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Abstract: We consider a low Reynolds number artificial swimmer that consists of an active arm
followed by N passive springs separated by spheres. This setup generalizes an approach proposed in
Montino and DeSimone, Eur. Phys. J. E, vol. 38, 2015. We further study the limit as the number of
springs tends to infinity and the parameters are scaled conveniently, and provide a rigorous proof of
the convergence of the discrete model to the continuous one. Several numerical experiments show the
performances of the displacement in terms of the frequency or the amplitude of the oscillation of the
active arm.
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1. Introduction

As stated by Purcell’s Scallop Theorem [16], reciprocal shape changes in a swimmer never leads
to a net displacement of the system in a low Reynolds number setting. Indeed, a microscopic scallop
opening and closing its valve would be completely unable to swim, due to negligible inertial forces in
this situation [8]. Several simple mechanisms have then been introduced (see e.g., [11]) to overcome
this obstruction, most of them using two degrees of freedom in order to create closed curves with
nonzero surface in the shape space of the swimmer.

One of the simplest mechanisms introduced in the literature is probably Najafi and Golestanian’s
three-sphere swimmer [14], which consists in three spheres linked by two extensible arms of negligible
thickness, moving along a single direction. This model is much simpler than Purcell’s original three-
link swimmer [16], or Purcell’s rotator [10], as there is no rotational motion involved. This swimmer
has two degrees of freedom, activated periodically in time with a phase lag in order to produce the
loop. Both Purcell’s and Najafi and Golestanian’s swimmers have been extensively studied in [1–5,9].
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As an extension of this three-sphere swimmer, Montino and DeSimone then introduced a three-
sphere swimmer with a passive elastic arm [13]. This adaptation has only one degree of freedom,
which is the length of the non-elastic arm. Thanks to a resonant effect at natural frequency of the
system (which depends on the viscosity of the fluid, the masses and the spring constant), an out-of-
phase oscillation of the spring is created, which ultimately leads to a net motion of the swimmer.
However, at very low or very high frequency, no net motion is possible after a stroke. Having this
passive elastic arm also confines net motion to only one direction on the swimming axis, swimming
direction is thus limited, and the swimmer can only move with its passive arm ahead. This was also
denoted by Passov [15], when looking at Purcell’s three-link swimmer with a passive elastic tail.

In this paper, Montino and DeSimone’s swimmer is extended by adding a large number N of passive
elastic arms to their one-dimensional swimmer, thus turning it into an (N + 2)-sphere swimmer. This
simple swimmer then leads to a limit model with an elastic tail resembling a one-dimensional flagella
along which compressive waves propagate.

The paper is organized as follows. In Section 2, we describe the N-spring swimmer, and its
equations of motion, before looking at the limit model, when the number of springs tends to infinity,
in Section 2.3. We prove the convergence of the discrete model to the continuous one in Section 3,
using the fact that it is found to be a non-conventional mass lumping discretization of the limit model.
Section 4 introduces two formulas in order to compute the net displacement of both swimmers,
discrete and continuous. Finally, in Section 5 we study numerically the movement and displacement
of our swimmer depending on various system parameters, in order to find optimal swimming
parameters to obtain the largest net displacement possible.

2. Problem formulation and study: N-spring discrete model and its continuous limit

The swimmer studied in this paper is an extension of the three-sphere swimmer with a single passive
elastic arm [13], to a swimmer with N + 2 spheres and N passive elastic arms, presented in Figure 1.
The first arm of this artificial swimmer is a rod of negligible thickness, surrounded by two spheres
of radius a1. This arm has a prescribed periodic movement around a length at rest L, of the form
L0(t) = L(1 + ε̃ cos(ωt)) where ε̃ ∈ [0, 1) is a non-dimensional parameter. ε̃ < 1 so that the active
arm always has a positive length. We define ε as ε = Lε̃. The rest of the swimmer has a total length
at rest Λ that does not depend on N. In order to keep a constant length and have an elastic force that
does not depend on N, all the other spheres have a radius a = ã/N, the springs have each a rest length
h = Λ/N � a, and an elastic constant k = k̃N, with k̃ and ã prescribed and independent of N.

If the swimmer is able to control the length of the front rod with the prescribed periodic function
L0(t), the length of the N remaining springs are governed by the balance of viscous and elastic forces.
At any time t, the length L j(t) of the j-th arm, j ≥ 1 is written as L j(t) =

` j(t)
N + h. Let us then denote by

µ the fluid viscosity, f F
j and f R

j the hydrodynamic and elastic forces on the j-th sphere. We also call
x j the coordinate of its center, so that V j = ẋ j is the velocity of the j-th sphere. The geometry of the
system entails L̇ j = V j+2 − V j+1 for all j = 0, . . . , N.

In order to effectively swim, our N-spring swimmer undergoes periodic harmonic but non-reversible
deformations, just like the original swimmers from Najafi and Golestanian [14], and Montino and
DeSimone [13]. However, due to the geometry, we expect a wave to propagate along the tail. This is
the behaviour of this wave that we aim at describing in the remainder of the paper.
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Figure 1. Low Reynolds number swimmer with N elastic arms.

2.1. First approximations

In a first approximation, we consider the case where the hydrodynamic force on the j-th sphere only
depends on the speed of that same sphere, and neglect interactions between spheres. This leads to the
following set of equations on (fluid) forces and velocities: f F

j = −6πµaV j for j ≥ 3,

f F
j = −6πµa1V j for j = 1, 2.

(2.1)

The elastic forces on each sphere can be written as:

f R
2 = k(L1 − h) = k

`1

N
f R

j = k
(
(L j−1 − h) − (L j−2 − h)

)
,

= k
` j−1 − ` j−2

N
for 3 ≤ j ≤ N + 1

f R
N+2 = −k(LN − h) = −k

`N

N
.

(2.2)

At low Reynolds number, inertial forces are negligible. This, together with the fact that the artificial
swimmer is self-propelled, gives:  f F

1 + · · · + f F
N+2 = 0,

f R
j + f F

j = 0 for j ≥ 3.
(2.3)

Using (2.1)–(2.3), we obtain the expression of fluid forces on each sphere with respect to the length
of the adjacent arms. In particular, for the first two spheres: f F

1 − f F
2 = 6πµa1(V2 − V1) = 6πµa1L̇0,

f F
1 + f F

2 = f R
3 + · · · + f R

N+2 = −k`1/N,
(2.4)
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which finally leads to:  f F
1 = 1

2 (+6πµa1L̇0 − k̃`1),

f F
2 = 1

2 (−6πµa1L̇0 − k̃`1).
(2.5)

2.2. Movement of the spheres

In order to write the equations governing the system, we use Eqs (2.1)–(2.5) to find ODEs on the
elongation l j(t) of the j-th arm, for j ≥ 1. We first consider the case j ≥ 2. Writing L̇ j = V j+2 − V j+1 =

1
6πµa ( f R

j+2 − f R
j+1), one deduces

˙̀ j = Λ2K
` j−1 − 2` j + ` j+1

h2 , 2 ≤ j ≤ N, (2.6)

where we have added a fictitious variable

`N+1 = 0 , (2.7)

and with K =
k̃

6πµã
.

To determine the equation for the first elastic arm, we use the fact that L̇1 = V3 − V2 = −
1

6πµa
f F
3 +

1
6πµa1

f F
2 to obtain, using Eqs (2.2) and (2.5):

h ˙̀1 = Λ2K
`2 − `1

h
−

ΛKã
2a1

`1 −
Λ

2
L̇0. (2.8)

We can easily verify that the ODE Problem (2.6), (2.7), (2.8) is well-posed using Cauchy-Lipschitz
theorem, and provides a unique solution (` j(t))1≤ j≤N+1 for any initial configuration.

Seeking for periodic (complex) solutions to Eq (2.6) leads to

` j(t) = (αdγ
j−1
+ + βdγ

j−1
− )eiωt, (2.9)

where αd, βd ∈ C and

γ± =
i/(KωN2) + 2 ±

√
∆

2
(2.10)

and ∆ =
−1

K2
ωN4 +

4i
KωN2 , where Kω =

K
ω

=
k̃

6πµãω
is an adimensional number. Notice that |γ+| > 1

while |γ−| < 1. The constants αd and βd may be determined through the boundary conditions. Namely
assuming, from the linearity of the problem, `1 = bdeiωt, with bd ∈ C and recalling lN+1 = 0 enables us
to write  `1(t) = bdeiωt = eiωt(αd + βd),

`N+1(t) = eiωt(αdγ
N
+ + βdγ

N
− ) = 0 ,

(2.11)

to finally obtain

αd =
−γN
−bd

(γN
+ − γ

N
− )
, βd =

γN
+ bd

(γN
+ − γ

N
− )
. (2.12)
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Then, we use (2.8) to determine bd:

bd = −
εi/2

i/N + NKω(1 − zd) + Kω

ã
2a1

, (2.13)

where zd =
γN

+γ− − γ
N
−γ+

γN
+ − γ

N
−

.

2.3. Limit model with an infinite number of springs

As we increase the number of springs in our swimmer, a limit model arises, with an elastic-like tail,
as shown in Figure 2. This elastic tail compresses and dilates itself in the same way that the springs
do, following the active arm, in order to create a global displacement of our swimmer.

Figure 2. Continuous model of the low-Reynolds-number elastic swimmer. Color variations
in the tail indicate compression and expansion of the swimmer.

Equations (2.6) and (2.8) can be viewed as a finite element discretization of a PDE, which describes
the continuous version of our swimmer. Limit expressions for this PDE model are formally derived
throughout this section while the convergence of the N-spring model to the continuous model will be
proven in Section 3.

First, as h → 0 (N → ∞),
` j−1 − 2` j + ` j+1

h2 formally converges to a second order derivative. More
precisely, we introduce a new space variable y j = ( j − 1)h for 1 ≤ j ≤ N + 1. The points y j are equally
spaced and thus different from the previous x j. Since y1 = 0, the y variable can be seen as a local space
coordinate attached to the second sphere, and we assume `(y j) = ` j for a smooth enough function `.
Passing to the formal limit in (2.6) leads to a heat equation:

∂t`(y, t) = KΛ2∂yy`(y, t), ∀(y, t) ∈ [0,Λ] × R?+. (2.14)

Concerning the boundary conditions, we first notice that `N+1 = 0 leads to `(Λ, t) = 0 for all t > 0.
As h→ 0, the Eq (2.8) on `1 formally becomes a Fourier-type boundary condition:

Λ2K∂y`(0, t) − ΛK
ã

2a1
`(0, t) =

Λ

2
L̇0(t), ∀t > 0.
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Therefore, we finally obtain the following continuous problem:
Find ` ∈ C2([0,Λ] × R∗+) such that ∀(y, t) ∈ (0,Λ) × R?+,

∂t`(y, t) − Λ2K∂yy`(y, t) = 0,

Λ2K∂y`(0, t) − ΛK
ã

2a1
`(0, t) =

Λ

2
L̇0(t),

`(Λ, t) = 0.

(2.15)

2.4. Well-posedness of the problem

Equation (2.15) belongs to the class of problem for which the classical theory of parabolic equations
applies. Namely, calling

V =
{
u ∈ H1((0,Λ))|u(Λ) = 0

}
,

which is a Hilbert space with the scalar product (u, v)V =
∫ Λ

0
∂yu ∂yv dy, the variational formulation

reads:
Let T > 0, find `(y, t) ∈ L∞t (0,T ; L2

y((0,Λ))) ∩ L2
t (0,T ;V) such that for all t ∈ (0,T ) and for all

v ∈ V

d
dt

∫ Λ

0
`v dy + Λ2K

∫ Λ

0
∂y` ∂yv dy (2.16)

+
ΛKã
2a1

`(0, t)v(0) = −
Λ

2
L̇0(t)v(0)

with `(y, 0) = `0(y) ∈ L2((0,Λ)) a given initial data.
Defining the bilinear form κ inV ×V as:

κ : (u, v) 7→ Λ2K
∫ Λ

0
∂yu(y)∂yv(y) dy +

ΛKã
2a1

u(0)v(0), (2.17)

which is symmetric and coercive on V, well-posedness of the Problem (2.16) follows from standard
results on parabolic equations (see e.g., [17]). Moreover, it is well known that the solution `(·, t) is of
class C∞([0,Λ]) for any time t > 0.

2.5. Analytical periodic solutions

Let us now solve the System (2.15) using the following ansatz `(y, t) = `(y)eiωt. From (2.14) we
deduce the following equation:

i` = Λ2Kω∂yy` . (2.18)

The characteristic polynomial associated to (2.18) has two roots, r :=
1 + i

Λ
√

2Kω

and −r, which leads

to the following solutions:
`(y) = αery + βe−ry, (2.19)

with α, β ∈ C.
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We then determine α and β using boundary conditions:
−(α + β)

ã
2a1

+ Λr(α − β) =
iε

2Kω

,

αerΛ + βe−rΛ = 0,

i.e., 
α =

iε

2Kω

( ã
2a1

(e2rΛ − 1) + Λr(e2rΛ + 1)
) ,

β = −e2rΛα.

(2.20)

We notice that rΛ =
1 + i
√

2Kω

only depends on Kω.

3. Convergence of the discrete model towards the continuous one

We first notice that the discrete Problem (2.6) is a kind of non conventional mass-lumped version
of a finite element discretization of the continuous one (2.15). In order to clarify this statement, we
introduce the finite element setting. LetVh ⊂ V the space of continuous, piecewise linear functions g
on the one-dimensional partition Th = {y1, · · · , yN+1} of (0,Λ), and that verify the Dirichlet boundary
condition g(Λ) = 0. Let {Φ j} j=1,N be the standard basis for Vh consisting of the hat functions defined
by Φ j(yk) = δ j,k for 1 ≤ j, k ≤ N.

Let `h ∈ Vh be the continuous, piecewise linear function such that for 1 ≤ j ≤ N + 1, t > 0,
`h(y j, t) = ` j(t). Using the basic semi-discrete Galerkine method would lead to the discretization
of (3.1) in the matrix form:

d(MhLh)
dt

+ KhLh = f̃ (t), (3.1)

with Lh(t) = (`1(t), · · · , `N(t))T . Similarly, f̃ = (−Λ
2 L̇0, 0, · · · , 0), (Mh)i, j =

Λ∫
0

Φi(y)Φ j(y)dy and

(Kh)i, j = κ(Φi,Φ j), where κ is defined in Eq (2.17).
Computing explicitly the coefficients of the matrices Kh and Mh gives

(Kh)i j =


−Λ2K/h for |i − j| = 1,
2Λ2K/h for i = j ≥ 2 ,
Λ2K/h + ΛKã/(2a1) for i = j = 1 ,

and

(Mh)i j =


h/6 for |i − j| = 1,
2h/3 for i = j ≥ 2 ,
h/3 for i = j = 1 .

The key observation is that Eqs (2.6) and (2.8) are nothing but a mass-lumped discretization of (2.15)
where the mass matrix Mh has been replaced by the diagonal version

M̃h =


h 0

. . .

0 h

 .
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Hence, `h actually solves
d(M̃hLh)

dt
+ KhLh = f̃ (t) , (3.2)

together with the initial condition
`h(0) = `0,h ∈ Vh . (3.3)

The classical mass-lumped method, on the other hand, would have consisted in replacing the
tridiagonal mass matrix Mh by a diagonal matrix M̄h using an integration formula on the vertices of
the partition. Namely, using the trapezoidal formula

Λ∫
0

g ∼
(1
2

g(y1) +

N∑
j=2

g(y j) +
1
2

g(yN+1)
)
h =

(1
2

g(y1) +

N∑
j=2

g(y j)
)
h,

for a function g satisfying g(Λ) = 0 leads to the mass-lumped matrix

M̄h =


h/2 0

h
. . .

0 h

 (3.4)

which differs from M̃h.
We shall then study the ODE (3.2), (3.3) using the method presented in [18] which provides us with

a convergence result for the mass-lumped method with M̄h.
We introduce the two following inner products on Vh associated with M̄h and M̃h respectively.

Namely, for (uh, vh) ∈ Vh

〈uh, vh〉h =
h
2

uh(y1)vh(y1) + h
N∑

j=2

uh(y j)vh(y j)

and

(uh, vh)h = h
N∑

j=1

uh(y j)vh(y j) .

We also call ‖ · ‖h the norm associated to (·, ·)h, while the L2 norm and inner products are denoted by
‖ · ‖ and (·, ·) respectively. Gerschgörin Theorem applied to Mh shows the equivalence of the norms ‖ · ‖
and ‖ · ‖h onVh uniformly in h, and, more precisely, we have the estimate, valid for all vh ∈ Vh

1
6

(vh, vh)h ≤ (vh, vh) ≤ (vh, vh)h ,

from which we also deduce
hvh(y1)2 ≤ ‖vh‖

2
h ≤ 6‖vh‖

2 . (3.5)

Finally, we introduce, for uh, vh ∈ Vh, δh(uh, vh) = (uh, vh)h − (uh, vh) the quadrature error.
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Lemma 3.1. Let uh, vh ∈ Vh. We have, for h sufficiently small:

|δh(uh, vh)| ≤ Ch‖∂yuh‖‖∂yvh‖, (3.6)

|δh(uh, vh)| ≤ C
√

h‖∂yuh‖‖vh‖ (3.7)

for a constant C that does not depend on uh, vh or h.

Proof. In all what follows, C denotes a constant that may vary from line to line, being always
independent of h. Let uh, vh ∈ Vh. We write |δh(uh, vh)| ≤ |(uh, vh)h − 〈uh, vh〉h| + |〈uh, vh〉h − (uh, vh)|.
Thomée [18] provides us with an estimate of the error between 〈uh, vh〉h and (uh, vh), namely,

|〈uh, vh〉h − (uh, vh)| ≤ Ch2‖∂yuh‖‖∂yvh‖

and
|〈uh, vh〉h − (uh, vh)| ≤ Ch‖∂yuh‖‖vh‖

for some constant C > 0 that does not depend on uh, vh or h. The latter estimate is obtained by an
inverse inequality.

It remains to estimate the term δ̃h(uh, vh) = (uh, vh)h − 〈uh, vh〉h.
We notice that:

|δ̃h(uh, vh)| =
h
2
|uh(y1)vh(y1)| (3.8)

=
h
2

∣∣∣∣∣∣
∫ Λ

0
∂yuh(y) dy

∣∣∣∣∣∣
∣∣∣∣∣∣
∫ Λ

0
∂yvh(y) dy

∣∣∣∣∣∣
≤

hΛ

2
‖∂yuh‖‖∂yvh‖ . (3.9)

Similarly, (3.8) together with (3.5) gives:

|δ̃h(uh, vh)| ≤ C
√

h‖∂yuh‖‖vh‖. (3.10)

This yields (3.6) and (3.7). �

Theorem 3.1. If ` and `h are solution to (2.16) and (3.2), (3.3) respectively, and `0 ∈ H2((0,Λ)), we
have, for all t ≥ 0,

‖`h(t) − `(t)‖ ≤ C‖`0,h − `0‖ + Ch2(‖∂yy`0‖ + ‖∂yy`(t)‖) Ch
 t∫

0
‖∂yt`‖

2ds
1/2

.

Proof. Let Rh be the Ritz projector from V on Vh, associated with κ(·, ·). Namely, for g ∈ V, Rhg is
defined by

κ(Rhg, vh) = κ(g, vh)

for all vh ∈ Vh. We write `h − ` = (`h − Rh`) + (Rh` − `) = θh + ρ (Notice that θh ∈ Vh). Standard
estimations show that ρ(t) satisfies ‖Rh` − `‖ ≤ Ch2‖∂yy`‖. In order to estimate θh, we write, for all
χh ∈ V

Mathematics in Engineering Volume 5, Issue 5, 1–20.
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(∂tθh, χh)h + κ(θh, χh) = (∂t`h, χh)h + κ(`h, χh) − (∂tRh`, χh)h − κ(Rh`, χh)
= ( f , χh) − (∂tRh`, χh)h − κ(`, χh)
= (∂t`, χh) − (∂tRh`, χh)h

= −(∂tρ, χh) − δh(∂tRh`, χh). (3.11)

Setting χh = θh, we obtain

1
2

d
dt
‖θh‖

2
h + κ(θh, θh) = − (∂tρ, θh) − δh (∂tRh`, θh) .

Here, we have at once, using Cauchy-Schwarz and Poincaré inequalities:

|(∂tρ, θh)| ≤ ‖∂t(` − Rh`)‖ ‖θh‖

≤ Ch
∥∥∥∂yt`

∥∥∥ ‖θh‖

≤ Ch
∥∥∥∂yt`

∥∥∥ ‖∂yθh‖.

Using the first equation of Lemma 3.1, and the fact that ‖∂yRhu‖ ≤ C‖∂yu‖, we also obtain

|δh (∂tRh`, θh)| ≤ Ch
∥∥∥∂ytRh`

∥∥∥ ‖∂yθh‖

≤ Ch
∥∥∥∂yt`

∥∥∥ ‖∂yθh‖ ,

from which we deduce that

1
2

d
dt
‖θh‖

2
h + κ(θh, θh) ≤ Ch

∥∥∥∂yt`
∥∥∥ ‖∂yθh‖

≤ κ(θh, θh) + Ch2
∥∥∥∂yt`

∥∥∥2
,

using the coercivity of κ(·, ·) onV. We therefore infer

‖θh(t)‖2h ≤ ‖θh(0)‖2h + Ch2
∫ t

0

∥∥∥∂yt`
∥∥∥2

ds .

We now recall that ‖ · ‖h and ‖ · ‖ are equivalent norms onVh, uniformly in h, and hence

‖θh(t)‖ ≤ C‖θh(0)‖ + Ch
(∫ t

0

∥∥∥∂yt`
∥∥∥2

ds
)1/2

.

Here ‖θh(0)‖ =
∥∥∥`0,h − Rh`0

∥∥∥ and∥∥∥`0,h − Rh`0

∥∥∥ ≤ ∥∥∥`0,h − `0

∥∥∥ + ‖`0 − Rh`0‖

≤
∥∥∥`0,h − `0

∥∥∥ + Ch2‖∂yy`0‖,

whence θh(t) is bounded as desired. �
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Theorem 3.2. If ` and `h are solution to (2.16) and (3.2), (3.3) respectively we have, for t ≥ 0,

‖∂y(`h − `)(t)‖ ≤ Ch(‖∂yy`0‖ + ‖∂yy`(t)‖) + C‖∂y(`0,h − `0)‖ + C
√

h


t∫

0

‖∂yt`‖
2ds


1/2

.

Proof. We now set χh = ∂tθh in Eq (3.11) for θh to obtain:

‖∂tθh‖
2
h +

1
2

d
dt
κ(θh, θh) = −(∂tρ, ∂tθh) − δh(Rh∂t`, ∂tθh).

Here, as in the proof of Theorem 3.1,

|(∂tρ, ∂tθh)| ≤ ‖∂t(` − Rh`)‖‖∂tθh‖ ≤ C
√

h‖∂yt`‖‖∂tθh‖.

Further, by the second line of Lemma 3.1,

|δh(∂tRh`, ∂tθh)| ≤ C
√

h‖∂ytRh`‖‖∂tθh‖

≤ C
√

h‖∂yt`‖‖∂tθh‖.

Using again the equivalence between the norms ‖ · ‖h and ‖ · ‖ onVh, we conclude:

‖∂tθh‖
2
h +

1
2

d
dt
κ(θh, θh) ≤ C

√
h‖∂yt`‖‖∂tθh‖h

≤ ‖∂tθh‖
2
h + Ch‖∂yt`‖

2 ,

so that, after integration, and using the coercivity of κ(·, ·) onV

‖∂yθh(t)‖ ≤ C‖∂yθh(0)‖ + C
√

h


t∫

0

‖∂yt`‖
2ds


1/2

≤ ‖∂y(`0,h − `0)‖ + Ch‖∂yy`0‖ + C
√

h


t∫

0

‖∂yt`‖
2ds


1/2

.

This, together with the standard estimate for ∂yρ(t) completes the proof. �

We proved the convergence of the discrete N-spring swimmer to the continuous model we formally
derived in the previous section. Note that we obtain only a first-order (resp. half order) convergence
in L2 norm (resp. H1 norm) while the standard estimations for the mass-lumping method leads to a
second-order (resp. first order) convergence . This is due to the Fourier-type boundary condition at 0
which differs from the classical Dirichlet boundary condition used in [18].
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4. Mathematical expression of the displacement

4.1. Net displacement of the N-spring swimmer

We seek the swimmer’s displacement by looking at the displacement of the first of the largest sphere,
meaning we only compute V1 = ẋ1, and integrate over a period (0, 2π/ω).

Taking into account the hydrodynamic interactions due to the ith-sphere with i ∈ {2, · · · ,N + 2} on
the first sphere, we have

V1 =
1

6πµa1
f F
1 +

1
4πµL0

f F
2 +

1
4πµ

N+2∑
i=3

f F
i

L0 + L1 + · · · + Li−2

Using expressions (2.2) and (2.5), we obtain

V1 =
1
2

L̇0 −
ã

2a1
K`1 −

3a1L̇0

4L0
−

3Kã`1

4L0
+

3ãK
2

N∑
j=1

` j − ` j+1

j∑
i=0

Li

, (4.1)

where we recall that, by convention, `N+1 = 0.
Finally, by integrating over one period, and noticing that both `2 and L̇1/L1 have a vanishing

time-average, we obtain, for any value of h = Λ/N, the displacement of the corresponding N-spring
swimmer:

∆hx1 =

2π/ω∫
0

[
−

3Kã`1

4L0
+

3ãK
2

N∑
j=1

` j − ` j+1

j∑
i=0

Li

]
dt (4.2)

4.2. Net displacement of the limit model

We may find an expression for the displacement of the limit model as h tends to 0, by passing to the
limit in the preceding expression.

Indeed, for h and y given, we define jh(y) the unique integer such that jh(y)h ≤ y ≤ ( jh(y) + 1)h.
Then, defining χh the function

χh(y, t) =
1

L0(t) + · · · + L jh(y)+1(t)
,

we may write∫ 2π/ω

0

N−1∑
j=0

`h( jh, t) − `h(( j + 1)h, t)
j+1∑
i=0

Li

dt = −

∫ 2π/ω

0

∫ Λ

0
∂y`h(y, t)χh(y, t) dy dt ,

where `h is the piecewise linear function defined in the previous section.
Finally, the displacement ∆hx1 of the N-spring swimmer during one time period can be rewritten as

∆hx1 =

2π/ω∫
0

[
−

3Kã`h(0, t)
4L0(t)

−
3ãK

2

∫ Λ

0
∂y`h(y, t)χh(y, t) dy

]
dt .
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Now, using the fact that jh(y)h → y when h → 0, together with the L2 and H1 convergence of `h to
`, we obtain that, for any y and t,

χh(y, t) =
1

L0(t) + ( jh(y) + 1)h +
h
Λ

j∑
i=0

`h(ih, t)

−→
h→0

1

L0(t) + y +

y∫
0

`(t)
Λ

=: χ(y, t)

Moreover 0 ≤ χh(y, t) ≤ maxt
1

L0(t) = 1
L(1−ε̃) , shows that χh is uniformly bounded. Therefore, using

dominated convergence theorem, we deduce that χh converges to χ in L2(0, 2π/ω; (0,Λ)) as h tends
to 0.

Using the convergence theorems proven in the preceding section, we may pass to the limit h→ 0 in
∆hx1, and obtain the following expression for the displacement during one period for the limit model

∆x1 =

2π/ω∫
0

Λ∫
0

−
3Kã

2
∂y`(y, t)

(
L0(t) + y +

y∫
0

`

Λ

)−1

dy dt −

2π/ω∫
0

3Kã`(0, t)
4L0

dt . (4.3)

5. Numerical experiments

In this section, we numerically study the discrete model’s convergence towards the continuous one.
Then, we investigate the influence of the two parametersω and ε̃ on the system and on its displacement,
while the rest of the swimmer is determined by the values in Table 1. All simulations are achieved using
Matlab. We consider here that the default length L of the active arm is small compared to the rest of
the swimmer. The first sphere thus acts like the head of a sperm cell, and the active arm like a link
between the head and the flagella, which gives a signal so that the rest of the system oscillates.

Table 1. Values of the parameters used in the numerical simulations, matching those of [13].
We have taken for µ the dynamic viscosity of water at 25◦C.

ã 1 · 10−5 m
a1 1 · 10−5 m
Λ 4 · 10−4 m
L 3 · 10−5 m
k̃ 1 · 10−8 Nm−1

µ 8.9 · 10−4 Pa s

5.1. Convergence of the discrete models to the continuous one

We investigate numerically the convergence estimations obtained in Section 3. We recall that the
continuous solution ` solves the heat equation PDE with the Fourier-type boundary conditions (2.15).
We consider, in this section, periodic forcing for which explicit solutions are given by (2.19) and (2.20).
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5.1.1. Convergence of the N-spring discrete model

We recall that the discrete solution `h is the P1 discrete function based on the (`i)i solution to the
N-spring ODE System (2.6), (2.7) and (2.8). This discrete system corresponds to a semi-discretization
in space of the continuous model, based on a non conventional mass-lumping method. The solution
(`i)i of the discrete problem in the periodic setting is given in Eqs (2.9), (2.10), (2.12) and (2.13).

The space step h (or equivalently the number of springs N) being given, the discrete error is defined
as the error between `h and the P1 interpolation of `. We plot in Figure 3, the L2 (resp. H1) error
denoted by eh,L2 (resp. eh,H1).

10
-4

10
-3

10
-2

10
-10

10
-9

10
-8

10
-7

Figure 3. L2 and H1 errors between the N-spring discrete model and the continuous one as
a function of the number of springs in log scale, in the (2π/ω)-periodic case, for ε̃ = 0.7 and
ω = 1 rad · s−1.

We observe that the L2 error converges with order one, as expected from Theorem 3.1. Concerning
the H1 error, we observe a superconvergence phenomenon: as the L2 error, it converges at order 1,
while Theorem 3.2 predicts a convergence at order 1/2. This can be explained by the regularity of the
considered periodic solution.

5.1.2. Influence of mass-lumping

As mentioned earlier, the N-spring model turns out to be a discretization in space of the continuous
Problem (2.15), based on an unconventional mass-lumping method. The convergence proof that we
proposed in Section 3 is based on the results of Thomée [18]. He shows that, for a standard mass-
lumping discretization, the usual order of convergence for finite elements is obtained: convergence of
order 2 for the L2 error and 1 for the H1 error.

We investigate here the influence of the space discretization, by comparing the N-spring model (3.2),
solved numerically this time, to the classical mass-lumping method (3.4) and the standard Galerkin
finite element method (3.1). Again we consider the periodic framework for which the exact solution is
available. The time discretization of the three ODE systems is achieved using a Crank-Nicolson scheme
for which the time step is chosen to be small enough so that the error due to the time discretization is
negligible.
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The corresponding L2 (resp. H1) error is given on Figure 4 (resp. Figure 5). We can see that, as
expected, the L2 error converges at order 1 for the N-spring model, while it converges at order 2 for
both the classical mass-lumping method and the standard Galerking discretization. Again, due to the
regularity of the solutions, a super-convergence phenomenon of the H1 error is observed for all three
methods: as the L2 error, it converges at order 1 for the N-spring model and order 2 for the other two
discretizations.
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Figure 4. L2 error between the continuous model and our mass-lumping method, as a
function of the number of springs, in log scale.
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Figure 5. H1 error between the continuous model and our mass-lumping method, as a
function of the number of springs, in log scale.

5.2. Swimming strokes

In this section, we investigate the swimming ability of the N-spring swimmer. The stroke being
periodic, we use the explicit solutions given in Section 2.2. The computations are achieved for N =

2, 000 springs.
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5.2.1. Deformation of the swimmer

Figure 6 shows a full stroke of the swimmer, in which we notice that a wave is propagating along
its tail. Remember that this wave is a contraction wave along the horizontal tail. This tail appears to be
oscillating fairly efficiently for the side close to the head, while the amplitude of the contraction decays
considerably on the second half of the tail.

0 500 1000 1500 2000 2500

Spring number

-4

-2

0

2

4
10

-5

Figure 6. Movement of the whole 2, 000-springs swimmer during a full stroke, at different
time stamps T , for ω = 1 rad · s−1 and ε̃ = 0.7.

The movement shown corresponds to the stretch of ` j, and not to the actual deformation which
would be ` j/N, for all 1 ≤ j ≤ N. We thus remark that this deformation is relatively small compared
to the size of the artificial swimmer, which matches the approximation of small deformations that we
made in the first place.

5.2.2. Displacement

In this section, we study the influence of the parameters ε̃ and Kω on the swimmer’s
displacement (4.2), in order to maximize its absolute value.
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Figure 7. Displacement of the 2, 000-spring swimmer against time t, for different values of
ε̃.
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In Figure 7, we plot the displacement of the swimmer as a function of time, for different values
of ε̃. The displacement is computed through numerical integration of Eq (4.2). The graph shows
that the swimmer globally swims backwards, and we recognize the back and forth motion which is
characteristic of low Reynolds number artificial swimmers. A larger amplitude ε̃ of the forcing leads
to a larger displacement and we observe (see Figure 8), that ∆x1 is proportional to ε̃2, which is what
is expected in theory (similar behaviors are observed, e.g., in [6, 7, 10] and explained as the surface of
loops in the space of shapes [1]).

-5 -4 -3 -2 -1 0
-20

-15

-10

-5

0

Figure 8. Displacement of the 2, 000-spring swimmer depending on ε for an arm oscillating
frequency ω = 1 rad/s compared to y = ε̃2, in log-scale.

As we want to maximize ∆x1 while having ε̃ < 1, we choose a fixed value ε̃ = 0.7 which, although
arbitrary, allows for an easier comparison to Montino and DeSimone’s results [13], as they made a
similar parameter choice.

Figure 9 shows ∆x1 depending on Kω, for different values of ε̃. At any fixed Kω, we observe once
again that larger ε̃ leads to larger ∆x1. We first observe that, if Kω → ∞, the net displacement of
the swimmer vanishes. According to the expression of Kω, this is the case for example when ω →
0: the oscillation disappears, immobilizing the artificial swimmer. This can also happen when k̃ →
∞: the springs become so rigid that the tail of the swimmer can no longer deform. In that case,
the swimmer has only one degree of freedom left to deform and faces Purcell’s Scallop theorem’s
obstruction. Similarly, letting Kω → 0 immobilizes the swimmer. An optimal value Kopt

ω for the
non-dimensional parameter is reached between these two limiting cases, in order to maximize the
displacement on one time period. According to the figure, Kopt

ω ' 0.3765. A complete mathematical
expression of Kopt

ω does not seem available, due to the largely nonlinear nature of the problem contrarily
to the final expression obtained in [13]. A pair of optimal values for ω and k to obtain this Kopt

ω are
ω = 1 rads−1 and k̃ ' 6.207 · 10−8Nm−1. Moreover, the expression of Kω guarantees that ω must vary
proportionally to k̃ for the pair (k̃, ω) to remain at the optimum. Indeed, the softer the spring, the slower
the first arm needs to oscillate in order to generate a large movement.

Looking at the other parameters separately, we can also clearly see from Eq (4.2), that the
displacement depends linearly on ã, which is predictable. However, this parameter has a direct
consequence on the size of the artificial swimmer and must stay in a reasonable range (in our case no
more than 1e−5 m) so that the swimmer stays at microscopic scale.

Finally, we notice that the value of Λ and the ratio a1/ã has little to no influence on the previous
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analysis. We therefore keep for those parameters values that seem coherent with the scale we are
working at, and that match with numerical experiments provided in [13].
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Figure 9. Displacement of the 2, 000-spring swimmer depending on Kω, for different values
of ε̃.

6. Conclusions

We analyzed the dynamics of two low-Reynolds-number swimmers. The first one, which is an
extension of [13], is made of N passive springs, and the second one is the corresponding limit model
with an elastic tail. Both are activated by an active arm that elongates and retracts periodically with
amplitude ε and angular frequency ω.

Noting that the N-spring swimmer is a non-conventional mass lumping discretization of the limit
model, we proved its convergence, when N tends to infinity, to the continuous model, by extending
the results of Thomée [18] to the case of a Fourier-type boundary condition. For both swimmers, a
phase difference between the oscillations of the active arm and the tail is created by the interaction
between elastic and hydrodynamic forces. Then, both models undergo non-reciprocal shape changes
and thus circumvent Scallop Theorem’s obstruction [16]. Numerical simulations indeed show a wave
propagating along the swimmers’ tails. Similarly to what was shown in [13], our models are able to
swim but there is no control over the swimming direction.

Then, we focused on computing the net displacement over a time period of the swimmer in both
cases, in view of its optimization. We obtain explicit formulae for this displacement as a function of
the local elongation during the stroke. We numerically recover the classical back and forth swimming
and the second-order scaling of the displacement as a function of the maximum elongation of the
forcing active arm. Moreover, we highlight a dimensionless parameter Kω, driving the movement of
the swimmer when its geometry (Λ, a, a1) is given. Some optimal values for this parameter can be
estimated by numerical experiments.

Lastly, we noticed that, similarly to the behavior of Machin’s swimming rod [12], the deformations
of both our swimmers is rapidly attenuating along their passive parts, which suggests that some form
of activation is needed in order to mimic the type of behavior observed in nature.
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