
http://www.aimspress.com/journal/mine

Research article

A "nonlinear duality" approach to $W_{0}^{1,1}$ solutions in elliptic systems related to the Keller-Segel model ${ }^{\dagger}$

Lucio Boccardo*

Istituto Lombardo - Accademia di Scienze e Lettere - Palazzo di Brera, Milano, Italia
\dagger This contribution is part of the Special Issue: Nonlinear PDEs and geometric analysis Guest Editors: Julie Clutterbuck; Jiakun Liu Link: www.aimspress.com/mine/article/6186/special-articles

* Correspondence: Email: boccardo@mat.uniroma1.it.

Abstract

In this paper, we prove existence of distributional solutions of a nonlinear elliptic system, related to the Keller-Segel model. Our starting point is the boundedness theorem (for solutions of elliptic equations) proved by Guido Stampacchia and Neil Trudinger.

Keywords: duality method; nonlinear elliptic system; $W_{0}^{1,1}$ solutions

1. Background: results by Guido Stampacchia and Neil Trudinger

The following results about the summability of the solutions of Dirichlet problems for equations with discontinuous coefficients are nowadays classical, since the papers [19] and [20] by Guido Stampacchia and Neil Trudinger [12].

If $f \in L^{m}(\Omega), m \geq \frac{2 N}{N+2}$, thanks to Lax-Milgram Theorem and Sobolev embedding, there exist a weak solution $u \in W_{0}^{1,2}(\Omega)$ of

$$
\begin{equation*}
u \in W_{0}^{1,2}(\Omega): \int_{\Omega} M(x) \nabla u \nabla v=\int_{\Omega} f(x) v(x), \quad \forall v \in W_{0}^{1,2}(\Omega), \tag{1.1}
\end{equation*}
$$

where Ω is a bounded, open subset of $\mathbb{R}^{N}, N \geq 2$; the matrix $M(x)$ is symmetric, uniformly elliptic and bounded: there exist $\alpha>0$ and $\beta>0$ such that

$$
\begin{equation*}
M(x) \xi \cdot \xi \geq \alpha|\xi|^{2}, \quad|M(x)| \leq \beta \tag{1.2}
\end{equation*}
$$

for every ξ in \mathbb{R}^{N}, and for almost every x in Ω.
Moreover:

1) If $f \in L^{m}(\Omega), \frac{2 N}{N+2} \leq m \leq \frac{N}{2}$, the summability of u (which belongs to $L^{m^{* *}}(\Omega), m^{* *}=\frac{m N}{N-2 m}$, if $\frac{2 N}{N+2} \leq m<\frac{N}{2}$ and it has exponential summability if $m=\frac{N}{2}$) was proved in [19] (see also [5, 13, 20, 21]).
2) If $f \in L^{m}(\Omega), m>\frac{N}{2}$, the boundedness of u, was proved in [19] (see also [13,20]).
3) If $f \in L^{m}(\Omega), 1<m<\frac{2 N}{N+2}$, in [8], is proved a (nonlinear) Calderon-Zygmund theory for operators with discontinuous coefficients, showing the existence of a distributional solution $u \in W_{0}^{1, m^{*}}(\Omega)$, $m^{*}=\frac{m N}{N-m}$. Note that, in this case $m^{*} \in\left(1^{*}, 2\right)$ and, thanks to the Sobolev embedding, $u \in L^{m^{* *}}(\Omega)$ as in (1).
4) The existence in $W_{0}^{1,1^{*}}(\Omega)$ is proved, in [8], if $\int_{\Omega}|f| \log (1+|f|)<\infty$.

Then a question arises: is it possible to prove (as in (3)) that

$$
\begin{equation*}
f \in L^{m}(\Omega), \frac{2 N}{N+2}<m<N, \text { implies } \nabla u \in\left(L^{m^{*}}(\Omega)\right)^{N} ? \tag{1.3}
\end{equation*}
$$

In [4], it is proved that the above statement is false if $\frac{N}{2}<m<N$.
The results recalled in (1), (2), (3) and (4) are crucial in the next proofs.

2. A stationary system weakly related to the Keller-Segel model

In this paper, we prove existence of distributional solutions of the following nonlinear elliptic boundary value problem:

$$
\left\{\begin{array}{cl}
-\operatorname{div}(M(x) \nabla u)+u=-\operatorname{div}\left(u \frac{M(x) \nabla \psi}{1+\psi}\right)+f(x) & \text { in } \Omega, \tag{2.1}\\
-\operatorname{div}(M(x) \nabla \psi)+\psi=u^{\sigma-1} & \text { in } \Omega, \\
u=0=\psi & \text { on } \partial \Omega .
\end{array}\right.
$$

with

$$
\begin{equation*}
0 \leq f(x) \in L^{\rho}(\Omega), \rho>1 \tag{2.2}
\end{equation*}
$$

Of course, $f(x)$ needs not to be identically null. On the power σ we suppose $1<\sigma<\frac{2 N-2}{N-2}$, but it is preferable (in the following proofs) to split the assumption as

$$
\begin{equation*}
\frac{N}{N-2}<\sigma<\frac{2 N-2}{N-2} \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma=\frac{N}{N-2} \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
1<\sigma<\frac{N}{N-2} \tag{2.5}
\end{equation*}
$$

There are many theoretical models for chemotaxis; one of the most important is the Keller-Segel one (see [14, 16, 17] and also [3, 10]). Following [15] (see also [14]), one of the possible models is the "chemical signal driven logistic model" which leads, in the stationary case, to the system above. Note that the equation for u includes a chemotaxis term with nonlinear flux limitation having a kind of logarithmic dependence: $\frac{\nabla \psi}{1+\psi}=\nabla \log (1+\psi)$.

The original model of chemotaxis presents a linear dependence of the gradient of the concentration of the chemical substance ψ in the equation of u in the form $-\operatorname{div}(\chi u \nabla \psi)$, for a positive given constant χ.

2.1. Approximate problems

Note that, with our assumption, we have $\sigma-1>0$. We define $f_{n}(x)=\frac{f(x)}{1+\frac{1}{n} f(x)}$ and we consider the following approximate Dirichlet problem

$$
\left\{\begin{array}{c}
u_{n} \in W_{0}^{1,2}(\Omega): \forall v \in W_{0}^{1,2}(\Omega), \\
\int_{\Omega} M(x) \nabla u_{n} \nabla v+\int_{\Omega} u_{n} v=\int_{\Omega} T_{n}\left(u_{n}\right) \frac{M(x) \nabla \psi_{n} \nabla v}{\left(1+\frac{1}{n}\left|\nabla \psi_{n}\right|\right)\left(1+\psi_{n}\right)}+\int_{\Omega} f_{n} v, \\
\psi_{n} \in W_{0}^{1,2}(\Omega): \forall \varphi \in W_{0}^{1,2}(\Omega), \\
\int_{\Omega} M(x) \nabla \psi_{n} \nabla \varphi+\int_{\Omega} \psi_{n} \varphi=\int_{\Omega}\left[T_{\left(n^{3}\right)}\left(u_{n}\right)\right]^{\sigma-1} \varphi,
\end{array}\right.
$$

where, $\forall k \in \mathbb{R}^{+}$,

$$
T_{k}(s)=\left\{\begin{array}{l}
s, \text { if }|s| \leq k, \\
k \frac{s}{|s|}, \text { if }|s|>k .
\end{array}\right.
$$

Here we enumerate some properties of the solutions u_{n}, ψ_{n}.
A The existence of $\left(u_{n}, \psi_{n}\right)$ is a consequence of Proposition 3.1 of [11] (with minimal changes).
B The positivity of $f(x)$ gives, in the first equation, $u_{n} \geq 0$ (see [3]), which, in the second equation, implies $\psi_{n} \geq 0$.

C In the first equation, $0 \leq f_{n}(x) \leq n$ and the modulus of the function in the divergence term is less than n^{2}, so that, with the boundedness theorem by G. Stampacchia ([19], see also [20]), we deduce $\left\|u_{n}\right\|_{L^{\infty}(\Omega)} \leq C_{0} n^{2}$. Thus, in the second equation, we observe that $T_{\left(n^{3}\right)}\left(u_{n}\right)=u_{n}\left(\right.$ for $\left.n>n_{0}\right)$ and we can rewrite the above system as

$$
\left\{\begin{array}{c}
0 \leq u_{n} \in W_{0}^{1,2}(\Omega): \forall v \in W_{0}^{1,2}(\Omega), \tag{2.6}\\
\int_{\Omega} M(x) \nabla u_{n} \nabla v+\int_{\Omega} u_{n} v=\int_{\Omega} T_{n}\left(u_{n}\right) \frac{M(x) \nabla \psi_{n} \nabla v}{\left(1+\frac{1}{n}\left|\nabla \psi_{n}\right|\right)\left(1+\psi_{n}\right)}+\int_{\Omega} f_{n} v ; \\
0 \leq \psi_{n} \in W_{0}^{1,2}(\Omega): \forall \varphi \in W_{0}^{1,2}(\Omega), \\
\int_{\Omega} M(x) \nabla \psi_{n} \nabla \varphi+\int_{\Omega} \psi_{n} \varphi=\int_{\Omega}\left(u_{n}\right)^{\sigma-1} \varphi .
\end{array}\right.
$$

3. Nonlinear duality method

In the following lemma, in spite of the nonlinearity of the problem, we use a kind of duality, which will be advantageous to prove a priori estimates.

Lemma 3.1. We assume (1.2), (2.2), $1<\sigma<\frac{2 N-2}{N-2}$. Let $a \in(0,1)$. Then the following "nonlinear dual" inequality holds

$$
\begin{equation*}
\int_{\Omega} \frac{\left(u_{n}\right)^{\sigma}}{\left(1+\psi_{n}\right)} \leq \frac{1}{a} \int_{\Omega} f_{n}(x)\left(\psi_{n}\right)^{a} . \tag{3.1}
\end{equation*}
$$

Proof. In the above system, we use $\log \left(1+\psi_{n}\right)$ as test function in the first equation, $\frac{-u_{n}}{\left(1+\psi_{n}\right)}$ as test
function in the second equation and we have

$$
\left\{\begin{array}{c}
\int_{\Omega} M(x) \nabla u_{n} \frac{\nabla \psi_{n}}{1+\psi_{n}}+\int_{\Omega}\left[u_{n}-f_{n}\right] \log \left(1+\psi_{n}\right)=\int_{\Omega} \frac{T_{n}\left(u_{n}\right)}{\left(1+\psi_{n}\right)^{2}} \frac{M(x) \nabla \psi_{n} \nabla \psi_{n}}{\left(1+\frac{1}{n}\left|\nabla \psi_{n}\right|\right)} \\
-\int_{\Omega} M(x) \nabla \psi_{n} \nabla u_{n} \frac{1}{\left(1+\psi_{n}\right)}+\int_{\Omega} M(x) \nabla \psi_{n} \nabla \psi_{n} \frac{u_{n}}{\left(1+\psi_{n}\right)^{2}}=\int_{\Omega}\left[\psi_{n}-\left(u_{n}\right)^{\sigma-1}\right] \frac{u_{n}}{\left(1+\psi_{n}\right)} .
\end{array}\right.
$$

Then, after simplifications (we use $0 \leq \frac{T_{n}\left(u_{n}\right)}{1+\frac{1}{n}\left|\nabla \psi_{n}\right|} \leq u_{n}$), we deduce that

$$
\int_{\Omega}\left(u_{n}\right)^{\sigma-1} \frac{u_{n}}{\left(1+\psi_{n}\right)}+\int_{\Omega} u_{n}\left[\log \left(1+\psi_{n}\right)-\frac{\psi_{n}}{\left(1+\psi_{n}\right)}\right] \leq \int_{\Omega} f_{n}(x) \log \left(1+\psi_{n}\right)
$$

and, dropping a positive term, we prove the inequality

$$
\begin{equation*}
\int_{\Omega} \frac{\left(u_{n}\right)^{\sigma}}{\left(1+\psi_{n}\right)} \leq \int_{\Omega} f_{n}(x) \log \left(1+\psi_{n}\right) \tag{3.2}
\end{equation*}
$$

Now we use the inequality $0 \leq \log \left(1+\psi_{n}\right) \leq \frac{1}{a}\left(\psi_{n}\right)^{a}, a \in(0,1)$, and we have (3.1).

Lemma 3.2. We assume (1.2), (2.2). Then the sequence $\left\{u_{n}\right\}$ is bounded in

$$
\left\{\begin{array}{l}
L^{\frac{N}{N-2}}(\Omega), \text { if } \frac{N}{N-2}<\sigma<\frac{2 N-2}{N-2}(\operatorname{assumption}(2.3)) ; \\
L^{r}(\Omega), r<\frac{N}{N-2}, \text { if } \sigma=\frac{N}{N-2}(\operatorname{assumption}(2.4)) ; \\
L^{\sigma}(\Omega), \text { if } 1<\sigma<\frac{N}{N-2}(\text { assumption }(2.5)) .
\end{array}\right.
$$

Proof. First part: $\frac{N}{N-2}<\sigma<\frac{2 N-2}{N-2}$ - Let $q<\sigma$. Then (we use Hölder inequality with exponents $\frac{\sigma}{q}$ and $\left.\frac{\sigma}{\sigma-q}\right)$ we have, using (3.1),

$$
\begin{aligned}
& \int_{\Omega}\left(u_{n}\right)^{q}=\int_{\Omega} \frac{\left(u_{n}\right)^{q}}{\left(1+\psi_{n}\right)^{\frac{q}{\sigma}}}\left(1+\psi_{n}\right)^{\frac{q}{\sigma}} \leq\left[\int_{\Omega} \frac{\left(u_{n}\right)^{\sigma}}{\left(1+\psi_{n}\right)}\right]^{\frac{q}{\sigma}}\left[\int_{\Omega}\left(1+\psi_{n}\right)^{\frac{q}{\sigma-q}}\right]^{\frac{\sigma-q}{\sigma}} \\
\leq & {\left[\frac{1}{a} \int_{\Omega} f_{n}(x)\left(\psi_{n}\right)^{a}\right]^{\frac{q}{\sigma}}\left\|1+\psi_{n}\right\|_{\frac{q}{\sigma-q}}^{\frac{q}{\sigma}} \leq\left(\frac{1}{a}\right)^{\frac{q}{\sigma}}\left[\left\|\psi_{n}\right\|_{\frac{q}{\sigma-q}}^{a}\|f\|_{\frac{q}{q-(\sigma-q) a}}\right]^{\frac{q}{\sigma}}\left(C_{1}+\left\|\psi_{n}\right\|_{\frac{q}{\sigma-q}}\right)^{\frac{q}{\sigma}}, }
\end{aligned}
$$

that is

$$
\left\|u_{n}\right\|_{q} \leq\left(\frac{1}{a}\right)^{\frac{1}{\sigma}}\left[\left\|\psi_{n}\right\|_{\frac{q}{\sigma-q}}^{a}\|f\|_{\frac{q}{q-(\sigma-q) a}}\right]^{\frac{1}{\sigma}}\left(C_{1}+\left\|\psi_{n}\right\|_{\frac{q}{\sigma-q}}\right)^{\frac{1}{\sigma}}
$$

Define $q=\frac{N}{N-2}$ and $p=\frac{N}{(\sigma-1)(N-2)}$; we note that $p>1$ since $\sigma<\frac{2 N-2}{N-2}$.
Then we use Calderon-Zygmund type estimates for Dirichlet problems with infinite energy solutions, proved in $[8,19]$ (see (1) and (3)) and we have

$$
\begin{gathered}
\left\|u_{n}\right\|_{q} \leq\left(\frac{1}{a}\right)^{\frac{1}{\sigma}}\left[\left\|\psi_{n}\right\|_{p^{* *}}^{a}\|f\|_{\frac{q}{q-(\sigma-q) a}}\right]^{\frac{1}{\sigma}}\left(C_{1}+\left\|\psi_{n}\right\|_{p^{* *}}\right)^{\frac{1}{\sigma}} \\
\left\|u_{n}\right\|_{q}^{\sigma} \leq\left(\frac{1}{a}\right)\left[C_{p}\left\|u_{n}^{\sigma-1}\right\|_{p}^{a}\|f\|_{\frac{q}{q-(\sigma-q) a}}\right]\left(C_{1}+C_{p}\left\|u_{n}^{\sigma-1}\right\|_{p}\right)
\end{gathered}
$$

We note that $p(\sigma-1)=q$ and we rewrite the last inequality as

$$
\left\|u_{n}\right\|_{q}^{\sigma} \leq\left(\frac{1}{a}\right)\left[C_{q}\left\|u_{n}\right\|_{q}^{(\sigma-1) a}\|f\|_{\frac{q}{q-(\sigma-q) a}}\right]\left(C_{1}+C_{q}\left\|u_{n}\right\|_{q}^{\sigma-1}\right)
$$

Thus for $a>0$ close to zero, we have proved the following estimate, where $\rho>1$ is close to one,

$$
\begin{equation*}
\left\|u_{n}\right\|_{\frac{N}{N-2}} \leq C_{0}\left(\|f\|_{\rho}\right) \tag{3.3}
\end{equation*}
$$

Second part: $\sigma=\frac{N}{N-2}$ - There is only a slight change with respect to the previous case: $p(\sigma-1)<q$. Third part: $1 \leq \sigma<\frac{N}{N-2}$ - Recall the following L^{∞} estimate (proved in [19], see also [20]), concerning the second equation,

$$
\left\|\psi_{n}\right\|_{\infty} \leq C_{0}\left\|\left(u_{n}\right)^{\sigma-1}\right\|_{p}, \quad p>\frac{N}{2} .
$$

Then we deduce directly from (3.2)

$$
\frac{1}{\left(1+\left\|\psi_{n}\right\|_{\infty}\right)} \int_{\Omega}\left(u_{n}\right)^{\sigma} \leq \log \left(1+\left\|\psi_{n}\right\|_{\infty}\right) \int_{\Omega} f(x)
$$

and

$$
\int_{\Omega}\left(u_{n}\right)^{\sigma} \leq\left(1+\left\|\psi_{n}\right\|_{\infty}\right) \frac{1}{a}\left\|\psi_{n}\right\|_{\infty}^{a}\|f\|_{1} \leq\left(1+C_{0}\left\|\left(u_{n}\right)^{\sigma-1}\right\|_{p}\right) \frac{1}{a}\left[C_{0}\left\|\left(u_{n}\right)^{\sigma-1}\right\|_{p}\right]^{a}\|f\|_{1} .
$$

Let $p=\sigma^{\prime}\left(\right.$ which implies $\left.\sigma<\frac{N}{N-2}\right)$. Then

$$
\int_{\Omega}\left(u_{n}\right)^{\sigma} \leq C\left(\|f\|_{1}\right) .
$$

Corollary 3.3. We assume (1.2), (2.2). As a consequence of the previous lemma, the sequence $\left\{\left(u_{n}\right)^{\sigma-1}\right\}$ is bounded in

$$
\left\{\begin{array}{l}
L^{\frac{N}{(N-2)(\sigma-1)}}(\Omega), \text { if } \frac{N}{N-2}<\sigma<\frac{2 N-2}{N-2} ; \\
L^{s}(\Omega), s<\frac{N}{2}, \text { if } \sigma=\frac{N}{N-2} \\
L^{\sigma^{\prime}}(\Omega), \text { if } 1<\sigma<\frac{N}{N-2} .
\end{array}\right.
$$

Thus the right hand side of the second equation is bounded in $L^{1}(\Omega)$ if $\frac{N}{(N-2)(\sigma-1)} \geq 1$; that is, if $\sigma \leq \frac{2 N-2}{N-2}$.
Corollary 3.4. If, in the second equation of (2.6), we take as test function $\frac{\psi_{n}}{1+\psi_{n}}$, (following [2,3]), we have

$$
\begin{equation*}
\alpha \int_{\Omega} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}} \leq \int_{\Omega}\left(u_{n}\right)^{\sigma-1} \leq C_{1} . \tag{3.4}
\end{equation*}
$$

Corollary 3.5. The sequence $\left\{\psi_{n}\right\}$ is bounded in $W_{0}^{1,2}(\Omega)$ if the right hand side of the second equation is bounded in $L^{\frac{2 N}{N+2}}(\Omega)$ that is if

$$
\left\{\begin{array}{l}
\sigma \leq \frac{3 N-2}{2(N-2)}, \text { if } \frac{N}{N-2}<\sigma<\frac{2 N-2}{N-2} \\
\text { always, if } \sigma=\frac{N}{N-2} \\
\text { always, if } 1<\sigma<\frac{N}{N-2} .
\end{array}\right.
$$

Corollary 3.6. If in the first equation of (2.6) we take as test function $\frac{u_{n}}{1+u_{n}}$, following [2,3], and we use Young inequality, we have

$$
\begin{equation*}
\frac{\alpha}{2} \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left(1+u_{n}\right)^{2}} \leq \frac{\beta^{2}}{2 \alpha} \int_{\Omega} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}+\int_{\Omega} f . \tag{3.5}
\end{equation*}
$$

That is, the sequence $\left\{\frac{\left|\nabla u_{n}\right|}{\left(1+u_{n}\right)}\right\}$ is bounded in $L^{2}(\Omega)$; with this boundedness, in [3], is proved that there exists a measurable function $u(x)$ such that

$$
\begin{equation*}
u_{n}(x) \text { converges a.e. to } u(x) \text {. } \tag{3.6}
\end{equation*}
$$

Corollary 3.7. If in the first equation of (2.6) we take as test function $T_{k}\left(u_{n}\right)$, following [2, 3], we deduce

$$
\frac{\alpha}{2} \int_{\Omega}\left|\nabla T_{k}\left(u_{n}\right)\right|^{2} \leq k^{2} \frac{\beta^{2}}{2 \alpha} \int_{\Omega} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}+k \int_{\Omega} f,
$$

so that we can add to (3.6) the following weak convergence

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \text { converges weakly in } W_{0}^{1,2}(\Omega) \text { to } T_{k}(u), \forall k \in \mathbb{R}^{+} \tag{3.7}
\end{equation*}
$$

Corollary 3.8. If $1<\sigma<\frac{2 N-2}{N-2}$, the sequence $\left\{\left(u_{n}\right)^{\sigma-1}\right\}$ is bounded in $L^{\nu}(\Omega), v>1$ (and more: in $L^{\sigma^{\prime}}(\Omega)$ if $\left.1<\sigma<\frac{N}{N-2}\right)$. Then the above a.e. convergence (3.6) and the Vitali theorem say that the sequence $\left\{\left(u_{n}\right)^{\sigma-1}\right\}$ converges in $L^{1}(\Omega)$ to $\left\{u^{\sigma-1}\right\}$.

Then (see $[7,8]$) the sequence $\left\{\psi_{n}\right\}$ is compact in $W_{0}^{1, q}(\Omega), q<\frac{N}{N-1}$, at least; in Corollary 3.5 is proved a stronger result for a smaller subset of exponents σ. Define ψ a cluster point of $\left\{\psi_{n}\right\}$ in $W_{0}^{1, q}(\Omega)$.
Corollary 3.9. A result by Leone-Porretta ([18]) states that the sequence $\left\{\nabla T_{k}\left(\psi_{n}\right)\right\}$ is L^{2} compact, because the right hand side of the second equation in (2.6) is L^{1} compact (Corollary 3.8).

Lemma 3.10. The sequence

$$
\begin{equation*}
\left\{\frac{\left|\nabla \psi_{n}\right|}{1+\psi_{n}}\right\} \text { is } L^{2} \text { compact. } \tag{3.8}
\end{equation*}
$$

Proof. If in the second equation of (2.6) we take $\left[\frac{\psi_{n}}{1+\psi_{n}}-\frac{k}{1+k}\right]^{+}$as test function and we use Hölder inequality, we have (recall (3.3))

$$
\begin{equation*}
\alpha \int_{\left\{k<\psi_{n}\right\}} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}} \leq \int_{\left\{k<\psi_{n}\right\}}\left(u_{n}\right)^{\sigma-1} \leq\left(C_{0}\|f\|_{\rho}\right)^{\sigma-1}\left|\left\{k<\psi_{n}\right\}\right|^{1-\frac{(\sigma-1)(N-2)}{N}} . \tag{3.9}
\end{equation*}
$$

Now we use this inequality to prove the L^{1} equi-integrability of the sequence $\left\{\frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}\right\}$. Indeed, for every measurable subset $E \subset \Omega$, we have

$$
\begin{aligned}
& \int_{E} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}} \leq \int_{\left\{k<\psi_{n}\right\}} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}+\int_{E \cap\left\{\psi_{n} \leq k\right\}} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}} \\
& \leq \frac{1}{\alpha}\left(C_{0}\|f\|_{\rho}\right)^{\sigma-1}\left|\left\{k<\psi_{n}\right\}\right|^{1-\frac{(\sigma-1)(N-2)}{N}}+\int_{E}\left|\nabla T_{k}\left(\psi_{n}\right)\right|^{2} .
\end{aligned}
$$

Now Corollary 3.9 says that, for every $k \in \mathbb{R}^{+}$, the last integral is small (uniformly with respect to n) if $|E|$ is small. Here $|E|$ denotes the measure of the subset E.

Moreover $\left|\left\{k<\psi_{n}\right\}\right|$ is small (uniformly with respect to n) for k large enough. Thus the last two sentences prove that

$$
\begin{equation*}
\text { the sequence }\left\{\frac{\left|\nabla \psi_{n}\right|}{1+\psi_{n}}\right\} \text { is } L^{2} \text { equi-integrable. } \tag{3.10}
\end{equation*}
$$

Furthermore a result proved in [8] implies that the sequences $\left\{\nabla \psi_{n}(x)\right\}$ and $\left\{\psi_{n}(x)\right\}$ converge almost everywhere, so that these a.e. convergences, (3.10) and Vitali theorem yield (3.8).
Corollary 3.11. In the first equation of (2.6) we take as test function $\left[\frac{u_{n}}{1+u_{n}}-\frac{k}{1+k}\right]^{+}, k \in \mathbb{R}^{+}$, (following [2,3]) we use the Young inequality and we have

$$
\begin{equation*}
\frac{\alpha}{2} \int_{\left\{k<u_{n}\right\}} \frac{\left|\nabla u_{n}\right|^{2}}{\left[1+u_{n}\right]^{2}} \leq \frac{\beta^{2}}{2 \alpha} \int_{\left\{k<u_{n}\right\}} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}+\int_{\left\{k<u_{n}\right\}} f . \tag{3.11}
\end{equation*}
$$

Moreover, there is a second important consequence of (3.10): the a priori estimates on the sequence $\left\{u_{n}\right\}$ imply that $\left|\left\{k<u_{n}\right\}\right|$ is small for k large (uniformly with respect to n), so that, in (3.11), the term $\int_{\left\{k<u_{n}\right]} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}$ is small (uniformly with respect to n) if k is large enough and then the term

$$
\begin{equation*}
\int_{\left\{k<u_{n}\right\}} \frac{\left|\nabla u_{n}\right|^{2}}{\left[1+u_{n}\right]^{2}} \text { is also small (uniformly with respect to } n \text {) if } k \text { is large enough. } \tag{3.12}
\end{equation*}
$$

3.1. Entropy solutions

Following [3] and [1] we recall the definition of entropy solution, useful in cases (as here) of very singular framework, where the definition of distributional solution is meaningless.

Note that, if $N>4, u \notin L^{2}(\Omega)$, so that the term $u \frac{\nabla \psi}{1+\psi}$ does not belong to L^{1}.
Definition 3.12. A measurable function u is an entropy solution of the first equation of our system if

$$
\left\{\begin{array}{l}
T_{k}(u) \in W_{0}^{1,2}(\Omega), \forall k \in \mathbb{R}^{+} ; \tag{3.13}\\
\int_{\Omega} M(x) \nabla u \nabla T_{k}[u-\varphi]+\int_{\Omega} u T_{k}[u-\varphi] \\
\quad \leq \int_{\Omega} u \frac{M(x) \nabla \psi \cdot \nabla T_{k}[u-\varphi]}{1+\psi}+\int_{\Omega} f(x) T_{k}[u-\varphi], \\
\forall k \in \mathbb{R}^{+}, \forall \varphi \in W_{0}^{1,2}(\Omega) \cap L^{\infty}(\Omega) .
\end{array}\right.
$$

Thanks to (3.6), Corollary 3.8, (3.8), we can use the above definition for our problem, we can repeat the proof of Theorem 3.9 of [3] and we prove the following result.
Theorem 3.13. Assume (1.2), (2.2), $1<\sigma<\frac{2 N-2}{N-2}$. Then there exists an entropy solution $u \geq 0$ of the first equation in the sense of Definition 3.12. Moreover there exists a weak solution $0 \leq \psi \in W_{0}^{1,2}(\Omega)$ of the second equation, if $\sigma \leq \frac{3(N+2)}{2(N-2)}$ and $\frac{N}{N-2}<\sigma<\frac{2 N-2}{N-2}$, or a distributional solution $0 \leq \psi \in W_{0}^{1, q}(\Omega)$, in the other range of value of σ.
Remark 3.14. Note that we have not proved that u, entropy solution of the first equation, belongs to some Sobolev space; we only have, from (3.5), that $\log (1+u)$ belongs to $W_{0}^{1,2}(\Omega)$.

3.2. Distributional solutions

In this subsection we study a case of distributional solutions u, that is a case of $\nabla u \in L^{1}$.
Observe that Lemma 3.2 says that the sequence $\left\{u_{n}\right\}$ is bounded in $L^{2}(\Omega)$ if

$$
\left\{\begin{array}{l}
N \leq 4, \text { under the assumption (2.3); } \tag{3.14}\\
N<4, \text { under the assumptions (2.4) and (2.5). }
\end{array}\right.
$$

Lemma 3.15. Assume (3.14). Then the sequence $\left\{\nabla u_{n}\right\}$ is equi-integrable and the sequence $\left\{u_{n}\right\}$ is L^{1} compact.

Proof. Here we follow an approach of [9] (see also [6]). Since we observed that the sequence $\left\{u_{n}\right\}$ is bounded in $L^{2}(\Omega)$, we use the Hölder inequality, (3.11) and we have

$$
\begin{gathered}
\int_{\left\{k<u_{n}\right\}}\left|\nabla u_{n}\right|=\int_{\left\{k<u_{n}\right\}} \frac{\left|\nabla u_{n}\right|}{\left[1+u_{n}\right]}\left[1+u_{n}\right] \leq\left[\int_{\left\{k<u_{n}\right\}} \frac{\left|\nabla u_{n}\right|^{2}}{\left[1+u_{n}\right]^{2}}\right]^{\frac{1}{2}}\left[\int_{\Omega}\left[1+u_{n}\right]^{2}\right]^{\frac{1}{2}} \\
\leq\left[\frac{\beta^{2}}{2 \alpha} \int_{\left\{k<u_{n}\right\}} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}+\int_{\left\{k<u_{n}\right\}} f\right]^{\frac{1}{2}} C_{1}\left[1+\left\|u_{n}\right\|_{2}\right]=\omega_{k} .
\end{gathered}
$$

In (3.12) is proved that ω_{k} is small (uniformly with respect to n) if k is large enough. Then, for every measurable subset $E \subset \Omega$, we deduce that

$$
\int_{E}\left|\nabla u_{n}\right| \leq \int_{\left\{k<u_{n}\right\}}\left|\nabla u_{n}\right|+\int_{E}\left|\nabla T_{k}\left(u_{n}\right)\right| \leq \omega_{k}+|E|^{\frac{1}{2}}\left[\left.\int_{\Omega} \nabla T_{k}\left(u_{n}\right)\right|^{2}\right]^{\frac{1}{2}}
$$

which implies (recall Corollary 3.7)

$$
\lim _{|E| \rightarrow 0} \int_{E}\left|\nabla u_{n}\right| \leq \omega_{k},
$$

that is the equi-integrability.
The above inequalities, with $k=0$, give the L^{1} boundedness of of the sequence $\left\{\nabla u_{n}\right\}$. Then the L^{1} compactness of the sequence $\left\{u_{n}\right\}$ is a consequence of the Rellich theorem.

Thus we improved (3.6):

$$
\begin{equation*}
\nabla u_{n} \text { converges weakly in } L^{1} \text { to } \nabla u \text {. } \tag{3.15}
\end{equation*}
$$

Now we can state the existence of distributional solutions.
Theorem 3.16. Under the assumptions of Theorem 3.13, let assume (3.14). Then there exist distributional solutions $0 \leq u \in W_{0}^{1,1}(\Omega)$ and $0 \leq \psi \in W_{0}^{1, q}(\Omega), q<\frac{N}{N-1}$, of system (2.1); that is, we have that

$$
\int_{\Omega} M(x) \nabla u \cdot \nabla v+\int_{\Omega} u v=\int_{\Omega} u \frac{M(x) \nabla \psi \cdot \nabla v}{(1+\psi)}+\int_{\Omega} f v,
$$

for every vin $C_{0}^{1}(\Omega)$, and

$$
\int_{\Omega} M(x) \nabla \psi \cdot \nabla \varphi+\int_{\Omega} \psi \varphi=\int_{\Omega} u^{\sigma-1} \varphi
$$

for every φ in $C_{0}^{1}(\Omega)$.

3.3. A direct approach to the boundedness of the sequence $\left\{\psi_{n}\right\}$

In this subsection, we assume (1.2), $f \in L^{1}(\Omega), 1<\sigma<\frac{3}{2}+\frac{1}{N}$.
Following [3], we prove the following a priori estimate

$$
\begin{equation*}
\int_{\Omega}\left|u_{n}\right| \leq \int_{\Omega}|f| . \tag{3.16}
\end{equation*}
$$

Indeed, if we take $\frac{u_{n}}{h+\left|u_{n}\right|}$ as test function in the first equation, we have (thanks to the Young inequality)

$$
\frac{\alpha h}{2} \int_{\Omega} \frac{\left|\nabla u_{n}\right|^{2}}{\left(h+\left|u_{n}\right|\right)^{2}}+\int_{\Omega} \frac{\left|u_{n}\right|^{2}}{h+\left|u_{n}\right|} \leq \frac{h}{2 \alpha} \int_{\Omega} \beta^{2} \frac{\left|\nabla \psi_{n}\right|^{2}}{\left(1+\psi_{n}\right)^{2}}+\int_{\Omega}|f|,
$$

which implies, dropping a positive term and letting $h \rightarrow 0$, the estimate (3.16).
Thus, for the right hand side of the second equation we have the estimate

$$
\int_{\Omega}\left(u_{n}^{\sigma-1}\right)^{\frac{1}{\sigma-1}} \leq \int_{\Omega}|f|
$$

and, if $\frac{1}{\sigma-1}>\frac{N}{2}$ (that is $\sigma-1<\frac{2}{N}$), the right hand side of the second equation is bounded in $L^{s}(\Omega)$, $s>\frac{N}{2}$, which implies that the sequence of the solutions $\left\{\psi_{n}\right\}$ is bounded in $L^{\infty}(\Omega)$; if $\frac{1}{\sigma-1} \geq \frac{2 N}{N+2}$ (that is $\sigma-1 \leq \frac{1}{2}+\frac{1}{N}$), the right hand side of the second equation is bounded in $L^{\frac{2 N}{N+2}}(\Omega)$, which implies that the sequence of the solutions $\left\{\psi_{n}\right\}$ is bounded in $W_{0}^{1,2}(\Omega)$.

Summarizing, with this approach,

$$
\begin{equation*}
\sigma-1 \leq \frac{1}{2}+\frac{1}{N} \text { yields the boundedness of the sequence }\left\{\psi_{n}\right\} \text { in } W_{0}^{1,2}(\Omega), \tag{3.17}
\end{equation*}
$$

with the use of the estimate (3.16).

3.4. General nonlinearities

It is possible to adapt our approach (nonlinear duality) to the case of the system

$$
\begin{gathered}
\int_{\Omega} M(x) \nabla u \cdot \nabla v+\int_{\Omega} u v=\int_{\Omega} u \frac{M(x) \nabla \psi \cdot \nabla v}{(1+\psi)^{\gamma}}+\int_{\Omega} f v, \quad \forall v \in C_{0}^{1}(\Omega), \\
\int_{\Omega} M(x) \nabla \psi \cdot \nabla \varphi+\int_{\Omega} \psi \varphi=\int_{\Omega} u^{\sigma-1} \varphi, \quad \forall \varphi \in C_{0}^{1}(\Omega),
\end{gathered}
$$

with $\gamma \in \mathbb{R}^{+}$. A possible approach (which we only sketch here) is

- define an approximate system (as in (2.6));
- use as test functions $\left(g\left(\psi_{n}\right), \frac{u_{n}}{h\left(\psi_{n}\right)}\right)$
with

$$
\left\{\begin{array}{l}
g(t)=\int_{0}^{t} e^{\frac{(1+s)^{1}-\gamma}{\gamma-1}} d s \\
h(t)=e^{-\frac{(1+t)-\gamma}{\gamma-1}} .
\end{array}\right.
$$

Conflict of interest

The author declares no conflict of interest.

References

1. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, An L^{1} theory of existence and uniqueness of weak solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 22 (1995), 241-273.
2. L. Boccardo, Some developments on Dirichlet problems with discontinuous coefficients, Boll. Unione Mat. Ital., 2 (2009), 285-297.
3. L. Boccardo, Dirichlet problems with singular convection term and applications, J. Differ. Equations, 258 (2015), 2290-2314. https://doi.org/10.1016/j.jde.2014.12.009
4. L. Boccardo, A failing in the Calderon-Zygmund theory of Dirichlet problems for linear equations with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 26 (2015), 215221. https://doi.org/10.4171/RLM/703
5. L. Boccardo, G. Croce, Elliptic partial differential equations. Existence and regularity of distributional weak solutions, Berlin: De Gruyter, 2014. https://doi.org/10.1515/9783110315424
6. L. Boccardo, G. Croce, L. Orsina, Nonlinear degenerate elliptic problems with $W_{0}^{1,1}$ solutions, Manuscripta Math., 137 (2012), 419-439. https://doi.org/10.1007/s00229-011-0473-6
7. L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. https://doi.org/10.1016/0022-1236(89)90005-0
8. L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right hand side measures, Commun. Part. Diff. Eq., 17 (1992), 641-655.
9. L. Boccardo, T. Gallouet, $W_{0}^{1,1}$ solutions in some borderline cases of Calderon-Zygmund theory, J. Differ. Equations, 253 (2012), 2698-2714. https://doi.org/10.1016/j.jde.2012.07.003
10. L. Boccardo, L. Orsina, Sublinear elliptic systems with a convection term, Commun. Part. Diff. Eq., 45 (2020), 690-713. https://doi.org/10.1080/03605302.2020.1712417
11. L. Boccardo, L. Orsina, Existence of weak solutions for some elliptic systems, Pure Appl. Anal., 4 (2022), 517-534. https://doi.org/10.2140/paa.2022.4.517
12. D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
13. P. Hartman, G. Stampacchia, On some nonlinear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
14. D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165.
15. T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. https://doi.org/10.1007/s00285-008-0201-3
16. E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. https://doi.org/10.1016/0022-5193(70)90092-5
17. E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. https://doi.org/10.1016/0022-5193(71)90050-6
18. C. Leone, A. Porretta, Entropy solutions for nonlinear elliptic equations in L^{1}, Nonlinear Anal., 32 (1998), 325-334. https://doi.org/10.1016/S0362-546X(96)00323-9
19. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Annales de l'Institut Fourier, 15 (1965), 189-258. https://doi.org/10.5802/aif. 204
20. N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 265-308.
21. N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, Indiana Univ. Math. J., 17 (1967), 473-483.

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

