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1. Introduction

The study of physical systems in regimes at which turbulence arises has always been a focal topic
in physics. However, a rigorous mathematical approach has been lacking, as pointed out by Feynman
( [16]):

“there is a physical problem that is common to many fields, that is very old, and that has not been
solved. It is not the problem of finding new fundamental particles, but something left over from a long
time ago–over a hundred years. Nobody in physics has really been able to analyze it mathematically
satisfactorily in spite of its importance to the sister sciences. It is the analysis of circulating or turbulent
fluids.”

In the last decades new mathematical tools have been developed to tackle some questions related to
turbulence in a rigorous way and considerable results have been obtained. Notably, the works [5, 10]
resolved the celebrated Onsager conjecture, intimately related to the solution of the Euler equation
in the turbulent regime. Furthermore, in the context of phase-mixing problems, the seminal work [3]
represents a great advancement in the understanding of the Sommerfeld paradox with the mathematical
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description of high-to-low frequency cascades and the formations of special resonances called echoes.
More recently, the rigorous range of validity of the kinetic wave turbulence equation, arising as
an effective theory for physical systems describing a large number of interacting waves, has been
understood in the homogeneous and inhomogeneous settings ( [6, 11, 19]). This equation provides an
accurate description of a broad class of physical phenomena, varying from the dynamics of waves in
the ocean to Bose-Einstein condensates, thus its study deepens our understanding on the long time
behavior of the solutions to the Schrödinger equation as well as on the emergency of nonlinearities and
instabilities due to the interactions among waves.

Turbulence theory aims at describing the dynamics of strongly excited states of dissipative systems
with a large number of degrees of freedom and far from thermodynamic equilibrium. Mathematically,
this is by no means straightforward. Thus, step-by-step approaches result more feasible by considering
systems that are - strictly speaking - not in turbulence. These are still very challenging from a
mathematical point of view and shed light on the mathematical framework and technical tools to be
developed in order to tackle more complicated situations in which turbulence fully appears.

In this volume, we collect some examples of mathematical techniques that have been developed to
deal with problems which are related to turbulence in different ways and in various contexts. Two main
research lines can be identified among the contributions: fluids on one side and waves on the other
one. It is not by chance that this duality is also present in turbulence theory, where one historically
distinguishes between turbulence in incompressible fluids and weak wave turbulence. These are
instances in which the physical natures of the mechanisms describing and detecting turbulence are
different, as well as the mathematical techniques involved. Fal’kovich & Shafarenko ( [13]) states that
“few would not argue that the problem of turbulence stretches beyond the framework of hydrodynamics
of ideal incompressible fluids”. On one side, the classical turbulence of incompressible fluids is
generated by strongly nonlinear equations however small the level of excitation of the involved states
may be. Weak wave turbulence, on the other side, describes the dynamics of small-amplitude waves
with a given dispersion relation. In this case, a consistent approximation to the leading dynamics
is represented by the linearization: being the amplitude of waves very small, linear effects dominate
the dynamics of the involved states, so that dispersion of phase velocity has a stronger impact than
interaction between waves.

Even though they are two different phenomena, some features are shared by fluid and wave
turbulence. As conceptual parallels often lead to the possibility of merging mathematical tools, this is a
key point of the present collection. Among others, two fundamental shared properties of fluid and wave
turbulence are the appearance of energy cascades and the convergence - in a proper sense and under
suitable conditions - to some steady states with a power-law behavior. In fluid turbulence, this is part
of the cascade hypothesis by Richardson-Kolmogorov-Obukhov and the Onsager conjecture. Later
on, Zakharov found steady-state spectra as exact solutions of wave kinetic equations (after applying
a specific conformal transform), which are known by now as Kolmogorov-Zakharov spectra of weak
wave turbulence ( [20]). Although mathematical breakthroughs in both contexts have been reached
in recent times (the aforementioned results on the Osager conjecture on the one hand, and the full
derivation of the wave kinetic equation from the nonlinear Schrödinger equation on the other hand),
the range of mathematically open questions in this matter is incredibly wide. First, the wave kinetic
equation still lacks a rigorous mathematical theory, starting from basic questions like well-posedness
and long-time behavior. In this view, because of the leading linear and dispersive behavior of waves
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in weak turbulence, the mathematical tools taking roots from the community of dispersive equations
and dynamical systems have a strong potential appeal. In this context, we refer to the techniques
based on Strichartz estimates as the one developed in this volume by Federico & Staffilani ( [14]),
Duerinckx ( [12]) and Hientzsch ( [18]) on one side, and the analysis of discrete, exact resonances and
small divisors in the work by Feola, Iandoli & Murgante ( [15]). For the modeling of turbulent fluids
reaching stationary states for long times we mention the work by Flandoli & Luongo ( [17]). Transfer of
information throughout different frequency scales and in particular mixing phenomena are investigated
by Crippa & Schulze ( [7]). Multiscale limits of fluid systems in different regimes of the physical
parameters are treated in the contribution by Del Santo, Fanelli, Sbaiz & Wróblewska-Kamińska ( [9]).

Going further in the direction of big mathematical challenges in turbulence theory, the formation
of the stationary cascade spectra of Kolmogorov type in wave turbulence is predicted to happen in a
self-similar manner ( [13]). A rigorous mathematical proof of this conjecture for the WKE of weak
wave turbulence is still lacking, because of several difficulties essentially related to the universality of
Kolmogorov-Zakharov spectra, which are out-of-equilibrium steady states whose power-law behavior
is supposed to be independent from the external forcing. For this reason, self-similar regimes of
evolution are of high interest especially in the context of kinetic equations. In this regard, we mention
the contribution in this volume on homoenergetic solutions to the Boltzmann equation by Nota &
Velázquez ( [22]), where self-similarity is also taken into account.

A related question is to understand the emergence of these models featuring turbulence from the
microscopic laws of physics. A contribution of this volume in this direction is due to Basile, Benedetto,
Caglioti & Bertini ( [2]), where the discrete homogeneous Boltzmann equation is considered.

Although important progresses have been done, many questions remain open in turbulence theory.
Two main directions that we would like to highlight in this volume are the work by Apolinário &
Chevillard ( [1]) and the review paper on instabilities in stratified fluids by Varma, Mathur & Dauxois
( [23]). In Apolinário & Chevillard, some features of turbulence are obtained from a linear model. The
intuition behind the possibility of a linear modeling of turbulence originates from [8] and is somewhat
surprising, breaking the conceptual link between turbulence and the nonlinearity of the equations. A
crucial role in generating turbulent effects is played by the continuous spectrum of the linear operator,
so highlighting the importance of the geometry of the boundary and related boundary conditions. A
complete review on the role of boundary conditions in turbulent fluids is provided in this collection by
Nobili ( [21]). In this regard, and in the context of turbulent effects originated by thermal convection,
we mention the contribution in this volume by Bevilacqua ( [4]).

The review by Varma, Mathur & Dauxois is an accurate description of the state of the art in
instabilities in stratified fluids, a field where various quite interesting mathematical problems connected
to turbulence arise. Among them, we mention the description of the Triadic Resonant Instability, which
is the spontaneous creation of higher harmonic waves from disturbances in stratified fluids and the
recent observation in laboratory experiments of the group of Dauxois of statistically steady states with
a power-law behavior satisfying the prediction of Kolmogorov.
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