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Abstract: We obtain density estimates for the free boundaries of minimizers u ≥ 0 of the Alt-Phillips
functional involving negative power potentials∫

Ω

(
|∇u|2 + u−γχ{u>0}

)
dx, γ ∈ (0, 2).

These estimates remain uniform as the parameter γ → 2. As a consequence we establish the uniform
convergence of the corresponding free boundaries to a minimal surface as γ → 2. The results are based
on the Γ-convergence of these energies (properly rescaled) to the Dirichlet-perimeter functional∫

Ω

|∇u|2dx + PerΩ({u = 0}),

considered by Athanasopoulous, Caffarelli, Kenig, and Salsa.

Keywords: free boundary problems; uniform estimates; minimal surfaces; Dirichlet-Perimeter
functional

1. Introduction

Energy functionals involving the Dirichlet integral of a density u and a potential term W(u)∫
Ω

|∇u|2 + W(u) dx,
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appear in various models in the calculus of variations. A classical example is the Allen-Cahn [1] energy
given by the double-well potential

W(t) = (1 − t2)2,

which is relevant in the theory of phase-transitions and minimal surfaces. In their celebrated result,
Modica and Mortola [13] showed that 0-homogenous rescalings of bounded minimizers |u| ≤ 1,
converge up to subsequences to a ±1 configuration separated by a minimal surface, i.e.,

uε(x) = u
( x
ε

)
→ χE − χEc in L1

loc, as ε → 0, (1.1)

with E a set of minimal perimeter. At the level of the energy, this result is expressed in terms of the
Gamma-convergence of the rescaled energies∫

Ω

ε |∇u|2 +
1
ε

W(u) dx,

to a multiple of the perimeter functional c0PerΩ(E).
Other examples of energies appear in the theory of free boundary problems. When the potential

W(t) is not of class C1,1 near a minimum point, say t = 0, minimizers can develop patches where they
take this value. The boundary of such a patch ∂{u = 0} is the free boundary. Two particular potentials
of interest are given by

W(t) = t+,

which corresponds to the obstacle problem (for a comprehensive survey see [14]), and by

W(t) = χ{t>0},

which corresponds to the Bernoulli free boundary problem (see for example [2, 3, 8]). These can be
viewed as part of the family of power-potentials

W(t) = (t+)β, β ∈ [0, 2),

which were considered by Alt and Phillips [4] in the early 80’s.
Recently in [10], we investigated properties of non-negative minimizers and their free boundaries

for Alt-Phillips potentials of negative powers

W(t) = t−γχ{t>0}, γ ∈ (0, 2).

These potentials are relevant in the applications, for example in liquid models with large cohesive
internal forces in regions of low density. The upper bound γ < 2 is necessary for the finiteness of the
energy.

In [10] we showed that minimizers u ≥ 0 of the Alt-Phillips functional involving negative power
potentials

Eγ(u) :=
∫

Ω

(
|∇u|2 + u−γχ{u>0}

)
dx, γ ∈ (0, 2), (1.2)

have optimal Cα Hölder continuity. The free boundary

F(u) := ∂{u > 0}
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is characterized by an expansion of the type

u = cαdα + o(d2−α), α :=
2

2 + γ
∈ (

1
2
, 1),

where d denotes the distance to F(u) and cαdα represents the explicit 1D homogenous solution.
Furthermore, we showed that F(u) is a hypersurface of class C1,β up to a closed singular set of
dimension at most n − k(γ), where k(γ) ≥ 3 is the first dimension in which a nontrivial α-homogenous
minimizer exists. We also established the Gamma-convergence of a suitable multiple of the Eγ to the
perimeter of the positivity set PerΩ({u > 0}) as γ → 2.

In this work we investigate in more detail the properties of minimizers as the parameter γ tends
to the critical value 2, and make precise the connection between their free boundaries and the theory
of minimal surfaces. In particular we establish density estimates and the uniform convergence (up to
subsequences) of the free boundaries F(uk) to a minimal surface, for a sequence of bounded minimizers
uk corresponding to parameters γk → 2, see Corollary 2.6. Uniform convergence results in different
settings were obtained by Caffarelli and Cordoba [7] for the Allen-Cahn energy and the convergence
in (1.1), and by Caffarelli and Valdinoci [9] for the s-nonlocal minimal surfaces with s → 1. We also
refer the reader to other related works in similar contexts [5, 11, 15–17].

The constants in the Hölder and density estimates obtained in [10] degenerate as γ → 2. However,
here we develop uniform estimates in γ, and for this it is convenient to rescale the potential term in
the functional Eγ in a suitable way (see (2.1)). We further establish the Gamma-convergence to the
Dirichlet-perimeter functional

F (u) :=
∫

Ω

|∇u|2dx + PerΩ({u = 0}),

which was studied by Athanasopoulous, Caffarelli, Kenig, Salsa in [6]. Heuristically, this shows that
the cohesive term W has the effect of surface tension as γ → 2.

2. Main results

Let Ω be a bounded domain in Rn with Lipschitz boundary. We consider Jγ, a rescaling of Eγ, which
acts on functions

u : Ω→ R, u ∈ H1(Ω), u ≥ 0,

and it is defined as

Jγ(u,Ω) :=
∫

Ω

|∇u|2 + Wγ(u) dx, (2.1)

where
Wγ(u) := cγu−γχ{u>0}, with cγ :=

1
16
· (2 − γ)2, γ ∈ (0, 2). (2.2)

We study uniform properties of the minimizers of Jγ as γ → 2−. We often drop the dependence on γ
from J and W when there is no possibility of confusion.

Notice that u is a minimizer of Eγ defined in (1.2), if and only if c(γ)u is a minimizer of Jγ, with

c(γ) = c
1
γ+2
γ an appropriate constant depending only on γ, and c(γ)→ 0 as γ → 2.
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The constant cγ in (2.2) is chosen such that∫ 1

0
2
√

Wγ(s) ds = 1. (2.3)

The homogenous 1D solution ϕ plays an important role in the analysis. It is given by

ϕ(t) := c∗γ (t+)α, (2.4)

with

α :=
2

2 + γ
, c∗γ :=

(
(1 +

γ

2
)2 cγ

) 1
γ+2
,

and satisfies
ϕ′ = (Wγ(ϕ))1/2, in {ϕ > 0}. (2.5)

We differentiate the last equality and obtain that ϕ solves the Euler-Lagrange equation

2ϕ′′ = W ′
γ(ϕ) in {ϕ > 0}. (2.6)

Positive constants depending only on the dimension n are denoted by c, C, and referred to as
universal constants.

The first result is an optimal uniform growth estimate.

Theorem 2.1. Let u be a minimizer of Jγ in B1 and assume u(0) = 0. Then, there exists a universal
constant C such that

u(x) ≤ C|x|α, α :=
2

2 + γ
, ∀ x ∈ B1/2.

The second theorem gives the uniform density estimate of the free boundary.

Theorem 2.2 (Density estimates). There exists a universal constant c0 such that if u is a nonnegative
minimizer of Jγ in B1 and 0 ∈ F(u) then

1 − c0 ≥
|{u > 0} ∩ Br|

|Br|
≥ c0, ∀ r ≤

1
2
.

The following result is a direct consequence of Theorems 2.1 and 2.2.

Corollary 2.3. Let u be a nonnegative minimizer of Jγ in B1. If 0 ∈ F(u) then for all r ∈ (0, 1/2) each
of the sets {u = 0} ∩ Br and {u > 0} ∩ Br contains an interior ball of radius cr. Moreover

crn−αγ ≤ J(u, Br) ≤ Crn−αγ.

Next we introduce the Dirichlet-perimeter functional F introduced by Athanasopoulous, Caffarelli,
Kenig, Salsa in [6]. It acts on the space of admissible pairs (u, E) consisting of functions u ≥ 0 and
measurable sets E ⊂ Ω which have the property that u = 0 a.e. on E,

A(Ω) := {(u, E)| u ∈ H1(Ω), E Caccioppoli set, u ≥ 0 in Ω, u = 0 a.e. in E}.
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The functional F is given by the Dirichlet-perimeter energy

FΩ(u, E) =

∫
Ω

|∇u|2dx + PΩ(E),

where PΩ(E) represents the perimeter of E in Ω

PΩ(E) =

∫
Ω

|∇χE |

= sup
∫

Ω

χE div g dx with g ∈ C∞0 (Ω), |g| ≤ 1.

The next theorem establishes the Γ-convergence of the Jγ’s.

Theorem 2.4. As γ → 2, the functionals Jγ Γ-converge to F .
More precisely we have:
a) (lower semicontinuity) if γk → 2 and uk satisfy

u1−γk/2
k → χEc in L1(Ω), uk → u in L2(Ω),

then
lim inf Jγk(uk,Ω) ≥ FΩ(u, E).

b) (approximation) given (u, E) ∈ A(Ω) with u a continuous in Ω, there exists γk → 2 and uk such
that

u1−γk/2
k → χEc in L1(Ω), uk → u in L2(Ω),

Jγk(uk,Ω)→ FΩ(u, E).

Our main result gives the strong convergence of the minimizers of Jγ and their zero set to the
minimizing pairs (u, E) of F .

Theorem 2.5. Let Ω be a bounded domain with Lipschitz boundary, γk → 2−, and uk a sequence of
functions with uniform bounded energies

‖uk‖L2(Ω) + Jγk(uk,Ω) ≤ M,

for some M > 0. Then, after passing to a subsequence, we can find (u, E) ∈ A(Ω) such that

u1−γk/2
k → χEc in L1(Ω), uk → u in L2(Ω),

and
χ{uk>0} → χEc in L1(Ω).

Moreover, if uk are minimizers of Jγk then the limit (u, E) is a minimizer of F . The convergence
of uk to u and respectively of the free boundaries ∂{uk > 0} to ∂E is uniform on compact sets (in the
Hausdorff distance sense).

As a consequence we obtain the connection between bounded minimizers of Eγ with γ → 2
and minimal surfaces, as stated in the Introduction. The uniform boundedness of minimizers can
be deduced for example from a uniform bound of the boundary data on ∂Ω.
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Corollary 2.6. Assume that uk are uniformly bounded minimizers of Eγk defined in (1.2), and γk → 2.
Then, up to subsequences, F(uk) converge uniformly on compact sets to a minimal surface ∂E.

Indeed, c(γk)uk is a minimizer for Jγk and, since c(γk) → 0, the limiting function u of Theorem 2.5
is identically 0. This means that the limiting set E must be a set of minimal perimeter in Ω.

The paper is organized as follows. In Section 3 we prove the uniform growth estimate Theorem 2.1
and in Section 4 we obtain the uniform density estimates. In the last section we prove the main result
Theorem 2.5.

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. We state it here again for the reader convenience. We remark
that this statement was proved in [10] with a constant C depending on γ. The purpose of this section is
to show that in fact the statement holds with a universal constant C. In the proof, we use that minimizers
are viscosity solution in the sense of Definition 4.1 of [10], as showed in Proposition 4.4 of [10].

Theorem 3.1. Let u be a minimizer of Jγ in B1, and assume u(0) = 0. Then

u(x) ≤ C|x|α, ∀ x ∈ B1/2,

with C universal.

Proof. Minimizers of J are invariant under α-homogenous rescalings

ũ(x) =
u(y0 + λx)

λα
.

After such a rescaling, we may assume that we are in the situation B1 ⊂ {u > 0} and u vanishes at some
point x0 ∈ ∂B1. We need to prove that u(0) is bounded above by a large universal constant.

Notice that in B1 we satisfy
4u ≤ 0, 4 (u − 1)+ ≥ −1.

Thus, if
u(0) ≥ M � 1,

then by the weak Harnack inequality we find

u ≥ c M in B1/2, with c > 0 universal.

Lemma 3.2. There exists a one dimensional increasing function ψ,

ψ : [0, t0]→ R, ψ(0) = 0, t0 ≤
1
4
,

such that (see (2.4) for the definition of ϕ)
1)

ψ(t) = ϕ(t) + ε t2−α + O(t2−α+δ) near 0, δ > 0,

2)
2ψ′′ ≥ 4nψ′ + W ′(ψ),

3)
ψ(t0) ≤ 1, ψ′(t0) ≤ C0 universal.
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Using Lemma 3.2 we construct a barrier Ψ : B1 \ B1/2 → R, as

Ψ(x) = ψ(1 − |x|) in B1 \ B1−t0

and
4Ψ = 0 in B1−t0 \ B1/2,

with boundary conditions

Ψ = cM on ∂B1/2, Ψ = ψ(t0) on ∂B1−t0 .

Since ψ(t0) ≤ 1, it follows that

|∇Ψ| > C0 in the annulus B1−t0 \ B1/2,

provided that M is large universal.
We claim that

24Ψ ≥ W ′(Ψ), in B1 \ B1/2. (3.1)

The inequality is satisfied in the outer annulus B1 \ B1−t0 by property 2) above, and in the inner
annulus B1−t0 \ B1/2 since 0 > W ′.

Moreover, the inequalities between the normal derivatives on either side of ∂B1−t0 guarantee
that (3.1) holds in the whole domain.

Since W ′(t) is increasing for t > 0, we can apply the maximum principle and conclude that

u ≥ Ψ in B1 \ B1/2.

We contradict the free boundary condition at the point x0 ∈ F(u) for a minimizer, see Proposition 4.4
in [10]. Indeed, property 1) above shows that Ψ − ϕ(d) has a positive correction term ε d2−α in
the expansion near its free boundary and therefore it is a strict viscosity subsolution on ∂B1, see
Definition 4.1 in [10]. �

It remains to prove the lemma above.
Proof of Lemma 3.2. We reduce the second order ODE to a 1st order ODE by taking ψ as an
independent variable. More precisely, with a strictly increasing function ψ we associate the function
g > 0 defined on the range of ψ as

g(ψ) := (ψ′)2. (3.2)

After differentiation we obtain
2ψ′′ = g′(ψ).

The function ψ can be recovered from g by the formula

ψ(t) = G−1(t), G(r) :=
∫ r

0

1√
g(s)

ds. (3.3)

In the case when ψ coincides with the 1D solution ϕ given in (2.4), then the associated function g
equals W, see (2.5).
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In our setting we define g explicitly as

g(s) := W(s) + ε̄ + C1s1− γ2 , s ∈ (0, s0],

with C1 = 8 n universal, and s0 given by the solution to

C1s1− γ2 = cγs−γ = W(s) when s = s0,

and ε̄ > 0 arbitrarily small. Notice that s0 → 0 as γ → 2−, and from the formula for cγ in (2.3) it
follows

s0 ∼ 2 − γ. (3.4)

Notice that
g(s0) ≤ 3C1s1− γ2

0 ≤ 3C1 =: C2
0.

This gives property 3) since
ψ(t0) = s0, ψ′(t0) = (g(s0))1/2.

By construction g ≥ W which by (3.3) implies ψ ≥ ϕ. Thus

s0 = ψ(t0) ≥ ϕ(t0),

and by (2.4), (3.4), it follows that also t0 → 0 as γ → 2−.
We compute

g′ = W ′ + C1(1 −
γ

2
)s−

γ
2

and use the inequality
C1(1 −

γ

2
) ≥ 8n

√
cγ,

and that g ≤ 3W in the interval [0, s0] to obtain

g′ ≥ W ′ + 4n(3W)1/2 ≥ W ′ + 4ng1/2,

which gives 2).
Finally, we obtain property 1) from (3.3) and the expansion

1√
g(s)

=
1

√
W(s)

(
1 − c(γ)ε̄sγ + O(s1+

γ
2 )
)
.

�

4. Density estimates

In this technical section we prove Theorem 2.2 and Corollary 2.3. We follow the classical ideas
from the minimal surface theory by constructing appropriate competitors for the minimizer u, and then
make use of the isoperimetric inequality. They allows us to obtain discrete differential inequalities for
the measure of the sets {u > 0} in Br, which give the desired conclusion after iteration.

We start with the lower bound.

Mathematics in Engineering Volume 5, Issue 5, 1–27.
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Lemma 4.1. Let u be a minimizer of Jγ in B1 and assume 0 ∈ F(u). Then

|{u > 0} ∩ Br| ≥ c0|Br|.

Proof. After a dilation, assume u minimizes J in B3. Since 0 ∈ F(u),

u ≤ C0 in B2,

by Theorem 2.1. Define
Ar := {u > 0} ∩ Br, a(r) := |Ar|.

It suffices to show that

a(1) ≤ c0 =⇒ a(r) = 0 for all r sufficiently small,

which is not possible since 0 ∈ F(u). We consider the case when γ is close to 2.
Define s0, t0, as

W(s0) = 1, ϕ(t0) = s0 =⇒ ϕ′(t0) =
√

W(s0) = 1 (4.1)

and notice that s0, t0 → 0 as γ → 2−.
Step 1: We show that the densities of the sets Ar in Br decay geometrically as we rescale by a factor

of 1 − 2t0, i.e., if a(1) ≤ c0 then

r−n
0 a(r0) ≤ r0a(1) with r0 := 1 − 2t0. (4.2)

First we construct a 1D function.

Lemma 4.2. There exists a piecewise C1 function ψ in [0, 1] such that
1)

ψ(t) = ϕ(t) if t ≤ t0,

2)
2ψ′′ + 4nψ′ ≤ W ′(ψ) if t ≥ t0,

3)
ψ(1) ≥ 2C0, ψ′(t0) ≤ C1 for some C1 large universal.

Recall that ψ being piecewise C1 means that it is continuous in [0, 1] and C1 when restricted to the
intervals [0, t0] and [t0, 1].

Proof. Indeed, we may take
ψ := ϕ + Kg(t) χ{t≥t0}

with g an increasing C2 function in [t0, 1] such that

g(t0) = 0, g′′ + 2ng′ ≤ −c in [t0, 1],

and K a sufficiently large universal constant. Properties 1), 3) follow immediately from the definition
of ψ. For 2) we use that in [t0, 1]

2ϕ′′ = W ′(ϕ), ϕ′ ≤ ϕ′(t0) = 1,
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hence

2ψ′′ + 4nψ′ ≤ 2ϕ′′ + 4nϕ′ − 2Kc

≤ W ′(ϕ) + 4n − 2Kc

≤ W ′(ϕ)
≤ W ′(ψ),

where in the last inequality we used that W ′ is an increasing function.
�

Proof of Step 1. We use Lemma 4.2 to define

Ψ(x) := ψ(|x| − (1 − t0)),

and let
D := {u > Ψ} ⊂ B2−t0 ∩ {u > 0}.

Notice that u = Ψ on ∂D, hence the minimality of J implies

J(u,D) ≤ J(Ψ,D). (4.3)

We decompose D as the disjoint union

D = D1 ∪ D2, D1 := D ∩ B1, D2 := D \ B1,

and notice that

J(Ψ,D2) − J(u,D2) = (4.4)

=

∫
D2

−2∇(u − Ψ) · ∇Ψ − |∇(u − Ψ)|2 + W(Ψ) −W(u)dx

≤

∫
D2

(u − Ψ)24Ψ + W(Ψ) −W(u)dx +

∫
∂D2

2(u − Ψ)|∇Ψ|dσ

≤

∫
D2

(u − Ψ)W ′(Ψ) + W(Ψ) −W(u)dx +

∫
∂D2∩∂B1

2(u − Ψ)|∇Ψ|dσ

≤ CHn−1({u > 0} ∩ ∂B1),

where we have used that

0 ≤ u − Ψ ≤ C, 24Ψ ≤ W ′(Ψ), |∇Ψ| ≤ C on ∂B1,

and that W is convex on its positivity set.
Combining (4.3) and (4.4) we find

J(u,D1) ≤ J(Ψ,D1) + CHn−1({u > 0} ∩ ∂B1). (4.5)

In D1 we use the Cauchy-Schwartz inequality and the coarea formula to obtain

J(u,D1) ≥
∫

D1∩{u<ϕ(t0)}
2|∇u|

√
W(u)dx

Mathematics in Engineering Volume 5, Issue 5, 1–27.
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=

∫ s0

0
Hn−1({u = s} ∩ D1) 2

√
W(s)ds. (4.6)

On the other hand |∇Ψ| =
√

W(Ψ) in D1 by construction (see 1) in Lemma 4.2 and (2.5) and the
inequality above becomes an equality for Ψ:

J(Ψ,D1) =

∫ s0

0
Hn−1({Ψ = s} ∩ D1) 2

√
W(s)ds. (4.7)

Next we use that
{u > s} ∩ B1−2t0 ⊂ D1 ∩ {u > s > Ψ}, s > 0,

and the isoperimetric inequality implies

cn|{u > s} ∩ B1−2t0 |
n−1

n ≤ Hn−1({u = s} ∩ D1) +Hn−1({Ψ = s} ∩ D1),

hence ∫ s0

0
cn|{u > s} ∩ B1−2t0 |

n−1
n 2

√
W(s)ds ≤ J(u,D1) + J(Ψ,D1). (4.8)

We combine this with (4.5), (4.7) and use that∫
B1−t0

W(u)dx ≤ J(u,D1), (4.9)

and obtain ∫
B1−2t0

W(u)dx +

∫ s0

0
cn|{u > s} ∩ B1−2t0 |

n−1
n 2

√
W(s)ds ≤

≤ CHn−1({Ψ = s0} ∩ {u > 0})+ (4.10)

+ C
∫ s0

0
Hn−1({Ψ = s} ∩ {u > 0}) 2

√
W(s)ds.

The inequality holds also when we replace Ψ by Ψt defined as

Ψt(x) := ψ(|x| − (1 − t0 − t)), t ∈ [0, t0].

Notice that Ψ0 = Ψ and {Ψt = s} is the sphere at distance t from the sphere {Ψ = s}. Thus, if we write
the inequality above for t ∈ [0, t0] and average it over this interval we obtain∫

B1−2t0

W(u)dx +

∫ s0

0
cn|{u > s} ∩ B1−2t0 |

n−1
n 2

√
W(s)ds ≤

≤ Ct−1
0 |{u > 0} ∩ (B1 \ B1−2t0)|

∫ s0

0
2
√

W(s)ds. (4.11)

Let s1 ∈ [0, s0] and denote by
b := |{0 < u ≤ s1} ∩ B1−2t0 |,
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hence if s ≤ s1 then

|{u > s} ∩ B1−2t0 | ≤ |{u > s1} ∩ B1−2t0 | = a(1 − 2t0) − b.

Notice that by the choice of cγ we have∫ s1

0
2
√

W(s)ds = s1− γ2
1 .

Since W(u) ≥ W(s1) in the set {0 < u ≤ s1}, we can bound below the left hand side in (4.11) by

W(s1)b + c1 s1− γ2
1 (a(1 − 2t0) − b)

n−1
n , (4.12)

while the right hand side in (4.11) is bounded above by

C2
a(1) − a(1 − 2t0)

2t0
,

with C2, c1 universal constants.
We choose s1 such that

W(s1) = C3 � C2, i.e., s1 = C
− 1
γ

3 s0 = (cγ/C3)
1
γ .

Using that cγ ∼ (2 − γ)2 we find that the coefficient

c1 s1− γ2
1

which appears in (4.12) remains bounded below as γ → 2−. This means that if a(1 − 2t0) ≤ a(1) ≤ c0

small, universal, then the expression in (4.12) is decreasing in the variable b ∈ [0, a(1 − 2t0)] and is
bounded below by C3 a(1 − 2t0). In conclusion

C3 a(1 − 2t0) ≤ C2
a(1) − a(1 − 2t0)

2t0
,

or equivalently,

a(1 − 2t0)(1 +
C3

C2
2t0) ≤ a(1),

which, using that C3 � C2 and t0 is sufficiently small, gives (4.2):

a(1 − 2t0)(1 − 2t0)−(n+1) ≤ a(1),

and Step 1 is proved. �
As we iterate Step 1 we find that the densities of the positivity set in Br, a(r)r−n, tend to 0 as

r = rm
0 → 0. After rescaling, it remains to show that if a(1) is sufficiently small, depending on γ, then

a(1/2) = 0.
Step 2: If a(1) ≤ c(γ) small then for all r ∈ [1/2, 1],

a(r − 2t)δ ≤
a(r) − a(r − 2t)

2t
, t = a(r)µ, (4.13)
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with δ, µ universal constants.
Proof of Step 2. Assume for simplicity that r = 1. Notice that by Theorem 2.1 it follows that

u ≤ Ca(1)
α
n in B1.

We argue as in Step 1 and improve the last part of the argument. Take

Ψ = ψ(|x| − (1 − t1))

with t1 ∈ (0, t0] such that
ϕ(t1) = a(1)µ � ‖u‖L∞(B1).

This means that {u < Ψ} on ∂B1 and now we may take D = {u > Ψ} ∩ B1. We obtain as above the
corresponding inequality (4.10) with t0 replaced by t1. After averaging over the family of translates Ψt

with t ∈ [0, t1] we establish the inequality (4.11) with t0 replaced by t1. We bound the left hand side as
before by taking

s1 = ϕ(t1) = a(1)µ,

and obtain
W(s1)s

γ
2−1
1 b + (a(1 − 2t1) − b)

n−1
n ≤ C

a(1) − a(1 − 2t1)
2t1

.

Using that
s1 = a(1)µ ≥ a(1 − 2t1)µ,

the coefficient of b in the left hand side is bounded below by a negative power of a(1 − 2t1) (provided
that a(1) is sufficiently small, depending on γ). Then, by arguing that

either b ≤
a(1 − 2t1)

2
or b ≥

a(1 − 2t1)
2

,

we obtain that the left hand side is bounded below by

a(1 − 2t1)1−δ,

for some δ universal. After relabeling δ if necessary we reach the desired discrete differential inequality
claimed in Step 2.

a(1 − 2s1)1−δ ≤
a(1) − a(1 − 2s1)

2s1
, s1 = a(1)µ.

�
End of the proof: Now it is straightforward to check that a nondecreasing function a(r) that

satisfies (4.13) must vanish when r = 1/2 if a(1) is sufficiently small. In the continuous setting we
obtain a′ ≥ a1−δ which implies

a(r) ≤ (r − 1/2)M,

for some large M, provided that the inequality is satisfied at r = 1. In the discrete setting it follows by
induction that the inequality above holds for r = rk where rk is the sequence

rk+1 = rk − 2a(rk)µ, r0 = 1.

�
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Remark 4.3. From (4.5) and (4.7) it follows that

J(u, B1/2) ≤ J(u,D1) ≤ C,

with C universal.

Next we prove the other side of the density bound using a similar analysis.

Lemma 4.4. Let u be a minimizer of Jγ in B1 and assume 0 ∈ F(u). Then

|{u = 0} ∩ Br| ≥ c0|Br|.

Proof. Let s0, s1, and t1 be defined as

W(s0) = 1, W(s1) = M, ϕ(t1) = s1,

with M a large universal constant to be made precise later. Let

Ar := {u ≤ s1} ∩ Br, a(r) := |Ar|.

Step 1: We prove that if a(1) ≤ c0 universal, M ≥ C0 and γ sufficiently close to 2 (depending on M)
then

a(r0)r−n
0 ≤ r0a(1) for some fixed r0 < 1. (4.14)

We first construct a 1D profile.

Lemma 4.5. There exists a nondecreasing Lipschitz function ψ : [0, 1] → R, with ψ(0) = 0, which is
C1 in the intervals {ψ < s1}, {ψ > s1} such that

1) ψ = ϕ in [0, t1] = {ψ ≤ s1},
2)

2ψ′′ − 8nψ′ ≥ W ′(ψ) in (t1, 1] = {ψ > s1},

and ψ is constant in [1/4, 1],
3)

1
2

W(ψ) ≤ (ψ′)2 ≤ W(ψ) in [0, t0] := {ψ ≤ s0}.

Here t0 is defined such that

ψ(t0) = s0, thus W(ψ(t0)) = 1.

Proof of Step 1. Define in B1 the function

Ψ(x) = ψ(1 − |x|),

and denote by
D := {u < Ψ}.

Notice that Ψ vanishes on ∂B1 and coincides with ϕ(1 − |x|) near ∂B1, hence

|∇Ψ| =
√

W(Ψ) in B1 \ B1−t1 = {Ψ ≤ s1}. (4.15)
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Also by 2)
24Ψ ≥ W ′(Ψ) in {Ψ > s1},

and 3) implies
1
2

W(Ψ) ≤ |∇Ψ|2 ≤ W(Ψ) in B1 \ B1−t0 , (4.16)

and
W(Ψ) ≤ 1 in B1−t0 . (4.17)

Denote by
D1 := {u > s1} ∩ D, D2 := D \ D1,

F1 := {Ψ > s1} ∩ D, F2 := D \ F1.

Then J(u,D) ≤ J(Ψ,D) implies

J(u,D2) ≤ J(Ψ, F2) + J(Ψ, F1) − J(u,D1).

In
F1 = D1 ∪ A1−t1

we write
max{u, σ} = Ψ − w, with Ψ ≥ w ≥ 0,

and notice that w vanishes on ∂F1 hence∫
D1

|∇u|2 =

∫
F1

|∇(Ψ − w)|2dx

≥

∫
F1

|∇Ψ|2 + 2w4Ψdx (4.18)

≥

∫
F1

|∇Ψ|2 + wW ′(Ψ)dx

≥

∫
F1

|∇Ψ|2 + (W(Ψ) −W(Ψ − w))χD1 −CW(Ψ)χA1−t1
dx,

where in the last inequality we used the convexity of W in D1 and the fact that W ′(Ψ) < 0 in A1−t1 thus

wW ′(Ψ) ≥ ΨW ′(Ψ) = −γW(Ψ).

Since Ψ − w = u in D1 we find

J(u,D1) ≥ J(Ψ, F1) −C
∫

A1−t1

W(Ψ)dx,

hence
J(u,D2) ≤ J(Ψ, F2) + C

∫
A1

W(Ψ)dx.

By Cauchy-Schwartz and co-area formula we obtain

J(u,D2) ≥
∫ s1

0
Hn−1({u = s} ∩ D}

√
W(s)ds,
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while, by (4.15),

J(Ψ, F2) =

∫ s1

0
Hn−1({Ψ = s} ∩ D}

√
W(s)ds.

Hence
J(Ψ, F2) ≤

∫ s1

0
Hn−1({Ψ = s} ∩ A1}

√
W(s)ds,

and we also write ∫
A1

W(Ψ)dx =

∫
A1∩B1−t0

W(Ψ)dx +

∫
A1\B1−t0

W(Ψ)dx.

By (4.17) the second term is bounded by |A1|, while by (4.16) and the co-area formula as above, the
first integral is bounded by

C
∫ s0

0
Hn−1({Ψ = s} ∩ A1}

√
W(s)ds.

Using that
E := {u = 0} ∩ B1−t1 ⊂ {u ≤ s ≤ Ψ}, s ∈ [0, s1],

we find by the isoperimetric inequality that

|E|
n−1

n

∫ s1

0

√
W(s)ds ≤ J(u,D2) + J(Ψ, F2).

Notice that as γ → 2 (and fixed M), the integral converges to∫ 1

0

√
W(s)ds =

1
2
.

Also
W(s1)|A1−t1 \ E| ≤

∫
A1−t1

W(u)dx ≤ J(u,D2)

In conclusion

1
4
|E|

n−1
n + M|A1−t1 \ E| ≤

≤ C
∫ s0

0
Hn−1({Ψ = s} ∩ A1}

√
W(s)ds + C|A1|. (4.19)

Since |E| ≤ a(1) ≤ c0 is sufficiently small, and M ≥ C0, the left hand side is bounded below by

C0

2
|A1−t1 | ≥

C0

2
a(1 − 2t0).

We average the right hand side by taking as test functions

Ψt(x) = ψ(1 − t − |x|), t ∈ [0, t0],

and obtain
C0

2
a(1 − 2t0) ≤ C

a(1) − a(1 − 2t0)
2t0

+ Ca(1)
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which, as in the proof of Lemma 4.2, implies the desired conclusion (4.14) with r0 = 1 − 2t0,

a(1 − 2t0)(1 − 2t0)−(n+1) ≤ a(1),

provided C0 is chosen sufficiently large.
�

Next we prove the lemma when γ is close to 2.
Step 2: If γ is sufficiently close to 2 then |{u = 0} ∩ B1| ≥ c0/2.

Proof of Step 2. If the conclusion does not hold then

|{u = 0} ∩ B1| ≤ c0/2 =⇒ a(1) ≤ c0. (4.20)

Indeed, otherwise
|{0 < u ≤ s1} ∩ B1| ≥ c0/2,

and we can apply inequality (4.19) (with A1−t1 , A1 replaced by A1, respectively A1+t1) and obtain

M
c0

2
≤ C

∫ s0

0
Hn−1({Ψ = s} ∩ A1+t1}

√
W(s)ds + C|A1+t1 | ≤ C.

We get a contradiction by choosing M universal, sufficiently large, and (4.20) is proved. Now we may
apply Step 1 and obtain

|{u ≤ rα0 s1} ∩ Br0 |r
−n
0 ≤ a(r0)r−n

0 ≤ r0a(1),

with α as in (2.4), which can be rescaled and iterated indefinitely. Thus, after a rescaling of u of factor
rm

0 with m large we find that a(1) can be made arbitrarily small.
We reached a contradiction to 0 ∈ F(u) since, by Theorem 2.1,

a(1) ≥ c(s1) > 0.

�
Finally, we prove the conclusion also when γ stays away from 2.
Step 3: If γ ≤ 2 − δ then |{u = 0} ∩ B1| ≥ c(δ).

Proof of Step 3. This follows easily by compactness. However, here we sketch a direct proof that
follows from an argument in Step 1.

First we claim that
max
∂B1

u ≥ c(δ),

for some c(δ) > 0 small. Otherwise, the energy of u in B1/2 is sufficiently small, which implies that
{u > 0} has small measure in B1/2 and contradicts Lemma 4.1.

Next, let v be the solution to the Euler-Lagrange equation 24Ψ = W ′(Ψ) in B1, v = u on ∂B1. Since
v is superharmonic, v(0) > c(δ). Moreover, W(v) is bounded by an integrable function in B1. As in
Step 1, the inequality

J(u, B1) ≤ J(v, B1)

implies (see (4.18) with s1 = 0, D1 = F1 = B1),∫
B1

|∇(v − u)|2dx ≤ C
∫
{u=0}

W(v)dx.

The left hand side is bounded below by a c1(δ) which follows from Theorem 2.1 and (v−u)(0) = v(0) ≥
c(δ). This shows that {u = 0} cannot have arbitrarily small measure. �
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It remains to prove the existence of the 1D profile of Lemma 4.5.
Proof of Lemma 4.5. We construct ψ by defining its corresponding function g as in (3.2), (3.3). Let g
be the perturbation of W

g(s) = W(s) +

(
−

1
2

+ Cn(s1− γ2 − s1− γ2
1 )

)
χ[s1,1],

with Cn = 8n. Let s2 be defined as

W(s2) =
1
4
,

hence s2 = 41/γs0 ∼ s0, and notice that s2 → 0 as γ → 2. Moreover

W ′ = −γW/s ≤ −C in [0, s2]

which implies that g′ ≤ −C in the same interval. Furthermorer, for γ sufficiently close to 2 (depending
on M), then s1−γ/2

1 is close to 1 hence the error g(s) −W(s) is uniformly close to the constant −1/2 in
the interval [s1, 1].

These facts imply that g ≤ W, and g crosses 0 at some point σ ∈ [s0, s2], and

g ≥
1
2

W in [s1, s0],

which gives property 3). Property 1) follows directly from the definition. Finally, property 2) holds
since in (s1, 1] ∩ {g > 0}

g′ −W ′ = Cn(1 −
γ

2
)s−γ/2 ≥ 8n

√
W ≥ 8n

√
g.

Moreover, ∫
{g>0}

(2g)−1/2ds =

∫ σ

0
(2g)−1/2ds

≤

∫ s0

0
W−1/2ds + C

∫ σ

s0

s1/2
0 (σ − s)−1/2ds

≤ 21/2t0 + Cs0

≤ 1/4

which shows that ψ is constant outside an interval of length 1/4. �
We conclude this section with a proof of Corollary 2.3.

Proof of Corollary 2.3. Assume that u is a minimizer of J in B2 and 0 ∈ F(u). First we prove that

c ≤ J(u, B1) ≤ C, (4.21)

with c, C universal constants.
The upper bound follows from Remark 4.3. For the lower bound, we use that

(1 − c0)|B1| ≥ |{u > 0} ∩ B1| ≥ c0|B1|.
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Let s0 be defined as in the proof of Lemma 4.1, see (4.1). If

|{u > s0} ∩ B1| ≤
c0

2
|B1|, (4.22)

then
|{0 < u ≤ s0} ∩ B1| ≥

c0

2
|B1|.

In this last set W(u) ≥ W(s0) = 1, and the lower bound is obtained from the potential term.
On the other hand, if the opposite inequality in (4.22) holds, then for all s ∈ (0, s0) the density of

{u > s} in B1 is bounded both above and below by universal constants. Now the lower bound follows
from (4.6) and the Poincaré inequality for χ{u>s} in B1.

The existence of a full ball of radius c′ included in {u > 0} ∩ B1 (or {u = 0} ∩ B1) follows by a
standard covering argument. We sketch it below.

We take a collection of m disjoint balls Bρ(xi), xi ∈ {u > 0}∩B1 such that∪B5ρ(xi) covers {u > 0}∩B1.
It follows that m ∼ ρ−n. If we assume that each Bρ/2(xi) intersects the free boundary then, by the
rescaled version of (4.21),

J(u, Bρ(xi)) ≥ cρn−αγ,

with α as in (2.4). We obtain
J(u, B1) ≥ m c ρn−αγ,

and we contradict the upper bound if ρ is chosen small, universal. �

5. The Gamma convergence

In this section we prove our main result Theorem 2.5. We start by constructing an interpolation
between two functions which are close to each other in a ring.

Proposition 5.1. Let uk, vk be sequences in H1(B1) and γk → 2−. Assume that for some ρ ∈ (1
2 , 1) and

δ > 0 small,
Jγk(uk, Bρ+δ), Jγk(vk, Bρ+δ)

are uniformly bounded, and

‖uk − vk‖L2 + ‖u1− γk
2

k − v1− γk
2

k ‖L1 → 0 in Bρ+δ \ B̄ρ, as k → ∞.

Then, there exists wk ∈ H1(B1) with

wk :=

vk in Bρ

uk in B1 \ B̄ρ+δ

such that
Jγk(wk, B1) ≤ Jγk(vk, Bρ+δ) + Jγk(uk, B1 \ B̄ρ) + o(1),

with o(1)→ 0 as k → ∞.
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Proof. Fix ε > 0 small. We prove the conclusion with o(1) replaced by Cε for some C universal. Since
the energies of uk and vk are uniformly bounded, we can decompose the annulus Bρ+δ\Bρ into a disjoint
union of ∼ ε−1 annuli, and after relabeling ρ and δ we may assume that

Jγk(uk, Bρ+δ \ Bρ) ≤ ε, Jγk(vk, Bρ+δ \ Bρ) ≤ ε.

For simplicity of notation we drop the subindex k.
First we prove the result under the additional assumption

u ≥ v in Bρ+δ \ Bρ. (5.1)

Denote by

ψr(x) = ϕ(|x| − r), r ∈ [ρ, ρ +
δ

4
],

and let
Ψr = min{u,max{ψr, v}}.

Notice that
u ≥ Ψr ≥ v in B1, and Ψr = v in Bρ.

Let
Dr := {u > Ψr > v} ∩ Bρ+δ,

then, by the property (2.5) of the one-dimensional solution ϕ, we find

J(Ψr,Dr) = J(ψr,Dr) =

∫ 1

0
Hn−1({Ψr = s} ∩ Dr) 2

√
W(s)ds. (5.2)

Notice that
{Ψr = s} ∩ Dr = {u > s > v} ∩ ∂Br+ϕ−1(s) ∩ Bρ+δ.

Thus, we average (5.2) for r ∈ [ρ, ρ + δ/4], and obtain? ρ+δ/4

ρ

J(Ψr,Dr)dr ≤

C
δ

∫ 1

0
Hn

(
({u > s > v}) ∩ (Bρ+δ \ Bρ)

)
2
√

W(s)ds. (5.3)

We use (2.3) and the change of coordinates

s1−γ/2 = σ and obtain 2
√

W(s)ds = dσ.

The right hand side in (5.3) equals

C
δ

∫ 1

0
Hn

(
{u1−γ/2 > σ > v1−γ/2} ∩ (Bρ+δ \ Bρ)

)
dσ

≤
C
δ

∥∥∥u1−γ/2 − v1−γ/2
∥∥∥

L1(Bρ+δ\Bρ)
.
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Thus, for all k sufficiently large, we can find an r = rk ∈ [ρ, ρ + δ/4], such that

J(Ψr,Dr) ≤ ε.

Since in the annulus Bρ+δ \ Bρ the function Ψr coincides with u or v outside Dr we find

J(Ψr, Bρ+δ \ Bρ) ≤ 3ε. (5.4)

Finally we define
w = ηΨr + (1 − η)u,

with η ∈ C∞0 (Bρ+δ) a cutoff function with η = 1 in Bρ+δ/2. Clearly, w = u outside Bρ+δ and w = Ψr in
Bρ+δ/2, hence w = v in Bρ. Moreover,

u ≥ w ≥ Ψr > 0 =⇒ W(w) ≤ W(Ψr) in Bρ+δ \ Bρ+δ/2.

Since
|∇w|2 ≤ 3

(
|∇Ψr|

2 + |∇u|2 + |∇η|2(u − Ψr)2
)
,

we find
J(w, Bρ+δ \ Bρ) ≤ 3

(
J(Ψr, Bρ+δ \ Bρ) + J(u, Bρ+δ \ Bρ) + C(δ)‖Ψr − u‖2L2

)
.

Using that,
|u − Ψr| ≤ |u − v|,

we obtain
C(δ)‖Ψr − u‖2L2 → 0 as k → ∞.

We find
J(w, Bρ+δ \ Bρ) ≤ 15ε,

for all large k, which gives the desired conclusion under the assumption (5.1).
The general case follows easily from the interpolation procedure between the two ordered functions

described above. We apply it two times, first in the annulus Bρ+δ \ Bρ+δ/2 where we interpolate between
u and min{u, v} and then in the annulus Bρ+δ/2 \ Bρ where we interpolate between min{u, v} and v. �

We recall now the functional F introduced in Section 2, which is defined on the space of pairs
(u, E) ∈ A(Ω)

A(Ω) := {(u, E)| u ∈ H1(Ω), E Caccioppoli set, u ≥ 0 in Ω, u = 0 a.e. in E},

given by the Dirichlet - perimeter energy

FΩ(u, E) =

∫
Ω

|∇u|2dx + PΩ(E).

Here PΩ(E) represents the perimeter of E in Ω

PΩ(E) = [∇χE]BV(Ω) =

∫
Ω

|∇χE |.

In the next two lemmas we establish the Γ-convergence of the Jγ to F .
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Lemma 5.2 (Lower semicontinuity). Let γk → 2− and uk satisfy

u1−γk/2
k → χEc in L1(Ω), uk → u in L2(Ω).

Then
lim inf Jγk(uk,Ω) ≥ FΩ(u, E).

Proof. After passing to a subsequence we may assume that the two convergences above hold pointwise
a.e. in Ω. This implies that {u > 0} \ Ec is a set of measure zero, hence u = 0 a.e. on E, and (u, E) is
an admissible pair.

We write
Jγk(uk,Ω) = Jγk(uk,Ω ∩ {uk ≤ ε}) + Jγk(uk,Ω ∩ {uk > ε}).

By the coarea formula and the definition of W (see (2.1))

Jγk(uk,Ω ∩ {uk ≤ ε}) ≥
∫
{uk≤ε}

|∇uk|2
√

W(uk)dx

=

∫
{uk≤ε}

|∇u1−γk/2
k |dx

=

∫
Ω

|∇u1−γk/2
k |dx, with uk := min{uk, ε}. (5.5)

Moreover, u1−γk/2
k converges in L1 to χE, hence

lim inf Jγk(uk,Ω ∩ {uk ≤ ε}) ≥
∫

Ω

|∇χE |dx,

by the lower semicontinuity of the BV norm. On the other hand

Jγk(uk,Ω ∩ {uk > ε}) ≥
∫

Ω

|∇(uk − ε)+|2dx,

and since (uk − ε)+ → (u − ε)+ in L2, we obtain

lim inf Jγk(uk,Ω ∩ {uk > ε}) ≥
∫

Ω

|∇(u − ε)+|2dx.

By adding the inequalities we find

lim inf Jγk(uk,Ω) ≥
∫

Ω

|∇(u − ε)+|2dx + PΩ(E),

and the conclusion is proved by letting ε → 0. �

Lemma 5.3. Let (u, E) ∈ A(Ω) with u a continuous function in a Lipschitz domain Ω. Then, given a
sequence γk → 2− we can construct a sequence uk such that

u1−γk/2
k → χEc in L1(Ω), uk → u in L2(Ω),

Jγk(uk,Ω)→ FΩ(u, E).
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In view of the lower semicontinuity property in Ω \D, where D ⊂ Ω is a subdomain, we obtain that∫
D
|∇u|2dx +

∫
D
|∇χE | ≥ lim sup Jγk(uk,D).

Proof. For the convergence of the energies it suffices to show that

lim sup Jγk(uk,Ω) ≤ FΩ(u, E).

Fix ε > 0 small. First we approximate E in Ω by a smooth set F ⊂ Rn which is included in the open
set {u < ε} in Ω (which contains a neighborhood of E). Precisely, (see Lemma 1 of Modica [12]), there
exists a smooth set F ⊂ Rn which approximates E in Ω in the sense that

F ∩Ω ⊂ {u < ε},

‖χF∩Ω − χE‖L1 ≤ ε, PΩ(F) ≤ PΩ(E) + ε,

Hn−1(∂F ∩ ∂Ω) = 0. (5.6)

In view of this, it suffices to prove the lemma with E replaced by Ẽ := F and u replaced by ũ := (u−2ε)+

which is an approximation of u in H1(Ω). Notice that by construction ũ vanishes in a δ-neighborhood
of Ẽ for some small δ. We define uk in B1 as

uk := max{ϕk(d), ũ},

where d represents the distance in Rn to Ẽ. Next we check that uk satisfies the desired conclusions.
Clearly uk = 0 on Ẽ, and using that

C ≥ uk ≥ ϕk(d) on Ω \ Ẽ,

and 1 − γk/2→ 0+ we have
u1−γk/2

k → 1 in Ω \ Ẽ,

hence
u1−γk/2

k → χẼ in L1(Ω).

Here we used that ϕk(d) = c∗γd
α, with c∗γ defined in (2.4), and we have

(c∗γ)
1−γ/2 → 1 as γ → 2.

Since ϕk(d) converges uniformly to 0 as k → ∞ we also obtain

uk → ũ in L2(Ω).

Using property (2.5) we obtain that

J (ϕ(d), {a < d < b} ∩Ω) =

∫ ϕ(b)

ϕ(a)
Hn−1({ϕ(d) = s} ∩Ω)2

√
W(s)ds

=

∫ b

a
Hn−1({d = t} ∩Ω)ωγ(t)dt,
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with
ωγ(t) := 2

√
W(ϕ(t))ϕ′(t).

Notice that
ωγ(t)dt = ϕ′(t)2 + W(ϕ(t)) dt,

represents the measure of the one-dimensional solution which, as k → ∞, converges weakly in any
bounded interval [−a, a] to the Dirac delta measure at 0. On the other hand (5.6) implies that

Hn−1({ϕ(d) = t} ∩Ω)→ PΩ(Ẽ ∩Ω) as t → 0.

In conclusion, we find that as k → ∞

J (ϕ(d), {0 < d < δ} ∩Ω)→ PΩ(Ẽ ∩Ω)

and
J (ϕ(d), {d > δ} ∩Ω)→ 0.

Using that
uk = ϕ(d) if d < δ,

and
uk ≥ ϕ(d) =⇒ W(uk) ≤ W(ϕ(d)) if d > δ,

we find
lim sup J(uk,Ω) ≤ PΩ(Ẽ ∩Ω) +

∫
Ω

|∇ũ|2dx.

�

We are finally ready to prove our main theorem.

Proof of Theorem 2.5. The L2 convergence follows from the uniform bound of the uk in H1(Ω).
By the coarea formula (see (5.5)) we find that

[u1−γk/2
k ]BV(Ω) ≤ M

and using the inequality
u1−γk/2

k ≤ 1 + u2
k

we find that u1−γk/2
k are uniformly bounded in BV(Ω). Thus, after passing to a subsequence, we have

u1−γk/2
k → g in L1(Ω), (5.7)

for some non-negative g ∈ BV(Ω). We claim that

g = χEc for some set E. (5.8)

First we show that for all δ > 0 small

{δ ≤ g ≤ 1 − δ} has measure zero.
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Otherwise, for all large k, the set
{δ/2 ≤ u1−γk/2

k ≤ 1 − δ/2}

has measure bounded below by a fixed positive constant. On this set

W(uk) ≥ W((1 − δ/2)
2

2−γk ) = cγk(1 − δ/2)−
2γk

2−γk → ∞, (5.9)

as k → ∞ and we contradict the uniform upper bound for the energy of uk in Ω.
Similarly we find that the set

{g ≥ 1 + δ} has measure zero.

Indeed, otherwise
{u1−γk/2

k ≥ 1 + δ/2}

has measure bounded below by a fixed positive constant. Then we contradict the uniform upper bound
for the L2 norm of uk since on the set above

u2
k ≥ (1 + δ/2)

4
2−γk → ∞

as k → ∞, and the claim (5.8) is proved.
The argument above implies also that

χ{uk>0} → χEc in L1(Ω). (5.10)

For example if
|{uk > 0} \ Ec| ≥ µ > 0

for some positive constant µ independent of k, then (5.7) and (5.8) imply

|{0 < u1−γk/2
k ≤

1
2
}| ≥ µ/2,

and we get a contradiction as in (5.9). Also

|Ec \ {uk > 0}| = |Ec ∩ {uk = 0}| → 0,

as k → ∞, follows from the convergence (5.7) and (5.8).
Next we assume that uk are minimizers for Jγk and prove the minimality of (u, E) for F . The

argument is standard and follows from Proposition 5.1. We sketch it for completeness.
For simplicity let Ω = B1. Since the functions uk are uniformly Hölder continuous on compact sets

of B1 we find that the limiting function u is Hölder continuous in B1 and the convergence uk → u is
uniform on compact subsets.

Let (v, F) be an admissible pair which coincides with (u, E) near ∂B1 and let

R := Bρ+δ \ Bρ,

be an annulus near ∂B1 where the two pairs coincide.
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Denote by vk be the functions constructed in Lemma 5.3 corresponding to the pair (v, F) in Bρ+δ.
Since uk and vk satisfy the hypotheses of Proposition 5.1 we can construct wk as the interpolation
between uk and vk. By the minimality of uk in B1 and the conclusion of Proposition 5.1 we have

J(uk, B1) ≤ J(wk, B1) ≤ J(uk, B1 \ Bρ) + J(vk, Bρ+δ) + o(1).

This gives
J(uk, Bρ) ≤ J(vk, Bρ+δ) + o(1),

and by taking k → ∞, we find from Lemmas 5.2 and 5.3

FBρ(u, E) ≤ FBρ+δ
(v, F).

We let ρ→ 1 and obtain the desired conclusion

FB1(u, E) ≤ FB1(v, F).

Finally, the uniform convergence of the free boundaries follows from the uniform density estimates
and the L1 convergence (5.10). �
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