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1. Introduction

In this paper, we study several weak solutions of the generated Jacobian equations (GJEs), (which
were first introduced by Neil S. Trudinger in [34, 35]), subject to some boundary value conditions.
These kinds of weak solutions of GJEs are proved to be equivalent under some necessary assumptions,
which extends the known results in the optimal transportation case and the standard Monge-Ampère
case.

We begin with the Jacobian determinant equations (JDEs) in [6],

det DY = ψ(x), in Ω ⊂ Rn, (1.1)

which are the first order fully nonlinear underdetermined partial differential equations of the vector
function Y : Ω → Ω, where ψ : Ω → R+ is a given scalar function. The celebrated result established
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in [6] is one of the main tools for the correction of volume distortion in relation to the standard volume
in Hölder spaces.

If Y and ψ in (1.1) depend also on u and Du for an unknown scalar function u : Ω → R, we get
the prescribed Jacobian equations (PJEs) as in [32, 33]. PJEs associated to the second boundary value
conditions can be written as

det DY(·, u,Du) = ψ(·, u,Du), in Ω, (1.2)

Y(·, u,Du)(Ω) = Ω∗, (1.3)

where Ω,Ω∗ ⊂ Rn are two given domains, Y : Ω × R × Rn → Rn is a C1 mapping, Du denotes the
gradient of the unknown function u : Ω → R, and ψ : Ω × R × Rn → R+ is a given scalar function.
Here Ω and Ω∗ are called the source domain and the target domain, respectively. Then Eq (1.2) can
be regarded as the second order fully nonlinear partial differential equation of the unknown function u.
The second boundary value condition (1.3) is usually called the natural boundary condition.

For Γ ⊂ Rn ×Rn ×R, if the mapping Y , together with its dual function Z : Ω×R×R, can be derived
by generating functions g ∈ C4(Γ) through the equations

gx(x,Y,Z) = Du, g(x,Y,Z) = u, (1.4)

then prescribed Jacobian Eq (1.2) is called generated Jacobian equation (GJE), and can be written as
the following Monge-Ampère type form

det[D2u − A(·, u,Du)] = B(·, u,Du), in Ω, (1.5)

where

A(·, u,Du) = gxx(·,Y(·, u,Du),Z(·, u,Du)), B(·, u,Du) = det E(·,Y,Z)ψ(·, u,Du). (1.6)

The solvability of Y and Z from (1.4) and the form of Eq (1.5) are guaranteed by conditions A1 and
A2 respectively, which will be introduced together with the matrix E in Section 2. In particular, we
consider that the function ψ is separable in the sense that

ψ(·, u,Du) =
f (·)

f ∗ ◦ Y(·, u,Du)
(1.7)

for positive functions f ∈ L1(Ω) and f ∗ ∈ L1(Ω∗) satisfying∫
Ω

f =

∫
Ω∗

f ∗. (1.8)

In applications of geometric optics and optimal transportation, condition (1.8) is called the conservation
of energy and the mass balance condition, respectively.

Note that GJEs were introduced by Trudinger [35] to extend the Monge-Ampère theory in optimal
transport problems to the near field geometric optics problems. In the near field optics, we refer the
readers to the references [8, 13, 14, 35] for the explicit examples of generating functions. In the far
field optics, the corresponding Monge-Ampère type has no u dependence, namely A and B in (1.5) are
independent of u, see [39] for example.
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On the other side, it is known in [8,21,22] that the structures and the underlying g-convexity theory
of GJEs are also emerging in economics, in relation to both matching problems and principal/agent
problems. In [22], the duality structure given by a generating function g yields a “Galois connection”,
which is already known in the economics literature and the computer science literature.

Recently, besides the applications of optics and economics, the theoretical and numerical aspects
of GJEs themself have been extensively studied, see [9,11–14,19,23–25,36] for the theoretical aspect
and [1,3,7,28,29] for the numerical aspect. So far, the study of GJEs has become an important research
area.

The study of weak solutions to GJEs is both important in the theoretical study and the numerical
analysis. For instance, the survey article [3] is a good introduction to GJEs, which proposes the theory
for viscosity solutions of GJEs as a possible future direction. The aim of this paper is to show the
relations and differences between several notions of weak solutions. One group of weak solutions is
Aleksandrov solutions, Brenier solutions, C-viscosity solutions. The other group of weak solutions is
Trudinger solutions and Lp-viscosity solutions.

We now formulate the main theorems of this paper. The terminologies in the main theorems will be
introduced in Section 2.

Theorem 1.1. Assume that positive functions f ∈ L1(Ω) and f ∗ ∈ L1(Ω∗) satisfy (1.8), and conditions
A1, A1*, A2, A3w and A4w are satisfied. Then the following relationships hold.

(i). An Aleksandrov solution of (1.5) is a Brenier solution of (1.5). If Ω∗ is g∗-convex with respect to
Ω × J, then a Brenier solution of (1.5) is also an Aleksandrov solution of (1.5).

(ii). If f and f ∗ are continuous functions, then an Aleksandrov solution of (1.5) is equivalent to a
C-viscosity solution of (1.5).

Note that the relationship between Aleksandrov solution and Brenier solution in Theorem 1.1
extends the corresponding result for the optimal transportation case in [18] to the generated Jacoabian
case. Also, the relationship between Aleksandrov solution and C-viscosity solution in Theorem 1.1
extends the corresponding result for the optimal transportation case in [16, 17] to the generated
Jacoabian case.

In Theorem 1.1, when the conditions in (i) and (ii) are all satisfied, then Aleksandrov solution,
Brenier solution and C-viscosity solution of (1.5) are all equivalent. Therefore, in this equivalent
case, the Brenier solution and the C-viscosity solution of problem (1.5)–(1.3) can also have global C3

regularity as the Aleksandrov solution under the additional assumptions A5, f ∈ C2(Ω̄), f ∗ ∈ C2(Ω̄∗)
and the uniform g-convexity of Ω and uniform g∗-convexity of Ω∗ respectively, see Theorem 6.1 in [26].
Note that in [37], Trudinger is able to prove the C3 regularity of Aleksandrov solution u without the
monotonicity assumption A4w, see Corollary 4.1 in [37], where the strict g-convexity of u in [9] is
applied. When A3w is strengthened to A3, the interior local C2 estimate and interior local C2,α estimate
for Aleksandrov solution of (1.5) are proved in [27] when f is Dini continuous and Hölder continuous
respectively. By Theorem 1.1, such interior local C2 and C2,α estimates also hold for Brenier solutions
and C-viscosity solutions of (1.5).

In order to study Trudinger solutions and Lp-viscosity solutions, we consider equation (1.5) subject
to the homogeneous Dirichlet boundary condition

u = 0, on ∂Ω. (1.9)
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Theorem 1.2. Assume that f ∈ Lp(Ω) (p ≥ 1) is a nonnegative function, f ∗ is a continuous positive
function in Ω̄∗, then a weak solution v of problem (1.5)–(1.9) in the sense of Trudinger is an Lp-viscosity
solution of problem (1.5)–(1.9).

Theorem 1.2 extends the corresponding result for the standard Monge-Ampère case in [2] to the
generated Jacobian case.

Note that in Theorem 1.1, B in (1.5) is only positive, while in Theorem 1.2, B in (1.5) is allowed to
be nonnegative. This is the reason why we separate their statements into two theorems.

Although we have established equivalent results for various weak solutions under some conditions,
it should be pointed out that these weak solutions are different in general. Aleksandrov solution and
Brenier solution are defined in the sense of measure, which are fit for the measurable right hand side.
If Ω∗ is not g∗-convex with respect to Ω× J, then a Brenier solution of (1.5) will not be an Aleksandrov
solution of (1.5). In this case, only partial regularity of Brenier solutions can be expected, see [12].
The C-viscosity and Lp-viscosity solutions are defined by C2 and W2,p test functions using comparison
principle, which can be applied to the cases when the right hand side terms are continuous and Lp

functions, respectively. Trudinger solution is a notion in the sense of smooth approximations, which
can also be applied to the case when the right hand side term is in Lp space.

This paper is organized as follows. In Section 2, we recall some conditions on the generating
function g, and introduce the g-convexity of a function u and the g-convexity of the domain Ω, and
finally give the definitions of the weak solutions of GJEs, which are presented in three subsections. In
Sections 3 and 4, we give the proofs of Theorems 1.1 and 1.2 for the two groups of weak solutions,
respectively. In particular, Trudinger solution and Lp-viscosity solution are linked by a kind of
uniformly elliptic regularization in Section 4.

2. Preliminaries

In this section, we introduce the assumptions of the generating functions g, and give appropriate
convexity notions of function u and domain Ω, and define various weak solutions. These preliminaries
will be used in the next two sections.

2.1. Conditions on the generating function g

We first recall some standard conditions for the generating function g as in [14, 35, 36]. We assume
g ∈ C4(Γ), where Γ has the property that the projections

I(x, y) = {z ∈ R| (x, y, z) ∈ Γ}

are open intervals. Denoting

U = {(x, g(x, y, z), gx(x, y, z))| (x, y, z) ∈ Γ}, (2.1)

then we have the following conditions:

A1: For each (x, u, p) ∈ U, there exists a unique point (x, y, z) ∈ Γ satisfying

g(x, y, z) = u, gx(x, y, z) = p.
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A2: gz < 0, det E , 0, in Γ, where E is the n × n matrix given by

E = [Ei, j] = gx,y − (gz)−1gx,z ⊗ gy. (2.2)

Note that the sign of gz in A2 can be changed to be positive as we wish. Here we fix the sign of gz to
be negative in accordance with [13, 35].

The strict monotonicity property of the generating function g with respect to z, enables us to define
a dual generating function g∗,

g(x, y, g∗(x, y, u)) = u, (2.3)

with (x, y, u) ∈ Γ∗ := {(x, y, g(x, y, z))|(x, y, z) ∈ Γ}, g∗x = −gx/gz, g∗y = −gy/gz and g∗u = 1/gz, which
leads to a dual condition to A1, namely

A1*: The mapping Q := −gy/gz is one-to-one in x, for all (x, y, z) ∈ Γ.

Note that the Jacobian matrix of the mapping x → Q(x, y, z) is −Et/gz, where Et is the transpose of E
so its determinant will not vanish when condition A2 holds, that is A2 is self dual.

We also assume the following conditions on the generating function g which are expressed in terms
of the matrix A. Extending the necessary assumption A3w for regularity in optimal transportation
in [18, 32, 38], we assume the following regular condition for the matrix function A with respect to p,
which we formulate together with its strict version [20].

A3w (A3): The matrix function A is regular (strictly regular) inU, that is A is co-dimension one convex
(strictly co-dimension one convex) with respect to p in the sense that,

Akl
i jξiξ jηkηl := (Dpk pl Ai j)ξiξ jηkηl ≥ 0, (> 0)

inU, for all ξ, η ∈ Rn such that ξ ·η = 0.

We also need a monotonicity condition on the matrix A with respect to u, namely A4w or A4*w.

A4w (A4*w): The matrix A is monotone increasing (decreasing) with respect to u inU, that is

DuAi jξiξ j ≥ 0, (≤ 0)

inU, for all ξ ∈ Rn.

We next have the following condition to guarantee the appropriate controls on J1[u], which is a
refinement of condition G5 in [35], (see also [36]). Namely, writing J(x, y) = g(x, y, ·)I(x, y), we
assume:

A5: There exists an infinite open interval J0 and a positive constant K0, such that J0 ⊂ J(x, y) and

|gx(x, y, z)| < K0,

for all x ∈ Ω̄, y ∈ Ω̄∗, g(x, y, z) ∈ J0.

Note that as in [14], we can assume that J0 = (m0,∞) for some constant m0 ≥ −∞ or J0 = (−∞,M0)
for a constant M0. As in [37], we can also consider the situation when J0 is a finite interval. We will
assume some of the above conditions A1, A2, A1*, A3w and A4w in the discussions of weak solutions.
In this paper, we will not use the conditions A3, A4*w and A5. As mentioned in the introduction,
condition A5 was used in [26,37] to guarantee the C1 estimate and prove higher regularity of solutions.
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2.2. g-convexity

In this subsection, we introduce the appropriate convexity notions of the function u and domain Ω

with respect to the generating function g. Let Ω be a bounded domain, g be a generating function on
Γ satisfying conditions A1 and A2, and I be an open interval in R as in the previous subsection. A
function u ∈ C0(Ω) is called g-convex in Ω, if for each x0 ∈ Ω, there exists y0 ∈ Ω∗ and z0 ∈ I(x0, y0)
such that

u(x0) = g(x0, y0, z0),
u(x) ≥ g(x, y0, z0)

(2.4)

for all x ∈ Ω. If u is differentiable at x0, then y0 = Tu(x0) = Y(x0, u(x0),Du(x0)), while if u is twice
differentiable at x0, then

D2u(x0) ≥ D2
xg(x0, y0, z0), (2.5)

that is u is admissible for Eq (1.5) at x0. If u ∈ C2(Ω), we call u locally g-convex in Ω if this inequality
holds for all x0 ∈ Ω. We refer to the function g(·, y0, z0) as g-affine function and as a g-support at x0

if (2.4) is satisfied. Note that a locally g-convex function u satisfying (2.5) has a local g-support near
x0 and is g-convex in a neighbourhood of x0.

Let u ∈ C0(Ω) be g-convex in Ω. We define the g-normal mapping of u at x0 ∈ Ω to be the set

Tu(x0) = {y0 ∈ UΩ| u(x) ≥ g(x, y0, g∗(x0, y0, u0)) for all x ∈ Ω}, (2.6)

where u0 = u(x0), and g∗ is the dual generating function defined by g(x, y, g∗(x, y, u)) = u. Clearly Tu

agrees with our previous terminology when u is differentiable and moreover in general

Tu(x0) ⊂ Y(x0, u(x0), ∂u(x0)), (2.7)

where ∂u deonotes the subdifferential of u. Assume A1, A2, A1*, A3w, A4w hold in U and suppose
u ∈ C0(Ω) is g-convex in Ω, then by Lemma 2.2 in [35], we have

Tu(x0) = Y(x0, u(x0), ∂u(x0)) (2.8)

for any x0 ∈ Ω.
We also recall the convexity notions of the domains in [14, 35, 37]. The domain Ω is g-convex with

respect to y0 ∈ U
∗
Ω

, z0 ∈ I(Ω, y0) = ∩ΩI(·, y0) if the image Q0(Ω) := −gy

gz
(·, y0, z0)(Ω) is convex in Rn.

The domain Ω∗ is g∗-convex with respect to (x0, u0) ∈ Ω × J, where J := J(x0,Ω
∗) = ∩Ω∗ J(x0, ·), if

the image P0(Ω∗) := gx[x0, ·, g∗(x0, ·, u0)](Ω∗) is convex in Rn. Alternatively, we can also define the
domain convexity with respect to the mapping Y , see [14, 37] for the detailed definitions. As in [14],
g∗-convexity of Ω∗ is equivalent to Y∗-convexity of Ω∗, while g-convexity of Ω can imply Y-convexity
of Ω. Note that when we use condition A3w for convexity results and their consequences below, we
assume at least that the convex hulls of the image Q0(Ω) and P0(Tu(Ω)) lie in Q(Γ) := −gy

gz
(Γ) and gx(Γ),

respectively.
Assume A1, A2, A1*, A3w and A4w hold in U and that u ∈ C2(Ω) is a locally g-convex function

in Ω, if Ω is g-convex with respect to each point in (Y,Z)(·, u,Du)(Ω), then the function u is g-convex
in Ω, see Lemma 2.1 in [35].
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2.3. Definitions of weak solutions

In this subsection, we give the exact definitions of various weak solutions of (1.5), namely
Aleksandrov solutions, Brenier solutions, C-viscosity solutions, Lp-viscosity solutions and Trudinger
solutions.

In order to define the Aleksandrov solution, we introduce the generalized Monge-Ampère measure
associated with the generating function g and the weight f ∗.

Definition 2.1 (Generalized Monge-Ampère measure). Let f ∗ ∈ L1
loc(R

n), for a given g-convex
function u ∈ C(Ω), the generalized Monge-Ampère measure of u associated with the generating
function g and the weight f ∗ is the measure defined by

ωg( f ∗, u)(F) =

∫
Tu(F)

f ∗(y)dy (2.9)

for every Borel set F ⊂ Ω. When f ∗ ≡ 1, we simply write the measure as ωg(u).

From [35], the generalized Monge-Ampère measure ωg( f ∗, u) is a Borel measure. Moreover, since
f ∗ ∈ L1

loc(R
n), ωg( f ∗, u) is a Radon measure, which behaves well with respect to convergence, see

also [35].
We are now in a position to define the Aleksandrov solution of (1.5).

Definition 2.2 (Aleksandrov solution). A g-convex function u ∈ C(Ω) is said to be a generalized
solution of (1.5) in the sense of Aleksandrov, or simply Aleksandrov solution of (1.5), if

ωg( f ∗, u)(F) =

∫
F

f (x)dx (2.10)

for any Borel set F ⊂ Ω.

We can also define a generalized solution of the second boundary condition (1.4). If Ω∗ ⊂ Tu(Ω̄)
and |{x| f (x) > 0 and Tu(x)\Ω̄∗ is nonempty}| = 0, u is said to be a generalized solution of the second
boundary value condition (1.4).

Extending Brenier solution for the optimal transportation problem in [18], the Brenier solution of
the second boundary value problem (1.5)–(1.4) can be defined as follows.

Definition 2.3 (Brenier solution). A g-convex function u ∈ C(Ω) is said to be a weak solution of (1.5)
in the sense of Brenier, or simply Brenier solution of (1.5), if∫

T−1
u (F∗)

f (x)dx =

∫
F∗

f ∗(y)dy, (2.11)

for any Borel set F∗ ⊂ Ω∗.

Correspondingly, if Ω ⊂ T−1
u (Ω̄∗) and |{y| f ∗(y) > 0 and T−1

u (y)\Ω̄ is nonempty}| = 0, u is said to be
a Brenier solution of the second boundary value condition (1.4).

If we denote the source measure and target measure on Ω and Ω∗ by µ and ν respectively, we can
use the “pushback” (Tu)# and the “pushforward” (Tu)# as in [18] to simply denote the Aleksandrov
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solution and the Brenier solution of (1.5) respectively. In particular, when dµ = f dx and dν = f ∗dy
respectively, Aleksandrov solution of (1.5) can be defined by

µ = (Tu)#ν, (2.12)

and Brenier solution of (1.5) can be defined by

ν = (Tu)#µ. (2.13)

Therefore, an Aleksandrov solution of (1.5) can be regarded as a weak solution u whose g-normal
mapping Tu pushes back the target measure ν to the source measure µ, while a Brenier solution of (1.5)
can be regarded as a weak solution u whose g-normal mapping Tu pushes forward the source measure
µ to the target measure ν.

We next define the viscosity solutions of Eq (1.5), which are sometimes called “comparison
solutions” or “Crandall–Lions solutions”. Our C-viscosity solution definition of Eq (1.5) mainly
follows that in [10], which will be used in the case when the function on right hand side of (1.5) is
continuous. While Lp-viscosity solution definition of Eq (1.5) mainly follows from that in [5], which
will be used in the case when the function on right hand side of (1.5) belongs to the Lp space.

Let
F [u] := F[u] − B(·, u,Du), (2.14)

where
F[u] := det[D2u − A(·, u,Du)] (2.15)

and A, B are matrix function and nonnegative scalar function satisfying (1.6). Now we can simply use
F [u] = 0 to denote Eq (1.5). Note that in the following definitions of weak solutions, we can allow B
to be negative, but not merely positive.

We then give the definition of C-viscosity solution of Eq (1.5).

Definition 2.4 (C-viscosity solution). Let u be an upper semi-continuous (respectively, lower semi-
continuous) function, we say that u is a C-viscosity subsolution (resp., supersolution) of (1.5), or
equivalently, that F [u] ≥ 0 (resp., F [u] ≤ 0) in C-viscosity sense, if whenever x0 ∈ Ω and g-convex
function ϕ ∈ C2(Ω) are such that u − ϕ attains a local maximum (resp., minimum) at x0, then

F [ϕ](x0) ≥ 0, (resp., ≤ 0). (2.16)

A C-viscosity solution of (1.5) is any continuous function u which is, at the same time, a C-viscosity
supersolution of (1.5) and a C-viscosity subsolution of (1.5). We shall also say that F [u] = 0 in
C-viscosity sense.

A more restrictive notion of viscosity solution can be given by increasing the set of test functions
from C2(Ω) to W2,p(Ω).

Definition 2.5 (Lp-viscosity solution). Let u be an upper semi-continuous (respectively, lower semi-
continuous) function, we say that u is an Lp-viscosity subsolution (resp., supersolution) of (1.5), or
equivalently, that F [u] ≥ 0 (resp., F [u] ≤ 0) in Lp-viscosity sense, if one of the following conditions
holds:

Mathematics in Engineering Volume 5, Issue 3, 1–20.
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(i). If a g-convex function ϕ ∈ W2,p(Ω) and δ > 0 are such that

F [ϕ] ≤ −δ < 0, (resp., ≥ δ > 0) (2.17)

almost everywhere in an open subset of Ω, then u − ϕ cannot achieve a local maximum (resp.,
minimum) inside that set;

(ii). For every g-convex function ϕ ∈ W2,p(Ω) and every x0 ∈ Ω where u−ϕ achieves a local maximum
(resp., minimum), we have

ess lim inf
x→x0

F [ϕ] ≥ 0, (resp., ess lim sup
x→x0

F [ϕ] ≤ 0) (2.18)

where ess lim inf (resp., ess lim sup) means, as usual, the essential inferior (resp., superior) limit.

An Lp-viscosity solution of (1.5) is any continuous function u which is, at the same time, an Lp-viscosity
supersolution of (1.5) and an Lp-viscosity subsolution of (1.5). We shall also say that F [u] = 0 in
Lp-viscosity sense.

From the above definitions, under the same assumptions of the known data, it is clear that an Lp-
viscosity solution of (1.5) is a C-viscosity solution of (1.5). However, the definition of Lp-viscosity
solution is particularly used in the “Lp-theory”, namely that the right hand side function of Eq (1.5) is
merely in the Lp space, see [5]. There is another well-known notion of weak solution in [31], which is
also fit for the case of Lp right hand side. We shall call such a weak solution in [31] Trudinger solution.
The relationship between Lp-viscosity solution and Trudinger solution is stated in Theorem 1.2, which
will be proved in Section 4.

Letting
F̃[u] := f ∗ ◦ Y(x, u,Du) det(E−1)F[u], (2.19)

we now define the weak solution of (1.5) in the sense of Trudinger [31].

Definition 2.6 (Trudinger solution). Let u be a continuous function, we say that u is a weak
subsolution of (1.5) in the sense of Trudinger, or simply Trudinger subsolution of (1.5), if there exist
sequences {um} ⊂ C2(Ω) and { fm} ⊂ L1

loc(Ω) such that um is g-convex, um → u uniformly in Ω, fm ≥ 0,
fm → f in L1

loc(Ω), and F̃[um] ≥ fm.
Let u be a continuous function, we say that u is a weak supersolution of (1.5) in the sense of

Trudinger, or simply Trudinger supersolution of (1.5), if there exist sequences {um} ⊂ C2(Ω) and
{ fm} ⊂ L1

loc(Ω) such that um → u uniformly in Ω, fm ≥ 0, fm → f in L1
loc(Ω), and F̃[um] ≤ fm whenever

um is g-convex.
A weak solution of (1.5) in the sense of Trudinger, or simply Trudinger solution of (1.5), is a

continuous function u for which there exists a sequence {um} ⊂ C2(Ω) of convex functions such that
um → u uniformly in Ω and F̃[um]→ f in L1

loc(Ω).

3. Aleksandrov solutions, Brenier solutions and C-viscosity solutions

In this section, we discuss the relations of Aleksandrov solutions, Brenier solutions and C-viscosity
solutions, and prove Theorem 1.1. We prove the assertions (i) and (ii) of Theorem 1.1 separately.

We first prove the relationship between Aleksandrov solutions and Brenier solutions.
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Proof of Theorem 1.1 (i). “Aleksandrov solutions ⇒ Brenier solutions”. By Section 4 in [35], we
have

|{y ∈ Ω∗| y ∈ Tu(x1) ∩ Tu(x2) for some x1 , x2, x1, x2 ∈ Ω}| = 0, (3.1)

and from this ωg( f ∗, u) is countably additive, therefore ωg( f ∗, u) is a Randon measure. Since u is an
Aleksandrov solution of (1.5), we have

ωg( f ∗, u) = f dx, (3.2)

namely, for any Borel set F ⊂ Ω, we have∫
Tu(F)

f ∗(y)dy = ωg( f ∗, u)(F) =

∫
F

f (x)dx. (3.3)

For any given Borel set F∗ ⊂ Ω∗, there exists a set F ⊂ Ω such that Tu(F) = F∗. Since the measures µ
and ν have no singular parts and the property (3.1) holds, we have

|T−1
u (F∗)| = |F|. (3.4)

From (3.3) and (3.4), we then have ∫
F∗

f ∗(y)dy =

∫
Tu(F)

f ∗(y)dy

=

∫
F

f (x)dx

=

∫
T−1

u (F∗)
f (x)dx,

(3.5)

which implies that u is a Brenier solution of (1.5).
“Brenier solutions⇒ Aleksandrov solutions”. Let Ω, Ω∗ be as above, suppose that u is a g-convex
Brenier solution of (1.5), Ω∗ is g∗-convex with respect to Ω×J, then we aim to show that u satisfies (1.5)
in the Aleksandrov sense. Since u is a g-convex Brenier solution of (1.5), for any h ∈ C(Rn), we have∫

Ω

h(Tu(x)) f (x)dx =

∫
Ω∗

h(y) f ∗(y)dy. (3.6)

Note that (3.6) is an analytical formulation of the measure equality (2.11) in Definition 2.3. For any
compact set F ⊂ Ω, the set F∗ = Tu(F) is compact. Taking the function h ∈ C(Rn) such that h ≥ χF∗ ,
where χF∗ denotes the characteristic function of F∗, we get from (3.6),∫

Ω∗
h(y) f ∗(y)dy =

∫
Ω

h(Tu(x)) f (x)dx

≥

∫
Ω

χF∗(Tu(x)) f (x)dx

=

∫
F

f (x)dx.

(3.7)
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Letting h decrease to χF∗ , from (3.7) we have

ωg( f ∗, u)(F) ≥
∫

F
f (x)dx. (3.8)

Since the target domain Ω∗ is g∗-convexity with respect to Ω × J, by Lemma 4.3 in [35], we have

Tu(F) ⊂ Ω̄∗, (3.9)

which leads to
|Tu(F)| = |Tu(F) ∩Ω∗|. (3.10)

Again, by taking the function h ∈ C(Rn) such that h ≥ χF∗ , then we have

ωg( f ∗, u)(F) =

∫
Tu(F)

f ∗(y)dy

=

∫
Tu(F)∩Ω∗

f ∗(y)dy

≤

∫
Ω∗

h(y) f ∗(y)dy

=

∫
Ω

h(Tu(x)) f (x)dx,

(3.11)

where (3.10) is used to obtain the second equality, and (3.6) is used to obtain the last equality. Letting
h decrease to χF∗ , from (3.11) we have

ωg( f ∗, u)(F) ≤
∫

F
f (x)dx. (3.12)

Combining (3.8) and (3.12), we get

ωg( f ∗, u)(F) =

∫
F

f (x)dx (3.13)

for any compact set F ⊂ Ω.
Now, we have proved that (3.13) holds for any compact subset F of Ω. The regularity of the

generalized Monge-Ampère measure ωg( f ∗, u) implies that (3.13) holds with compact F replaced by
any Borel subset of Ω. Thus, u is an Aleksandrov solution of (1.5). �

Remark 1. In the above proof, we have proved that Aleksandrov solutions with no singular part are
Brenier solutions, which do not need the g-convexity of the target domain Ω∗. While conversely, we do
need the g-convexity of Ω∗ as in the proof. For the particular case when g(x, y, z) = x·y−z, one can refer
to Lemma 2 in [4]. We give some heuristic explanations as follows. For Aleksandrov solutions of (1.5),
whenever f and f ∗ are bounded away from zero and infinity on Ω and Ω∗, respectively, (3.2) implies
that the multivalued map x→ Tux preserves the Lebesgue measure up to multiplicative constants, i.e.,
|F| ' |Tu(F)| (the volumes of F and Tu(F) are comparable) for any Borel set F ⊂ X. On the other
hand, Brenier solutions of (1.5) can only see the regions where f and f ∗ live. Then for any Borel set
F ⊂ X, we only have |F| ' |Tu(F) ∩ Ω∗|, but not |F| ' |Tu(F)| as in the Aleksandrov situation. If one
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can ensure that the target always covers the image of Tu(Ω) so that |Tu(F) ∩Ω∗| = |Tu(F)| for all Borel
set F ⊂ Ω, then Brenier solutions of (1.5) will be the Aleksandrov solutions of (1.5). As in (3.11), it
is the g-convexity of Ω∗ with respect to Ω, that guarantees that the target Ω∗ always covers the image
Tu(Ω).

We now move to prove the relationship between Aleksandrov solutions and C-viscosity solutions.

Proof of Theorem 1.1 (ii). “Aleksandrov solutions ⇒ C-viscosity solutions”. Let φ ∈ C2(Ω) be a
g-convex function such that u − φ has a local maximum at x0 ∈ Ω. We can assume that u(x0) = φ(x0)
and u(x) < φ(x) for all 0 < |x − x0| < δ, where δ is some positive constant. This can be achieved by
adding r|x − x0|

2 to φ and letting r → 0 at the end. Note that the perturbed function φr := φ + r|x − x0|
2

is locally g-convex in Ω ∩ Bδ(x0) for δ properly small, see Remark 2. For simplicity, we still denote φr

by φ in the context.
Let m = min

δ
2≤|x−x0 |≤δ

{φ(x)−u(x)}, by the above assumption, we have m > 0. Let 0 < ε < m, we consider

the set
S ε := {x ∈ Bδ(x0) : u(x) > φ(x) − ε}. (3.14)

If δ
2 ≤ |x − x0| ≤ δ, then φ(x) − u(x) ≥ m > ε, so x < S ε. Hence, we get S ε ⊂ B δ

2
(x0), u = φ − ε on ∂S ε

and u > φ − ε in S ε. By condition A4w, (1.6) and the local g-convexity of φ, we have

D2(φ − ε) − gxx(x,Y(x, φ − ε,D(φ − ε)),Z(x, φ − ε,D(φ − ε)))
=D2(φ − ε) − A(x, φ − ε,D(φ − ε))
=D2φ − A(x, φ − ε,Dφ)
≥D2φ − A(x, φ,Dφ) ≥ 0,

(3.15)

in Ω ∩ Bδ(x0). From (2.5) and (3.15), the function φ − ε is locally g-convex in Ω ∩ Bδ(x0). Hence, for
some sufficiently small ε, φ− ε is g-convex in S ε. Since both the functions u and φ− ε are g-convex in
S ε, by Lemma 4.4 in [35], we have

Tu(S ε) ⊂ Tφ−ε(S ε). (3.16)

Since u is an Aleksandrov solution of (1.5), we have∫
S ε

f (x)dx = ωg( f ∗, u)(S ε) ≤ ωg( f ∗, φ − ε)(S ε)

=

∫
S ε

f ∗ ◦ Y(x, φ − ε,Dφ) det(E−1) det[D2φ − gxx(x,Y(x, φ − ε,Dφ),Z(x, φ − ε,Dφ)]dx.
(3.17)

Letting ε→ 0 in (3.17), by the continuity of f , f ∗,Y,Z and E, and the C2 smoothness of φ, we get

det[D2φ(x0) − gxx(x0,Y(x0, φ(x0),Dφ(x0)),Z(x0, φ(x0),Dφ(x0))]

≥ det(E(x0,Y(x0, φ(x0),Dφ(x0)),Z(x0, φ(x0),Dφ(x0)))
f (x0)

f ∗ ◦ Y(x0, φ(x0),Dφ(x0))
,

(3.18)

which implies that u is a C-viscosity subsolution of (1.5). A similar argument shows that u is also a
C-viscosity supersolution of (1.5), and thus a C-viscosity solution of (1.5).
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“C-viscosity solutions ⇒ Aleksandrov solutions”. Assuming 0 < λ ≤ f (x) ≤ Λ < +∞ in Ω̄, for
given x0 ∈ Ω and 0 < η < λ

2 , by the continuity of f , there exists ε > 0 such that

0 < f (x0) − η < f (x) < f (x0) + η (3.19)

for all x ∈ Bε(x0). Let uτ, f ∗δ denote the the mollifications of u and f ∗ as τ→ 0 and δ→ 0, respectively.
Let u±δ,τ be smooth g-convex solutions to the Dirichlet problem

f ∗δ ◦ Y(x, v,Dv) det(E−1)det[D2v − gxx(x,Y(x, v,Dv),Z(x, v,Dv))]
=f (x0) ± η, in Bε(x0),

v =uτ, on ∂Bε(x0).
(3.20)

Here note that f ∗δ , det(E−1) and uτ are smooth function, the existence of smooth g-convex solutions for
the Dirichlet problems in small balls is guaranteed by Lemma 4.6 in [35], where conditions A1, A2 and
A3w are used, and the smallness of the radius ε is used. By Perron’s method, let uδ,τ be a C-viscosity
solution to the Dirichlet problem

f ∗δ ◦ Y(x, v,Dv) det(E−1)det[D2v − gxx(x,Y(x, v,Dv),Z(x, v,Dv))]
=f (x), in Bε(x0),

v =uτ, on ∂Bε(x0).
(3.21)

Since (3.19) holds in Bε(x0), by comparing the smooth solutions u±δ,τ with the C-viscosity solution uδ,τ,
we get

u+
δ,τ ≤ uδ,τ ≤ u−δ,τ, in Bε(x0), (3.22)

where the comparison can be achieved by using Definition 2.4. Since u+
δ,τ, uδ,τ and u−δ,τ are equal on

∂Bε(x0), using Lemma 4.4 in [35], we obtain from (3.22) that

Tu−δ,τ(Bε(x0)) ⊂ Tuδ,τ(Bε(x0)) ⊂ Tu+
δ,τ

(Bε(x0)). (3.23)

Consequently, from Definition 2.1, we have

ωg( f ∗δ , u
−
δ,τ)(Bε(x0)) ≤ ωg( f ∗δ , uδ,τ)(Bε(x0)) ≤ ωg( f ∗δ , u

+
δ,τ)(Bε(x0)). (3.24)

Since u+
δ,τ, u−δ,τ are smooth solutions in Bε(x0), they are both Aleksandrov solutions. Therefore, we have

ωg( f ∗δ , u
±
δ,τ)(Bε(x0)) =

∫
Bε(x0)

[ f (x0) ± η]dx = |Bε(x0)|( f (x0) ± η). (3.25)

Combining (3.24) and (3.25), we get

|Bε(x0)|( f (x0) − η) ≤ ωg( f ∗δ , uδ,τ)(Bε(x0)) ≤ |Bε(x0)|( f (x0) + η). (3.26)

Here we observe that |Bε(x0)|( f (x0) − η) and |Bε(x0)|( f (x0) + η) in (3.26) are independent of δ and τ.
From the stability property of viscosity solutions [10], we have uδ,τ → u, as δ, τ → 0, where u is the
assumed viscosity solution of Eq (1.5). Moreover, we have f ∗δ → f ∗ as δ → 0. Then passing δ, τ → 0
in (3.26), by the weak convergence of the generalized Monge-Ampère measure [26, 35], we have

|Bε(x0)|( f (x0) − η) ≤ ωg( f ∗, u)(Bε(x0)) ≤ |Bε(x0)|( f (x0) + η). (3.27)
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From (3.27), we know that the measure ωg( f ∗, u) is absolutely continuous with respect to the Lebesgue
measure. Therefore, there exists f̃ ∈ L1

loc(Ω) such thatωg( f ∗, u)(F) =
∫

F
f̃ (x)dx for all Borel set F ⊂ Ω.

Dividing (3.27) by |Bε(x0)| and letting ε→ 0, we get

f (x0) − η ≤ f̃ (x0) ≤ f (x0) + η, (3.28)

for all x0 ∈ Ω and for all sufficiently small η. Now we get that f̃ ≡ f in Ω. Hence the measure ωg( f ∗, u)
has the density f , namely,

ωg( f ∗, u)(F) =

∫
F

f (x)dx (3.29)

for any Borel set F ⊂ Ω. Thus, u is an Aleksandrov solution of (1.5). �

Remark 2. Here, we show that the perturbed function φr := φ + r|x − x0|
2 (r > 0) of a g-convex

function φ is locally g-convex in Ω ∩ Bδ(x0) for δ properly small and x0 ∈ Ω. Since φ and φr are C2

functions, we can use (2.5) to check their local g-convexity. We denote the matrix D2u − A(x, u,Du) =

D2u − gxx(·,Y(·, u,Du),Z(·, u,Du)) by M[u]. Since the function φ is C2, from (2.5), the g-convexity of
φ in Ω implies M[φ] ≥ 0 in Ω. Thus, we only need to prove M[φr] ≥ 0 in Ω ∩ Bδ(x0) for some δ > 0.
Indeed, by calculations and mean value theorem, we have

M[φr] = D2φ + 2rI − A(x, φr,Dφr)
= M[φ] + 2rI + A(x, φ,Dφ) − A(x, φr,Dφr)

= M[φ] + r[2I − DuA(x, ẑ,Dφ)|x − x0|
2 − 2

n∑
k=1

Dpk A(x, φr, p̂)(x − x0)k],
(3.30)

where I is the identity matrix, ẑ = θ1φ + (1 − θ1)φr, p̂ = θ2Dφ + (1 − θ2)Dφr for some constants θ1, θ2 ∈

(0, 1). Letting λ = (λ1, · · · , λn) be the eigenvalues of the matrix DuA(x, ẑ,Dφ), λ(k) = (λ(k)
1 , · · · , λ

(k)
n )

be the eigenvalues of the matrix Dpk A(x, φr, p̂) for k = 1, · · · , n, and setting λ̃ = (λ̃1, · · · , λ̃n) with
λ̃i =
∑n

k=1 |λ
(k)
i | for i = 1, · · · , n, we use ΛDuA and ΛDpA to denote

ΛDuA = max{sup
Ω

|λ1|, · · · , sup
Ω

|λn|}, and ΛDpA = max{sup
Ω

λ̃1, · · · , sup
Ω

λ̃n},

respectively. Then, by taking δ ∈ (0,min{ 1
ΛDuA+2ΛDpA

, 1}), we have

M[φr] ≥ M[φ] + rI[2 − ΛDuAδ
2 − 2ΛDpAδ] ≥ rI > 0, (3.31)

in Ω ∩ Bδ(x0), for any r > 0. Therefore, the function φr (r > 0) is locally g-convex in Ω ∩ Bδ(x0).

Remark 3. When deriving (3.18) and (3.19), we have used the continuity of f and f ∗. Similar continuity
was also used in the proof of Theorem 1.1 in [16] by the author and X.-P. Yang. However, the continuity
of the densities is missing in the statement of Theorem 1.1 in [16]. We take this opportunity to add the
continuity of f and g to Theorem 1.1 in [16] so that a generalized solution for the optimal transportation
equation is a C-viscosity solution of the optimal transportation equation.
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4. Trudinger solutions and Lp-viscosity solutions

In this section, we discuss the relationship between Trudinger solutions and Lp-viscosity solutions,
which gives the proof of Theorem 1.2.

If the right hand side term is continuous, Eq (1.5) can be studied in the framework of C-viscosity
solutions [10]. If the right hand side term belongs to Lp space and is not continuous, Eq (1.5) should
be treated in the framework of Lp-viscosity solutions [5]. However, the theory in [5] requires strong
ellipticity of the equation, which is not satisfied for the Monge-Ampère type Eq (1.5) at the current
stage. The notion of weak solution introduced by Trudinger in [31] works nicely for the Monge-
Ampère case, (and furthermore the k-Hessian case). We will show that Trudinger solution of (1.5) is
actually an Lp-viscosity solution.

Proof of Theorem 1.2. The proof is divided into four steps. In the first step, we treat a uniformly elliptic
regularization of problem (1.5)–(1.9), which is called the vanishing viscosity approximation method
in [2]. Here we shall use a feasible approximation scheme in [15]. Then in the second and third
steps, we prove that the limit of the approximated solutions is an Lp-viscosity solution and a Trudinger
solution, respectively. In the last step, we conclude that a Trudinger solution of (1.5)–(1.9) is actually
an Lp-viscosity solution of (1.5)–(1.9).

Step 1. We treat a uniform approximated problem of (1.5)–(1.9). We consider the following
approximated equation of (1.5) as in [15]:

det[M[u] + ε trace(M[u])I] = B(x, u,Du), (4.1)

which is a uniformly elliptic regularization of (1.5), where M[u] denotes the augmented Hessian matrix
D2u− A(x, u,Du) with A satisfying (1.6). In fact, for each ε > 0, it is easy to check as in [15] that (4.1)
is uniformly elliptic. Then by the theory in [5], for ε > 0, there exists a unique Lp-viscosity solution
uε ∈ W2,p(Ω) of (4.1)-(1.9), which satisfies (4.1) almost everywhere and M[u] + ε trace(M[u])I ≥ 0
almost everywhere. Moreover, uε ∈ C0,1(Ω̄) and

‖uε‖L∞ ≤ C1, ‖Duε‖L∞ ≤ C2, (4.2)

for some constants C1 and C2 independent of ε. Note that the uniform C0 and C1 estimates in (4.2) can
be readily checked as in [15].

Step 2. The limit of approximated solutions is an Lp-viscosity solution. By (4.2) and Ascoli-Arzela
theorem, uε has a subsequence that converges in C(Ω̄) to a Lipschitz continuous function u. Note that
by the stability property of viscosity solutions [10], the limit function u does not depend on the choice
of subsequence.

Next, we show that u is an Lp-viscosity solution of (1.5). We shall check that u is an Lp-viscosity
supersolution of (1.5). Suppose that u is not an Lp-viscosity supersolution of (1.5), then there exist a
point x0 ∈ Ω, a test function ϕ ∈ W2,p and two positive constants δ and r such that

F [ϕ] ≥ δ (4.3)

almost everywhere in Br(x0) := {x ∈ Ω| |x− x0| < r}, and u− ϕ has a global strict minimum over Br(x0)
at x0. Assume that ϕε is the test function for the solution uε of (4.1), and ϕε → ϕ uniformly in Br(x0)
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as ε → 0, then by (4.3),

Fε[ϕε] := det[M[ϕε] + ε trace(M[ϕε])I] − B(x, ϕε ,Dϕε) ≥
δ

2
(4.4)

holds almost everywhere in Br(x0), for sufficiently small ε > 0. By Weierstrass theorem, uε − ϕε has
a maximum point xε in Br(x0). Since uε − ϕε → u − ϕ uniformly in Ω, we have xε → x0 up to a
subsequence. Since x0 is an interior point of Br(x0), for sufficiently small ε, xε belongs to the open
ball Br(x0), which leads to a contradiction with Deifinition 2.5 (i). Therefore, u is an Lp-viscosity
supersolution of (1.5). Similarly, we see that u is also an Lp-viscosity subsolution of (1.5). Thus, u is
proved to be an Lp-viscosity solution of (1.5).

This step is completed by checking the availability of the function ϕε satisfying (4.4). We set
ϕε = ϕ + Qε , where Qε := ε

2 |x − x0|
2. Then it is readily checked that

Fε[ϕε] ≥det[M[ϕε]] + det[ε trace(M[ϕε])I] − B(x, ϕε ,Dϕε)
≥F [ϕ] + det[D2Qε + A(x, ϕ,Dϕ) − A(x, ϕ + Qε ,D(ϕ + Qε))]

+ [εtrace(M[ϕ + Qε])]n + B(x, ϕ,Dϕ) − B(x, ϕ + Qε ,D(ϕ + Qε))

≥
δ

2
,

(4.5)

where the subadditivity of det and (4.3) are used, and

det[D2Qε + A(x, ϕ,Dϕ) − A(x, ϕ + Qε ,D(ϕ + Qε))]

+[εtrace(M[ϕ + Qε])]n + B(x, ϕ,Dϕ) − B(x, ϕ + Qε ,D(ϕ + Qε)) ≥ −
δ

2

(4.6)

is used in the last inequality by letting ε sufficiently small. Here when using the subadditivity of det,
M[ϕ] > 0 and D2Qε + A(x, ϕ,Dϕ)−A(x, ϕ+ Qε ,D(ϕ+ Qε)) > 0 are used. The former one is guaranteed
by the g-convexity of ϕ, and the latter one can be achieved by choosing r small.

Step 3. The limit of approximated solutions is a Trudinger solution. Let v be the Trudinger solution
of (1.5)–(1.9), namely that there exists a sequence vm of C2 g-convex functions such that vm → v
uniformly in Ω and F̃[vm] = f ∗ ◦ Y(x, vm,Dvm) det(E−1) det[M[vm]] → f in L1

loc(Ω). Let u be the
uniform limit of uε , we next prove u = v in Ω.

To prove that w = u − v ≥ 0, it suffices to check that F [w] ≤ 0 in the C-viscosity sense in Ω.
Assume by contradiction that w is not a supersolution, then there exists a point x0 ∈ Ω, a test function
ϕ ∈ C2 and two positive constants δ and r such that

F [ϕ] ≥ δ (4.7)

in Br(x0), and w − ϕ has a global strict minimum over Br(x0) at x0. We take a function of the form

ϕε,m := ϕ + vm + Qε , (4.8)

where Qε := ε
2 |x − x0|

2. Similarly to (4.5), for small ε and large m, we have

Fε[ϕε,m] ≥det[M[ϕε,m]] + det[ε trace(M[ϕε,m])I] − B(x, ϕε,m,Dϕε,m)
≥F [ϕ] + det[D2(vm + Qε) + A(x, ϕ,Dϕ) − A(x, ϕε,m,Dϕε,m)]

+ [εtrace(M[ϕε,m])]n + B(x, ϕ,Dϕ) − B(x, ϕε,m,Dϕε,m)

≥
δ

2
.

(4.9)

Mathematics in Engineering Volume 5, Issue 3, 1–20.



17

Since the function uε − ϕε,m approaches w − ϕ uniformly, it achieves a minimum inside the ball Br(x0)
at least for small ε and large m. By Step 1, we know that uε is an Lp-viscosity solution of (4.1). Then
by Definition 2.5 (ii), we have

ess lim sup
x→x0

Fε[ϕε,m] ≤ 0, (4.10)

which contradicts with (4.9). Now, we have proved that F [w] ≤ 0 in the C-viscosity sense in Ω, which
leads to u ≥ v in Ω. Applying this argument again to w̃ := v − u, we get u ≤ v in Ω. Combining both
inequalities, we have proved u ≡ v in Ω.

Step 4. A Trudinger solution is an Lp-viscosity solution. From Definition 2.6, the Trudinger solution
u is a uniform limit of a family of functions {um}, which is unique. Under the assumption that f ∈ Lp(Ω)
(p ≥ 1) is a nonnegative function, the Lp-viscosity solution of (1.5) may not be unique. Combining
Steps 2 and 3, a Trudinger solution of (1.5)–(1.9) is equivalent to a vanishing viscosity solution of
(1.5)–(1.9), and is an Lp-viscosity solution of (1.5)–(1.9). �

Remark 4. Note that trace(M[u]) = ∆u −
∑n

i=1 Aii in (4.1) involves the Laplacian of u, which can be
regarded as a “viscosity term”. For this reason, the method of using the approximation (4.1) and letting
ε → 0 is also called the vanishing viscosity approximation method in some literature. The scheme of
adding εtrace(M[u])I to M[u], (originates from [30] in the treatment of curvature equations), has been
used in [15] for more general elliptic operators F .

Remark 5. In [2], the authors considered the standard Monge-Ampère equation, which is just the case
of g(x, y, z) = x · y − z in this paper. In this case, the relationship between Trudinger solution and
Lp-viscosity solution is also studied in [2]. We refer the reader to [2] for detailed discussions about
L∞-viscosity solutions and the maximal Lp-viscosity solutions.
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