reduced to the analysis of holomorphic functions with the aid of Lemma 2.2.
With the complex functions F and χ provided in Lemma 2.2, for z = χ−1(ζ) ∈ B4, we have

F(ζ) = f ◦ χ−1(ζ) = u ◦ χ−1(ζ) + iv ◦ χ−1(ζ).
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Without loss of generality, by the property (2.2) of χ, we may assume that χ(B2) ⊂ B2, and
χ(Br), χ(Ω) ⊂ BR, where the constants R, r ∈ (0, 1/4) depend only on Λ. Furthermore, it follows
from (2.2) that there is some C∗ > 0 depending only on Λ and δ such that

Hδ(Ω) ≤ C∗Hδβ(χ(Ω)).

Applying Proposition 2.3 with θ = δβ and G = χ(Ω) yields that

supBr
| f | ≤ C supΩ | f |

1
1+C supχ(B2)

(
|u ◦ χ−1| + |v ◦ χ−1|

) C
1+C .

Since u ◦ χ−1(ζ) + iv ◦ χ−1(ζ) is holomorphic and v ◦ χ−1 = 0 at the point χ(z0) ∈ χ(B1), we obtain from
the Cauchy-Riemann equations and the gradient estimate for the harmonic function u ◦ χ−1(ζ) that

supχ(B1) |v ◦ χ
−1| ≤ C supχ(B1) |∇ζ(u ◦ χ

−1)| ≤ C supχ(B2) |u ◦ χ
−1|.

Gathering the above two estimates, we obtain

supBr
|u + iv| ≤ C supΩ |u + iv|

1
1+C supB2

|u|
C

1+C .

We then conclude the desired result by a covering argument. �

Theorem 1.1 is then a direct consequence of the above result.

Proof of Theorem 1.1. We may assume that the A-harmonic conjugate v of u satisfies v(z0) = 0 for
some z0 ∈ B1 ∩ l0. Since

∇v · e⊥0 =
( 0 −1

1 0
)

A∇u · e⊥0 = 0 on B1 ∩ l0,

we deduce that v = 0 on B1 ∩ l0. Corollary 2.4 then implies the result as claimed. �

3. Propagation of smallness for gradients

This section is devoted to the proof of Theorem 1.2. In general, the supremum of |∇u| for u
solving (1.1) subject to (1.3) does not make sense, especially over sets of Hausdorff dimension less than
one. We thus have to strengthen the regularity assumption on the coefficients of (1.1). In particular, if
the leading coefficients is Hölder continuous, then the classical Schauder theory says that the gradients
of the solutions to elliptic equations in divergence form are Hölder continuous. In order to establish
the propagation of smallness for gradients of u solving (1.1) subject to (1.3) and (1.4), we will use a
perturbation argument inspired by the Schauder theory. The proof presented in Subsection 3.1 below
is essentially based on Proposition 2.3, the propagation of smallness for holomorphic functions.

As for a solution of (1.2) subject to (1.3), it is straightforward to check that its gradient forms a
quasiregular mapping (see Subsection 3.2 below); one may also refer to [14, §12.2] and [27, § II.1].
It then follows from the same analysis of holomorphic functions as in the previous section that
Theorem 1.2 holds for solutions to (1.2) with rough coefficients.
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3.1. Elliptic equations in divergence form

We are in a position to present the proof of Theorem 1.2 for the solution u of (1.1) subject to (1.3)
and (1.4).

Recall that v is the A-harmonic conjugate of u and f = u + iv. The functions u and v solve the
elliptic equations (1.1) and (2.1), respectively. Without loss of generality, we may assume that

supB2
|∇ f | = 1.

In the light of the Hölder condition (1.4), the Schauder estimate (see for instance [14, Corollary 6.3])
implies that

‖∇ f ‖Cγ(B3/2) ≤ C. (3.1)

Let η ∈ (0, 1/4) be a constant to be determined. The unit ball B1 in the plane can be covered by Nη

balls of radius η centered within B1, for some integer Nη satisfying 4/η2 − 1 ≤ Nη ≤ 4/η2. Therefore
there exists a ball Bη(z∗) centered at some z∗ ∈ B1 such that

Hδ(Bη(z∗) ∩Ω) ≥ Hδ(Ω)/Nη ≥ η
2Hδ(Ω)/4. (3.2)

By rotating and dilating the coordinates, we can assume that A(z∗) = I2×2. Consequently, by the Hölder
condition (1.4), we know that for any ξ ∈ R2 and z ∈ B2η(z∗),

(1 + CΛη
γ)−1|ξ|2 ≤ A(z)ξ · ξ ≤ (1 + CΛη

γ)|ξ|2, (3.3)

where the constant CΛ > 1 depends only on Λ. We are going to derive local estimates in B2η(z∗). Let
ẑ ∈ Bη(z∗) ∩Ω be fixed and let ε ∈ (0, η] so that Bε(ẑ) ⊂ B2η(z∗). By (3.1), we have

supBε(ẑ) | f − f (ẑ)| ≤ ε supBε(ẑ) |∇ f | ≤ Cε|∇ f (ẑ)| + Cε1+γ.

Applying Lemma 2.2 in B2η(z∗), we have the representation formula f = F ◦ χ for a holomorphic
function F and a quasiconformal homeomorphism χ such that χ(z∗) = z∗. In particular, the application
with the elliptic condition (3.3) yields a constant β := (1 + CΛη

γ)−1 ensuring the property (2.2). Hence,
for any ε ∈ (0, η],

supBrε (χ(ẑ)) |F − F ◦ χ(ẑ)| ≤ C supBε(ẑ) | f − f (ẑ)|,

where we set rε := cε1/β for some constant c ∈ (0, 1) depending only on Λ. By the gradient estimate
for the holomorphic function, we have

|∇F(χ(ẑ))| ≤ Cr−1
ε supBrε (χ(ẑ)) |F − F ◦ χ(ẑ)|.

Gathering the above three estimates, we obtain

|∇F(χ(ẑ))| ≤ Cε1−1/β|∇ f (ẑ)| + Cε1+γ−1/β.

Since 1 + γ/2 − 1/β = γ/2 − CΛη
γ, we choose η ∈ (0, 1/4) such that CΛη

γ = γ/2 which implies that
1 − 1/β = −γ/2, and η depends only on Λ and γ. Then, taking ε := min{η, supΩ |∇ f |}, we deduce that
for γ′ := min{1 − γ/2, γ/2},

|∇F(χ(ẑ))| ≤ Cε−γ/2|∇ f (ẑ)| + Cεγ/2 ≤ C supΩ |∇ f |γ
′

.
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Now that ẑ ∈ Bη(z∗) ∩ Ω is arbitrary and χ(z∗) = z∗, armed with (3.2), applying Proposition 2.3 to ∇F
with G = χ(Bη(z∗) ∩Ω) implies that, for some R,C > 0 depending only on Λ and η,

supBR(z∗) |∇F| ≤ supχ(Bη(z∗)∩Ω) |∇F|
1

1+C ≤ C supΩ |∇ f |
γ′

1+C .

In view of the gradient estimate for f and (2.2) with χ(z∗) = z∗, we have

supBr(z∗) |∇ f | ≤ C supB2r(z∗) | f − f (z∗)|
≤ C supBR(z∗) |F − F(z∗)| ≤ C supBR(z∗) |∇F|,

where the constant r ∈ (0, 1
2 ) depends only on Λ and γ. We thus conclude that

supBr(z∗) |∇ f | ≤ C supΩ |∇ f |
γ′

1+C .

Rescaling back and recalling f = u + iv, as well as the definition of v, we arrive at

supBr(z∗) |∇u| ≤ C supΩ(|∇u| + |∇v|)
γ′

1+C supB2
(|∇u| + |∇v|)

1+C−γ′
1+C

≤ C supΩ |∇u|
γ′

1+C supB2
|∇u|

1+C−γ′
1+C .

(3.4)

The conclusion follows from a covering argument. More precisely, we can cover B1 by a collection
of balls {Br(zk)}Nk=0, where we set z0 := z∗, each zk ∈ B1, and consecutive balls overlap such that
|Br(zk−1) ∩ Br(zk)| = |Br|/4 for 1 ≤ k ≤ N. Note that N ∈ Z+ depends only on r, and hence only on Λ

and γ. Given the estimate of supBr(z0) |∇u| from (3.4), we can propagate this bound through the chain of
overlapping balls. For each 1 ≤ k ≤ N, the same type of estimate as (3.4) holds as follows:

supBr(zk) |∇u| ≤ C supBr(zk−1)∩Br(zk) |∇u|
1

1+C supB2
|∇u|

C
1+C ,

for some C > 0. This iterative process ultimately allows us to control |∇u(z)| for any z ∈ B1, thereby
establishing the desired result.

3.2. Elliptic equations in nondivergence form

Let us start by reviewing some basic facts from [14, §12.2] (see also [27, § II.1]). Consider the
solution u(z) of (1.2) subject to (1.3) with z = x1 + ix2 for x1, x2 ∈ R. Define

p(z) := ∂x1u(z), q(z) := ∂x2u(z), g(z) := q(z) + ip(z).

Since ∂x1q = ∂x2 p, multiplying (1.2) by ∂x2q and ∂x1 p yields that

a11(∂x1q)2 + 2a12∂x1q ∂x2q + a22(∂x2q)2 = a11(∂x1q ∂x2 p − ∂x2q ∂x1 p),
a11(∂x1 p)2 + 2a12∂x1 p ∂x2 p + a22(∂x2 p)2 = a22(∂x1q ∂x2 p − ∂x2q ∂x1 p).

Due to (1.3), we have |∂x1g|
2 + |∂x2g|

2 ≤ (1 +Λ2)Jg for the Jacobian Jg := ∂x1q ∂x2 p−∂x2q ∂x1 p. It turns
out that g ∈ H1

loc(B4) is quasiregular. By the representation theorem (Lemma 2.2), we have

g(z) = F ◦ χ(z),

Mathematics in Engineering Volume 7, Issue 1, 1–12.
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where F is holomorphic in B4, and χ : B4 → B4 is a homeomorphism satisfying χ(0) = 0 and (2.2). The
argument presented in Section 2 can be thus applied in this setting. Indeed, in view of Proposition 2.3,
we have

supBR
|F| ≤ supχ(Ω) |F|

1
1+C supB4R

|F|
C

1+C .

Now that F = (∂x1u) ◦ χ−1 + i(∂x2u) ◦ χ−1, we are able to conclude Theorem 1.2 for solutions of (1.2)
subject to (1.3).

4. Conclusions

We investigated several quantitative results on the propagation of smallness for solutions to two-
dimensional elliptic equations, where the small sets may have positive δ-dimensional Hausdorff content
for any δ > 0.

Our analysis began with holomorphic functions, leveraging the theory of quasiregular mappings,
which connects two-dimensional elliptic equations to holomorphic functions. For equations in
divergence form with Hölder continuous leading coefficients, we employed a perturbation argument to
quantitatively estimate the gradient of solutions from small sets. We also established the same estimate
for equations in non-divergence form even when the coefficients are merely bounded and measurable.

Under additional structural assumptions on both the solution and the small set, we derived a
propagation of smallness result for the solution itself. This analysis led to applications in control
theory. Specifically, we obtained a one-dimensional spectral inequality and controllability results for
heat equations with bounded measurable coefficients. Notably, these results apply to control sets with
positive δ-dimensional Hausdorff content for any δ > 0.
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Appendix

Spectral inequality and null controllability

We briefly discuss the application of propagation of smallness, Theorem 1.1, to spectral inequalities
and null controllability of heat equations with bounded measurable coefficients.

Let T be the periodic unit interval, and the function a : T → R be measurable and satisfy Λ−1 ≤

a(x) ≤ Λ in T for some constant Λ > 1. Consider the one-dimensional eigenvalue problem

−∂x (a(x) ∂xek(x)) = λkek(x) in T.

Then the family of eigenfunctions {ek(x)}k∈N forms an orthonormal basis of L2(T), and the family of
eigenvalues {λk}k∈N satisfies λk ≥ 0 for any k ∈ N and λk → ∞ as k → ∞. Denote by Πλ the orthogonal
projection onto the space spanned by {ek : λk ≤ λ}. We have the following spectral inequality.

Proposition A.1. Let δ > 0 and ω ⊂ T satisfyHδ(ω) > 0. There exists some constant C > 0 depending
only on Λ, δ andHδ(ω) such that for any φ ∈ L2(T) and any λ ≥ 1, we have

supT |Πλφ| ≤ eC
√
λ supω |Πλφ|.

Proof. We may write Πλφ(x) =
∑
λk≤λ φkek(x) for φk ∈ R. The function

u(x, y) :=
∑

λk≤λ
φkek(x) cosh(

√
λky), (x, y) ∈ T × (−4, 4),

satisfies ∂yu(x, 0) = 0 and u(x, 0) = Πλφ(x) for x ∈ T, and

∂x (a(x) ∂xu) + ∂2
yu = 0 in T × (−4, 4).
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Applying Theorem 1.1 to u yields that for some constants C, α > 0,

supT |Πλφ| ≤ supT×(−1,1) |u| ≤ C supω |Πλφ|
α supT×(−2,2) |u|

1−α.

By the Sobolev inequality and the fact that

‖∂xek‖
2
L2(T) ≤ Λλk‖ek‖

2
L2(T),

we have

supT×(−2,2) |u| ≤ C‖u‖L∞y ((−2,2),H1
x (T)) ≤ eC

√
λ‖Πλφ‖L2(T).

We then conclude the proof by gathering the above two estimates. �

The problem of null controllability of multi-dimensional heat equations with Lipschitz coefficients
from open control sets has been intensively developed since [17, 21]. The null controllability of one-
dimensional heat equations with rough coefficients from open sets was proved in [1], and the result
from sets of positive Lebesgue measure was given in [2]. Proposition A.1 would imply the result from
the control set ω satisfyingHδ(ω) > 0 for any fixed δ > 0.

Proposition A.2. Let T > 0, δ > 0, and ω be a closed subset of T withHδ(ω) > 0. For any w0 ∈ L2(T),
there exists a Borel measure m(t, x) supported in (0,T ) × T such that the solution w(t, x) to

∂tw(t, x) = ∂x (a(x) ∂xw(t, x)) + m(t, x)1ω in (0,T ) × T,

associated with the initial data w(0, ·) = w0 in T, satisfies w(T, ·) = 0 in T.

The proof of the above result consists in the spectral inequality (Proposition A.1), the decay property
of the semigroup et∂x(a(x)∂x·), and the duality argument (see for instance [7, Section 5]). Since it is now
quite standard to combine these ingredients, we omit the proof; one may refer to [7] for details. One
is also able to generalize the null controllability result to more general one-dimensional heat equations
(with lower order terms) associated with certain boundary conditions from space-time control sets;
see [1, 7].
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