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Abstract: The insulated and perfect conductivity problems arising from high-contrast composite
materials are considered in all dimensions. The solution and its gradient, respectively, represent the
electric potential and field. The novelty of this paper lies in finding exact solutions for the insulated
and perfect conductivity problems with concentric balls. Our results show that there appears no electric
field concentration for the insulated conductivity problem, while the electric field for the perfect
conductivity problem exhibits sharp singularity with respect to the small distance between interfacial
boundaries of the interior and exterior balls. This discrepancy reveals that concentric balls is the
optimal structure of insulated composites, but not for superconducting composites.
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1. Introduction and main results

High-contrast fiber-reinforced composite materials have been widely used in industrial field due to
their properties of less expensive, lighter, stronger or more durable by contrast with common
materials. Each year, high-contrast composites bring hundreds of new technical innovations and
applications, from golf clubs, tennis rackets, buildings, bridges to microchips, aircraft, missiles and
spacecraft. Quantitative analysis on mechanical properties of high-contrast composites is the key to
their applications, especially to the finding of optimal structure of composites.

High-contrast composites with closely located inclusions can be described by the insulated and
perfect conductivity equations. It is well known that the electric field, which is the gradient of solution,
concentrates highly in the thin gaps between inclusions. The problem of estimating the gradient of
solution has been actively investigated since the famous work of Babus̆ka et al. [5] and has resulted
in a large number of papers involving different methods and cases based on shapes of inclusions,
dimensions, applied boundary conditions, for example, see [1–3,6–8,11,12,14–19] and the references
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therein. The gradient blow-up rate has been captured in these papers. To be specific, with regard to the
perfect conductivity problem, when the distance ε between two strictly convex inclusions goes to zero,
the gradient of the solution blows up at the rate of ε−1/2, |ε ln ε|−1 and ε−1, respectively, in dimensions
d = 2, d = 3 and d ≥ 4. Different from the perfect conductivity problem, it has been recently proved
in [12] that the gradient blow-up rate for the insulated conductivity problem depends not only on the
dimension but also on the principal curvature of the surfaces of inclusions. In addition, for nonlinear
equation, we refer to [9, 10, 13].

We should point out that the volumes of the whole matrix domains considered in all the
aforementioned work are of constant order with respect to the distance ε and the electric field only
appears blow-up in the narrow region between two inclusions. So a natural problem is that when the
volume of the considered matrix domain degenerates to be of infinitely small quantity order in terms
of ε such as order O(ε), that is, the whole matrix domain becomes the thin gap, whether the electric
field concentrates highly in the whole matrix domain. In order to answer this question, in this paper
we consider a mathematical model of high-contrast composite materials with the core-shell geometry
modeled by concentric balls in all dimensions. Let Br0 , Br0+ε ⊂ R

d (d ≥ 2) be two balls centered at the
origin with the radii r0 and r0 + ε, respectively, where r0 and ε are two positive constants. In the
presence of concentric balls Br0 and Br0+ε, we consider the following insulated and perfect
conductivity problems: 

∆u = 0, in Br0+ε \ Br0 ,
∂u
∂ν

= 0, on ∂Br0 ,

u = ϕ, on ∂Br0+ε,

(1.1)

and 
∆u = 0, in Br0+ε \ Br0 ,

u = C0, on Br0 ,∫
∂Br0

∂u
∂ν

= 0,

u = ϕ, on ∂Br0+ε,

(1.2)

where C0 is the free constant determined by the third line of (1.2), ν denotes the unit outer normal to
the domain, the boundary data ϕ belongs to C2(∂Br0+ε) ∩ Ck,α(∂Br0+ε) with k ≥ 0, α ∈ (0, 1] satisfying
the following condition:

k + α >
1
2

if d = 2, and k + α >
d
2
− 1 if d ≥ 3. (1.3)

In physics, the interior ball Br0 denotes the stiff inclusion (or the fiber) and the domain Br0+ε \ Br0

represents the matrix. With regard to the existence, uniqueness and regularity of weak solutions to
problems (1.1) and (1.2), see [6, 7].

For x ∈ Br0+ε \ Br0 , write the polar coordinates as x = (r, ξ) ∈ [r0, r0 + ε] × Sd−1, where r = |x|. Let
Nk,d represent the dimension of the space of the homogeneous harmonics of degree k in d dimensions,
whose value is given as follows:

Nk,d =

(2k + d − 2) (k+d−3)!
k!(d−2)! , k ≥ 1, d ≥ 2,

1, k = 0, d ≥ 2.
(1.4)
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Then using Theorem 2.36 and Corollary 4.14 in [4], we can use spherical harmonics to expand the
above boundary data ϕ as follows:

ϕ((r0 + ε)ξ) = lim
m→∞

m∑
k=0

Nk,d∑
l=1

〈ϕ,Yk,l〉
Sd−1 Yk,l(ξ), uniformly in ξ ∈ Sd−1, (1.5)

where Nk,d is given by (1.4), 〈ϕ,Yk,l〉
Sd−1 =

∫
Sd−1 ϕ((r0 + ε)ξ)Yk,l(ξ)dξ, the set {Yk,l}k,l, whose element

Yk,l(ξ) is a spherical harmonic of degree k, forms an orthonormal basis of L2(Sd−1). Note that for k = 0,
we have Y0,1(ξ) = |Sd−1|−1/2. The expansion in (1.5) actually provides a selection method of finite-
dimensional approximation sequence for the boundary data ϕ. For simplicity, for any integer m ≥ 0,
denote

ϕm(x) :=
m∑

k=0

Nk,d∑
l=1

aklYk,l(ξ), on ∂Br0+ε, (1.6)

where akl := 〈ϕ,Yk,l〉
Sd−1 =

∫
Sd−1 ϕ((r0 + ε)ξ)Yk,l(ξ)dξ. Remark that if ϕ . C on ∂Br0+ε, then we have

m > 0. Then we restate (1.5) as follows:

sup
x∈∂Br0+ε

|ϕm(x) − ϕ(x)| → 0, as m→ ∞. (1.7)

For r ∈ [r0, r0 + ε] and any integer i, define

ρi(r) :=

− ln r, i = 2,
r2−i, i , 2.

(1.8)

For k ≥ 1, introduce some constants as follows:c(1)

k := kρ4−d−2k(r0)ρ4−d−k(r0+ε)
kρ4−d−2k(r0)+(k+d−2)ρ4−d−2k(r0+ε) ,

c(2)

k := (k+d−2)ρ4−d−k(r0+ε)
kρ4−d−2k(r0)+(k+d−2)ρ4−d−2k(r0+ε) .

(1.9)

The first main result is concerned with explicit solution for the insulated conductivity problem with
concentric balls.

Theorem 1.1. Suppose that d ≥ 2 and ε > 0. For the nonconstant boundary data ϕ ∈ C2(∂Br0+ε) ∩
Ck,α(∂Br0+ε) with indices k ≥ 0, α ∈ (0, 1] satisfying condition (1.3), let u ∈ H1(Br0+ε)∩C1(Br0+ε \ Br0)
be the solution of the insulated conductivity problem (1.1). Then for x = rξ ∈ Br0+ε \ Br0 ,

u(x) = a01|S
d−1|−1/2 +

∞∑
k=1

Nk,d∑
l=1

akl(c(1)

k r2−d−k + c(2)

k rk)Yk,l(ξ), (1.10)

where Nk,d is given in (1.4), akl =
∫
Sd−1 ϕ((r0 + ε)ξ)Yk,l(ξ)dξ, the values of c(i)

k , i = 1, 2, k ≥ 1 are given
by (1.9).
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Remark 1.2. From (1.10), we obtain that for x = rξ ∈ Br0+ε \ Br0 ,

∇u(x) =ξ∂ru +
1
r
∇Sd−1u

=

∞∑
k=1

Nk,d∑
l=1

akl
(
c(1)

k (2 − d − k)r1−d−k + c(2)

k krk−1)Yk,l(ξ)ξ

+

∞∑
k=1

Nk,d∑
l=1

akl(c(1)

k r1−d−k + c(2)

k rk−1)∇Sd−1Yk,l(ξ), (1.11)

where ∇Sd−1 is the first-order Beltrami operator on Sd−1. Observe that

‖ϕ‖2L2(∂Br0+ε)
=

∞∑
k=0

Nk,d∑
l=1

a2
kl,

which, together with the fact that r ∈ (r0, r0 + ε), reads that

|∇u| ≤ C
( ∞∑

k=0

Nk,d∑
l=1

a2
kl

) 1
2

≤ C‖ϕ‖L∞(∂Br0+ε),

for some ε-independent constant C. This implies that concentric balls is the optimal insulation structure
of composite materials.

Remark 1.3. By contrast with all the previous work on the blow-up of the electric field for the insulated
and perfect conductivity problems, the novelty of our results obtained in Theorems 1.1 and 1.4 lies in
the following two aspects. On one hand, the solution and its gradient are exactly given. On the other
hand, our results in Theorems 1.1 and 1.4 hold for any ε > 0, that is, the distance ε allows to be a large
positive constant.

For k ≥ 1 and r ∈ [r0, r0 + ε], definec̃(1)

k (r) =
ρd(r)−ρd(r0+ε)
ρd(r0)−ρd(r0+ε) ,

c̃(2)

k (r) =
(ρ2−k(r)−ρ4−d−2k(r0)ρd+k(r))ρ4−d−k(r0+ε)

ρ4−d−2k(r0+ε)−ρ4−d−2k(r0) .
(1.12)

With regard to the perfect conductivity problem with concentric balls, we have

Theorem 1.4. Suppose that d ≥ 2 and ε > 0. For the nonconstant boundary data ϕ ∈ C2(∂Br0+ε) ∩
Ck,α(∂Br0+ε) with indices k ≥ 0, α ∈ (0, 1] satisfying condition (1.3), let u ∈ H1(Br0+ε)∩C1(Br0+ε \ Br0)
be the solution of the perfect conductivity problem (1.2). Then for x = rξ ∈ Br0+ε \ Br0 ,

u(x) =
a01

|Sd−1|1/2
+

∞∑
k=1

Nk,d∑
l=1

akl

(
c̃(1)

k (r)
?
Sd−1

Yk,l(ξ)dξ + c̃(2)

k (r)Yk,l(ξ)
)
, (1.13)

where Nk,d is given by (1.4), akl =
∫
Sd−1 ϕ((r0 + ε)ξ)Yk,l(ξ)dξ, c̃(i)

k (r), i = 1, 2, k ≥ 1 are defined by (1.12).
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Remark 1.5. Similar to (1.11), we deduce from (1.13) that for x = rξ ∈ Br0+ε \ Br0 ,

∇u(x) =

∞∑
k=1

Nk,d∑
l=1

akl

(
∂rc̃(1)

k (r)
?
Sd−1

Yk,l(ξ)dξ + ∂rc̃(2)

k (r)Yk,l(ξ)
)

+

∞∑
k=1

Nk,d∑
l=1

akl
c̃(2)

k (r)
r
∇Sd−1Yk,l(ξ). (1.14)

By Taylor expansion, it follows from a direct calculation that for a sufficiently small ε > 0,

∂rρd(r) =

−r−1, d = 2,
−(d − 2)r1−d, d ≥ 3,

∂rρ2−k(r) = krk−1,

∂rρd+k(r) = −(d + k − 2)r1−d−k,

and

ρd(r0) − ρd(r0 + ε) =

 ε
r0

+ O(ε2), d = 2,
(d − 2)rd−3

0 ε + O(ε2), d ≥ 3,

ρ4−d−2k(r0 + ε) − ρ4−d−2k(r0) =(d + 2k − 2)rd+2k−3
0 ε + O(ε2).

Then we obtain that for r ∈ (r0, r0 + ε),

∂rc̃(i)

k (r) ∼ ε−1, i = 1, 2, k ≥ 1,
c̃(2)

k (r)
r
∼ ε−1.

Substituting this into (1.14), we have |∇u| ∼ ε−1. Recall that ε−1 is the greatest blow-up rate captured
in all the above-mentioned work. Then for the perfect conductivity problem with concentric spheres,
the gradient of the solution exhibits sharp singularity with respect to the distance ε, which is greatly
different from the result in Remark 1.2 in terms of the insulated conductivity problem.

The detailed proofs of Theorems 1.1 and 1.4 are given in the next section.

2. The proofs of Theorems 1.1 and 1.4

In the following, we will find the exact solutions for the insulated and perfect conductivity problems
by combining the method of separation of variables and spherical harmonic theory. This idea is based
on the observation that the considered domain satisfies the radial symmetry.

Proof of Theorem 1.1. To begin with, for any integer m ≥ 0, consider the following boundary data
problem 

∆um = 0, in Br0+ε \ Br0 ,
∂um
∂ν

= 0, on Br0 ,

um = ϕm, on ∂Br0+ε,

(2.1)

where ϕm is given by (1.6). In view of (1.7), it follows from the Hopf’s Lemma and the maximum
principle that

sup
x∈Br0+ε\Br0

|um(x) − u(x)| ≤ sup
x∈∂Br0+ε

|ϕm(x) − ϕ(x)| → 0, as m→ ∞.
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That is, the sequence {um} converges uniformly to the solution u of the original problem (1.1) in
Br0+ε \ Br0 . Then the problem is reduced to solving the explicit solution for problem (2.1) in the
following.

According to (1.6), we carry out the linear decomposition for the solution um to problem (2.1) as
follows:

um =

m∑
k=0

Nk,d∑
l=1

aklvkl, in Br0+ε \ Br0 ,

where, for k = 0, 1, ...,m and l = 1, ...,Nk,d, vkl verifies
∆vkl = 0, in Br0+ε \ Br0 ,
∂vkl
∂ν

= 0, on ∂Br0 ,

vkl = Yk,l(ξ), on ∂Br0+ε.

(2.2)

First, in the case of k = 0, we know that ∂v01
∂ν

= 0 on ∂Br0 and v01 = Y0,1(ξ) = |Sd−1|−1/2 on ∂Br0+ε. Then
applying the maximum principle and the Hopf’s Lemma, we obtain that v01 = |Sd−1|−1/2 in Br0+ε \ Br0 .

We now proceed to consider the case when k > 0. Due to the radial symmetry of the domain, we
assume that the solution of Eq (2.2) possesses the form of separation of variables vkl = fk(r)Yk,l(ξ).
Recall that under the polar coordinates, the Laplace operator ∆ can be expressed as

∆ = ∂rr +
d − 1

r
∂r +

1
r2 ∆Sd−1 , (2.3)

where ∆Sd−1 is the Laplace-Beltrami operator satisfying that ∆Sd−1Yk,l(ξ) = −k(k + d − 2)Yk,l(ξ), which
implies that spherical harmonics are eigenfunctions of the Laplace-Beltrami operator. Substituting
these relations into (2.2), we deduce

∂rr fk(r) + d−1
r ∂r fk(r) − k(k+d−2)

r2 fk(r) = 0, for r ∈ (r0, r0 + ε),
∂r fk(r0) = 0,
fk(r0 + ε) = 1.

(2.4)

Picking test function fk(r) = rs and substituting it into the first line of (2.4), we obtain

s2 + s(d − 2) − k(k + d − 2) = 0,

which reads that s = k or s = −(d−2+k). Since second-order homogeneous linear differential equation
only has two linear independent solutions, then the general solution of (2.4) can be written as

fk(r) = c(1)

k r−(d−2+k) + c(2)

k rk,

for some constants c(i)

k , i = 1, 2. This, together with the second and third lines of (2.4), shows that−c(1)

k (d + k − 2)r−(d+k−1)
0 + c(2)

k krk−1
0 = 0,

c(1)

k r−(d+k−2)
0 + c(2)

k (r0 + ε)k = 1.
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A direct computation shows that the values of c(i)

k , i = 1, 2 are given by (1.9). Combining these facts
above, we have

um = a01|S
d−1|−1/2 +

m∑
k=1

Nk,d∑
l=1

akl(c(1)

k r2−d−k + c(2)

k rk)Yk,l(ξ).

By sending m→ ∞, the proof of Theorem 1.1 is finished.
�

Proof of Theorem 1.4. Analogously as before, for any integer m ≥ 0, consider
∆um = 0, in Br0+ε \ Br0 ,

u = C0
m, on Br0 ,∫

∂Br0

∂um
∂ν

= 0,

um = ϕm, on ∂Br0+ε,

(2.5)

where the free constant C0
m is determined by the third line of (2.5), ϕm is given by (1.6) satisfying (1.7).

We first split the solution um of problem (2.5) as follows:

um = C0
mv1 +

m∑
k=0

Nk,d∑
l=1

aklvkl, (2.6)

where v1 and vkl, respectively, solve
∆v1 = 0, in Br0+ε \ Br0 ,

v1 = 1, on ∂Br0 ,

v1 = 0, on ∂Br0+ε,


∆vkl = 0, in Br0+ε \ Br0 ,

vkl = 0, on ∂Br0 ,

vkl = Yk,l(ξ), on ∂Br0+ε.

(2.7)

In view of the radial symmetry of the domain, we consider the solutions of the following forms:

v1(x) = g(r), vkl(x) = fk(r)Yk,l(ξ), x = (r, ξ) ∈ (r0, r0 + ε) × Sd−1. (2.8)

In light of (2.3) and substituting (2.8) into (2.7), we derive
∂rrg(r) + d−1

r ∂rg(r) = 0, for r ∈ (r0, r0 + ε),
g(r0) = 1,
g(r0 + ε) = 0,

(2.9)

and 
∂rr fk(r) + d−1

r ∂r fk(r) − k(k+d−2)
r2 fk(r) = 0, for r ∈ (r0, r0 + ε),

fk(r0) = 0,
fk(r0 + ε) = 1.

(2.10)
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From the first line of (2.9), we know that g(r) is the radial solution of the Laplace equation. Then we
have

v1 =

c(1)

2 ln r + c(2)

2 , d = 2,
c(1)

d r2−d + c(2)

d , d ≥ 3,

for some constants c(i)

d , i = 1, 2, d ≥ 2. Using the Dirichlet-type boundary value conditions in the
second and third lines of (2.9), we solve the explicit values of these constants as follows:c(1)

2 = − 1
ln(r0+ε)−ln r0

,

c(2)

2 =
ln(r0+ε)

ln(r0+ε)−ln r0
,

c(1)

d = 1
r2−d

0 −(r0+ε)2−d ,

c(2)

d = −
(r0+ε)2−d

r2−d
0 −(r0+ε)2−d ,

for d ≥ 3.

By (1.8), the explicit solution of v1 can be unified as

v1 =
ρd(r) − ρd(r0 + ε)
ρd(r0) − ρd(r0 + ε)

, for d ≥ 2. (2.11)

With regard to fk(r) defined by (2.10), if k = 0, then f0(r) becomes the radial solution of the Laplace
equation. Then it follows from a similar calculation that

v01 = f0(r)Y0,1(ξ) =
(ρd(r0) − ρd(r))|Sd−1|−1/2

ρd(r0) − ρd(r0 + ε)
, for d ≥ 2. (2.12)

On the other hand, if k > 0, similar to (2.4), we also have

fk(r) = c(1)

kl r−(d−2+k) + c(2)

kl rk,

for some constants c(i)

k , i = 1, 2. By the second and third lines in (2.10), these constants must verifyc(1)

k r−(d+k−2)
0 + c(2)

k rk
0 = 0,

c(1)

k (r0 + ε)−(d+k−2) + c(2)

k (r0 + ε)k = 1,

which yields that

c(1)

k = −
rd+2k−2

0 (r0 + ε)d+k−2

(r0 + ε)d+2k−2 − rd+2k−2
0

, c(2)

k =
(r0 + ε)d+k−2

(r0 + ε)d+2k−2 − rd+2k−2
0

.

Then we have

vkl =
(ρ2−k(r) − ρ4−d−2k(r0)ρd+k(r))ρ4−d−k(r0 + ε)

ρ4−d−2k(r0 + ε) − ρ4−d−2k(r0)
Yk,l(ξ). (2.13)

From (2.6), it remains to calculate the free constant C0
m. Using the third line of (2.5), it follows from

integration by parts that

C0
m = −

∑m
k=0

∑Nk,d
l=1 akl

∫
∂Br0

∂vkl
∂ν∫

∂Br0

∂v1
∂ν

=

∫
∂Br0+ε

∂v1
∂ν
ϕm∫

∂Br0

∂v1
∂ν

. (2.14)
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By the same argument, we have

C0 =

∫
∂Br0+ε

∂v1
∂ν
ϕ∫

∂Br0

∂v1
∂ν

.

Using (1.7), we obtain that C0
m → C0, as m→ ∞. For simplicity, denote

χd =

1, d = 2,
d − 2, d ≥ 3.

By a straightforward computation, we obtain∫
∂Br0

∂v1

∂ν
= −

|Sd−1|χd

ρd(r0) − ρd(r0 + ε)
,

and ∫
∂Br0+ε

∂v1

∂ν
ϕm = −

χd

ρd(r0) − ρd(r0 + ε)

m∑
k=0

Nk,d∑
l=1

akl

∫
Sd−1

Yk,l(ξ)dξ.

Therefore, substituting these two equations into (2.14), we obtain

C0
m =

m∑
k=0

Nk,d∑
l=1

akl

?
Sd−1

Yk,l(ξ)dξ.

This, together with (2.6) and (2.11)–(2.13), shows that

um =
a01

|Sd−1|1/2
+

m∑
k=1

Nk,d∑
l=1

akl

(
c̃(1)

k (r)
?
Sd−1

Yk,l(ξ)dξ + c̃(2)

k (r)Yk,l(ξ)
)
, (2.15)

where c̃(i)

k (r), i = 1, 2, k = 1, ...,m are defined in (1.12). Combining (1.7) and the maximum principle,
we have

sup
x∈Br0+ε\Br0

|um(x) − u(x)| ≤ max
{

sup
x∈∂Br0+ε

|ϕm(x) − ϕ(x)|, |C0
m −C0|

}
→ 0,

as m→ ∞. Hence, by letting m→ ∞ in (2.15), we complete the proof.
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