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1. Background: results by Guido Stampacchia and Neil Trudinger

The following results about the summability of the solutions of Dirichlet problems for equations
with discontinuous coefficients are nowadays classical, since the papers [19] and [20] by Guido
Stampacchia and Neil Trudinger [12].

If f ∈ Lm(Ω), m ≥ 2N
N+2 , thanks to Lax-Milgram Theorem and Sobolev embedding, there exist a

weak solution u ∈ W1,2
0 (Ω) of

u ∈ W1,2
0 (Ω) :

∫
Ω

M(x)∇u∇v =

∫
Ω

f (x) v(x), ∀ v ∈ W1,2
0 (Ω), (1.1)

where Ω is a bounded, open subset of RN , N ≥ 2; the matrix M(x) is symmetric, uniformly elliptic and
bounded: there exist α > 0 and β > 0 such that

M(x) ξ · ξ ≥ α |ξ|2 , |M(x)| ≤ β , (1.2)

for every ξ in RN , and for almost every x in Ω.
Moreover:
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1) If f ∈ Lm(Ω), 2N
N+2 ≤ m ≤ N

2 , the summability of u (which belongs to Lm∗∗(Ω), m∗∗ = mN
N−2m ,

if 2N
N+2 ≤ m < N

2 and it has exponential summability if m = N
2 ) was proved in [19] (see also

[5, 13, 20, 21]).
2) If f ∈ Lm(Ω), m > N

2 , the boundedness of u, was proved in [19] (see also [13, 20]).
3) If f ∈ Lm(Ω), 1 < m < 2N

N+2 , in [8], is proved a (nonlinear) Calderon-Zygmund theory for operators
with discontinuous coefficients, showing the existence of a distributional solution u ∈ W1,m∗

0 (Ω),
m∗ = mN

N−m . Note that, in this case m∗ ∈ (1∗, 2) and, thanks to the Sobolev embedding, u ∈ Lm∗∗(Ω)
as in (1).

4) The existence in W1,1∗

0 (Ω) is proved, in [8], if
∫

Ω
| f | log(1 + | f |) < ∞.

Then a question arises: is it possible to prove (as in (3)) that

f ∈ Lm(Ω),
2N

N + 2
< m < N, implies ∇u ∈ (Lm∗(Ω))N ? (1.3)

In [4], it is proved that the above statement is false if N
2 < m < N.

The results recalled in (1), (2), (3) and (4) are crucial in the next proofs.

2. A stationary system weakly related to the Keller-Segel model

In this paper, we prove existence of distributional solutions of the following nonlinear elliptic
boundary value problem:

− div(M(x)∇u) + u = − div
(
u M(x)∇ψ

1+ψ

)
+ f (x) in Ω,

− div(M(x)∇ψ) + ψ = uσ−1 in Ω,

u = 0 = ψ on ∂Ω.

(2.1)

with
0 ≤ f (x) ∈ Lρ(Ω), ρ > 1. (2.2)

Of course, f (x) needs not to be identically null. On the power σ we suppose 1 < σ < 2N−2
N−2 , but it is

preferable (in the following proofs) to split the assumption as
N

N − 2
< σ <

2N − 2
N − 2

, (2.3)

or
σ =

N
N − 2

, (2.4)

or
1 < σ <

N
N − 2

. (2.5)

There are many theoretical models for chemotaxis; one of the most important is the Keller-Segel one
(see [14, 16, 17] and also [3, 10]). Following [15] (see also [14]), one of the possible models is the
“chemical signal driven logistic model” which leads, in the stationary case, to the system above. Note
that the equation for u includes a chemotaxis term with nonlinear flux limitation having a kind of
logarithmic dependence: ∇ψ1+ψ

= ∇ log(1 + ψ).
The original model of chemotaxis presents a linear dependence of the gradient of the concentration

of the chemical substance ψ in the equation of u in the form −div(χ u∇ψ), for a positive given constant
χ.
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2.1. Approximate problems

Note that, with our assumption, we have σ − 1 > 0. We define fn(x) =
f (x)

1+ 1
n f (x)

and we consider the
following approximate Dirichlet problem

un ∈ W1,2
0 (Ω) : ∀ v ∈ W1,2

0 (Ω),∫
Ω

M(x)∇un∇v +

∫
Ω

un v =

∫
Ω

Tn(un)
M(x)∇ψn∇v

(1 + 1
n |∇ψn|)(1 + ψn)

+

∫
Ω

fn v,

ψn ∈ W1,2
0 (Ω) : ∀ ϕ ∈ W1,2

0 (Ω),∫
Ω

M(x)∇ψn∇ϕ +

∫
Ω

ψnϕ =

∫
Ω

[T(n3)(un)]σ−1 ϕ,

where, ∀ k ∈ R+,

Tk(s) =

s, if |s| ≤ k,

k s
|s| , if |s| > k.

Here we enumerate some properties of the solutions un, ψn.

A The existence of (un, ψn) is a consequence of Proposition 3.1 of [11] (with minimal changes).

B The positivity of f (x) gives, in the first equation, un ≥ 0 (see [3]), which, in the second equation,
implies ψn ≥ 0.

C In the first equation, 0 ≤ fn(x) ≤ n and the modulus of the function in the divergence term is less than
n2, so that, with the boundedness theorem by G. Stampacchia ( [19], see also [20]), we deduce
‖un‖L∞(Ω)

≤ C0 n2. Thus, in the second equation, we observe that T(n3)(un) = un (for n > n0) and
we can rewrite the above system as

0 ≤ un ∈ W1,2
0 (Ω) : ∀ v ∈ W1,2

0 (Ω),∫
Ω

M(x)∇un∇v +

∫
Ω

un v =

∫
Ω

Tn(un)
M(x)∇ψn∇v

(1 + 1
n |∇ψn|)(1 + ψn)

+

∫
Ω

fn v ;

0 ≤ ψn ∈ W1,2
0 (Ω) : ∀ ϕ ∈ W1,2

0 (Ω),∫
Ω

M(x)∇ψn∇ϕ +

∫
Ω

ψnϕ =

∫
Ω

(un)σ−1 ϕ.

(2.6)

3. Nonlinear duality method

In the following lemma, in spite of the nonlinearity of the problem, we use a kind of duality, which
will be advantageous to prove a priori estimates.

Lemma 3.1. We assume (1.2), (2.2), 1 < σ < 2N−2
N−2 . Let a ∈ (0, 1). Then the following “nonlinear

dual” inequality holds ∫
Ω

(un)σ

(1 + ψn)
≤

1
a

∫
Ω

fn(x)(ψn)a. (3.1)

Proof. In the above system, we use log(1 + ψn) as test function in the first equation,
− un

(1 + ψn)
as test
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function in the second equation and we have
∫

Ω

M(x)∇un
∇ψn

1 + ψn
+

∫
Ω

[un − fn] log(1 + ψn) =

∫
Ω

Tn(un)
(1 + ψn)2

M(x)∇ψn∇ψn

(1 + 1
n |∇ψn|)

−

∫
Ω

M(x)∇ψn∇un
1

(1 + ψn)
+

∫
Ω

M(x)∇ψn∇ψn
un

(1 + ψn)2 =

∫
Ω

[ψn − (un)σ−1]
un

(1 + ψn)
.

Then, after simplifications
(
we use 0 ≤

Tn(un)
1 + 1

n |∇ψn|
≤ un

)
, we deduce that

∫
Ω

(un)σ−1 un

(1 + ψn)
+

∫
Ω

un

[
log(1 + ψn) −

ψn

(1 + ψn)

]
≤

∫
Ω

fn(x) log(1 + ψn)

and, dropping a positive term, we prove the inequality∫
Ω

(un)σ

(1 + ψn)
≤

∫
Ω

fn(x) log(1 + ψn). (3.2)

Now we use the inequality 0 ≤ log(1 + ψn) ≤ 1
a (ψn)a, a ∈ (0, 1), and we have (3.1).

�

Lemma 3.2. We assume (1.2), (2.2). Then the sequence {un} is bounded in
L

N
N−2 (Ω), if N

N−2 < σ < 2N−2
N−2 (assumption (2.3));

Lr(Ω), r < N
N−2 , if σ = N

N−2 (assumption (2.4));
Lσ(Ω), if 1 < σ < N

N−2 (assumption (2.5)).

Proof. First part: N
N−2 < σ < 2N−2

N−2 - Let q < σ. Then (we use Hölder inequality with exponents σ
q and

σ
σ−q ) we have, using (3.1),∫

Ω

(un)q =

∫
Ω

(un)q

(1 + ψn)
q
σ

(1 + ψn)
q
σ ≤

[ ∫
Ω

(un)σ

(1 + ψn)

] q
σ
[ ∫

Ω

(1 + ψn)
q

σ−q

]σ−q
σ

≤

[1
a

∫
Ω

fn(x)(ψn)a
] q
σ

‖1 + ψn‖
q
σ

q
σ−q
≤

(1
a

) q
σ

[
‖ψn‖

a
q

σ−q

‖ f ‖ q
q−(σ−q)a

] q
σ (

C1 + ‖ψn‖ q
σ−q

) q
σ ,

that is

‖un‖q
≤

(1
a

) 1
σ

[
‖ψn‖

a
q

σ−q

‖ f ‖ q
q−(σ−q)a

] 1
σ (

C1 + ‖ψn‖ q
σ−q

) 1
σ

Define q = N
N−2 and p = N

(σ−1)(N−2) ; we note that p > 1 since σ < 2N−2
N−2 .

Then we use Calderon-Zygmund type estimates for Dirichlet problems with infinite energy
solutions, proved in [8, 19] (see (1) and (3)) and we have

‖un‖q
≤

(1
a

) 1
σ

[
‖ψn‖

a
p∗∗
‖ f ‖ q

q−(σ−q)a

] 1
σ (

C1 + ‖ψn‖p∗∗

) 1
σ

‖un‖
σ

q
≤

(1
a

)[
Cp‖uσ−1

n ‖a
p
‖ f ‖ q

q−(σ−q)a

](
C1 + Cp‖uσ−1

n ‖
p

)
Mathematics in Engineering Volume 5, Issue 5, 1–11.



5

We note that p(σ − 1) = q and we rewrite the last inequality as

‖un‖
σ

q
≤

(1
a

)[
Cq‖un‖

(σ−1)a
q

‖ f ‖ q
q−(σ−q)a

](
C1 + Cq‖un‖

σ−1
q

)
Thus for a > 0 close to zero, we have proved the following estimate, where ρ > 1 is close to one,

‖un‖ N
N−2
≤ C0(‖ f ‖

ρ
) (3.3)

Second part: σ = N
N−2 - There is only a slight change with respect to the previous case: p(σ − 1) < q.

Third part: 1 ≤ σ < N
N−2 - Recall the following L∞ estimate (proved in [19], see also [20]), concerning

the second equation,

‖ψn‖
∞
≤ C0‖(un)σ−1‖

p
, p >

N
2
.

Then we deduce directly from (3.2)

1
(1 + ‖ψn‖

∞
)

∫
Ω

(un)σ ≤ log(1 + ‖ψn‖
∞

)
∫

Ω

f (x)

and ∫
Ω

(un)σ ≤ (1 + ‖ψn‖
∞

)
1
a
‖ψn‖

a
∞
‖ f ‖

1
≤ (1 + C0‖(un)σ−1‖

p
)
1
a

[C0‖(un)σ−1‖
p
]a‖ f ‖

1
.

Let p = σ′ (which implies σ < N
N−2 ). Then∫

Ω

(un)σ ≤ C(‖ f ‖
1
).

�

Corollary 3.3. We assume (1.2), (2.2). As a consequence of the previous lemma, the sequence {(un)σ−1}

is bounded in 
L

N
(N−2)(σ−1) (Ω), if N

N−2 < σ < 2N−2
N−2 ;

Ls(Ω), s < N
2 , if σ = N

N−2 ;
Lσ

′

(Ω), if 1 < σ < N
N−2 .

Thus the right hand side of the second equation is bounded in L1(Ω) if N
(N−2)(σ−1) ≥ 1; that is, if

σ ≤ 2N−2
N−2 .

Corollary 3.4. If, in the second equation of (2.6), we take as test function
ψn

1 + ψn
, (following [2, 3]),

we have

α

∫
Ω

|∇ψn|
2

(1 + ψn)2 ≤

∫
Ω

(un)σ−1 ≤ C1. (3.4)

Corollary 3.5. The sequence {ψn} is bounded in W1,2
0 (Ω) if the right hand side of the second equation

is bounded in L
2N

N+2 (Ω) that is if 
σ ≤ 3N−2

2(N−2) , if N
N−2 < σ < 2N−2

N−2 ;

always, if σ = N
N−2 ;

always, if 1 < σ < N
N−2 .

Mathematics in Engineering Volume 5, Issue 5, 1–11.
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Corollary 3.6. If in the first equation of (2.6) we take as test function
un

1 + un
, following [2,3], and we

use Young inequality, we have

α

2

∫
Ω

|∇un|
2

(1 + un)2 ≤
β2

2α

∫
Ω

|∇ψn|
2

(1 + ψn)2 +

∫
Ω

f . (3.5)

That is, the sequence { |∇un |

(1+un) } is bounded in L2(Ω); with this boundedness, in [3], is proved that there
exists a measurable function u(x) such that

un(x) converges a.e. to u(x). (3.6)

Corollary 3.7. If in the first equation of (2.6) we take as test function Tk(un), following [2, 3], we
deduce

α

2

∫
Ω

|∇Tk(un)|2 ≤ k2 β
2

2α

∫
Ω

|∇ψn|
2

(1 + ψn)2 + k
∫

Ω

f ,

so that we can add to (3.6) the following weak convergence

Tk(un) converges weakly in W1,2
0 (Ω) to Tk(u), ∀ k ∈ R+. (3.7)

Corollary 3.8. If 1 < σ < 2N−2
N−2 , the sequence {(un)σ−1} is bounded in Lν(Ω), ν > 1 (and more: in

Lσ
′

(Ω) if 1 < σ < N
N−2 ). Then the above a.e. convergence (3.6) and the Vitali theorem say that the

sequence {(un)σ−1} converges in L1(Ω) to {uσ−1}.
Then (see [7, 8]) the sequence {ψn} is compact in W1,q

0 (Ω), q < N
N−1 , at least; in Corollary 3.5

is proved a stronger result for a smaller subset of exponents σ. Define ψ a cluster point of {ψn} in
W1,q

0 (Ω).

Corollary 3.9. A result by Leone-Porretta ( [18]) states that the sequence {∇Tk(ψn)} is L2 compact,
because the right hand side of the second equation in (2.6) is L1 compact (Corollary 3.8).

Lemma 3.10. The sequence { |∇ψn|

1 + ψn

}
is L2 compact. (3.8)

Proof. If in the second equation of (2.6) we take
[ ψn

1 + ψn
−

k
1 + k

]+

as test function and we use Hölder

inequality, we have (recall (3.3))

α

∫
{k<ψn}

|∇ψn|
2

(1 + ψn)2 ≤

∫
{k<ψn}

(un)σ−1 ≤ (C0‖ f ‖
ρ
)σ−1

∣∣∣{k < ψn}
∣∣∣1− (σ−1)(N−2)

N . (3.9)

Now we use this inequality to prove the L1 equi-integrability of the sequence
{ |∇ψn|

2

(1 + ψn)2

}
. Indeed, for

every measurable subset E ⊂ Ω, we have∫
E

|∇ψn|
2

(1 + ψn)2 ≤

∫
{k<ψn}

|∇ψn|
2

(1 + ψn)2 +

∫
E∩{ψn≤k}

|∇ψn|
2

(1 + ψn)2

≤
1
α

(C0‖ f ‖
ρ
)σ−1

∣∣∣{k < ψn}
∣∣∣1− (σ−1)(N−2)

N +

∫
E
|∇Tk(ψn)|2.

Mathematics in Engineering Volume 5, Issue 5, 1–11.
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Now Corollary 3.9 says that, for every k ∈ R+, the last integral is small (uniformly with respect to n) if
|E| is small. Here |E| denotes the measure of the subset E.

Moreover |{k < ψn}
∣∣∣ is small (uniformly with respect to n) for k large enough. Thus the last two

sentences prove that

the sequence
{ |∇ψn|

1 + ψn

}
is L2 equi-integrable. (3.10)

Furthermore a result proved in [8] implies that the sequences {∇ψn(x)} and {ψn(x)} converge almost
everywhere, so that these a.e. convergences, (3.10) and Vitali theorem yield (3.8). �

Corollary 3.11. In the first equation of (2.6) we take as test function
[ un

1 + un
−

k
1 + k

]+

, k ∈ R+,

(following [2, 3]) we use the Young inequality and we have

α

2

∫
{k<un}

|∇un|
2

[1 + un]2 ≤
β2

2α

∫
{k<un}

|∇ψn|
2

(1 + ψn)2 +

∫
{k<un}

f . (3.11)

Moreover, there is a second important consequence of (3.10): the a priori estimates on the sequence
{un} imply that |{k < un}

∣∣∣ is small for k large (uniformly with respect to n), so that, in (3.11), the term∫
{k<un}

|∇ψn |
2

(1+ψn)2 is small (uniformly with respect to n) if k is large enough and then the term∫
{k<un}

|∇un|
2

[1 + un]2 is also small (uniformly with respect to n) if k is large enough. (3.12)

3.1. Entropy solutions

Following [3] and [1] we recall the definition of entropy solution, useful in cases (as here) of very
singular framework, where the definition of distributional solution is meaningless.

Note that, if N > 4, u < L2(Ω), so that the term u ∇ψ1+ψ
does not belong to L1.

Definition 3.12. A measurable function u is an entropy solution of the first equation of our system if

Tk(u) ∈ W1,2
0 (Ω), ∀ k ∈ R+;∫

Ω

M(x)∇u∇Tk[u − ϕ] +

∫
Ω

u Tk[u − ϕ]

≤

∫
Ω

u
M(x)∇ψ · ∇Tk[u − ϕ]

1 + ψ
+

∫
Ω

f (x)Tk[u − ϕ],

∀ k ∈ R+,∀ ϕ ∈ W1,2
0 (Ω) ∩ L∞(Ω).

(3.13)

Thanks to (3.6), Corollary 3.8, (3.8), we can use the above definition for our problem, we can repeat
the proof of Theorem 3.9 of [3] and we prove the following result.

Theorem 3.13. Assume (1.2), (2.2), 1 < σ < 2N−2
N−2 . Then there exists an entropy solution u ≥ 0 of the

first equation in the sense of Definition 3.12. Moreover there exists a weak solution 0 ≤ ψ ∈ W1,2
0 (Ω) of

the second equation, if σ ≤ 3(N+2)
2(N−2) and N

N−2 < σ < 2N−2
N−2 , or a distributional solution 0 ≤ ψ ∈ W1,q

0 (Ω),
in the other range of value of σ.

Remark 3.14. Note that we have not proved that u, entropy solution of the first equation, belongs to
some Sobolev space; we only have, from (3.5), that log(1 + u) belongs to W1,2

0 (Ω).

Mathematics in Engineering Volume 5, Issue 5, 1–11.
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3.2. Distributional solutions

In this subsection we study a case of distributional solutions u, that is a case of ∇u ∈ L1.
Observe that Lemma 3.2 says that the sequence {un} is bounded in L2(Ω) ifN ≤ 4, under the assumption (2.3);

N < 4, under the assumptions (2.4) and (2.5).
(3.14)

Lemma 3.15. Assume (3.14). Then the sequence {∇un} is equi-integrable and the sequence {un} is L1

compact.

Proof. Here we follow an approach of [9] (see also [6]). Since we observed that the sequence {un} is
bounded in L2(Ω), we use the Hölder inequality, (3.11) and we have∫

{k<un}

|∇un| =

∫
{k<un}

|∇un|

[1 + un]
[1 + un] ≤

[ ∫
{k<un}

|∇un|
2

[1 + un]2

] 1
2
[ ∫

Ω

[1 + un]2
] 1

2

≤

[
β2

2α

∫
{k<un}

|∇ψn|
2

(1 + ψn)2 +

∫
{k<un}

f
] 1

2

C1[1 + ‖un‖2
] = ωk.

In (3.12) is proved that ωk is small (uniformly with respect to n) if k is large enough. Then, for every
measurable subset E ⊂ Ω, we deduce that∫

E
|∇un| ≤

∫
{k<un}

|∇un| +

∫
E
|∇Tk(un)| ≤ ωk + |E|

1
2

[ ∫
Ω

∇Tk(un)|2
] 1

2

which implies (recall Corollary 3.7)

lim
|E|→0

∫
E
|∇un| ≤ ωk,

that is the equi-integrability.
The above inequalities, with k = 0, give the L1 boundedness of of the sequence {∇un}. Then the L1

compactness of the sequence {un} is a consequence of the Rellich theorem.
Thus we improved (3.6):

∇un converges weakly in L1 to ∇u. (3.15)

�
Now we can state the existence of distributional solutions.

Theorem 3.16. Under the assumptions of Theorem 3.13, let assume (3.14). Then there exist
distributional solutions 0 ≤ u ∈ W1,1

0 (Ω) and 0 ≤ ψ ∈ W1,q
0 (Ω), q < N

N−1 , of system (2.1); that is,
we have that ∫

Ω

M(x)∇u · ∇v +

∫
Ω

u v =

∫
Ω

u
M(x)∇ψ · ∇v

(1 + ψ)
+

∫
Ω

f v ,

for every v in C1
0(Ω), and ∫

Ω

M(x)∇ψ · ∇ϕ +

∫
Ω

ψϕ =

∫
Ω

uσ−1 ϕ ,

for every ϕ in C1
0(Ω).
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3.3. A direct approach to the boundedness of the sequence {ψn}

In this subsection, we assume (1.2), f ∈ L1(Ω), 1 < σ < 3
2 + 1

N .
Following [3], we prove the following a priori estimate∫

Ω

|un| ≤

∫
Ω

| f |. (3.16)

Indeed, if we take
un

h + |un|
as test function in the first equation, we have (thanks to the Young

inequality)
αh
2

∫
Ω

|∇un|
2

(h + |un|)2 +

∫
Ω

|un|
2

h + |un|
≤

h
2α

∫
Ω

β2 |∇ψn|
2

(1 + ψn)2 +

∫
Ω

| f |,

which implies, dropping a positive term and letting h→ 0, the estimate (3.16).
Thus, for the right hand side of the second equation we have the estimate∫

Ω

(uσ−1
n )

1
σ−1 ≤

∫
Ω

| f |

and, if 1
σ−1 >

N
2 (that is σ − 1 < 2

N ), the right hand side of the second equation is bounded in Ls(Ω),
s > N

2 , which implies that the sequence of the solutions {ψn} is bounded in L∞(Ω); if 1
σ−1 ≥

2N
N+2 (that is

σ − 1 ≤ 1
2 + 1

N ), the right hand side of the second equation is bounded in L
2N

N+2 (Ω), which implies that
the sequence of the solutions {ψn} is bounded in W1,2

0 (Ω).
Summarizing, with this approach,

σ − 1 ≤ 1
2 + 1

N yields the boundedness of the sequence {ψn} in W1,2
0 (Ω), (3.17)

with the use of the estimate (3.16).

3.4. General nonlinearities

It is possible to adapt our approach (nonlinear duality) to the case of the system∫
Ω

M(x)∇u · ∇v +

∫
Ω

u v =

∫
Ω

u
M(x)∇ψ · ∇v

(1 + ψ)γ
+

∫
Ω

f v , ∀ v ∈ C1
0(Ω),

∫
Ω

M(x)∇ψ · ∇ϕ +

∫
Ω

ψϕ =

∫
Ω

uσ−1 ϕ , ∀ ϕ ∈ C1
0(Ω),

with γ ∈ R+. A possible approach (which we only sketch here) is

• define an approximate system (as in (2.6));
• use as test functions

(
g(ψn),

un

h(ψn)

)
with g(t) =

∫ t

0
e

(1+s)1−γ
γ−1 ds

h(t) = e−
(1+t)1−γ
γ−1 .
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