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Abstract: We extend the so-called universal potential estimates of Kuusi-Mingione type (J. Funct.
Anal. 262: 4205–4269, 2012) to the singular case 1 < p ≤ 2 − 1/n for the quasilinear equation with
measure data

− div(A(x,∇u)) = µ

in a bounded open subset Ω of Rn, n ≥ 2, with a finite signed measure µ in Ω. The operator
div(A(x,∇u)) is modeled after the p-Laplacian ∆pu := div (|∇u|p−2∇u), where the nonlinearity A(x, ξ)
(x, ξ ∈ Rn) is assumed to satisfy natural growth and monotonicity conditions of order p, as well as
certain additional regularity conditions in the x-variable.

Keywords: pointwise estimate; potential estimate; Wolff’s potential; Riesz’s potential; fractional
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1. Introduction

We are concerned here with the quasilinear elliptic equation with measure data

− div(A(x,∇u)) = µ, (1.1)

in a bounded open subset Ω of Rn, n ≥ 2. Here µ is a finite signed measure in Ω and the nonlinearity
A = (A1, . . . , An) : Rn × Rn → Rn is vector valued function. Throughout the paper, we assume that
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there exist Λ ≥ 1 and p > 1 such that

|A(x, ξ)| ≤ Λ|ξ|p−1, |DξA(x, ξ)| ≤ Λ|ξ|p−2, (1.2)

〈DξA(x, ξ)η, η〉 ≥ Λ−1|ξ|p−2|η|2 (1.3)

for every x ∈ Rn and every (ξ, η) ∈ Rn × Rn\{(0, 0)}. More regularity assumptions on function x 7→
A(x, ξ) will be needed later.

A typical example of (1.1) is the p-Laplace equation with measure data

− ∆p u := −div(|∇u|p−2∇u) = µ in Ω. (1.4)

Since the seminal work of Kilpeläinen and Malý [7] (see also [16] for a different approach), the study
of pointwise behaviors of solutions to quasilinear equations with measure data (1.1) has undergone
substantial progress. In particular, the series of works [4, 5, 9] (see also [12]) provide interesting
pointwise bounds for gradients of solutions to the seemingly unwieldy Eq (1.1), at least for p > 2 − 1

n .
These pointwise gradient bounds have been extended recently in [3, 14, 15] for the more singular case
1 < p ≤ 2 − 1

n .
On the other hand, a more unified approach to pointwise bounds for solutions and their gradients

was presented in [8]. The results of [8] give pointwise bounds not only for the size but also for the
oscillation of solutions and their derivatives expressed in terms of bounds by linear or nonlinear
potentials in certain Calderón spaces. These cover different kinds of pointwise fractional derivative
estimates as well as estimates for (sharp) fractional maximal functions of the solutions and their
gradients.

However, the treatment of [8] is still confined to the range p > 2 − 1
n , and the purpose of this note

is to extend it to the singular case 1 < p ≤ 2 − 1
n . Note that, for 1 < p ≤ 2 − 1

n , by looking at the
fundamental solution we see that in general distributional solutions of (1.4) may not even belong to
W1,1

loc (Ω).
Thus in this paper we shall restrict ourselves only to the case

1 < p ≤ 2 −
1
n
,

and note that the main results obtained here also hold in the case 2− 1
n < p < 2 thanks to [8]. Moreover,

except for the comparison estimates obtained earlier in [13,15], the methods used in this paper are very
much guided by those of [8]. We would also like to point out that there are analogous results in the
case p ≥ 2 that we refer to [8] for the precise statements.

In some sense our pointwise regularity for the non-homogeneous equation (1.1) is obtained from
perturbation/interpolation arguments involving the associated homogeneous equations. Thus
information on the regularity of associated homogeneous equations will play an important role. In this
direction, we first recall a quantitative version of the well-known De Giorgi’s result that established
Cα0 , α0 ∈ (0, 1), regularity for solutions of div (A(x,∇w)) = 0. Henceforth, by Qr(x0) we mean the
open cube Qr(x0) := x0 + (−r, r)n with center x0 ∈ R

n and side-length 2r. In other words,

Qr(x0) = {x ∈ Rn : |x − x0|∞ := max
1≤i≤n
|xi − x0i| < r}.
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Lemma 1.1. Under (1.2)–(1.3), let w ∈ W1,p(Ω), p > 1, be a solution of the equation div (A(x,∇w)) =

0 in Ω. Then there exists α0 ∈ (0, 1), depending only on n, p and Λ, such that for any cubes Qρ(x0) ⊂
QR(x0) ⊂ Ω, and ε ∈ (0, 1], we have?

Qρ(x0)
|w − (w)Qρ(x0)|

pdx .
(
ρ

R

)α0 p ?
QR(x0)

|w − (w)QR(x0)|
pdx, (1.5)

and

inf
q∈R

?
Qρ(x0)

|w − q|εdx .
(
ρ

R

)α0ε

inf
q∈R

?
QR(x0)

|w − q|εdx. (1.6)

We point out that the proof of (1.5) follows from [6, Chapter 7], whereas the proof of (1.6) follows
from (1.5) and the reverse Hölder property of w.

In the case the nonlinearity A(x, ξ) is independent of x, we actually have C1,β0 , β0 ∈ (0, 1),
regularity the homogeneous equation (see, e.g., [2, 10, 11]). For our purpose, we shall use the
following quantitative version of this regularity result (see [3, 5]).

Lemma 1.2. Let v ∈ W1,p(Ω), p > 1, be a solution of div (A0(∇v)) = 0 in Ω, where A0(ξ) satisfies
(1.2)–(1.3) and is independent of x. Then there exists β0 ∈ (0, 1), depending only on n, p and Λ, such
that for any cubes Qρ(x0) ⊂ QR(x0) ⊂ Ω and ε ∈ (0, 1], we have?

Qρ(x0)
|∇w − (∇w)Qρ(x0)|dx .

(
ρ

R

)β0
?

QR(x0)
|∇w − (∇w)QR(x0)|dx,

and

inf
q∈Rn

?
Qρ(x0)

|∇v − q|εdx .
(
ρ

R

)β0ε

inf
q∈Rn

?
QR(x0)

|∇v − q|εdx. (1.7)

In what follows, we shall use the (maximal) constants α0 in Lemma 1.1 and β0 in Lemma 1.2 as
certain thresholds in our regularity theory. Also, henceforth, we reserve the letter κ for the following
constant

κ := (p − 1)2/2. (1.8)

Our first result provides a De Giorgi’s theory for non-homogeneous equations with measure data, which
also includes [15, Theorem 1.4] as an end-point case. For the case p > 2 − 1/n, see [8, Theorem 1.1].

Theorem 1.1. Under (1.2)–(1.3), with 1 < p ≤ 2 − 1
n , let κ be as in (1.8), and suppose that u ∈

C0(Ω) ∩W1,p
loc (Ω) is a solution of (1.1). Let QR(x0) ⊂ Ω and ᾱ ∈ (0, α0), where α0 is as in Lemma 1.1.

Then for any x, y ∈ QR/8(x0) we have

|u(x) − u(y)| .
[
WR

1−α(p−1)/p,p(|µ|)(x) + WR
1−α(p−1)/p,p(|µ|)(y)

]
|x − y|α

+

(?
QR(x0)

|u|κdx
) 1
κ
(
|x − y|

R

)α
(1.9)

uniformly in α ∈ [0, ᾱ]. Here the implicit constant depends only on n, p,Λ, and ᾱ.
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In (1.9), the function WR
1−α(p−1)/p,p(|µ|)(·) is a truncated Wolff’s potential of |µ|. In general, given a

nonnegative measure ν and ρ > 0, the Wolff’s potential Wρ
α,sν, α > 0, s > 1, is defined by

Wρ
α,s(ν)(x) :=

∫ ρ

0

[
ν(Qt(x))

tn−αs

] 1
s−1 dt

t
, x ∈ Rn.

Note that Wρ
α,2(ν) = Iρ2α(ν), where Iργ(ν), γ > 0, is a truncated Riesz’s potential defined by

Iργ(ν)(x) :=
∫ ρ

0

ν(Qt(x))
tn−γ

dt
t
, x ∈ Rn.

We remark that, except for (1.2)–(1.3), no further regularity assumption is needed in Theorem 1.1.
However, this will force the constant ᾱ to be small in general.

On the other hand, it is possible to allow ᾱ to be arbitrarily close to 1 as long as we further impose
a ‘small BMO’ condition on the map x 7→ A(x, ξ). This condition entails the smallness of the limit
lim supρ→0 ω(ρ), where

ω(ρ) := sup
y∈Rn

[?
Qr(y)

Υ(A,Qr(y))(x)2dx
] 1

2

, ρ > 0, (1.10)

and for each cube Qr(y) we set

Υ(A,Qr(y))(x) := sup
ξ∈Rn\{0}

|A(x, ξ) − AQr(y)(ξ)|
|ξ|p−1 ,

with AQr(y)(ξ) =
>

Qr(y)
A(x, ξ)dx. The precise statement is as follows.

Theorem 1.2. Under (1.2)–(1.3), with 1 < p ≤ 2 − 1
n , let κ be as in (1.8), and suppose that u ∈

C0(Ω)∩W1,p
loc (Ω) is a solution to (1.1). Let QR(x0) ⊂ Ω. Then for any positive ᾱ < 1 there exists a small

δ = δ(n, p,Λ, ᾱ) > 0 such that if
lim sup
ρ→0

ω(ρ) ≤ δ, (1.11)

then for any x, y ∈ QR/8(x0) ⊂ Ω, we have

|u(x) − u(y)| .
[
WR

1−α(p−1)/p,p(|µ|)(x) + WR
1−α(p−1)/p,p(|µ|)(y)

]
|x − y|α

+

(?
QR(x0)

|u|κdx
) 1
κ
(
|x − y|

R

)α
(1.12)

uniformly in α ∈ [0, ᾱ]. Here the implicit constant depends on n, p,Λ, ᾱ, ω(·), and diam(Ω).

Under a certain Dini-VMO condition, we could also allow ᾱ = 1 in the above theorem. However,
in this case the Wolff’s potential is replaced with a Riesz’s potential raised to the power of 1

p−1 .

Theorem 1.3. Under (1.2)–(1.3), with 1 < p ≤ 2 − 1
n , let κ be as in (1.8), and suppose that u ∈ C1(Ω)

is a solution to (1.1). Let QR(x0) ⊂ Ω. If for some σ1 ∈ (0, 1) such that ω(·)σ1 is Dini-VMO, i.e.,∫ 1

0
ω(ρ)σ1

dρ
ρ
< +∞, (1.13)
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then for any x, y ∈ QR/8(x0) ⊂ Ω, we have

|u(x) − u(y)| .
[(

IR
p−α(p−1)(|µ|)(x)

) 1
p−1

+
(
IR

p−α(p−1)(|µ|)(y)
) 1

p−1
]
|x − y|α

+

(?
QR(x0)

|u|κdx
) 1
κ
(
|x − y|

R

)α
uniformly in α ∈ [0, 1]. Here the implicit constant depends on n, p,Λ, ᾱ, σ1, ω(·), and diam(Ω).

We remark that, when α = 1, Theorem 1.3 recovers the pointwise gradient estimates of [3] and [15]
that were obtained under a slightly different Dini condition.

Finally, under a stronger Dini-Hölder condition we can also bound solution gradients in appropriate
Calderón spaces.

Theorem 1.4. Under (1.2)–(1.3), with 1 < p ≤ 2 − 1
n , let κ be as in (1.8), and suppose that u ∈ C1(Ω)

is a solution to (1.1). Let QR(x0) ⊂ Ω. If for some σ1 ∈ (0, 1) such that ω(·)σ1 is Dini-Hölder of order
ᾱ, i.e., ∫ 1

0

ω(ρ)σ1

ρᾱ
dρ
ρ
< +∞ (1.14)

for some ᾱ ∈ [0, β0), then for any x, y ∈ QR/4(x0) ⊂ Ω, we have

|∇u(x) − ∇u(y)| .
[(

IR
1−α(|µ|)(x)

) 1
p−1

+
(
IR

1−α(|µ|)(y)
) 1

p−1
]
|x − y|α

+

(?
QR(x0)

|∇u|κdx
) 1
κ
(
|x − y|

R

)α
uniformly in α ∈ [0, ᾱ]. Here β0 is as in Lemma 1.2, and the implicit constant depends on
n, p,Λ, ᾱ, σ1, ω(·), and diam(Ω).

2. Comparison and Poincaré type inequalities

The study of regularity problems for Eq (1.1) is based on the following comparison estimate that
connects the solution of measure datum problem to a solution of a homogeneous problem.

To describe it, we let u ∈ W1,p
loc (Ω) be a solution of (1.1). Then for a cube Q2R = Q2R(x0) b Ω, we

consider the unique solution w ∈ W1,p
0 (Q2R(x0)) + u to the local interior problem{

− div (A(x,∇w)) = 0 in Q2R(x0),
w = u on ∂Q2R(x0).

(2.1)

Lemma 2.1. Suppose that Q3R(x0) ⊂ Ω for some R > 0. Let u and w be as in (2.1) and let κ be as in
(1.8), where 1 < p ≤ 2 − 1

n . Then it holds that(?
Q2R(x0)

|∇(u − w)|κdx
) 1
κ

.

(
|µ|(Q3R(x0))

Rn−1

) 1
p−1

+
|µ|(Q3R(x0))

Rn−1

(?
Q3R(x0)

|∇u|κdx
) 2−p

κ

. (2.2)
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Proof. For 1 < p ≤ 3n−2
2n−1 , inequality (2.2) was obtained in [15, Theorem 1.2]. For 3n−2

2n−1 < p ≤ 2 − 1
n ,

by [13, Lemma 2.2], we have(?
Q2R(x0)

|∇(u − w)|γ0dx
) 1
γ0

.

(
|µ|(Q2R(x0))

Rn−1

) 1
p−1

+
|µ|(Q2R(x0))

Rn−1

(?
Q2R(x0)

|∇u|γ0dx
) 2−p

γ0

for some γ0 ∈ [ 2−p
2 , n(p−1)

n−1 ). In fact, an inspection of the proof of [13, Lemma 2.2] reveals that we can
take any γ0 ∈ ( n

2n−1 ,
n(p−1)

n−1 ). Thus we may assume that κ = (p − 1)2/2 < γ0. To conclude the proof, it is
therefore enough to show that(?

Q2R(x0)
|∇u|γ0dx

) 1
γ0

.

(
|µ|(Q3R(x0))

Rn−1

) 1
p−1

+

(?
Q3R(x0)

|∇u|κdx
) 1
κ

. (2.3)

To this end, let γ1 ∈ (γ0,
n(p−1)

n−1 ). By [15, Corollay 2.4], we have

(?
Qρ(x)
|∇u|γ1dy

) 1
γ1

.

(
|µ|(Q9ρ/8(x))

ρn−1

) 1
p−1

+
1
ρ

(?
Q9ρ/8(x)

|u − λ|γ0dy
) 1
γ0

(2.4)

for any λ ∈ R and any cube Qρ(x) such that Q9ρ/8(x) ⊂ Ω.
Now, with Q8ρ/7(x) ⊂ Ω, let w1 be the unique solution w1 ∈ W1,p

0 (Q8ρ/7(x)) + u to the problem{
− div (A(x,∇w1)) = 0 in Q8ρ/7(x),

w1 = u on ∂Q8ρ/7(x).

Then from the proof of [13, Lemma 2.2] (using (2.8) and (2.18) in [13]), we can deduce that

1
ρ

(?
Q8ρ/7(x)

|u − w1|
γ0dy

) 1
γ0

.

(
|µ|(Q8ρ/7(x))

ρn−1

) 1
p−1

+
|µ|(Q8ρ/7(x))

ρn−1

(?
Q8ρ/7(x)

|∇u|γ0dy
) 2−p

γ0

. (2.5)

By Young’s inequality, this yields

1
ρ

(?
Q8ρ/7(x)

|u − w1|
γ0dy

) 1
γ0

.

(
|µ|(Q8ρ/7(x))

ρn−1

) 1
p−1

+

(?
Q8ρ/7(x)

|∇u|γ0dy
) 1
γ0

. (2.6)

Thus by quasi-triangle and Hölder’s inequalities we get

1
ρ

(?
Q9ρ/8(x)

|u − λ|γ0dy
) 1
γ0

.

(
|µ|(Q8ρ/7(x))

ρn−1

) 1
p−1

+

(?
Q8ρ/7(x)

|∇u|γ0dy
) 1
γ0

+
1
ρ

(?
Q9ρ/8(x)

|w1 − λ|
n

n−1 dy
) n−1

n

, (2.7)

where we choose λ =
>

Q9ρ/8(x)
w1dz.
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We now use Poincaré and the reverse Hölder’s inequalities for ∇w1 to obtain that

1
ρ

(?
Q9ρ/8(x)

|w1 − λ|
n

n−1 dy
) n−1

n

.

?
Q9ρ/8(x)

|∇w1|dy .
(?

Q8ρ/7(x)
|∇w1|

γ0dy
) 1
γ0

.

(?
Q8ρ/7(x)

|∇u − ∇w1|
γ0dy

) 1
γ0

+

(?
Q8ρ/7(x)

|∇u|γ0dy
) 1
γ0

.

(
|µ|(Q8ρ/7(x))

ρn−1

) 1
p−1

+

(?
Q8ρ/7(x)

|∇u|γ0dy
) 1
γ0

,

where we used [13, Lemma 2.2] and Young’s inequality in the last bound.
Thus combining this result with (2.7) we find

1
ρ

(?
Q9ρ/8(x)

|u − λ|γ0dy
) 1
γ0

.

(
|µ|(Q8ρ/7(x))

ρn−1

) 1
p−1

+

(?
Q8ρ/7(x)

|∇u|γ0dy
) 1
γ0

.

At this point, plugging this into (2.4) we arrive at(?
Qρ(x)
|∇u|γ1dy

) 1
γ1

.

(
|µ|(Q8ρ/7(x))

ρn−1

) 1
p−1

+

(?
Q8ρ/7(x)

|∇u|γ0dy
) 1
γ0

,

which holds for any cube Qρ(x) such that Q8ρ/7(x) ⊂ Ω. Recall that γ1 > γ0, and thus by a
covering/iteration argument as in [6, Remark 6.12], we have(?

Qρ(x)
|∇u|γ1dy

) 1
γ1

.

(
|µ|(Q8ρ/7(x))

ρn−1

) 1
p−1

+

(?
Q8ρ/7(x)

|∇u|εdy
) 1
ε

(2.8)

for any ε > 0. This obviously yields (2.3) as desired and the proof is complete. �

Remark 2.1. Using the above argument, in particular (2.5), we can also show the following
comparison estimate for the functions u and w: for any 3n−2

2n−1 < p ≤ 2 − 1
n ,

(?
Q2R(x0)

|u − w|κdx
) 1
κ

.

(
|µ|(Q3R(x0))

Rn−p

) 1
p−1

+
|µ|(Q3R(x0))

Rn−2

(?
Q3R(x0)

|∇u|κdx
) 2−p

κ

,

and (?
Q2R(x0)

|u − w|κdx
) 1
κ

.

(
|µ|(Q3R(x0))

Rn−p

) 1
p−1

+
|µ|(Q3R(x0))

Rn−p

(?
Q3R(x0)

|u − λ|κdx
) 2−p

κ

for any λ ∈ R. For 1 < p ≤ 3n−2
2n−1 , these inequalities have been obtained in [15, Theorem 1.2].

The following Poincaré type inequality was obtained in the case 1 < p ≤ 3n−2
2n−1 in [15, Corollary 1.3].

A similar proof using Lemma 2.1 and inequalities of the form (2.6) and (2.8) also yields the result in
the case 3n−2

2n−1 < p ≤ 2 − 1
n .
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Corollary 2.1. Suppose that Q3r/2(x0) ⊂ Ω for some r > 0. Let u ∈ W1,p
loc (Ω), 1 < p ≤ 2 − 1

n , be a
solution of (1.1). Then for any ε > 0 we have

inf
q∈R

(?
Qr(x0)

|u − q|ε
) 1
ε

.

(
|µ|(Q3r/2(x0))

rn−p

) 1
p−1

+ r
(?

Q3r/2(x0)
|∇u|ε

) 1
ε

.

With u and w as in (2.1), we now consider another auxiliary function v such that v ∈ W1,p
0 (QR(x0))+w

is the unique solution to the equation − div
(
AQR(x0)(∇v)

)
= 0 in QR(x0),

v = w on ∂QR(x0),
(2.9)

where AQR(x0)(ξ) =
>

QR(x0)
A(x, ξ)dx.

The following result can be deduced from [8, Lemma 2.3] and an appropriate reverse Hölder’s
inequality.

Lemma 2.2. Let p > 1, 0 < ε ≤ p, and u,w, and v be as in (2.1) and (2.9), where Q2R(x0) b Ω. Then
there exists a small positive constant σ0 > 0 such that(?

QR(x0)
|∇v − ∇w|εdx

) 1
ε

. ω(R)σ0

(?
Q2R(x0)

|∇w|εdx
) 1
ε

,

where ω(·) is as defined in (1.10).

Likewise, following lemma follows from [8, Lemma 2.5].

Lemma 2.3. Let 1 < p < 2, 0 < ε ≤ p, and u,w, and v be as in (2.1) and (2.9), where Q2R(x0) b Ω.
Then for any σ1 ∈ (0, 1) such that ω(·)σ1 is Dini-VMO, i.e., (1.13) holds, it follows that(?

QR(x0)
|∇v − ∇w|εdx

) 1
ε

. ω(R)σ1

(?
Q2R(x0)

|∇w|εdx
) 1
ε

.

3. Pointwise fractional maximal function bounds

As in [8], our proofs of Theorems 1.1–1.4 are based on the corresponding pointwise estimates for
the associate fractional and sharp fractional maximal functions, which are interesting in their own right.
This section is devoted to such pointwise fractional maximal function bounds.

Given R > 0 and q > 0, following [1], we define the following truncated sharp fractional maximal
function of a function f ∈ Lq

loc(R
n):

M#,R
α,q( f )(x) := sup

0<ρ≤R
inf
m∈R

ρ−α
(?

Qρ(x)
| f − m|qdx

) 1
q

, α ≥ 0.

Also, we define a truncated fractional maximal function by

MR
β,q( f )(x) := sup

0<ρ≤R
ρβ

(?
Qρ(x)
| f |qdx

) 1
q

, β ∈ [0, n/q].
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In the case q = 1, we usually drop the index q in the above notation, i.e., we set M#,R
α,1( f ) = M#,R

α ( f ) and
MR

β,1( f ) = MR
β ( f ). Moreover, the definition of MR

β ( f ) can also be naturally extended to the case where
f = µ is a locally finite signed measure in Rn:

MR
β (µ)(x) := sup

0<ρ≤R
ρβ
|µ|(Qρ(x))
|Qρ(x)|

, β ∈ [0, n/q].

Note that by Poincaré inequality we have

M#,R
β ( f )(x) .MR

1−β(∇ f )(x), β ∈ [0, 1],

for any f ∈ W1,1
loc (Rn).

On the other hand, if u ∈ W1,p
loc (Ω), 1 < p ≤ 2 − 1

n , then it follows from Corollary 2.1 that

M#,R
β,ε (u)(x) .

[
M3R/2

p−β(p−1)(µ)(x)
] 1

p−1
+ M3R/2

1−β,ε(∇u)(x), β ∈ [0, 1], (3.1)

for any ε ∈ (0, 1) and any cube Q3R/2(x) ⊂ Ω.
The following fractional maximal function bound will be needed in the proof of Theorem 1.1.

Theorem 3.1. Under (1.2)–(1.3), let 1 < p ≤ 2− 1
n , and suppose that u ∈ W1,p

loc (Ω) is a solution of (1.1).
Let Q3R(x) ⊂ Ω and ᾱ ∈ (0, α0), where α0 ∈ (0, 1) is as in Lemma 1.1. Then we have

M#,2R
α,κ (u)(x) + M3R

1−α,κ(∇u)(x) .
[
M3R

p−α(p−1)(µ)(x)
] 1

p−1
+ R1−α

(?
Q3R(x)

|∇u|κdy
) 1
κ

(3.2)

uniformly in α ∈ [0, ᾱ]. Here the implicit constant depends on n, p,Λ, and ᾱ.

Proof. The main idea of the proof of (3.2) lies the proof of [8, Proposition 3.1] that treated the case
p > 2 − 1

n . Note that by (3.1) it is enough to show

MεR
1−α,κ(∇u)(x) .

[
M3R

p−α(p−1)(µ)(x)
] 1

p−1
+ R1−α

(?
Q3R(x)

|∇u|κdy
) 1
κ

, (3.3)

for some ε = ε1(n, p,Λ, ᾱ) ∈ (0, 1).
Let 0 < ρ ≤ r ≤ R, and choose w as in (2.1) with Q2r(x) in place of Q2R(x0). We have?

Qρ(x)
|∇u|κdy .

?
Qρ(x)
|∇w|κdy +

(
r
ρ

)n ?
Q2r(x)

|∇u − ∇w|κdy

.
(
ρ

r

)(α0−1)κ ?
Q2r(x)

|∇w|κdy +

(
r
ρ

)n ?
Q2r(x)

|∇u − ∇w|κdy

.
(
ρ

r

)(α0−1)κ ?
Q2r(x)

|∇u|κdy +

{(
ρ

r

)(α0−1)κ
+

(
r
ρ

)n}?
Q2r(x)

|∇u − ∇w|κdy

.
(
ρ

r

)(α0−1)κ ?
Q2r(x)

|∇u|κdy +

(
r
ρ

)n ?
Q2r(x)

|∇u − ∇w|κdy,
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where we used the inequality ?
Qρ(x)
|∇w|κdy .

(
ρ

r

)(α0−1)κ ?
Q2r(x)

|∇w|κdy,

which is a modified version of [8, Theorem 2.2], in the second inequality.
Thus by Lemma 2.1 we get(?

Qρ(x)
|∇u|κdy

)1/κ

.
(
ρ

r

)α0−1
(?

Q2r(x)
|∇u|κdy

)1/κ

+

(
r
ρ

)n/κ [
|µ|(Q3r(x))

rn−1

] 1
p−1

+

(
r
ρ

)n/κ (
|µ|(Q3r(x))

rn−1

) (?
Q3r(x)

|∇u|κdy
)(2−p)/κ

.

Let ε ∈ (0, 1), and choose ρ = εr. Then by Young’s inequality we have(?
Qεr(x)

|∇u|κdy
)1/κ

≤ C(ε)
[
|µ|(Q3r(x))

rn−1

] 1
p−1

+ [Cεα0−1 + 1]
(?

Q3r(x)
|∇u|κdy

)1/κ

.

Multiplying both sides by (εr)1−α, 0 < α ≤ ᾱ < α0, and taking the supremum with respect to r ∈ (0,R],
we find

sup
0<r≤εR

r1−α
(?

Qr(x)
|∇u|κdy

)1/κ

≤ C(ε) sup
0<r≤R

[
|µ|(Q3r(x))
rn−p+α(p−1)

] 1
p−1

+ [Cεα0−1 + 1](ε/3)1−α sup
0<r≤R

(3r)1−α
(?

Q3r(x)
|∇u|κdy

)1/κ

.

We now choose ε ∈ (0, 1) such that

[Cεα0−1 + 1](ε/3)1−ᾱ ≤ 1/2,

to deduce that

sup
0<r≤εR

r1−α
(?

Qr(x)
|∇u|κdy

)1/κ

≤ C(ε) sup
0<r≤R

[
|µ|(Q3r(x))
rn−p+α(p−1)

] 1
p−1

+ sup
εR<r≤3R

r1−α
(?

Q3r(x)
|∇u|κdy

)1/κ

.
[
M3R

p−α(p−1)(µ)(x)
] 1

p−1
+ R1−α

(?
Q3R(x)

|∇u|κdy
) 1
κ

.

This is (3.3) and the proof is complete. �

The following result will be needed for the proof of Theorem 1.2.

Theorem 3.2. Let 1 < p ≤ 2 − 1
n and u ∈ C0(Ω) be a solution to (1.1). Suppose that Q3R(x) ⊂ Ω.

Then for any positive ᾱ < 1 there exists a small δ = δ(n, p,Λ, ᾱ) > 0 such that if (1.11) holds, then the
estimate

M#,2R
α,κ (u)(x) + M3R

1−α,κ(∇u)(x) .
[
M3R

p−α(p−1)(µ)(x)
] 1

p−1
+ R1−α

(?
Q3R(x)

|∇u|κdy
) 1
κ

holds uniformly in α ∈ [0, ᾱ]. Here the implicit constant depends on n, p,Λ, ᾱ, ω(·), and diam(Ω).
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Proof. The proof is similar to that of Theorem 3.1, but this time we need to use Lemma 2.2. As above,
by (3.1) it is enough to show (3.3) for some ε = ε1(n, p,Λ, ᾱ) ∈ (0, 1). Let 0 < ρ ≤ r ≤ R, and choose
w as in (2.1) with Q2r(x) in place of Q2R(x0). Then choose v as in (2.9) with Qr(x) in place of QR(x0).
This time we have?

Qρ(x)
|∇u|κdy .

?
Qρ(x)
|∇v|κdy +

(
r
ρ

)n ?
Qr(x)
|∇v − ∇w|κdy +

(
r
ρ

)n ?
Q2r(x)

|∇u − ∇w|κdy

.

?
Qr(x)
|∇v|κdy +

(
r
ρ

)n ?
Qr(x)
|∇v − ∇w|κdy +

(
r
ρ

)n ?
Q2r(x)

|∇u − ∇w|κdy

.

?
Qr(x)
|∇u|κdy +

{
1 +

(
r
ρ

)n} (?
Qr(x)
|∇v − ∇w|κdy +

?
Q2r(x)

|∇u − ∇w|κdy
)

.

?
Qr(x)
|∇u|κdy +

(
r
ρ

)n ?
Qr(x)
|∇v − ∇w|κdy +

(
r
ρ

)n ?
Q2r(x)

|∇u − ∇w|κdy.

Here we used ?
Qρ(x)
|∇v|κdy .

?
Qr(x)
|∇v|κdy, (3.4)

which is a a modified version of (2.6) in [8, Theorem 2.1] in the second inequality.
Then by Lemma 2.2 we get(?

Qρ(x)
|∇u|κdy

)1/κ

.

(?
Qr(x)
|∇u|κdy

)1/κ

+

(
r
ρ

)n/κ

ω(r)σ0

(?
Q2r(x)

|∇w|κdy
)1/κ

+

(
r
ρ

)n/κ (?
Q2r(x)

|∇u − ∇w|κdy
)1/κ

.

1 +

(
r
ρ

)n/κ

ω(r)σ0


(?

Q2r(x)
|∇u|κdy

)1/κ

+


(

r
ρ

)n/κ

ω(r)σ0 +

(
r
ρ

)n/κ

(?

Q2r(x)
|∇u − ∇w|κdy

)1/κ

,

for a small constant σ0 > 0. Thus using Lemma 2.1 and the fact that ω(r) ≤ 2Λ, we find

(?
Qρ(x)
|∇u|κdy

)1/κ

.

1 +

(
r
ρ

)n/κ

ω(r)σ0


(?

Q2r(x)
|∇u|κdy

)1/κ

+

(
r
ρ

)n/κ [
|µ|(Q3r(x))

rn−1

] 1
p−1

+

(
r
ρ

)n/κ (
|µ|(Q3r(x))

rn−1

) (?
Q3r(x)

|∇u|κdy
)(2−p)/κ

. (3.5)

Let ε ∈ (0, 1), and choose ρ = εr. Then by Young’s inequality we have

(?
Qεr(x)

|∇u|κdy
)1/κ

≤ Cε

[
|µ|(Q3r(x))

rn−1

] 1
p−1

+
[
c1ε
−n/κω(r)σ0 + c2

] (?
Q3r(x)

|∇u|κdy
)1/κ

.
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Multiplying both sides by (εr)1−α, 0 < α ≤ ᾱ < 1, and taking the supremum with respect to r ∈ (0,R],
we find

sup
0<r≤εR

r1−α
(?

Qr(x)
|∇u|κdy

)1/κ

≤ Cε sup
0<r≤R

[
|µ|(Q3r(x))
rn−p+α(p−1)

] 1
p−1

+

[
c1ε
−n/κ sup

0<r≤R
ω(r) + c2

]
(ε/3)1−α sup

0<r≤R
(3r)1−α

(?
Q3r(x)

|∇u|κdy
)1/κ

.

We now choose ε ∈ (0, 1) such that
c2(ε/3)1−ᾱ ≤ 1/4,

and then choose R̄ = R̄(n, p,Λ, ᾱ, ω(·)) > 0 and a small δ = δ(n, p,Λ, ᾱ) > 0 in (1.11) such that

c1ε
−n/κ sup

0<r≤R̄
ω(r)(ε/3)1−ᾱ ≤ c1ε

−n/κ(2δ)(ε/3)1−ᾱ ≤ 1/4.

Then it follows that [
c1ε
−n/κ sup

0<r≤R
ω(r) + c2

]
(ε/3)1−α ≤ 1/2,

provided R ≤ R̄. Hence, for R ≤ R̄, we deduce that

sup
0<r≤εR

r1−α
(?

Qr(x)
|∇u|κdy

)1/κ

≤ C(ε) sup
0<r≤3R

[
|µ|(Qr(x))
rn−p+α(p−1)

] 1
p−1

+ sup
εR<r≤3R

r1−α
(?

Qr(x)
|∇u|κdy

)1/κ

.
[
M3R

p−α(p−1)(µ)(x)
] 1

p−1
+ R1−α

(?
Q3R(x)

|∇u|κdy
) 1
κ

.

This proves (3.3) in the case R ≤ R̄. For R > R̄, we observe that

MεR
1−α,κ(∇u)(x) ≤MεR̄

1−α,κ(∇u)(x) +

(R
R̄

)n/κ

(εR)1−α
(?

QεR(x)
|∇u|κdy

)1/κ

.

Thus we also obtain (3.3) in the case R > R̄ as long as we allow the implicit constant to depend on
diam(Ω), and n, p,Λ, ᾱ, ω(·). �

In order to prove Theorem 1.3, we need the following pointwise fractional maximal function bound.

Theorem 3.3. Let 1 < p ≤ 2− 1
n and u ∈ C1(Ω) be a solution to (1.1). Suppose that Q3R(x) ⊂ Ω. If for

some σ1 ∈ (0, 1) such that ω(·)σ1 is Dini-VMO, i.e., (1.13) holds, then the estimate

M#,R
α,κ(u)(x) + M3R

1−α,κ(∇u)(x) .
[
I3R

p−α(p−1)(|µ|)(x)
] 1

p−1
+ R1−α

(?
Q3R(x)

|∇u|κdy
) 1
κ

holds uniformly in α ∈ [0, 1]. Here the implicit constant depends on n, p,Λ, ᾱ, ω(·), σ1, and diam(Ω).

Proof. As in the proof of Theorem 3.2, it is enough to show

MR
1−α,κ(∇u)(x) .

[
I2R

p−α(p−1)(|µ|)(x)
] 1

p−1
+ R1−α

(?
QR(x)
|∇u|κdy

) 1
κ

.
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Moreover, we may assume that R ≤ R̄, where R̄ = R̄(n, p,Λ, σ1, ω(·)) > 0 is to be determined.
Arguing as in the proof of (3.5), but this time using (1.7) (in Lemma 1.2) instead of (3.4) and

Lemma 2.3 instead of Lemma 2.2, we have for Qρ(x) ⊂ Qr(x) ⊂ Q3r(x) ⊂ Ω,(?
Qρ(x)
|∇u − qQρ(x)|

κdy
)1/κ

.
(
ρ

r

)β0
(?

Q3r(x)
|∇u − qQ3r(x)|

κdy
)1/κ

+

(
r
ρ

)n/κ

ω(r)σ1

(?
Q3r(x)

|∇u|κdy
)1/κ

+

(
r
ρ

)n/κ [
|µ|(Q3r(x))

rn−1

] 1
p−1

+

(
r
ρ

)n/κ (
|µ|(Q3r(x))

rn−1

) (?
Q3r(x)

|∇u|κdy
)(2−p)/κ

. (3.6)

Here qQρ(x) ∈ R
n is defined by

qQρ(x) := argminq∈Rn

(?
Qρ(x)
|∇u − q|κdy

)1/κ

, Qρ(x) b Ω.

That is, qQρ(x) is a vector such that

inf
q∈Rn

(?
Qρ(x)
|∇u − q|κdy

)1/κ

=

(?
Qρ(x)
|∇u − qQρ(x)|

κdy
)1/κ

.

Note that for Qρ(x) ⊂ Qs(x) b Ω, one has

|qQs(x)| =

(?
Qs(x)
|qQs(x)|

κdy
)1/κ

.

(?
Qs(x)
|∇u − qQs(x)|

κdy
)1/κ

+

(?
Qs(x)
|∇u|κdy

)1/κ

.

(?
Qs(x)
|∇u|κdy

)1/κ

, (3.7)

and also

|qQρ(x) − qQs(x)| =

(?
Qρ(x)
|qQρ(x) − qQs(x)|

κdy
)1/κ

.

(?
Qρ(x)
|∇u − qQρ(x)|

κdy
)1/κ

+

(?
Qρ(x)
|∇u − qQs(x)|

κdy
)1/κ

.

(
s
ρ

)n/κ (?
Qs(x)
|∇u − qQs(x)|

κdy
)1/κ

. (3.8)

For brevity, for any j = 0, 1, 2, . . . , and Q3R(x) ⊂ Ω, we now define

Q j = QR j(x), R j = ε jR,

where ε ∈ (0, 1/3) is to be determined, and

A j =

(?
Q j

|∇u − q j|
κdy

)1/κ

, q j = qQ j .
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Then applying (3.6) with ρ = εR j < r = R j/3 we have

A j+1 ≤ c1ε
β0 A j + c2ε

−n/κω(R j/3)σ1

(?
Q j

|∇u|κdy
)1/κ

+ Cε

 |µ|(Q j)
Rn−1

j


1

p−1

+ Cε

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

. (3.9)

By quasi-triangle inequality, this yields

A j+1 ≤ c1ε
β0 A j + c2ε

−n/κω(R j/3)σ1 A j + c2ε
−n/κω(R j/3)σ1 |q j| + Cε

 |µ|(Q j)
Rn−1

j


1

p−1

+ Cε

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

.

We now choose ε sufficiently small so that c1ε
β0 ≤ 1/4 and then restrict R ≤ R̄, where

R̄ = R̄(n, p,Λ, σ1, ω(·)) > 0 is such that

c2ε
−n/κ sup

0<ρ≤R̄
ω(ρ)σ1 ≤ 1/4.

Then we have

A j+1 ≤
1
2

A j + Cω(R j/3)σ1 |q j| + C

 |µ|(Q j)
Rn−1

j


1

p−1

+ C

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

. (3.10)

Summing this up over j ∈ {0, 1, , . . . ,m − 1}, m ∈ N, we get

m∑
j=1

A j ≤
1
2

m−1∑
j=0

A j + C
m−1∑
j=0

ω(R j/3)σ1 |q j| + C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j


1

p−1

+ C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

.

Hence,

m∑
j=1

A j ≤ A0 + C
m−1∑
j=0

ω(R j/3)σ1 |q j| + C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j


1

p−1

+ C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

.

On the other hand, for any m ∈ N, by (3.8) we can write

|qm+1| =

m∑
j=0

(|q j+1| − |q j|) + |q0| ≤ C
m∑

j=0

A j + |q0|,

and therefore in view of (3.7),

|qm+1| ≤ c A0 + |q0| + C
m−1∑
j=0

ω(R j/3)σ1 |q j| + C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j


1

p−1
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15

+ C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

≤ C
(?

QR(x)
|∇u|κdy

)1/κ

+ C
m−1∑
j=0

ω(R j/3)σ1 |q j| + C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j


1

p−1

+ C
m−1∑
j=0

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

.

At this point, multiplying both sides of the above inequality by R1−α
m+1, m ∈ N, we deduce that

R1−α
m+1|qm+1| . R1−α

(?
QR(x)
|∇u|κdy

)1/κ

+ C
m−1∑
j=0

ω(R j/3)σ1R1−α
j |q j| +

m−1∑
j=0

 |µ|(Q j)

Rn−p+α(p−1)
j


1

p−1

+

m−1∑
j=0

 |µ|(Q j)

Rn−p+α(p−1)
j

 R(1−α)(2−p)
j

(?
Q j

|∇u|κdy
)(2−p)/κ

.

Thus,

R1−α
m+1|qm+1| ≤ c3R1−α

(?
QR(x)
|∇u|κdy

)1/κ

+ c3

m−1∑
j=0

ω(R j/3)σ1R1−α
j |q j| + c3

[
I2R

p−α(p−1)(|µ|)(x)
] 1

p−1

+ c3 I2R
p−α(p−1)(|µ|)(x)

[
MR

1−α,κ(∇u)(x)
]2−p

. (3.11)

We next further restrict R̄ so that for any R ≤ R̄,

m−1∑
j=0

ω(R j/3)σ1 ≤
1

2c3
.

This is possible because we have

m−1∑
j=0

ω(R j/3)σ1 = ω(R/3) +

m−1∑
j=1

ω(R j/3)σ1

≤ c
∫ R

R/3
ω(ρ)σ1

dρ
ρ

+ c
m−1∑
j=1

∫ R j−1/3

R j/3
ω(ρ)σ1

dρ
ρ

≤ c
∫ R

0
ω(ρ)σ1

dρ
ρ
, (3.12)

where we used the fact that ω(ρ1) ≤ cω(ρ2) provided ρ1 ≤ ρ2 ≤ Cρ1, C > 1.
Then by an induction argument we deduce from (3.11) that

R1−α
m |qm| . R1−α

(?
QR(x)
|∇u|κdy

)1/κ

+
[
I2R

p−α(p−1)(|µ|)(x)
] 1

p−1
+ I2R

p−α(p−1)(|µ|)(x)
[
MR

1−α,κ(∇u)(x)
]2−p

,

(3.13)
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for every integer m ≥ 0.
Let us call the right-hand side of (3.13) by Q. Then from (3.10) and simple manipulations we obtain

Am+1 ≤
1
2

Am + c|qm| + cRα−1
m Q,

which by (3.13) yields

R1−α
m+1Am+1 ≤

1
2

R1−α
m Am + cR1−α

m |qm| + cQ ≤
1
2

R1−α
m Am + cQ.

As R1−α
0 A0 ≤ cQ, by iteration we get

R1−α
m Am ≤ CQ, (3.14)

for every integer m ≥ 0.
To conclude the proof, we observe that

MR
1−α,κ(∇u)(x) ≤ C sup

m≥0
R1−α

m

(?
Qm

|∇u|κdy
)1/κ

≤ C sup
m≥0

[R1−α
m Am + R1−α

m qm] ≤ CQ,

where we used (3.13) and (3.14) in the last inequality. Then recalling the definition of Q and using
Young’s inequality we obtain

MR
1−α,κ(∇u)(x) ≤ CR1−α

(?
QR(x)
|∇u|κdy

) 1
κ

+ C
[
I2R

p−α(p−1)(|µ|)(x)
] 1

p−1
+

1
2

MR
1−α,κ(∇u)(x).

This completes the proof of the theorem. �

The following pointwise sharp fractional maximal function bound will be used in the proof of
Theorem 1.4.

Theorem 3.4. Let 1 < p ≤ 2− 1
n and u ∈ C1(Ω) be a solution to (1.1). Suppose that Q3R(x) ⊂ Ω. If for

some σ1 ∈ (0, 1) such that

sup
0<ρ≤1

ω(ρ)σ1

ρᾱ
≤ K, (3.15)

for some ᾱ ∈ [0, β0), then the estimate

M#,3R
α,κ (∇u)(x) .

[
M3R

1−α,κ(µ)(x)
] 1

p−1
+

[
I3R

1 (|µ|)(x)
] 1

p−1
+ R−α

(?
Q3R(x)

|∇u|κdy
) 1
κ

holds uniformly in α ∈ [0, ᾱ]. Here β0 is as in Lemma 1.2, and the implicit constant depends on
n, p,Λ, ᾱ, ω(·), σ1,K, and diam(Ω).

Remark 3.1. Condition (3.15) implies the Dini-VMO condition (1.13). In turns, (1.13) implies (1.11),
whereas (3.15) is implied by the Dini-Hölder condition (1.14).
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Proof. It suffices to show

M#,R
α,κ(∇u)(x) .

[
MR

1−α,κ(µ)(x)
] 1

p−1
+

[
IR

1 (|µ|)(x)
] 1

p−1
+ R−α

(?
QR(x)
|∇u|κdy

) 1
κ

,

for R ≤ 1, where the implicit constant depends on n, p,Λ, ᾱ, ω(·), σ1,K, and diam(Ω).
With the notation used in proof of Theorem 3.3, multiplying both sides of (3.9) by R−αj+1, j ≥ 0, we have

R−αj+1A j+1 ≤ c1ε
β0−αR−αj A j + CεR−αj ω(R j/3)σ1

(?
Q j

|∇u|κdy
)1/κ

+ CεR−αj

 |µ|(Q j)
Rn−1

j


1

p−1

+ CεR−αj

 |µ|(Q j)
Rn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

.

This time we choose ε ∈ (0, 1/3) such that

c1ε
β0−α ≤ c1ε

β0−ᾱ ≤
1
2
,

and employ (3.15) together with the restriction R j ≤ 1, to deduce

R−αj+1A j+1 ≤
1
2

R−αj A j + CK
(?

Q j

|∇u|κdy
)1/κ

+ C

 |µ|(Q j)
Rn−1+α

j


1

p−1

+ C

 |µ|(Q j)
Rn−1+α

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

. (3.16)

On the other hand, applying Theorem 3.3 in the case α = 1, we can bound(?
Q j

|∇u|κdy
)1/κ

.
[
IR

1 (|µ|)(x)
] 1

p−1
+

(?
QR(x)
|∇u|κdy

) 1
κ

for every integer j ≥ 0. Thus, using (3.16) and Young’s inequality we get

R−αj+1A j+1 ≤
1
2

R−αj A j + C
[
MR

1−α,κ(µ)(x)
] 1

p−1
+ C

[
IR

1 (|µ|)(x)
] 1

p−1
+ C

(?
QR(x)
|∇u|κdy

) 1
κ

.

Iterating this inequality, we find for any m ∈ N,

R−αm Am ≤ 2−mR−α0 A0 + C
[
MR

1−α,κ(µ)(x)
] 1

p−1
+ C

[
IR

1 (|µ|)(x)
] 1

p−1
+ C

(?
QR(x)
|∇u|κdy

) 1
κ

≤ C
[
MR

1−α,κ(µ)(x)
] 1

p−1
+ C

[
IR

1 (|µ|)(x)
] 1

p−1
+ CR−α

(?
QR(x)
|∇u|κdy

) 1
κ

.

In view of the fact that
M#,R

α,κ(∇u)(x) . sup
m≥0

R−αm Am,

this completes the proof of the theorem. �
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4. Proof of Theorem 1.1

Proof of Theorem 1.1. For any cube Qρ(x) b Ω, let qQρ(x) ∈ R be defined by

qQρ(x) := argminq∈R

(?
Qρ(x)
|u − q|κdy

)1/κ

,

i.e., qQρ(x) is a real number such that

inf
q∈Rn

(?
Qρ(x)
|u − q|κdy

)1/κ

=

(?
Qρ(x)
|u − qQρ(x)|

κdy
)1/κ

.

Then using quasi-triangle inequality a few times and Lemma 1.1, we have for
Qρ(x) ⊂ Qr(x) ⊂ Q3r(x) ⊂ Ω,(?

Qρ(x)
|u − qQρ(x)|

κdy
)1/κ

.
(
ρ

r

)α0
(?

Q2r(x)
|u − qQ2r(x)|

κdy
) 1
κ

+

(
ρ

r

)−n/κ
(?

Q2r(x0)
|u − w|κdy

) 1
κ

.

Here we choose w as in (2.1) with Q2r(x) in place of Q2R(x0).
We now apply Remark 2.1 to bound the second term on the right-hand side of the above inequality.

This yields that(?
Qρ(x)
|u − qQρ(x)|

κdy
)1/κ

.
(
ρ

r

)α0
(?

Q2r(x)
|u − qQ2r(x)|

κdy
) 1
κ

+

(
ρ

r

)−n/κ
(
|µ|(Q3r(x))

rn−p

) 1
p−1

+

(
ρ

r

)−n/κ |µ|(Q3r(x))
rn−p

(?
Q3r(x)

|u − qQ3r(x)|
κdy

) 2−p
κ

.

Letting ρ = εr, ε ∈ (0, 1), and using Young’s inequality we find(?
Qεr(x)

|u − qQεr(x)|
κdy

)1/κ

. Cεα0

(?
Q3r(x)

|u − qQ3r(x)|
κdy

) 1
κ

+ Cε

(
|µ|(Q3r(x0))

rn−p

) 1
p−1

. (4.1)

Next, we choose ε ∈ (0, 1/3) small enough so that Cεα0 ≤ 1
2 , where C is the constant in (4.1). Let

QR(x0) ⊂ Ω be as given in the theorem. Then for any cube Qδ(x) ⊂ QR(x0) we set δ j = ε jδ, Q j = Qδ j(x),
q j = qQ j , j ≥ 0, and define

B j :=
(?

Q j

|u − qQ j |
κdy

)1/κ

.

Applying (4.1) with r = δ j/3 yields

B j+1 ≤
1
2

B j + C

 |µ|(Q j)

δ
n−p
j


1

p−1

.

Summing this up over j ∈ {1, 3, ...,m − 1}, we obtain

m∑
j=1

B j ≤ C B1 + C
m−1∑
j=1

 |µ|(Q j)

δ
n−p
j


1

p−1

.
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As in (3.8), we have
|q j+1 − q j| ≤ CB j

for all integers j ≥ 1, and thus

|qm| ≤ |qm − q1| + q1 ≤ q1 + C
m−1∑
j=1

B j

≤ q1 + CB1 + C
m−1∑
j=1

 |µ|(Q j)

δ
n−p
j


1

p−1

≤ C
(?

Q1

|u|κdx
) 1
κ

+ C
m−1∑
j=1

 |µ|(Q j)

δ
n−p
j


1

p−1

(4.2)

holds for every integer m ≥ 2. Here we use the simple fact (see (3.7)) that

B1 + q1 ≤ C
(?

Q1

|u|κdx
) 1
κ

.

Now for x, y ∈ QR/8(x0) we choose

δ =
1
2
|x − y|∞ =

1
2

max
1≤i≤n
|xi − yi|.

Note that δ < R/8 and Qδ(y) ⊂ Q3δ(x) ⊂ QR/2(x0). Then applying (4.2), we have

|qm| ≤ C
(?

Qδ(x)
|u|κdz

) 1
κ

+ Cδα
m−1∑
j=1

 |µ|(Qδ j(x))

δ
n−p+α(p−1)
j


1

p−1

.

Sending m→ ∞ and using [1, Lemma 4.1], we get

|u(x)| ≤ C
(?

Qδ(x)
|u|κdz

) 1
κ

+ CδαWR
1−α(p−1)/p,p(|µ|)(x).

Since u − m,m ∈ R, is also a solution of (1.1), it follows that

|u(x) − m| ≤ C
(?

Qδ(x)
|u − m|κdz

) 1
κ

+ CδαWR
1−α(p−1)/p,p(|µ|)(x)

≤ C
(?

Q3δ(x)
|u − m|κdz

) 1
κ

+ CδαWR
1−α(p−1)/p,p(|µ|)(x).

Likewise, we have

|u(y) − m| ≤ C
(?

Qδ(y)
|u − m|κdz

) 1
κ

+ CδαWR
1−α(p−1)/p,p(|µ|)(y)
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≤ C
(?

Q3δ(x)
|u − m|κdz

) 1
κ

+ CδαWR
1−α(p−1)/p,p(|µ|)(y).

Now choosing m = qQ3δ(x) we find

|u(x) − u(y)| ≤ C
(?

Q3δ(x)
|u − qQ3δ(x)|

κdz
) 1
κ

+ Cδα
[
WR

1−α(p−1)/p,p(|µ|)(x) + WR
1−α(p−1)/p,p(|µ|)(y)

]
. (4.3)

On the other hand, by Theorem 3.1 and the fact that 3δ < 3R/8, we have

(?
Q3δ(x)

|u − qQ3δ(x)|
κdz

) 1
κ

. δα
[
M9R/16

p−α(p−1)(µ)(x)
] 1

p−1
+

(
δ

R

)α
R

(?
Q9R/16(x)

|∇u|κdz
) 1
κ

. δαWR
1−α(p−1)/p,p(|µ|)(x) +

(
δ

R

)α (?
BR(x)
|u|κdz

) 1
κ

, (4.4)

where we used a Caccioppoli type inequality of [15, Corollary 2.4] in the last bound.
Combining inequalities (4.3) and (4.4), we complete the proof of the theorem. �

5. Proof of Theorems 1.2 and 1.3

Proof of Theorems 1.2. The main idea of the proof of Theorem 1.2 lies in the proof of [8, Theorem
1.2]. First, in view of Theorem 1.1, it suffices to prove (1.12) uniformly in α ∈ [α0/2, ᾱ], ᾱ < 1, for all
x, y ∈ QR/8(x0).

On the other hand, for a.e. x, y ∈ QR/8(x0) and f ∈ Lκ(QR(x0)), we have the inequality

| f (x) − f (y)| ≤
( c
α

)
|x − y|α

[
M#,R/2

α,κ ( f )(x) + M#,R/2
α,κ ( f )(y)

]
,

provided α ∈ (0, 1]. See inequalities (4.9) and (4.10) in [1]. Applying this with f = u and α ∈ [α0/2, ᾱ],
and using Theorem 3.2, we obtain

|u(x) − u(y)| ≤
(

c
α0

)
|x − y|α

[
M3R/4

p−α(p−1)(µ)(x) + M3R/4
p−α(p−1)(µ)(y)

] 1
p−1

+

(
c
α0

)
|x − y|αR1−α


(?

Q3R/4(x)
|∇u|κdy

) 1
κ

+

(?
Q3R/4(y)

|∇u|κdy
) 1
κ

 .
Then invoking the Caccioppoli type inequality of [15, Corollary 2.4] we obtain (1.12) uniformly in
α ∈ [α0/2, ᾱ] as desired. �

Proof. (Proof of Theorem 1.3) The proof of Theorem 1.3 is similar to that of Theorems 1.2, but this
time we use Theorem 3.3 instead of Theorem 3.2. �
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6. Proof of Theorem 1.4

Proof of Theorem 1.4. Let QR(x0) ⊂ Ω be as given in the theorem. For any x, y ∈ QR/4(x0), we set
δ = 1

2 |x − y|∞. Note that δ < R/4 and Qδ(y) ⊂ Q3δ(x) ⊂ QR(x0). We shall keep the notation in the proof
of Theorem 3.3 except that we replace R with δ so that R j = δ j = ε jδ, Q j = Qε jδ(x), q j = qQ

ε jδ(x), and

A j =

?
Q
ε jδ(x)
|∇u − qQ

ε jδ(x)|
κdy

1/κ

=

(?
Q j

|∇u − q j|
κdy

)1/κ

for all integers j ≥ 0.
Then by choosing ε in (3.9) such that c1ε

β0 ≤ 1/2, we have

A j+1 ≤
1
2

A j + Cεω(δ j/3)σ1

(?
Q j

|∇u|κdy
)1/κ

+ Cε

 |µ|(Q j)
δn−1

j


1

p−1

+ Cε

 |µ|(Q j)
δn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

.

Summing this up over j ∈ {0, 1, , . . . ,m − 1}, m ∈ N, and then simplifying, we get

m∑
j=1

A j ≤ A0 + C
m−1∑
j=0

ω(δ j/3)σ1

(?
Q j

|∇u|κdy
)1/κ

+ C
m−1∑
j=0

 |µ|(Q j)
δn−1

j


1

p−1

+ C
m−1∑
j=0

 |µ|(Q j)
δn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

.

On the other hand, by (3.8),

|qm+1 −m| =
m∑

j=0

(|q j+1 −m| − |q j −m|) + |q0 −m|

≤

m∑
j=0

(|q j+1 − q j| + |q0 −m| ≤ C
m∑

j=0

A j + |q0 −m|,

which holds for any m ∈ Rn and integer m ≥ 0.
Hence, it follows that

|qm+1 −m| ≤ C
m−1∑
j=0

ω(δ j/3)σ1

(?
Q j

|∇u|κdy
)1/κ

+ C
m−1∑
j=0

 |µ|(Q j)
δn−1

j


1

p−1

+ C
m−1∑
j=0

 |µ|(Q j)
δn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

+ C A0 + |q0 −m|.

Then using

|q0 −m| .
(?

Qδ(x)
|∇u −m|κdy

)1/κ

,
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which can be proved as in (3.7), we get

|qm+1 −m| .
m−1∑
j=0

ω(δ j/3)σ1

(?
Q j

|∇u|κdy
)1/κ

+

m−1∑
j=0

 |µ|(Q j)
δn−1

j


1

p−1

+

m−1∑
j=0

 |µ|(Q j)
δn−1

j

 (?
Q j

|∇u|κdy
)(2−p)/κ

+

(?
Qδ(x)
|∇u − qQδ(x)|

κdy
)1/κ

+

(?
Qδ(x)
|∇u −m|κdy

)1/κ

.

We next set

M(x, r) :=
[
Ir

1(|µ|)(x)
] 1

p−1 +

(?
Qr(x)
|∇u|κdz

)1/κ

, r > 0.

Then applying Theorem 3.3 with α = 1 and 3R = δ, we have(?
Q j

|∇u|κdy
)1/κ

. M(x, δ), ∀ j ≥ 0.

Plugging this into the last bound for |qm+1 −m| we deduce that

|qm+1 −m| . δα
m−1∑
j=0

δ−αj ω(δ j/3)σ1 M(x, δ) + δα
m−1∑
j=0

 |µ|(Q j)
δn−1+α

j


1

p−1

δ
α(2−p)

p−1 + δα
m−1∑
j=0

 |µ|(Q j)
δn−1+α

j

 M(x, δ)2−p

+

(?
Qδ(x)
|∇u − qQδ(x)|

κdy
)1/κ

+

(?
Qδ(x)
|∇u −m|κdy

)1/κ

.

Also, note that as in (3.12) we have

m−1∑
j=0

δ−αj ω(δ j/3)σ1 .
m−1∑
j=0

δ−ᾱj ω(δ j/3)σ1 .

∫ δ

0

ω(ρ)σ1

ρᾱ
dρ
ρ
.

∫ R/4

0

ω(ρ)σ1

ρᾱ
dρ
ρ
.

At this point, using the Dini-Hölder condition (1.14), we obtain, after some simple manipulations,

|qm+1 −m| . δαM(x, δ) + δα
[
I2δ

1−α(|µ|)(x)
] 1

p−1
+ δαI2δ

1−α(|µ|)(x)M(x, δ)2−p

+

(?
Qδ(x)
|∇u − qQδ(x)|

κdy
)1/κ

+

(?
Qδ(x)
|∇u −m|κdy

)1/κ

.

Here we also used that δ < R/4 < diam(Ω) and the implicit constants are allowed to depend on
diam(Ω).

Thus letting m→ ∞ and using Young’s inequality we obtain

|∇u(x) −m| . δαM(x, δ) + δα
[
IR

1−α(|µ|)(x)
] 1

p−1
+

(?
Qδ(x)
|∇u − qQδ(x)|

κdz
)1/κ

+

(?
Qδ(x)
|∇u −m|κdz

)1/κ

.

Likewise, we also have

|∇u(y) −m| . δαM(y, δ) + δα
[
IR

1−α(|µ|)(y)
] 1

p−1
+

(?
Qδ(y)
|∇u − qQδ(y)|

κdz
)1/κ

+

(?
Qδ(y)
|∇u −m|κdz

)1/κ
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. δαM(y, δ) + δα
[
IR

1−α(|µ|)(y)
] 1

p−1
+

(?
Q3δ(x)

|∇u − qQ3δ(x)|
κdz

)1/κ

+

(?
Q3δ(x)

|∇u −m|κdz
)1/κ

,

where we used that Qδ(y) ⊂ Q3δ(x).
Combining these two estimates and choosing m = qQ3δ(x), we find

|∇u(x) − ∇u(y)| . δα
{[

IR
1−α(|µ|)(x)

] 1
p−1

+
[
IR

1−α(|µ|)(y)
] 1

p−1
}

+ δα
[
M(x, δ) + M(y, δ)

]
+

(?
Q3δ(x)

|∇u − qQ3δ(x)|
κdz

)1/κ

. (6.1)

As δ < R/4 and QR/4(x) ∪ QR/4(y) ⊂ QR(x0), we can apply Theorem 3.3 with α = 1 to have the bound

M(x, δ) + M(y, δ) .
[
IR/4

1 (|µ|)(x)
] 1

p−1
+

(?
QR/4(x)

|∇u|κdz
)1/κ

+
[
IR/4

1 (|µ|)(y)
] 1

p−1
+

(?
QR/4(y)

|∇u|κdz
)1/κ

.
[
IR

1−α(|µ|)(x)
] 1

p−1
+

[
IR

1−α(|µ|)(y)
] 1

p−1
+ R−α

(?
QR(x0)

|∇u|κdz
)1/κ

. (6.2)

Similarly, we can use Theorem 3.4 to bound the last term on the right-hand of (6.1) as follows:(?
Q3δ(x)

|∇u − qQ3δ(x)|
κdz

)1/κ

. δαM#,3R/4
α,κ (∇u)(x)

. δα
[
M3R/4

1−α,κ(µ)(x)
] 1

p−1
+ δα

[
I3R/4

1 (|µ|)(x)
] 1

p−1
+

(
δ

R

)α (?
Q3R/4(x)

|∇u|κdz
) 1
κ

. δα
[
IR

1−α(|µ|)(x)
] 1

p−1
+

(
δ

R

)α (?
QR(x0)

|∇u|κdz
) 1
κ

. (6.3)

We now plug estimates (6.2) and (6.3) into (6.1) to arrive at

|∇u(x) − ∇u(y)| . δα
{[

IR
1−α(|µ|)(x)

] 1
p−1

+
[
IR

1−α(|µ|)(y)
] 1

p−1
}

+

(
δ

R

)α (?
QR(x0)

|∇u|κdz
) 1
κ

.

This completes the proof because δ ≤ 1
2 |x − y|. �

Remark 6.1. In Theorems 1.3–1.4 and 3.3–3.4 we may take σ1 = 1 in (1.13), (1.14) and (3.15),
provided we replace ω with a non-decreasing function ω̃ : [0, 1]→ [0,∞) such that

lim
ρ→0

ω̃(ρ) = 0, and |A(x, ξ) − A(y, ξ)| ≤ ω̃(|x − y|)|ξ|p−1

for all x, y, ξ ∈ Rn, |x − y| ≤ 1. The reason is that in this case solutions to (2.1) are locally Lipschitz,
and we can also take σ1 = 1 in Lemma 2.3; see [8, Section 8].
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