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Márcio Batista1, Giovanni Molica Bisci2,∗ and Henrique de Lima3

1 CPMAT-IM, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil
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3 Departamento de Matemática, Universidade Federal de Campina Grande, 58.429-970 Campina

Grande, Paraı́ba, Brazil

† This contribution is part of the Special Issue: PDEs and Calculus of Variations–Dedicated to
Giuseppe Mingione, on the occasion of his 50th birthday
Guest Editors: Giampiero Palatucci; Paolo Baroni
Link: www.aimspress.com/mine/article/6240/special-articles

* Correspondence: Email: giovanni.molicabisci@uniurb.it; Tel: +390722304412;
Fax: +390722304423.
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nonexistence of complete spacelike translating solitons of the mean curvature flow in a Lorentzian
product space R1 × P

n
f endowed with a weight function f and whose Riemannian base Pn is supposed

to be complete and with nonnegative Bakry-Émery-Ricci tensor. When the ambient space is either
R1 × G

n, where Gn stands for the so-called n-dimensional Gaussian space (which is the Euclidean
space Rn endowed with the Gaussian probability measure) or R1 × H

n
f , where Hn denotes the standard

n-dimensional hyperbolic space and f is the square of the distance function to a fixed point of Hn, we
derive some interesting consequences of our uniqueness and nonexistence results. In particular, we
obtain nonexistence results concerning entire spacelike translating graphs constructed over Pn.
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1. Introduction

Let Σn be an n-dimensional connected manifold and let M
n+1

be a (n + 1)-dimensional Lorentzian
manifold. Furthermore, let ψ : Σn → M

n+1
be a spacelike immersion, that is Σn, endowed by the metric

induced by 〈·, ·〉 via the map ψ, is a Riemannian manifold. In such a case the map ψ : Σn → M
n+1

is
said to be a spacelike hypersurface.

The mean curvature flow Ψ : [0,T ) × Σn → M
n+1

of the spacelike immersion ψ : Σn → M
n+1

,
satisfies Ψ(0, ·) = ψ(·) and the evolution equation

∂Ψ

∂t
= ~H,

where ~H(t, ·) is the (non-normalized) mean curvature vector field of the spacelike hypersurface Σn
t =

Ψ(t,Σn) for every t ∈ [0,T ). Roughly speaking, the family of hypersurfaces Σn
t = Ψ(t,Σn) evolves by

mean curvature flow Ψ if the velocity
∂Ψ

∂t
coincide with the mean curvature vector ~H at every point of

[0,T ) × Σn.
Mean curvature flow in a Lorentzian manifold is an important thematic in the scope of Geometric

Analysis and it has been extensively studied by several authors; see, among others, the papers [1, 18–
21, 23, 27] as well as [29–34]. This wide interest in the current literature is mainly due to the fact
that spacelike translating solitons can be regarded as a natural way of foliating spacetimes by almost
null-like hypersurfaces; for more details, see [19]. For the sake of clarity, we recall here that spacelike
translating solitons are spacelike hypersurfaces ψ : Σn → M

n+1
such that ~H = cV⊥ for some constant

c, where V stands for a suitable timelike vector field globally defined on the (n + 1)-dimensional
Lorentzian manifold M

n+1
.

Particular examples may give insight into the structure of certain spacetimes at null infinity and
have possible applications in General Relativity; see [19] for comments and details.

In the Riemannian setting, de Lira and Martı́n [17] have investigated solitons invariant with respect
to the flow generated by a complete parallel vector field in a Riemannian manifold. A special case
occurs when the ambient manifold is the Riemannian product space R × Pn and the complete parallel
vector field is just the coordinate vector field ∂t. In such a case, in analogy with the Euclidean
framework, they preserve the term translating solitons. Moreover, when the metric of the base Pn is
rotationally invariant and its sectional curvature is nonpositive, the authors characterize all the
rotationally invariant translating solitons deducing several nonexistence results by using careful
geometric analysis of these new families of barriers.

On the other hand, it is well known that many problems lead us to consider Riemannian manifolds
endowed with a measure that has a smooth positive density with respect to the Riemannian one. This
turns out to be compatible with the metric structure of the manifold and the resulting spaces are the
weighted manifolds, which are also called manifolds with density or smooth metric measure spaces
in the literature. More precisely, given a complete n-dimensional Riemannian manifold (Pn, g) and a
smooth function f ∈ C∞(Pn), the weighted manifold Pn

f associated to Pn and f is the triple (Pn, g, dµ =

e− f dP), where dP denotes the standard volume element of Pn.
Appearing naturally in the study of self-shrinkers, Ricci solitons, harmonic heat flows and many

others, weighted manifolds are proved to be important nontrivial generalizations of Riemannian
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manifolds and, nowadays, there are several geometric investigations concerning them. For a brief
overview of results in this scope, we refer the articles of Morgan [37] and Wei-Wylie [42].

We point out that a theory of Ricci curvature for weighted manifolds goes back to Lichnerowicz [35,
36] and it was later developed by Bakry and Émery in the seminal work [10], where they introduced
the Bakry-Émery-Ricci tensor Ric f of a weighted manifold Pn

f as being the following extension of the
standard Ricci tensor Ric of Pn:

Ric f = Ric + Hess f .

The Bakry-Émery-Ricci curvature tensor arises in scalar-tensor gravitation theories in the conformal
gauge known as the Jordan frame; see [22, 43] for more details. It is also worth mentioning that
Case [13] has shown that a sign condition on timelike components of the Bakry-Émery-Ricci tensor,
the so-called f -timelike convergence condition, will, in an analogous fashion to the Riemannian case,
imply that singularity theorems and the timelike splitting theorem hold; see Remark 1.

Motivated by this previous digression and adapting the concept of translating soliton established
in [17] and [9], here we investigate the uniqueness and nonexistence of complete spacelike translating
solitons of the mean curvature flow in a Lorentzian product space R1 × P

n
f endowed with a weight

function f and whose Riemannian base Pn is supposed to be complete and with nonnegative
Bakry-Émery-Ricci tensor. This is made through the applications of suitable Liouville-type results, an
appropriate parabolicity criterion, and a version of the Omori-Yau’s maximum principle for the drift
Laplacian (see Theorems 1, 2, 3, 4 and 5). Applications to R1 ×G

n are also given, where Gn stands for
the so-called n-dimensional Gaussian space (see Example 1 and Corollaries 1 and 4), as well as
applications to R1 × H

n
f , where Hn denotes the standard n-dimensional hyperbolic space and f is the

square of the distance function to a fixed point of Hn; see Examples 2 and 3, as well as Corollaries 2, 3
and 6. Furthermore, we also infer the nonexistence of entire spacelike translating graphs constructed
over the Riemannian base Pn; see Theorems 6 and 7, as well as Corollaries 7, 8 and 9.

2. Preliminaries

Throughout this paper, let us consider an (n + 1)-dimensional Lorentzian product space M
n+1

of
the form R1 × P

n, where (Pn, 〈·, ·〉Pn) is an n-dimensional connected Riemannian manifold and M
n+1

is
endowed with the standard product metric

〈·, ·〉 = −π∗R(dt2) + π∗Pn(〈·, ·〉Pn),

where πR and πPn denote the canonical projections from R1 × P
n onto each factor. For a fixed t0 ∈ R,

we say that Pn
t0 = {t0} × P

n is a slice of M
n+1

.

Given an n-dimensional connected manifold Σn, a smooth immersion ψ : Σn → M
n+1

is said to
be a spacelike hypersurface if Σn, furnished with the metric induced by 〈·, ·〉 via ψ, is a Riemannian
manifold. If this is so, we shall always assume that the metric on Σn is the induced one, which will
also be denoted by 〈·, ·〉. In this setting, it follows from the connectedness of Σn that one can uniquely
choose a globally defined timelike unit vector field N ∈ X(Σ)⊥, having the same time-orientation of ∂t,
i.e., such that 〈N, ∂t〉 ≤ −1. One then says that N is the future-pointing Gauss map of Σn.

In this setting, we will consider its Weingarten operator A : X(Σ) → X(Σ), which is given by
A(X) = −∇XN, where ∇ stands for the Levi-Civita connection of M

n+1
. So, the (non-normalized)

Mathematics in Engineering Volume 5, Issue 3, 1–18.



4

future mean curvature function of Σn is defined as been H = −tr(A). Moreover, we will also denote by
∇ and ∇ the gradients with respect to the metrics of M

n+1
and Σn, respectively. A simple computation

shows that the gradient of πR on M
n+1

is given by

∇πR = −〈∇πR, ∂t〉∂t = −∂t. (2.1)

So, from (2.1) we conclude that the gradient of the (vertical) height function h = (πR)|Σ of Σn is given
by

∇h = (∇πR)> = −∂>t = −∂t − ΘN, (2.2)

where (·)> denotes the tangential component of a vector field in X(M
n+1

) along Σn and Θ = 〈N, ∂t〉

stands for the hyperbolic angle function of Σn. Thus, we get the following relation

|∇h|2 = Θ2 − 1, (2.3)

where | · | denotes the norm of a vector field on Σn. Moreover, from (2.2) we deduce that the Hessian
of h on Σ, Hess h : X(Σ) × X(Σ)→ C∞(Σ), is given by

Hess h(X,Y) = −〈∇X∂
>
t ,Y〉 = −〈∇X(∂t + ΘN),Y〉 = 〈AX,Y〉Θ. (2.4)

Hence, from (2.4) we obtain that the Laplacian of h is

∆h = −HΘ. (2.5)

Now, we consider a smooth function f defined on R1 × P
n. The triple (R1 × P

n, 〈·, ·〉, dµ = e− f dσ),
where dσ denotes the canonical volume element associated to the metric 〈·, ·〉, will be called a weighted
Lorentzian product space and f its weight function. According to [10], the Bakry-Émery-Ricci tensor
Ric f of such a weighted manifold is defined as being the following extension of the standard Ricci
tensor Ric

Ric f = Ric + Hess f , (2.6)

where Hess denotes the Hessian of a function defined on M.
For a spacelike hypersurface Σn immersed in a weighted Lorentzian product space, the f -divergence

operator on Σn is defined by
div f (X) = e f div(e− f X), (2.7)

where X is a tangent vector field on Σn and div stands for the standard divergence operator of Σn. From
this, for all smooth function u : Σn → R, we define the drift Laplacian of u by

∆ f u = div f (∇u) = ∆u − 〈∇u,∇ f 〉. (2.8)

Following the ideas of Gromov [24, Section 9.4.E] and considering the future-pointing Gauss map N
of Σn, its (non-normalized) future f -mean curvature H f is defined by

H f = H − 〈∇ f ,N〉, (2.9)

where H denotes the future mean curvature of Σn.
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Remark 1. As a consequence of a splitting theorem due to Case [13, Theorem 1.2], if a weighted
Lorentzian product space R1×P is endowed with a bounded weight function f and if its Bakry-Émery-
Ricci tensor is such that Ric f (V,V) ≥ 0, for all timelike vector field V on R1 × P, then f must be
constant along R. Motivated by this result, along this work we will always consider that the ambient
space is a weighted Lorentzian product space R1 × P

n whose weight function f does not depend on the
parameter t ∈ R, that is, 〈∇ f , ∂t〉 = 0 and, for sake of simplicity, we will denote it by R1 × P

n
f . In this

setting, we get from (2.9) that the slices Pn
t0 are f -maximal, which means that H f is identically zero.

3. Uniqueness and nonexistence of spacelike translating solitons

Considering the observations done in Remark 1, hereafter we study hypersurfaces in manifolds of
the kind R1×P

n
f . In such setting and in a similar spirit of [17, Definition 2] or [9, Eq (2.6)], we say that

a spacelike hypersurface ψ : Σn → M
n+1

immersed in a Lorentzian product space M
n+1

= R1 × P
n is

a spacelike translating soliton of the mean curvature flow with respect to ∂t and with soliton constant
c ∈ R if its future mean curvature function satisfies

H = c Θ. (3.1)

So, we observe that the slices {t} ×Pn are spacelike translating solitons of the mean curvature flow with
respect to ∂t and with soliton constant c = 0.

In order to establish our first result, we quote a Liouville-type result due to Pigola, Rigoli and Setti,
which is a consequence of [40, Theorem 1.1]. For this, we will consider the following set

L
p
f (M) :=

{
u : Mn → R :

∫
M
|u|p(x)e− f (x)dM < +∞

}
.

Before introduce some useful results, recall that a smooth function u is f -subharmonic if ∆ f u ≤ 0
and u is semi-bounded whether u is bounded from above or from below.

The first useful Liouville-type result reads as follows:

Lemma 1. Let u be a nonnegative smooth f -subharmonic function on a complete Riemannian manifold
Mn. If u ∈ Lp

f (M), for some p > 1, then u is constant.

The next lemma is a consequence of an extension of another Liouville-type result due to Yau in [45].

Lemma 2. The only harmonic semi-bounded functions defined on an n-dimensional complete
Riemannian manifold whose Ricci tensor is nonnegative are the constant ones.

Before presenting our first uniqueness result concerning spacelike translating solitons, we recall
that a spacelike hypersurface is said maximal when its mean curvature is identically zero.

Theorem 1. Let R1 × P
n
f be a weighted Lorentzian product space such that its Riemannian base Pn is

complete, with nonnegative Bakry-Émery-Ricci tensor. Let ψ : Σn → R1 × P
n
f be a complete spacelike

translating soliton of the mean curvature flow with respect to ∂t, having soliton constant c and constant
future f -mean curvature. If H ∈ Lq

f (Σ), for some q > 2, then Σn is maximal. Moreover, if in addition
Pn has nonnegative sectional curvature and Σn lies in a vertical half-space of R1 × P

n
f , then Σn must be

a slice Pn
t0 for some t0 ∈ R.
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Proof. Let ψ : Σn → R1 × P
n
f be such a spacelike translating soliton. If c = 0 the first conlusion is

immediate. So, assume that c , 0. From [5, Corollary 8.2] we have the following key formula

∆Θ = (R̃ic(N∗,N∗) + |A|2)Θ + 〈∇H, ∂t〉. (3.2)

where R̃ic is the standard Ricci tensor of Pn and N∗ = N + Θ∂t denotes the orthonormal projection of
N onto Pn.

Thus, since H f is constant, from (2.9) and (3.2) we obtain

1
2

∆Θ2 = (R̃ic(N∗,N∗) + |A|2)Θ2 + 〈∇H, ∂t〉Θ + |∇Θ|2 (3.3)

= (R̃ic(N∗,N∗) + |A|2)Θ2 + ∂>t (〈∇ f ,N〉)Θ + |∇Θ|2.

On the other hand, [39, Proposition 7.35] gives that

∇X∂t = 0, (3.4)

for every tangent vector field X on the ambient space. Then, from (2.2) and (3.4) we have that

X(Θ) = 〈∇XN, ∂t〉 = 〈A(∇h), X〉

and, consequently,
∇Θ = A(∇h). (3.5)

Thus, using once more (3.4), from (2.2) and (3.5) we get that

∂>t (〈∇ f ,N〉) = 〈∇∂>t ∇ f ,N〉 + 〈∇ f ,∇∂>t N〉 (3.6)

= Hess f (N,N)Θ + 〈∇ f ,∇Θ〉.

Substituting (3.6) in (3.3), we obtain

1
2

∆Θ2 = (R̃ic(N∗,N∗) + |A|2)Θ2 + Hess f (N,N)Θ2 +
1
2
〈∇ f ,∇(Θ2)〉 + |∇Θ|2. (3.7)

Consequently, since Hess f (N,N) = H̃ess f (N∗,N∗), where H̃ess stands for the Hessian computed in
the metric of Pn, using (2.6) and (2.8) in (3.7) we reach at the following equation

1
2

∆ f Θ
2 = (R̃ic f (N∗,N∗) + |A|2)Θ2 + |∇Θ|2, (3.8)

where R̃ic f stands for the Bakry-Émery-Ricci tensor of Pn.
Hence, since we are assuming that the soliton constant c is nonzero, from (3.1) and (3.8) we get the

following inequality
1
2

∆ f H2 ≥ (R̃ic f (N∗,N∗) + |A|2)H2. (3.9)

Since we are also supposing that R̃ic f is nonnegative, from (3.9) we obtain that ∆ f H2 ≥ 0. So, since
H ∈ Lq

f (Σ), for some q > 2, we can apply Lemma 1 for p = q/2 to conclude that H is constant.
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Returning to (3.9), we also get that |A| vanishes identically on Σn, which means that Σn is totally
geodesic. Consequently, H must be identically zero and thus Σn is maximal and the first conclusion
follows.

Moreover, considering X ∈ X(Σ) and α = infPn KPn ≥ 0, where KPn stands for the sectional curvature
of Pn, from the proof of [8, Lemma 3.1] we obtain the following suitable lower bound for the Ricci
tensor of Σn

Ric(X, X) ≥ (n − 1)α|X|2 + α|∇h|2|X|2 + (n − 2)α〈X,∇h〉2 + |AX|2. (3.10)

In particular, from (3.10) we get that the Ricci tensor of Σn is nonnegative.
Therefore, since from (2.5) we have that h is an harmonic function on Σn, and if we also assume that

Σn lies in vertical half-space of R1 × P
n
f (which means that h is semi-bounded), we can apply Lemma 2

conclude that h is constant, that is, Σn is a slice Pn
t0 for some t0 ∈ R. �

Since the drift Laplacian is an elliptic operator and taking into account inequality (3.9), we can
apply the classical strong maximum principle due to Hopf [26] obtaining the following result; see also
the classical book [41] due to Pucci and Serrin for related topics.

Theorem 2. Let R1 × P
n
f be a weighted Lorentzian product space such that its Riemannian base Pn is

complete, with nonnegative Bakry-Émery-Ricci tensor. Let ψ : Σn → R1 × P
n
f be a complete spacelike

translating soliton of the mean curvature flow with respect to ∂t, having soliton constant c and constant
future f -mean curvature. If H2 attains its maximum on Σn, then Σn is maximal. Moreover, if in addition
Pn has nonnegative sectional curvature and Σn lies in vertical half-space of R1 × P

n
f , then Σn must be a

slice Pn
t0 for some t0 ∈ R.

Example 1. An important example of weighted Riemannian manifold is the so-called Gaussian space
Gn, which corresponds to the Euclidean space Rn endowed with the Gaussian probability measure

e− f dx2 = (2π)−
n
2 e−

|x|2
2 dx2. (3.11)

Concerned with the weighted Lorentzian product space R1 × G
n, An et al extended the classical

Bernstein’s theorem [11] showing that the only entire f -maximal graphs Σn(u) of functions
u(x2, · · · , xn+1) = x1 defined over Gn, with supΣ(u) |Du|Rn < 1 (where | · |Rn is the standard norm of Rn),
are the hyperplanes x1 = constant; see [7, Theorem 4].

Since the Bakry-Émery-Ricci tensor of Gn is positive, from Theorem 1 and Example 1 we obtain
the following consequence.

Corollary 1. The only complete spacelike translating solitons ψ : Σn → R1×G
n of the mean curvature

flow with respect to ∂t, having constant future f -mean curvature (where f is the Gaussian probability
measure defined in (3.11)), lying in a vertical half-space of R1 × G

n and such that either H2 attains its
maximum on Σn or H ∈ Lq

f (Σ), for some q > 2, are the slices {t} × Gn.

Example 2. Let Hn = {(x1, · · · , xn) ∈ Rn : xn > 0} be the n-dimensional hyperbolic space endowed
with its standard complete metric

〈·, ·〉Hn =
1
x2

n
(dx2

1 + · · · + dx2
n)

Mathematics in Engineering Volume 5, Issue 3, 1–18.
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and let f : Hn → R be the weight function given by

f (x) = (d(x, x0))2, (3.12)

where d(x, x0) denotes the distance in Hn between x and a fixed point x0 ∈ H
n. According to [42,

Example 7.2], we have that the Bakry-Émery-Ricci tensor of Hn
f satisfies Ric f ≥ (n − 1). Thus, the

weighted Lorentzian product space R1×H
n
f is such that its baseHn

f has nonnegative Bakry-Émery-Ricci
tensor.

So, from Theorem 1 and Example 2 we also get the following result.

Corollary 2. Let R1 × H
n
f be the weighted Lorentzian product space with weight function f defined

by (3.12). Let ψ : Σn → R1 ×H
n
f be a complete spacelike translating soliton of the mean curvature flow

with respect to ∂t, having soliton constant c and constant future f -mean curvature. If either H2 attains
its maximum on Σn or H ∈ Lq

f (Σ), for some q > 2, then Σn is maximal.

In [45], Yau established the following version of Stokes’ Theorem on an n-dimensional complete
noncompact Riemannian manifold Σn: if ω ∈ Ωn−1(Σn) is an integrable (n − 1)-differential form on Σn,
then there exists a sequence Bi of domains on Σn such that

Bi ⊂ Bi+1, Σn =
⋃
i≥1

Bi, and lim
i

∫
Bi

dω = 0.

Later on, supposing that Σn is oriented by the volume element dΣ and denoting by ω = ιXdΣ the
contraction of dΣ in the direction of a smooth vector field X on Σn, Caminha extended this Yau’s result
showing that if the divergence of X, divΣX, does not change sign and that |X| is Lebesgue integrable on
Σn, then divΣX must be identically zero on Σn; see [12, Proposition 2.1].

Taking into account (2.7), from [12, Proposition 2.1] above mentioned we obtain our next auxiliary
lemma.

Lemma 3. Let u be a smooth function on a complete Riemannian manifold Σn endowed with a weight
function f : Σn → R, such that ∆ f u does not change sign on Σn. If |∇u| ∈ L1

f (Σ), then ∆ f u vanishes
identically on Σn.

We will use Lemma 3 to establish our next uniqueness result.

Theorem 3. Let R1 × P
n
f be a weighted Lorentzian product space such that its Riemannian base Pn is

complete, with nonnegative Bakry-Émery-Ricci tensor. Let ψ : Σn → R1 × P
n
f be a complete spacelike

translating soliton of the mean curvature flow with respect to ∂t, having soliton constant c and constant
future f -mean curvature. If H is bounded and |∇H| ∈ L1

f (Σ), then Σn is maximal. Moreover, if in
addition Pn has nonnegative sectional curvature and Σn lies in vertical half-space of R1 × P

n
f , then Σn

must be a slice Pn
t0 for some t0 ∈ R.

Proof. Since we are assuming that H is bounded and |∇H| ∈ L1
f (Σ), we obtain

|∇(H2)| = 2|H||∇H| ∈ L1
f (Σ).

Therefore, we can reason as in the proof of Theorem 1 applying Lemma 3 instead of Lemma 1 to
obtain the proof of Theorem 3. �
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From Theorem 3 we obtain the following consequence.

Corollary 3. Let R1 × H
n
f be the weighted Lorentzian product space with weight function f defined

by (3.12). Let ψ : Σn → R1 ×H
n
f be a complete spacelike translating soliton of the mean curvature flow

with respect to ∂t, having soliton constant c and constant future f -mean curvature. If H is bounded
and |∇H| ∈ L1

f (Σ), then Σn is maximal.

Example 3. Considering the same context of Example 2 and fixing a constant c ∈ R with 0 < |c| < 1,
from [15, Example 4.4] we have that

Σn = {(c ln xn, x1, ..., xn) : xn > 0} ⊂ R1 × H
n

is a complete spacelike translating soliton of the mean curvature flow with respect to ∂t, having soliton
constant c and constant future mean curvature

H =
c

√
1 − c2

= c Θ.

Consequently, we have that the assumption that H f being constant in Theorem 3 is a necessary
hypothesis to conclude that the spacelike translating soliton is maximal.

We recall that (according to the classical terminology in linear potential theory) a weighted manifold
Σn endowed with a weight function f is said to be f -parabolic if there does not exist a nonconstant,
nonnegative, f -superharmonic function defined on Σn. In this context, from [4, Corollary 2] we have
the following f -parabolicity criterion.

Lemma 4. Let R1×P
n
f be a weighted Lorentzian product space whose Riemannian base Pn is complete

with f -parabolic universal Riemannian covering and let ψ : Σn → R1 × P
n
f be a complete spacelike

hypersurface. If the hyperbolic angle function Θ is bounded, then Σn is f -parabolic.

Using this previous parabolicity criterion, we obtain the following result.

Theorem 4. Let R1 × P
n
f be a weighted Lorentzian product space such that its Riemannian base Pn is

complete, with nonnegative Bakry-Émery-Ricci tensor and f -parabolic universal Riemannian
covering. Let ψ : Σn → R1 × P

n
f be a complete spacelike translating soliton of the mean curvature flow

with respect to ∂t, having soliton constant c and constant future f -mean curvature. If H is bounded,
then Σn is maximal. Moreover, if in addition Pn has nonnegative sectional curvature and Σn lies in
vertical half-space of R1 × P

n
f , then Σn must be a slice Pn

t0 for some t0 ∈ R.

Proof. We argue as the proof of Theorem 1. If c = 0, the there is nothing to do. So assume that c , 0.
Thus, since we are assuming that H is bounded, we define the smooth function ϕ on Σn by

ϕ :=
1
2

{(
sup

Σ

H2
)
− H2

}
.

Since R̃ic f is supposed to be nonnegative, from (3.9) we get

∆ fϕ ≤ −(R̃ic f (N∗,N∗) + |A|2)H2 ≤ 0.

Consequently, ϕ is a nonnegative, f -superharmonic function defined on Σn.
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On the other hand, from (3.1) we have that the boundedness of H also implies the boundedness of
the hyperbolic angle function Θ. So, Lemma 4 guarantees that Σn is f -parabolic.

Hence, we conclude that H must be constant on Σn. At this point, we can reason as in the proof of
Theorem 1 to conclude our result. �

From [25, Corollary 3] we have that the Gaussian space Gn has finite f -volume, where f is the
Gaussian probability measure defined in (3.11). Consequently, taking into account [28, Remark 3.8],
we conclude that Gn is f -parabolic. This fact enable us to state the following application of Theorem 4.

Corollary 4. The only complete spacelike translating solitons ψ : Σn → R1×G
n of the mean curvature

flow with respect to ∂t, having constant future f -mean curvature (where f is the Gaussian probability
measure defined in (3.11)), lying in a vertical half-space of R1 × G

n and such that H is bounded, are
the slices {t} × Gn.

For our next results we need the following definition, which first appeared with Omori [38] for the
Hessian and, afterwards, with Yau [44] for the Laplacian. For the drift Laplacian, we can find some
general versions in [6].

Definition 1. Let (Σn, 〈·, · 〉) be a Riemannian manifold and let f : Σn → R be a smooth function. We
say that the drift Laplacian ∆ f satisfies the Omori-Yau’s maximum principle on Σ if, for every u ∈ C2

with u∗ = supΣ u < ∞, there exists a sequence {xk} ⊂ Σ such that

u(xk) > u∗ −
1
k
, |∇u(xk)| <

1
k
, and ∆ f u(xk) <

1
k
,

for every k ∈ N.

The proposition below gives sufficient conditions to guarantee that the drift Laplacian on a spacelike
translating soliton immersed in a Lorentzian product space satisfies the Omori-Yau maximum principle
for a weight function f whose Hessian is assumed to be bounded from below.

Proposition 1. Let M
n+1

= R1 × P
n
f be a weighted Lorentzian product space, whose Riemannian base

Pn is complete with sectional curvature KPn such that KPn ≥ −κ for some positive constant κ. Let
ψ : Σn → M

n+1
be a complete spacelike translating soliton with soliton constant c , 0, bounded mean

curvature and the Hessian of f + ch along Σn is bounded from below. Then, the drift Laplacian ∆ f on
Σn satisfies the Omori-Yau’s maximum principle.

Proof. We recall that the curvature tensor R of a spacelike hypersurface ψ : Σn → R1 × P
n can be

described in terms of the corresponding shape operator A and the curvature tensor R of R1 × P
n by the

so-called Gauss equation given by

R(X,Y)Z = (R(X,Y)Z)> − 〈AX,Z〉AY + 〈AY,Z〉AX, (3.13)

for every tangent vector fields X,Y,Z ∈ X(Σ). Here, as in [39], the curvature tensor R is given by

R(X,Y)Z = ∇[X,Y]Z − [∇X,∇Y]Z,

where [·, ·] denotes the Lie bracket and X,Y,Z ∈ X(Σ).
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Let us consider X ∈ X(Σ) and a local orthonormal frame {E1, ..., En} of X(Σ). Then, it follows from
the Gauss equation (3.13) that

Ric(X, X) =

n∑
i=1

〈R(X, Ei)X, Ei〉 − H〈AX, X〉 + |AX|2. (3.14)

Moreover, we have that

〈R(X, Ei)X, Ei〉=〈R(X∗, E∗i )X∗, E∗i 〉Pn (3.15)
=KPn(X∗, E∗i )(〈X∗, X∗〉Pn〈E∗i , E

∗
i 〉Pn − 〈X∗, E∗i 〉

2
Pn).

On the other hand, since X∗ = X + 〈X, ∂t〉∂t, E∗i = Ei + 〈Ei, ∂t〉∂t and ∇h = −∂>t , with a straightforward
computation we see that

〈X∗, X∗〉Pn〈E∗i , E
∗
i 〉Pn = (1 + 〈Ei,∇h〉2)(|X|2 + 〈X,∇h〉2) (3.16)

and
〈X∗, E∗i 〉

2
Pn = 〈X, Ei〉

2 + 2〈X,∇h〉〈Ei,∇h〉〈X, Ei〉 + 〈X,∇h〉2〈Ei,∇h〉2. (3.17)

Then, since we are supposing that KPn ≥ −κ for some positive constant κ, inserting (3.16) and (3.17)
into (3.15) we obtain

n∑
i=1

〈R(X, Ei)X, Ei〉 ≥ −κ
(
(n − 1)|X|2 + (n − 2)〈X,∇h〉2 + |X|2|∇h|2

)
. (3.18)

Consequently, from (2.3) and (3.18) we get

n∑
i=1

〈R(X, Ei)X, Ei〉 ≥ −(n − 1)κΘ2|X|2. (3.19)

Thus, from (3.14), (3.19), and taking into account that |H| ≤
√

n|A|, we obtain

Ric(X,X) ≥ −(n − 1)κΘ2|X|2 − H〈AX, X〉 + |AX|2 ≥ −
{
(n − 1)κΘ2

}
|X|2 + Hess(ch)(X, X). (3.20)

Hence, since Hess( f + ch) ≥ −β, H is bounded and using (2.6), (3.1) and (3.20) we get

Ric f (X, X) ≥ −((n − 1)κ sup
Σ

Θ2 + β)|X|2.

Therefore, we can apply [14, Theorem 1] to conclude our result. �

As a direct consequence of the previous result we have the following corollary.

Corollary 5. Let M
n+1

= R1 × P
n
f be a weighted Lorentzian product space, whose Riemannian base Pn

is complete with sectional curvature KPn such that KPn ≥ −κ for some positive constant κ, and Hessian
of f bounded from below. Let ψ : Σn → M

n+1
be a complete spacelike translating soliton with soliton

constant c , 0, H f constant and bounded second fundamental form. Then, the drift Laplacian ∆ f on
Σn satisfies the Omori-Yau’s maximum principle.
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Proof. We notice that Hess f (X,Y) = Hess f (X,Y) + fN〈AX,Y〉, for all X,Y ∈ X(Σ), where fN stands for
〈N,∇ f 〉. Thus, since H f = H − fN is a constant e and Hess(ch) = HA, we deduce that:

Hess f = Hess( f + ch) − e · A.

From this expression and our hypothesis, we obtain that

Hess( f + ch) ≥ −β and H is bounded,

and the result follows from Proposition 1. �

Next, we apply Proposition 1 to establish the following nonexistence result.

Theorem 5. Let R1 × P
n
f be a weighted Lorentzian product space such that its Riemannian base Pn is

complete, with sectional curvature KPn such that KPn ≥ −κ for some positive constant κ, and
nonnegative Bakry-Émery-Ricci tensor. There does not exist a complete spacelike translating soliton
ψ : Σn → R1 × P

n
f of the mean curvature flow with respect to ∂t, having soliton constant c , 0,

bounded mean curvature and Hessian of f + ch is bounded from below.

Proof. Let us suppose by contradiction the existence of such a spacelike translating soliton Σn. Since
H2 ≤ n|A|2, from our assumptions jointly with inequality (3.9), we can apply Proposition 1 obtaining a
sequence of points {pk} in Σn such that

0 ≥
1
2

lim sup
k

∆ f H2(pk) ≥ lim sup
k

(R̃ic f (N∗,N∗) + |A|2)(pk) sup
Σ

H2 ≥ 0. (3.21)

Therefore, since our hypothesis that c , 0 implies that supΣ H2 > 0 and using once more that
H2 ≤ n|A|2, from (3.21) we get

0 < sup
Σ

H2 ≤ n lim
k
|A|2(pk) = 0,

reaching at a contradiction. �

As a consequence of the proof of Theorem 5 and using Corollary 5 we obtain the following
consequence.

Corollary 6. There does not exist a complete spacelike translating soliton immersed in either R1 ×G
n

or R1×H
n
f (where the weight function f is defined by (3.12)) of the mean curvature flow with respect to

∂t, having soliton constant c , 0, constant future f -mean curvature and bounded second fundamental
form.

4. Nonexistence of entire spacelike translating graphs

We recall that an entire graph over the Riemannian base Pn is determined by a smooth function
u ∈ C∞(Pn) and it is given by

Σ(u) = {(u(x), x); x ∈ Pn} ⊂ R1 × P
n
f .

Mathematics in Engineering Volume 5, Issue 3, 1–18.



13

The metric induced on Pn from the Lorentzian metric on the ambient space via Σ(u) is

〈·, ·〉 = −du2 + 〈·, ·〉Pn . (4.1)

It can be easily seen from (4.1) that a graph Σ(u) is a spacelike hypersurface if, and only if, |Du|2Pn <

1, Du being the gradient of u in Pn and |Du|Pn its norm, both with respect to the metric of Pn. It is well
known that in the case where Pn is a simply connected manifold, every complete spacelike hypersurface
Σn immersed in R1 × P

n is an entire spacelike graph over Pn; see, for instance, [3, Lemma 3.1]. It is
interesting to observe that, according to the examples of non-complete entire maximal graphs in R1×H

2

due to Albujer in [2, Section 3], an entire spacelike graph Σ(u) in R1 × P
n is not necessarily complete,

in the sense that the induced Riemannian metric is not necessarily complete on Pn. However, it was
proven in the beginning of [16, Corollary 1] that if Pn is complete and |Du|Pn ≤ α for certain positive
constant α < 1, then Σ(u) must be complete.

The future-pointing Gauss map of an entire spacelike graph Σ(u) constructed over the Riemannian
fiber Pn is given by the vector field

N(x) =
1√

1 − |Du(x)|2Pn

(
∂t|(u(x),x) + Du(x)

)
, x ∈ Pn. (4.2)

Moreover, the second fundamental form A of Σ(u) with respect to its orientation (4.2) is given by

AX = −
1√

1 − |Du|2Pn

DXDu −
〈DXDu,Du〉Pn

(1 − |Du|2Pn)3/2
Du, (4.3)

for any smooth vector field X tangent to Pn. Consequently, if Σ(u) is a spacelike entire graph over
the Riemannian fiber Pn of a weighted Lorentzian product space R1 × P

n, it is not difficult to verify
from (2.9) and (4.3) that the future f -mean curvature function H f (u) of Σ(u) is given by

H f (u) = div f

 Du√
1 − |Du|2Pn

 .
When an entire spacelike graph Σ(u) ⊂ R1 × P

n
f is a spacelike translating soliton of the mean

curvature flow with respect to ∂t, it is called an entire spacelike translating graph. In this context, it is
not difficult to verify that from Theorem 4 we obtain the following nonexistence result.

Theorem 6. Let R1 × P
n
f be a weighted Lorentzian product space such that its Riemannian base Pn is

complete, with nonnegative sectional curvature, nonnegative Bakry-Émery-Ricci tensor and
f -parabolic universal Riemannian covering. For any constants C , 0 and 0 < α < 1, there does not
exist an entire spacelike translating graph Σ(u) ⊂ R1 × P

n
f such that the corresponding smooth

function u ∈ C∞(Pn) is a semi-bounded solution of the system
div f

 Du√
1 − |Du|2Pn

 = C

|Du|Pn ≤ α.
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Remark 2. Taking into account Theorem 2 and since (4.2) implies that the mean curvature H of an
entire spacelike translating graph Σ(u) ⊂ R1 × P

n
f is such that

H2 =
c2

1 − |Du(x)|2Pn

,

we can replace the assumption that the Riemannian base Pn has f -parabolic universal Riemannian
covering in Theorem 6, by the hypothesis that |Du|Pn attains its maximum on Σ(u).

When the ambient space is R1 × G
n, Theorem 6 reads as follows.

Corollary 7. For any constants C , 0 and 0 < α < 1, there does not exist an entire spacelike
translating graph Σ(u) ⊂ R1 × G

n such that the corresponding smooth function u ∈ C∞(Rn) is a semi-
bounded solution of the system 

div f

 Du√
1 − |Du|2Rn

 = C

|Du|Rn ≤ α,

where f is the Gaussian probability measure defined in (3.11).

We say that u ∈ C∞(Pn) has finite C2 norm when

‖u‖C2(Pn) := sup
|γ|≤2
|Dγu|L∞(Pn) < ∞.

In this context, observing that (4.3) guarantees that a spacelike translating graph Σ(u) ⊂ R1 ×P
n
f whose

corresponding smooth function u ∈ C∞(Pn) has finite C2 norm has bounded second fundamental form,
from the proof of Theorem 5 and Corollary 5 we obtain the following nonexistence result.

Theorem 7. Let R1 × P
n
f be a weighted Lorentzian product space such that its Riemannian base Pn

is complete, with sectional curvature KPn such that KPn ≥ −κ for some positive constant κ, and the
Hessian of the weight function f bounded from below, and nonnegative Bakry-Émery-Ricci tensor.
For any constants C , 0 and 0 < α < 1, there does not exist an entire spacelike translating graph
Σ(u) ⊂ R1 × P

n
f such that the corresponding smooth function u ∈ C∞(Pn) has finite C2 norm and it is a

solution of the system 
div f

 Du√
1 − |Du|2Pn

 = C

|Du|Pn ≤ α.

We close our paper with the following consequences of Theorem 7.

Corollary 8. For any constants C , 0 and 0 < α < 1, there does not exist an entire spacelike
translating graph Σ(u) ⊂ R1 × G

n such that the corresponding smooth function u ∈ C∞(Rn) has finite
C2 norm and it is a solution of the system

div f

 Du√
1 − |Du|2Rn

 = C

|Du|Rn ≤ α,
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where f is the Gaussian probability measure defined in (3.11).

Corollary 9. For any constants C , 0 and 0 < α < 1, there does not exist an entire spacelike
translating graph Σ(u) ⊂ R1 × H

n
f such that the corresponding smooth function u ∈ C∞(Hn) has finite

C2 norm and it is a solution of the system
div f

 Du√
1 − |Du|2Hn

 = C

|Du|Hn ≤ α,

where f is the weight function defined in (3.12).
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tensor, J. Geom. Phys., 60 (2010), 477–490. https://doi.org/10.1016/j.geomphys.2009.11.001

14. Q. Chen, H. Qiu, Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv.
Math., 294 (2016), 517–531. https://doi.org/10.1016/j.aim.2016.03.004

15. H. F. de Lima, E. A. Lima Jr, Generalized maximum principles and the unicity of complete
spacelike hypersurfaces immersed in a Lorentzian product space, Beitr. Algebra Geom., 55 (2013),
59–75. http://doi.org/10.1007/s13366-013-0137-7

16. H. F. de Lima, A. M. Oliveira, M. S. Santos, Rigidity of complete spacelike hypersurfaces
with constant weighted mean curvature, Beitr. Algebra Geom., 57 (2016), 623–635.
http://doi.org/10.1007/s13366-015-0253-7

17. J. H. S. de Lira, F. Martı́n, Translating solitons in Riemannian products, J. Differ. Equations, 266
(2019), 7780–7812. https://doi.org/10.1016/j.jde.2018.12.015

18. K. Ecker, On mean curvature flow of spacelike hypersurfaces in asymptotically flat spacetime, J.
Aust. Math. Soc., 55 (1993), 41–59. https://doi.org/10.1017/S1446788700031918

19. K. Ecker, Interior estimates and longtime solutions for mean curvature flow of noncompact
spacelike hypersurfaces in Minkowski space, J. Differ. Geom., 46 (1997), 481–498.
http://doi.org/10.4310/jdg/1214459975

20. K. Ecker, Mean curvature flow of spacelike hypersurfaces near null initial data, Commun. Anal.
Geom., 11 (2003), 181–205. https://doi.org/10.4310/CAG.2003.v11.n2.a1

21. K. Ecker, G. Huisken, Parabolic methods for the construction of spacelike slices of prescribed
mean curvature in cosmological spacetimes, Commun. Math. Phys., 135 (1991), 595–613.
http://doi.org/https://doi.org/10.1007/BF02104123

22. G. J. Galloway, E. Woolgar, Cosmological singularities in Bakry-Émery spacetimes, J. Geom.
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