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Abstract: In this paper, we prove existence of distributional solutions of a nonlinear elliptic system,
related to the Keller-Segel model. Our starting point is the boundedness theorem (for solutions of
elliptic equations) proved by Guido Stampacchia and Neil Trudinger.
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1. Background: results by Guido Stampacchia and Neil Trudinger

The following results about the summability of the solutions of Dirichlet problems for equations
with discontinuous coefficients are nowadays classical, since the papers [19] and [20] by Guido
Stampacchia and Neil Trudinger [12].

If fel™Q),m?> %, thanks to Lax-Milgram Theorem and Sobolev embedding, there exist a
weak solution u € WS’Z(Q) of

ueWA(Q): f M(x)VuVy = f f)v(x), Vve W, (Q), (1.1)
Q Q

where Q is a bounded, open subset of RN, N > 2; the matrix M(x) is symmetric, uniformly elliptic and
bounded: there exist @ > 0 and 8 > 0 such that

M(x)€- &2 alél, IM(x)| < B, (1.2)

for every & in RY, and for almost every x in Q.
Moreover:
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, N 2 < m < %, the summability of u (which belongs to L™ (Q), m™ = 2,

w5 Sm< 3 and it has exponential summability if m = %) was proved in [19] (see also
[5,13,20,21]).

DIffel™Q),m>% the boundedness of u, was proved in [19] (see also [13,20]).

I fel™Q),1< m <% +2, in [8], is proved a (nonlinear) Calderon-Zygmund theory for operators
with discontinuous coefficients, showing the existence of a distributional solution u € WS o (),
m* = 22 Note that, in this case m* € (1%, 2) and, thanks to the Sobolev embedding, u € L™ (Q)
as in (1).

4) The existence in Wé’l*(Q) is proved, in [8], if fQ |f1log(1 + |f]) < oo.

Then a question arises: is it possible to prove (as in (3)) that

) If f e LQ)
if 2N

2N "
fel™Q), Nio <m < N, implies Vu € (L™ (Q))" ? (1.3)

In [4], it is proved that the above statement is false if % <m<N.
The results recalled in (1), (2), (3) and (4) are crucial in the next proofs.

2. A stationary system weakly related to the Keller-Segel model

In this paper, we prove existence of distributional solutions of the following nonlinear elliptic
boundary value problem:

—div(M(x) Vu) + u = = div (u 2274) + f(x) inQ,

1+y
—div(M(x) Vi) + ¢ = u”"! in Q, (2.1
u=0=y on 0Q.
with
0<fx) e (), p>1. (2.2)

Of course, f(x) needs not to be identically null. On the power o we suppose 1 < o < % but it is
preferable (in the following proofs) to split the assumption as

N 2N -2
2.
N3 << N3 (2.3)
or N
- 2.4
o= (2.4)
or
1 . 2.5
<o-<N_2 (2.5)

There are many theoretical models for chemotaxis; one of the most important is the Keller-Segel one
(see [14,16, 17] and also [3, 10]). Following [15] (see also [14]), one of the possible models is the
“chemical signal driven logistic model” which leads, in the stationary case, to the system above. Note
that the equation for u includes a chemotaxis term with nonlinear flux limitation having a kind of
logarithmic dependence: W = Vlog(1l + ).

The original model of chemotaxis presents a linear dependence of the gradient of the concentration
of the chemical substance i in the equation of u in the form —div(y u Vi), for a positive given constant

X-
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2.1. Approximate problems

S(x)

Ty and we consider the

Note that, with our assumption, we have o — 1 > 0. We define f,(x) =
following approximate Dirichlet problem

u, € Wy*(Q) : Vv e W,*(Q),

fM(x)Vuan+funv:an(un) Z\II(x)anVv +ffnv,
Q Q 0 (I+ VD +¢)  Ja

U € W (Q): Y @ € W(Q),
fM()C)anV()O‘l‘fl//n(,D:f[T(,p)(un)]o—_] ®,
Q Q Q

where, Yk € R™,

s, if |s] <k,
Ti(s) =1, .
k I if |s| > k.

Here we enumerate some properties of the solutions u,,, .
A The existence of (u,, ¥,) is a consequence of Proposition 3.1 of [11] (with minimal changes).

B The positivity of f(x) gives, in the first equation, u, > 0 (see [3]), which, in the second equation,
implies ¢, > 0.

C In the first equation, 0 < f,(x) < n and the modulus of the function in the divergence term is less than
n?, so that, with the boundedness theorem by G. Stampacchia ( [19], see also [20]), we deduce
||u,,||Lm( o < Cyn?. Thus, in the second equation, we observe that T3y (un) = u, (for n > ngy) and
we can rewrite the above system as

0<u, € W2 Q): Vve W,*(Q),
fM(x) Vu,Vv + f U, v = an(un) All(x) Vi Vv + ffn Vv,
Q Q Q 1+ n IViD(1 + ) Q (2.6)

0<y, € W,2(Q): YV pe W, (Q),

f M(x) Vi, Vo + f Y = f ()" .
Q Q Q

3. Nonlinear duality method

In the following lemma, in spite of the nonlinearity of the problem, we use a kind of duality, which
will be advantageous to prove a priori estimates.

Lemma 3.1. We assume (1.2), 2.2), 1 < 0 < % Let a € (0,1). Then the following “nonlinear
dual” inequality holds
kf(wo<1foWY (3.1)
< - (0. .
all+y¢n)  alda
Proof. In the above system, we use log(1 + ¢, as test function in the first equation, M s test

(1 + )
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function in the second equation and we have

an f ) ) f T,) M)V, Yy,
fg M) Vay o+ [ L= fllogl + 0 = [ O TR

u
- | M(x)Vy,Vu, M(x) Vi, Vi, = w— () ——.
fQ()l/f I+ f()!//t//( %)2 fg[t// ()](1+tﬁn)
e T, (uy)
Then, after simplifications (we use 0 < —F - =< u,l), we deduce that
L+ -Vl

o—-1 Un _
[ s+ [ wflogtt+u) - 2] < [ flogti 4

and, dropping a positive term, we prove the inequality

%
[ G2 < [ nootoeat +un). (2)

Now we use the inequality 0 < log(1 + ¢,,) < i(x//n)“, a € (0,1), and we have (3.1).

Lemma 3.2. We assume (1.2), (2.2). Then the sequence {u,} is bounded in

L= 2(Q), zf— <o < M (assumption (2.3));

L'(Q), r< 25 N T lfO' = N v (assumption (2.4));

L7(Q), if 1l <o < 55 (assumptlon (2.5)).
Proof. First part: 75 < 0 < M - Let ¢ < 0. Then (we use Holder inequality with exponents Z and
U‘zq) we have, usmg (3 1),

- fﬂ(l(u’im( W”)ZS[L(l(%n)]z[fg(”‘”")&]w

<[ fg fwnr 1+l <(5) [nwnn“ A, ] (cr sl )7,

q—(o—¢)a
that is
el < (), 171, ] (€l )*
0'7 q—(o— q) o=
N 2N-2
Define g = 5 and p = T We note that p > 1 since o < 5=

Then we use Calderon-Zygmund type estimates for Dirichlet problems with infinite energy
solutions, proved in [8, 19] (see (1) and (3)) and we have

1

el < (Y [ 01, | (c+ )

q—(o—q)a

e < ()€1 1, |(€4+ ol )

q-(o—q)a

Mathematics in Engineering Volume 5, Issue 5, 1-11.



We note that p(o — 1) = g and we rewrite the last inequality as

1
wll” < (= [C TGS
el < ()| Callaall D WA

q—(o—q)a

(Cr+ Collunll”™)

Thus for a > 0 close to zero, we have proved the following estimate, where p > 1 is close to one,
“un”L < Co(||f||p) (3.3)

Second part: o = ﬁ - There is only a slight change with respect to the previous case: p(o— 1) < g.
Third part: 1 < o < 5= - Recall the following L* estimate (proved in [19], see also [20]), concerning
the second equatlon

N
< -1 -
Wll, < Coll@an)™ M . P> -

Then we deduce directly from (3.2)
1 f
o [ <toet 4wl [
A+ 10 Ja e+l

1 1
f(un)” < (Xl )l NAI, < (1 + Coll(un)“_lllp);[Coll(un)“_lllp]“llflll-

and

Let p = o (which implies o~ < 5 ) Then

f(un)" < CAIAD-
Q

O

Corollary 3.3. We assume (1.2), (2.2). As a consequence of the previous lemma, the sequence {(u,) "}

is bounded in
L@ l>(Q) if &5 <o < 22,
L'(Q), s<¥, ifo= %,
L7(Q), if 1 <0'<%

Thus the right hand side of the second equation is bounded in L'(Q) if m > 1, that is, if
o < =2

N-2-

Corollary 3.4. If, in the second equation of (2.6), we take as test function T f , (following [2, 3]),

2
(T S o <6 oy

Corollary 3.5. The sequence {,} is bounded in Wé’z(Q) if the right hand side of the second equation
is bounded in L%(Q) that is if

we have

2N-2
lf 5 <0 <355

o< 2(N 2)’

always, if o =

N-2°
. N
always, if 1 <o < 5.
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Up

Corollary 3.6. If in the first equation of (2.6) we take as test function 7 following [2, 3], and we

+u,
use Young inequality, we have

a Vu* B2 Vi
5L0+Mvﬁﬁlgnwm+ﬁf ©-3)
[V, |

That is, the sequence {(1+u )} is bounded in L*(Q); with this boundedness, in [3], is proved that there
exists a measurable function u(x) such that

u,(x) converges a.e. to u(x). 3.6)

Corollary 3.7. If in the first equation of (2.6) we take as test function Ti(u,), following [2, 3], we

deduce ) VP
a B Y
[ £ [ S5 |
21! b <5 [ k|

so that we can add to (3.6) the following weak convergence
T (u,) converges weakly in Wé’z(Q) to Ty(u), Y k€ R*. 3.7

Corollary 3.8. If 1 < 0 < %, the sequence {(u,)"""} is bounded in L'(Q), v > 1 (and more: in
L7(Q)ifl <o < % ). Then the above a.e. convergence (3.6) and the Vitali theorem say that the
sequence {(u,)” "'} converges in L'(Q) to {u”'}.

Then (see [7, 8]) the sequence {,} is compact in Wé’q(Q), q < %, at least; in Corollary 3.5
is proved a stronger result for a smaller subset of exponents o. Define ¥ a cluster point of {{r,} in

W, ().

Corollary 3.9. A result by Leone-Porretta ( [18]) states that the sequence (VT (\r,)} is L* compact,
because the right hand side of the second equation in (2.6) is L' compact (Corollary 3.8).

Lemma 3.10. The sequence

IVl . 5
{1 " lﬁn} is L~ compact. (3.8)
n k :

Proof. If in the second equation of (2.6) we take [ 7 f{p - mr as test function and we use Holder

inequality, we have (recall (3.3)) !

IVl f o . -t
« —— < (un)” < (Gollf 1l )7 [tk <} o (3.9)
L«w,,} (L +4) ™ Jiey g |
Vil

Now we use this inequality to prove the L' equi-integrability of the sequence { } Indeed, for

(1 + )
every measurable subset E C Q, we have

Ww2<f Ww2+f Vi
(L+y,)* ~ <y, (1 + Yn)? Ena<k) (1 + Yn)?

G 3\(]1\1—2) )
+fwmww
E

1
< —(CollAIN)7 |tk <y}
a P
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Now Corollary 3.9 says that, for every k € R*, the last integral is small (uniformly with respect to n) if
|E| is small. Here |E| denotes the measure of the subset E.

Moreover |{k < ¢,}| is small (uniformly with respect to n) for k large enough. Thus the last two
sentences prove that

Vil . .
the sequence {%} is L? equi-integrable. (3.10)

Furthermore a result proved in [8] implies that the sequences {Vi,(x)} and {,,(x)} converge almost
everywhere, so that these a.e. convergences, (3.10) and Vitali theorem yield (3.8). O

u k 1+
- - ——|, k € R,
1+ u, 1+k]

Corollary 3.11. In the first equation of (2.6) we take as test function [

(following [2, 3]) we use the Young inequality and we have

V n2 2 V n2
LY .7 o
2 Ji<uy [1 + 1] 2 Jipcu,y (1 +401) <t}

Moreover, there is a second important consequence of (3.10): the a priori estimates on the sequence
{u,} imply that |k < u,}| is small for k large (uniformly with respect to n), so that, in (3.11), the term

[Vl
(k<un} (1+¢,)?

is small (uniformly with respect to n) if k is large enough and then the term

Vu,|?
f % is also small (uniformly with respect to n) if k is large enough. (3.12)
<) Un

3.1. Entropy solutions

Following [3] and [1] we recall the definition of entropy solution, useful in cases (as here) of very
singular framework, where the definition of distributional solution is meaningless.
Note that, if N > 4, u ¢ L>(Q), so that the term u does not belong to L'.

Definition 3.12. A measurable function u is an entropy solution of the first equation of our system if

Ti(u) € WA (Q), YV k € RY;
M(x)VuVT[u— ¢] + f uTi[u— @]
? M) V- VI - ¢l (3.13)

< QM T+y +Lf(x)Tk[u—<P],

1,2 00
V ke R,V @ € W2(Q) N L),

Thanks to (3.6), Corollary 3.8, (3.8), we can use the above definition for our problem, we can repeat
the proof of Theorem 3.9 of [3] and we prove the following result.

Theorem 3.13. Assume (1.2), (2.2), 1 <o < 2N 2 Then there exists an entropy solution u > 0 of the

first equation in the sense of Definition 3.12. Moreover there exists a weak solution 0 < € W Q) of

3(N+2) 2N-2

. . N . . . . l.q
the second equation, if o < ) and 5 <O <55, o0ra distributional solution 0 < ¢ € W,"(Q),

in the other range of value of o

Remark 3.14. Note that we have not proved that u, entropy solution of the first equation, belongs to
some Sobolev space; we only have, from (3.5), that log(1 + u) belongs to WS’Z(Q).

Mathematics in Engineering Volume 5, Issue 5, 1-11.



3.2. Distributional solutions

In this subsection we study a case of distributional solutions u, that is a case of Vu € L!.
Observe that Lemma 3.2 says that the sequence {u,} is bounded in L*(Q) if

{N < 4, under the assumption (2.3); (3.14)

N < 4, under the assumptions (2.4) and (2.5).

Lemma 3.15. Assume (3.14). Then the sequence {Vu,} is equi-integrable and the sequence {u,} is L'
compact.

Proof. Here we follow an approach of [9] (see also [6]). Since we observed that the sequence {u,} is
bounded in L*(Q), we use the Holder inequality, (3.11) and we have

1 1

v n \Y n 2 12 2
{k<tn) tk<uy [1 + Uty ] k<) L1+ U] o

B f vy, P f ! i
- [2& k) (14 Un)? + {k%}f] Ci[1 + lluall ] = wi.

In (3.12) is proved that wy is small (uniformly with respect to n) if k is large enough. Then, for every
measurable subset E c Q, we deduce that

fqunlsf IVun|+f|VTk(un)|ka+|E|é
E {k<uty) E

which implies (recall Corollary 3.7)

f VTk(un)|2]2
Q

limf|Vun|ka,
|E|—0 E

that is the equi-integrability.
The above inequalities, with k = 0, give the L' boundedness of of the sequence {Vu,}. Then the L!
compactness of the sequence {u,} is a consequence of the Rellich theorem.
Thus we improved (3.6):
Vu, converges weakly in L' to Vu. (3.15)

O
Now we can state the existence of distributional solutions.

Theorem 3.16. Under the assumptions of Theorem 3. 13 let assume (3.14). Then there exist
distributional solutions 0 < u € WS’I(Q) and 0 < ¥ € W Q) g < L, of system (2.1); that is,

N-T’

we have that MO VY. ¥
fM(X)Vu-Vv+fuv: u———— D) Ve Vv f
Q Q Q (I+v¢) Q

for every v in C(l)(Q), and
fM(x)w V90+fW f .

Mathematics in Engineering Volume 5, Issue 5, 1-11.
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3.3. A direct approach to the boundedness of the sequence {\,}

In this subsection, we assume (1.2), f € L'(Q), 1 <o < % + ﬁ
Following [3], we prove the following a priori estimate

flunlﬁflfl- (3.16)
Q Q

as test function in the first equation, we have (thanks to the Young

Indeed, if we take
+ [u,]

ah [ Vil e , VP
TLWWM+IMM|MIE wyiyL

which implies, dropping a positive term and letting &7 — 0, the estimate (3.16).
Thus, for the right hand side of the second equation we have the estimate

fw%$sfm
Q Q

and, if 1 (that soc—-1< 2) the right hand side of the second equation is bounded in L°(Q),
s>4 Wthh 1mphes that the sequence of the solutions {i,} is bounded in L°°(Q) if — 1 p e N +2 (that is

inequality)

o - 1 < 5 + %), the right hand side of the second equation is bounded in L¥iz (Q), wh1ch 1mphes that
the sequence of the solutions {i,,} is bounded in WJ’Z(Q).
Summarizing, with this approach,

1< + ylelds the boundedness of the sequence {¢,,} in W1 2(Q) (3.17)
with the use of the estimate (3.16).

3.4. General nonlinearities

It is possible to adapt our approach (nonlinear duality) to the case of the system

LM(x)Vu-Vv+Luv: QuM((x%Z);VV+LfV, Vv e Cy(Q),

fM(x)Vw V<p+fw f‘” , Y eCyQ),

with y € R*. A possible approach (which we only sketch here) is

e define an approximate system (as in (2.6));

. Uy
e use as test functions (g(wn), m)
with ) .
g = f 5 ds
h(r) = St

Mathematics in Engineering Volume 5, Issue 5, 1-11.
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