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Abstract: A bounded domain Ω in a Riemannian manifold M is said to have the Pompeiu property
if the only continuous function which integrates to zero on Ω and on all its congruent images is the
zero function. In some respects, the Pompeiu property can be viewed as an overdetermined problem,
given its relation with the Schiffer problem. It is well-known that every Euclidean ball fails to have the
Pompeiu property while spherical balls have the property for almost all radii (Ungar’s Freak theorem).
In the present paper we discuss the Pompeiu property when M is compact and admits an isoparametric
foliation. In particular, we identify precise conditions on the spectrum of the Laplacian on M under
which the level domains of an isoparametric function fail to have the Pompeiu property. Specific
calculations are carried out when the ambient manifold is the round sphere, and some consequences
are derived. Moreover, a detailed discussion of Ungar’s Freak theorem and its generalizations is also
carried out.
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1. Introduction

1.1. Historical facts

Let (M, g) be a Riemannian manifold with isometry group G. A bounded domain Ω of M is said to
have the Pompeiu property if the only continuous function f on M such that∫

h(Ω)
f = 0
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for all h ∈ G is the identically zero function f = 0. Here the integral is taken with respect to the
induced Riemannian measure. Equivalently, consider the linear map

µ : C0(M)→ C0(G), f 7→ µ f

where µ f (h) �
∫

h(Ω)
f . Then, Ω has the Pompeiu property if and only if µ is injective.

Pompeiu thought that every Euclidean domain has the property that later would bring his name,
and actually provided a (wrong) proof of this fact in 1929, see [15]. Some years later, in 1944,
Chakalov [24] showed that every Euclidean ball fails to have the Pompeiu property. Other examples
of domains failing the property are obtained by removing balls of suitable radii from a larger ball, but
no other examples were found so far. Hence the following conjecture is still open, to the best of our
knowledge:

Pompeiu conjecture. Let Ω be a Euclidean domain with connected boundary. If Ω fails the
Pompeiu property, then it is a ball.

The Pompeiu property can be viewed as an overdetermined problem; in fact, at least in Rn, the
Pompeiu conjecture is equivalent to the so-called:

Schiffer conjecture. Let Ω ⊆ Rn be a domain with connected boundary which supports a non-
trivial solution to the overdetermined PDE, called Schiffer problem:

∆u = λu on Ω

∂u
∂N

= 0, u = c on ∂Ω

for some λ > 0. Then Ω is ball.
Here ∆ is the positive Laplacian (in Rn: ∆u = −

∑
j ∂

2
j ju).

The equivalence was proved by Williams [29, 30], see also Berenstein [1]. Schiffer conjecture is
still open, although it was proved under various additional conditions; for a thorough exposition we
refer to the survey papers [7, 32, 33].

The scope of this paper is to explore the Pompeiu problem on other Riemannian manifolds; in
particular, on closed manifolds supporting isoparametric foliations, see Subsection 2.1 for the relevant
definitions. We will then focus on the round sphere, where a complete classification of isoparametric
foliations is now available, see Section 5. The reason why we study the Pompeiu property in terms
of isoparametric foliations is because of their role in overdetermined PDE’s, recently clarified in the
papers [16–18, 20].

Perhaps the first significant result in a manifold different from Rn was obtained by Ungar [26] in
1954, who proved the following fact. Here B(r) denotes the geodesic ball in S2 centered at any chosen
point x0 and having radius r:

Freak theorem. The set S ⊆ (0, π) of radii r for which B(r) fails to have the Pompeiu property is
countable and dense in (0, π). In particular, for any r in the complement of S , the ball B(r) has the
Pompeiu property.

The word freak suggests that the result is quite surprising; in fact a consequence of the theorem is
that a geodesic ball B(r) in S2 has the Pompeiu property with probability 1 for r ∈ (0, π). Note the
striking difference with the Euclidean case, where every ball fails to have the Pompeiu property, so that
the set of radii r for which a ball has the Pompeiu property is actually empty. The difference could be
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perhaps justified by the fact that S2 is compact, see Section 8 for further discussions in dimension 1.
Later the result was extended to Sn and more generally to compact symmetric spaces of rank one
(see [2, 3]). We will reprove this in Section 4.

It should be said that Ungar constructed other spherical domains which do not have the Pompeiu
property: these are suitable polygonal regions with an appropriate number of edges. Thus, the Pompeiu
conjecture fails on S2 (in fact, there are many spherical domains with smooth boundary failing the
property, see Section 6).

In the rest of the introduction we will briefly introduce the isoparametric foliations and other
essential terminology, and state the main results. More details on the preliminaries will be given in
Section 2.

1.2. Isoparametric foliations

In this paper, we focus on compact Riemannian manifolds M endowed with an isoparametric
function, i.e., a smooth function F : M → [a, b] such that:|∇F|2 = A ◦ F

∆F = B ◦ F
(1.1)

for smooth functions A, B : [a, b] → R. We call the foliation F of M given by the level sets of F,
namely

F : M =
⋃

t∈[a,b]

F−1(t), (1.2)

an isoparametric foliation of M. We will consider the pair (M,F ). The regular level sets of F, that is,
the sets F−1(t) for t ∈ (a, b), are called isoparametric hypersurfaces of M. The first condition in (1.1)
insures that these hypersurfaces are all parallel to one another, and the second says that they all have
constant mean curvature.

The sets M+ := F−1(a),M− := F−1(b) are smooth, closed submanifolds of codimension possibly
higher than 1. They are called the focal sets of F , and are always minimal in M. They are the singular
leaves of the foliation.

For simplicity, we assume in fact that the M+ and M− have codimension greater than one (i.e., the
foliation is proper): this will ensure that all leaves of the foliation, including the singular leaves, are
connected. However, the main statements of the paper hold without this assumption.

An immediate example of isoparametric foliation on Sn is that given by concentric geodesic spheres
centered at a fixed point x0: in this case the focal sets are simply the north and south pole {x0} and
{−x0}. This can be generalized to compact harmonic manifolds which, more or less by definition, are
foliated by (smooth) geodesic spheres with constant mean curvature, centered at any fixed point.

We restrict to compact manifolds because we will work with the spectrum of the Laplacian, and we
want it to be discrete in order to apply our arguments. Of course, isoparametric foliations exist also on
non-compact manifolds; it was proved by Cartan [4] and Segre [19] that the foliation of Rn (or Hn) by
concentric spheres is the only isoparametric foliation with compact leaves (up to congruences). More
details on isoparametric foliations will be given in Subsection 2.1.

On the contrary, the sphere supports many interesting isoparametric foliations which are not
congruent to the standard foliation by concentric spheres. We recall here that a hypersurface Σ of Sn is
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isoparametric (i.e., it belongs to an isoparametric family) if and only if it has constant principal
curvatures, meaning that the characteristic polynomial of the second fundamental form is the same at
all points of Σ.

After many intermediate results, the classification of (proper) isoparametric foliations of the sphere
was completed only recently [6]. It turns out that these are classified in terms of the number g of
distinct principal curvatures of any of its leaves, which can only be 1, 2, 3, 4, 6. Further details will be
given in Section 5.

To better study the geometry of the foliation, we can re-normalize F and consider in its place the
distance function to M+, which we denote by

ρ : M → [0,D], ρ(x) := dist(x,M+), (1.3)

where D = dist(M+,M−). We will call D = D(F ) the diameter of the foliation: it is the maximal
distance between two leaves. When the foliation is the standard one by concentric geodesic spheres,
D(F ) is in fact the diameter of the manifold.

The function ρ is smooth on M \ {M+ ∪M−}. Thus, the leaves of the foliations are also given by the
level sets of ρ, see (2.1). We refer to Subsection 2.2 for more details on the distance function from a
focal set.

1.3. Isoparametric tubes and radial spectrum

Given an isoparametric foliation F and t ∈ (0,D(F )), the level domain

Ωt = {x ∈ M : ρ(x) < t}

is called an isoparametric tube of F : it is the set of points at distance less than t to the focal set
M+. Note that when the focal set is a point (i.e., the leaves of the foliations are geodesic spheres),
an isoparametric tube is simply a geodesic ball. Needless to say, one could choose the focal set M−

instead: therefore, the interior of the complement of an isoparametric tube is itself an isoparametric
tube as well.

In [18] we defined isoparametric tube any Riemannian domain which is a smooth, solid tube
around a smooth, compact submanifold Σ, with the additional property that any equidistant from Σ is
a smooth hypersurface with constant mean curvature. This definition is slightly more general than the
one adopted in this paper, because it allows Σ to have codimension 1 (at any rate, Σ has to be
minimal). For a complete classification in the round sphere, see [18]. This class of Riemannian
domains turns out to coincide with the class of domains supporting solutions to certain
overdetermined problems involving the heat equation (in the general Riemannian case); in particular,
it coincides with the class of domain which are critical for the heat content functional
(see [18, Theorem 4]). In this paper we have chosen to restrict a bit the definition for the sake of
concreteness; however the main results carry over without change.

The main point we want to make is that very often, under certain conditions, isoparametric tubes on
a compact manifold fail to have the Pompeiu property, pretty much as balls in the Euclidean case.

To explain such conditions, which will involve the spectrum of the Laplacian on M, we single out
the vector space of radial functions, that is, the functions which depend only on the distance to the
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focal set M+ of F . Obviously this notion depends on the foliation F chosen; any radial function can
be expressed as

f = ψ ◦ ρ, (1.4)

for some function ψ : [0,D(F )]→ R. Let

0 = λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ↗ +∞.

be the spectrum of the Laplacian on (M, g), each eigenvalue being repeated according to its finite
multiplicity. We shall denote by Spec1(M) the set of all the eigenvalues of the Laplacian without
multiplicity, i.e., the set of all distinct (real) values assumed by the eigenvalues of the Laplacian.

Definition 1.1 (Radial eigenvalue). Given an isoparametric foliation F on M, we say that an
eigenvalue λ is radial if there exists a radial eigenfunction associated to λ.

Radial eigenfunctions are characterized by an ODE on the function ψ in (1.4), see Eq (2.3); the radial
eigenvalues form an infinite subset of Spec1(M), denoted by Spec(M,F ), and are the eigenvalues of a
one-dimensional Sturm-Liouville problem associated to F and defined on the interval (0,D(F )).

1.4. Main theorems, general case

We are now in the position to state our main theorems. The following two results show that,
associated to any isoparametric foliation F of M, there is always a countable dense subset
S (F ) ⊆ (0,D(F )) such that the family of isoparametric tubes

{Ωt : t ∈ S (F )}

fails to have the Pompeiu property. Actually, one could replace S (F ) by the whole interval (0,D(F ))
provided that the radial spectrum is a proper subset of Spec1(M, g).

More in detail, we have:

Theorem 1.2. Let (M,F ) be an isoparametric foliation. Assume that Spec(M,F ) is a proper subset
of Spec1(M). Then every isoparametric tube of F fails to have the Pompeiu property.

More precisely, let f be an eigenfunction of M associated to λ ∈ Spec1(M) \ Spec(M,F ). For all
t ∈ (0,D(F )), let Ωt be the isoparametric tube bounded by ρ−1(t). Then, for any isometry h of M one
has: ∫

h(Ωt)
f = 0.

The second possibility is that Spec(M,F ) = Spec1(M). Then also in this case we still have infinitely
many isoparametric tubes failing the Pompeiu property. Precisely, consider the set S (F ), union of all
zeroes of Sturm-Liouville eigenfunctions associated to F (see (3.1)). The set S (F ) is countable and
dense in (0,D(F )), see (3.3) for the precise definition. Then we have:

Theorem 1.3. Let (M,F ) be an isoparametric foliation. Assume that Spec(M,F ) = Spec1(M). Then,
the isoparametric tube Ωt fails to have the Pompeiu property for all t ∈ S (F ).

Mathematics in Engineering Volume 5, Issue 2, 1–27.



6

1.5. Freak theorem for two-point compact homogeneous spaces: a simpler proof

One could ask if the converse of Theorem 1.3 holds, that is, is it true that if t < S (F ) then Ωt has
the Pompeiu property? We don’t have a proof of the converse, in general. We only remark here that,
if M is a compact two-point homogeneous space (or, equivalently, by classical results, a compact rank
one symmetric space) and F is the standard foliation by geodesic spheres, then the converse is also
true, see [3]. We will actually give a simple proof of this fact based on a general Addition Formula (see
Section 4).

Here is the relevant statement:

Theorem 1.4. Let M be a compact two-point homogeneous space with diameter D. There is a
countable dense set S ⊂ (0,D) such that the geodesic ball of radius t fails to have the Pompeiu
property if t ∈ S and has the Pompeiu property if t ∈ (0,D) \ S .

In fact, the set S is actually S (F ) where F is the foliation with focal set M+ being a point.

1.6. Main theorems, the round sphere

We discuss now the above results for the most relevant case: the family of isoparametric foliations
on the round sphere Sn. Isoparametric foliations on spheres have been most studied in the literature,
and are divided in five classes, according to the number g = g(F ) of distinct principal curvatures of
any of its leaves. The following is a classical result of Munzner [12, 13].

Theorem 1.5. Let (Sn,F ) be an isoparametric foliation with g distinct principal curvatures. Then:

i) The only possible values of g are 1, 2, 3, 4, 6.

ii) The diameter of F is D(F ) =
π

g
.

It is possible to compute explicitly the radial spectrum for any of such classes. We prove the
following:

Theorem 1.6. Let (Sn,F ) be an isoparametric foliation with g distinct principal curvatures. Then its
radial spectrum is

Spec(Sn,F ) = {gk(gk + n − 1) : k ∈ N}.

It is well-known that Spec1(Sn) is given by the collection k(k + n − 1) for k ∈ N. One then sees that
Spec(Sn,F ) = Spec1(Sn) if and only if g = 1, that is, if and only if F is the foliation by concentric
geodesic spheres. Therefore, as a consequence of Theorem 1.2, we obtain:

Corollary 1.7. Let F be an isoparametric foliation of Sn with g , 1. Then every isoparametric tube
of F fails to have the Pompeiu property.

The case g = 1 reduces to (half of) Ungar’s Freak Theorem (in dimension n). Shklover [20]
proves a particular case of Corollary 1.7: by using special functions, and the relation of the Pompeiu
problem with Schiffer overdetermined problem, he proves that the set of isoparametric tubes Ωt failing
the Pompeiu property is countable and dense in the interval t ∈ (0, πg ). Corollary 1.7 follows from
Theorem 1.2; on the sphere it improves Shklover’s result, and is conceptually simpler.
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Actually, when the ambient manifold is the sphere, we give a very simple argument showing that
every antipodal invariant domain in Sn fails to have the Pompeiu property (see Proposition 6.1): hence,
as isoparametric tubes with g even are antipodal invariant, this argument reproves Corollary 1.7 when
g = 2, 4, 6.

A consequence of Corollary 1.7 is that the barycenter of every isoparametric hypersurface having
g , 1 is always the origin. By standard min-max methods one then obtains the following upper
bound on λ2(Σ), the first positive eigenvalue of the Laplacian on an isoparametric hypersurface Σ (see
Section 7).

Theorem 1.8. Let Σ be a connected isoparametric hypersurface of Sn with g > 1 distinct principal
curvatures. Then

λ2(Σ) ≤ n − 1.

Equality holds if and only if Σ is minimal.

We have equality in the theorem thanks to [22, 23], which verifies Yau’s conjecture for minimal
isoparametric hypersurfaces.

In view of the above theorem, as a final remark, assume that Σt = F−1(t) belongs to the isoparametric
foliation F defined by a Cartan polynomial F (see (5.1) and (5.2)). Then, it is reasonable to expect that
λ2(Σt) is an increasing function for t ∈ [0, tmin], where Σtmin is the unique minimal representative of F .
We searched the literature for results like these, without success so far.

The present paper is organized as follows. In Section 2 we recall a few preliminary results on
isoparametric functions and foliations, and introduce the radial spectrum. In Section 3 we prove
Theorem 1.2 (see Subsection 3.1) and Theorem 1.3 (see Subsection 3.2). In Section 4 we prove
Theorem 1.4, namely Ungar’s Freak Theorem for two-point compact homogeneous spaces. In
Section 5 we discuss Theorems 1.2 and 1.3 in the case of the round sphere Sn, and prove Theorem 1.6
and Corollary 1.7. In Section 6 we prove that the Pompeiu property fails on any antipodal invariant
domain of the sphere. In Section 7 we prove Theorem 1.8. Finally, in Section 8 we collect a few
elementary one-dimensional examples which allow an easier understanding of the results contained in
the paper.

2. Preliminary results

2.1. Isoparametric functions on Riemannian manifolds

We recall that an isoparametric function on a compact Riemannian manifold (M, g) is a smooth
function F : M → [a, b] such that |∇F|2 = A ◦ F and ∆F = B ◦ F for some smooth functions
A, B : [a, b] → R, see (1.1). The regular level sets of F are called isoparametric hypersurfaces. For
some historical background we refer to Cartan [4, 5], Levi-Civita [11] and Segre [19], among the first
to have systematically studied this subject.

We list here a few fundamental results on isoparametric functions, proved e.g., in [28].

Proposition 2.1. Let (M, g) be a compact Riemannian manifold admitting an isoparametric function
F : M → [a, b]. Then:

i) the open interval (a, b) consists of regular values of F;
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ii) the sets M+ := F−1(a),M− := F−1(b) are smooth, closed submanifolds called the focal sets of F;

iii) the regular level sets F−1(t) are all parallel and equidistant to both M+ and M−; they all have
constant mean curvature.

It turns out that M+,M− are minimal submanifolds, see [8, 14]. According to [8] we have the
following:

Definition 2.2 (Proper isoparametric function). An isoparametric function F : M → [a, b] is said to
be proper if the focal sets have codimension at least 2 in M.

A proper isoparametric function satisfies the following additional properties.

Proposition 2.3. Let (M, g) be a compact Riemannian manifold admitting a proper isoparametric
function F : M → [a, b]. In addition to properties i)-iii) of Proposition 2.1 we have:

i) M+,M− are connected as well as all the regular level sets;

ii) at least one regular level set is a minimal hypersurface; if M has positive Ricci curvature, it is
unique.

We refer to [28] for more information on isoparametric functions and hypersurfaces. We also refer to
the survey paper [25] for further historical information and for a quite complete collection of references.

Assumption. From now on, we will assume that M admits a proper isoparametric function F :
M → [a, b].

2.2. The distance function and isoparametric foliations

We can re-normalize F and consider in its place the distance function to M+, defined e.g., in (1.3).
Namely, ρ(x) = dist(x,M+), where M+ is one of the focal sets. The function ρ is smooth on M \ {M+ ∪

M−} and takes values in [0,D(F )], where D(F ) = dist(M+,M−).
For x ∈ M, let Σx denote the equidistant hypersurface to M+ containing x, namely

Σx = {y ∈ M : ρ(y) = ρ(x)} = ρ−1(ρ(x)).

Clearly Σx is a smooth connected hypersurface of constant mean curvature if x ∈ M \ {M+ ∪ M−}. It is
one of the focal varieties otherwise. In particular ρ−1(0) = M+, ρ−1(D(F )) = M−.

Let x ∈ M \ {M+ ∪ M−}. It is well-known that ∇ρ(x) defines a unit normal vector field to Σx. The
function ∆ρ, restricted to Σx, is constant and measures the mean curvature of Σx (see also (2.2)).

Recall that the level sets of an isoparametric function F generate an isoparametric foliation as
described in (1.2). An isoparametric foliation F can be described equivalently using the level sets of
ρ, namely,

F : M =
⋃

t∈[0,D(F )]

ρ−1(t). (2.1)

Accordingly, also ρ−1(t) will be called a leaf of the foliation F . From now on we will consider the
pair (M,F ) given by a compact Riemannian manifold (M, g) (we shall omit the metric g) with an
isoparametric foliation F on it.
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2.3. Isoparametric foliations and isometries

If h is an isometry of M and F is an isoparametric function on M, it is readily seen that the function
h · F � F ◦ h−1 is an isoparametric function as well, which generates a foliation denoted by h · F .
We say that h · F is congruent to F . Clearly, the focal sets and the regular leaves of F are pairwise
congruent to those of h · F , in the sense that L is a leaf of F if and only if h(L) is a leaf of h · F .

Remark 2.4. Given a manifold M, it can admit many (possibly infinitely many) non-congruent
isoparametric foliations. This is the case of Sn as recalled in Section 5.

2.4. The radial spectrum

Let (M,F ) be an isoparametric foliation with focal varieties M+,M−. Given a function f on M, we
say that it is radial if it depends only on the distance ρ to M+, hence, if and only if f = ψ ◦ ρ for some
function ψ : [0,D(F )]→ R.

Let f ∈ C∞(M). Averaging f on the level sets of ρ we obtain the radialization of f ; it is the function
denotedA f and defined as

A f (x) :=
1
|Σx|

∫
Σx

f .

Note that when x belongs to the focal set, say x ∈ M+, then Σx = M+ and |Σx| and
∫

Σx
f denote,

respectively, the Riemannian measure of M+ and the integral of f on M+, for the induced Riemannian
measure.

As proved in [17], the radialization A f is a smooth function as well, and by definition it is radial.
The definition of radialization provides an equivalent characterization of radial functions.

Lemma 2.5. A function f is radial if and only if f = A f .

The crucial property of an isoparametric foliation is given by the following theorem proved in [17].

Theorem 2.6. Let (M,F ) be an isoparametric foliation. Then the radialization operator commutes
with the Laplacian. That is, for all f ∈ C∞(M) one has

∆(A f ) = A(∆ f ).

In particular, the Laplacian preserves the subspace of radial functions.

Recall that the spectrum of the Laplacian on M is given by

0 = λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ↗ +∞,

where each eigenvalue is repeated according to its finite multiplicity. By Spec1(M) we have denoted
the set of all the eigenvalues of the Laplacian without multiplicity, i.e., the set of all distinct real values
assumed by the eigenvalues of the Laplacian.

A radial eigenfunction associated with a radial eigenvalue as in Definition 1.1 satisfies an explicit
ODE. In order to present such ODE, we first introduce the normal coordinates based on M+, and we
refer to [17] for full details. As usual, M+ is one of the two focal sets of the isoparametric foliation F ,
and ρ : M → [0,D(F )] is the distance function to M+ which is smooth on M \ {M+ ∪M−}. Let U(M+)
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be the unit normal bundle of M+; then U(M+) is locally isometric to M+ × Sn−k−1, where k = dim M+,
and we can write an element ξ ∈ U(M+) as a pair

ξ = (x, ν(x)),

where x ∈ M+ and ν(x) is a unit vector in the tangent space of M at x normal to M+ at x. We define the
normal exponential map

Φ : (0,D(F )) × U(M+)→ M \ {M+ ∪ M−}

by Φ(t, ν(x)) = expx(tν(x)). The map Φ is a diffeomorphism; in fact, given any point y ∈ M \{M+∪M−}

let γy be the geodesic which minimizes distance from y to M+: if x ∈ M+ is the foot of such geodesic,
and t is the distance from y to M+, then one has y = Φ(x, ν(x)) where x = γy(t) and ν(x) = −γ′y(t).

Let dvg be the Riemannian volume form of M; then, in normal coordinates, it writes

Φ?dvg(t, ξ) = θ(t, ξ)dtdξ

where dξ is the volume form of U(M+), for a smooth function θ defined on (0,D(F )) ×U(M+), which
is simply the density of the volume form in normal coordinates around M+. Assume that the point
y ∈ M \ {M+ ∪ M−} has normal coordinates (t, ξ). By [17, Proposition 12] one has:

−
θ′(t, ξ)
θ(t, ξ)

= ∆ρ(y) = H(y), (2.2)

where θ′ denotes differentiation with respect to t and H(y) is the mean curvature of the equidistant Σy

containing y (the mean curvature is intended to be the trace of the second fundamental form with respect
to the unit normal vector ∇ρ). As Σy is an isoparametric hypersurface, it has by hypothesis constant
mean curvature, so that the function on the right is constant on Σy, which is to say, the expression on
the left also does not depend on ξ. By integration, the density θ(t, ξ) is then independent on ξ as well,
and will be written θ(t), simply.

Proposition 2.7. An eigenfunction f corresponding to a radial eigenvalue λ is of the form f = ψ ◦ ρ,
where ψ : (0,D(F ))→ R is smooth and solves the ordinary differential equation

ψ′′ +
θ′

θ
ψ′ + λψ = 0. (2.3)

on (0,D(F )). Moreover, ψ′(0) = ψ′(D(F )) = 0.

Proof. We follow [17, §2.1]. We first see that ∆(ψ ◦ ρ) = (ψ′ ◦ ρ)∆ρ − (ψ′′ ◦ ρ)|∇ρ|2, and |∇ρ| = 1
when ρ ∈ (0,D(F )). Then, by (2.2), we have ∆ρ = − θ

′

θ
◦ ρ. Moreover θ(t) > 0 for t ∈ (0,D(F )).

This establishes (2.3). Finally, note that θ(0) = θ(D(F )) = 0. Then, since f is smooth, necessarily
ψ′(0) = ψ′(D(F )) = 0. �

Example 2.8. For Sn and the standard foliation F given by concentric spheres, we have θ(ρ(x)) =

sinn−1(ρ(x)), and ∆ρ(x) = −(n − 1) cot(ρ(x)).

By V(λ) we denote the eigenspace corresponding to an eigenvalue λ. As the radialization operator
A commutes with the Laplacian, we see thatA maps V(λ) to itself, namely

A(V(λ)) ⊆ V(λ).
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Thus we have the following equivalent characterization: an eigenvalue λ is radial if and only if

A(V(λ)) , {0}.

Clearly the constant function 1 is radial, hence λ1 = 0 is radial. Let us list the radial eigenvalues and
denote them as follows:

0 = λ1(M,F ) < λ2(M,F ) < · · · < λk(M,F ) < · · · (2.4)

The set of all the radial eigenvalues is called the radial spectrum of (M,F ) and is denoted by
Spec(M,F ).

We note that the radial eigenvalues listed in (2.4) are all distinct. This is a consequence of the
following fact.

Theorem 2.9. Let (M,F ) be an isoparametric foliation. Then:

i) Spec(M,F ) is an infinite subset of Spec1(M), which could possibly coincide with Spec1(M).

ii) Any eigenvalue of the radial spectrum has exactly one radial eigenfunction (up to scalar
multiplication).

Proof. First observe that L2(M) = L2
rad(M) ⊕ L2

rad(M)⊥, where L2
rad(M) is the infinite dimensional

subspace of radial functions in L2(M) and the orthogonality is with respect to the scalar product of
L2(M). Since the Laplacian of a radial function is radial (and the Laplacian preserves the
decomposition) we deduce the existence of a Hilbert basis of L2

rad(M) of (radial) eigenfunctions. If the
radial eigenvalues form a finite set, then L2

rad(M) would have finite dimension, which is not the case:
this proves i). To prove ii), we see from (2.3) that two radial eigenfunctions f1 = ψ1 ◦ ρ and
f2 = ψ2 ◦ ρ associated to the same eigenvalue λ satisfy

θ(t)(ψ1(t)′ψ2(t) − ψ2(t)′ψ1(t)) = C , t ∈ (0,D(F ))

Since ψ1, ψ2 are smooth, taking the limit as t → 0+ or t → D(F )− we find that C = 0, hence ψ1, ψ2 are
linearly dependent. �

An alternative approach to the proof of Theorem 2.9 is to study the ordinary differential
equation (2.3). The weight θ is smooth and positive on (0,D(F )), θ(t) ∼ tm+

as t → 0+,
θ(t) ∼ (D(F ) − t)m− as t → D(F )−, for some positive integers m+,m− depending on n and on the
codimension of M+,M−, respectively. Thus (2.3) is a singular equation which admits a self-adjoint
realization when we require boundedness of solutions at the endpoints. The corresponding spectrum
is discrete, made of simple, non-negative eigenvalues diverging to +∞. Since a bounded solution ψ
of (2.3) necessarily satisfies ψ′(0) = ψ′(D(F )) = 0, then f = ψ ◦ ρ is a radial eigenfunction. We refer
to [34, §10] and references therein for more details.

Note that Spec(M,F ) = Spec1(M) if and only if all eigenspaces admit a radial eigenfunction. In
the case of Sn and the foliation F given by concentric spheres, then Spec(Sn,F ) = Spec1(Sn). This is
no longer true for other non-congruent foliations of Sn as proved in Section 5.

Theorem 2.10. The radial spectrum does not depend on the isometry. In other words, for any isometry
h of M one has

Spec(M,F ) = Spec(M, h · F )
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This theorem is a consequence of the fact that the radial spectrum is exactly the spectrum of the
singular problem (2.3): this problem depends only on the density function θ, which is the same for all
congruent foliations.

3. The Pompeiu property

In this section we will relate the radial spectrum with the Pompeiu property on certain domains
associated with isoparametric foliations, and we will prove Theorems 1.2 and 1.3.

Let (M,F ) be an isoparametric foliation, and let ρ : M → [0,D(F )] be the distance to the focal set
M+. For t ∈ (0,D(F )) we call the level domain

Ωt = {x ∈ M : ρ(x) < t}

an isoparametric tube of F . Being the isoparametric foliation proper, a corresponding isoparametric
tube is connected.

3.1. A sufficient condition for the failure of Pompeiu property

We prove the first main theorem of the paper, namely Theorem 1.2, which establishes sufficient
conditions under which Pompeiu property fails for all isoparametric tubes.

Theorem 3.1. Let (M,F ) be an isoparametric foliation. Assume that Spec(M,F ) ( Spec1(M). Then
every isoparametric tube of F fails to have the Pompeiu property. More precisely, let f be an
eigenfunction of M associated to λ ∈ Spec1(M) \ Spec(M,F ). Then, for all t ∈ (0,D(F )) and for any
isometry h of M one has: ∫

h(Ωt)
f = 0.

Proof. We argue by contradiction, and assume that there exists t ∈ (0,D(F )) and an isometry h of M
such that ∫

h(Ωt)
f , 0

Consider the foliation h · F and let ρ be the distance function to the focal set h(M+) of Ω := h(Ωt).
Then, by the coarea formula ∫ t

0

(∫
ρ−1(r)

f
)

dr =

∫
Ω

f , 0,

which implies that there exists r0 ∈ (0,D(F )) such that
∫
ρ−1(r0)

f , 0. But then, the radialization of f
with respect to h · F is non-zero, and is a radial eigenfunction associated to λ, which would imply that
λ ∈ Spec(M, h · F ) = Spec(M,F ). This contradicts the assumptions. Then the theorem holds. �

3.2. Density of isoparametric tubes failing the Pompeiu property

It could happen that Spec1(M) = Spec(M,F ). This is the case, for example, of the foliation by
concentric spheres on Sn. However, there is always a dense subset of radii for which the isoparametric
tube fails to have the Pompeiu property. This is exactly our second main result, namely Theorem 1.3,
which we will prove in this subsection. We need a few preliminary results.
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Lemma 3.2. Let f be a (not necessarily radial) eigenfunction of the Laplacian associated to the
(positive) eigenvalue λ. Define the function Ψ : [0,D(F )]→ R by

Ψ(t) =

∫
Ωt

f

where Ωt = {x : ρ(x,M+) < t} is an isoparametric tube associated to the foliation F . Then:

i) Ψ is smooth, and satisfies the boundary value problem:Ψ′′ −
θ′

θ
Ψ′ + λΨ = 0 , in (0,D(F ))

Ψ(0) = Ψ(D(F )) = 0.
(3.1)

ii) The spectrum of (3.1) coincides with the spectrum of problem (2.3), that is, the radial spectrum
Spec(M,F ).

Proof. i) It is clear that Ψ(0) = 0; as ΩD(F ) = M \ M− we see that Ψ(D(F )) =
∫

M
f = 0 because any

non-constant eigenfunction has zero mean over M. Now Ψ′(t) =
∫
ρ=t

f and an easy application of the
Green formula gives (see [17, §2.1]):

Ψ′′(t) =

∫
ρ=t

(〈∇ f ,∇ρ〉 − f ∆ρ).

As ∇ρ is the exterior unit normal to Ωt, and ∆ρ = − θ
′

θ
◦ ρ, we get from the above:

Ψ′′(t) = −λ

∫
Ωt

f +
θ′

θ

∫
ρ=t

f

= −λΨ +
θ′

θ
Ψ′,

which gives the assertion.
ii) The two eigenvalue problems are unitarily equivalent via the map ψ 7→ Lψ where

Lψ(t) =

∫ t

0
θ(r)ψ(r) dr.

One verifies that ψ is a solution of (2.3) if and only if Lψ is a solution of (3.1). �

Given λk ∈ Spec(M,F ), consider a radial eigenfunction φk associated to λk and the content function

Ψk(t) =

∫
Ωt

φk, for all t ∈ [0,D(F )], (3.2)

Then, Ψk is a non trivial solution of problem (3.1), hence an eigenfunction associated to λk:Ψ′′k −
θ′

θ
Ψ′k + λkΨk = 0 , in (0,D(F )),

Ψk(0) = Ψk(D(F )) = 0.
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We denote by S k the interior zero set of Ψk:

S k(F ) = {t ∈ (0,D(F )) : Ψk(t) = 0}.

Since every λk is simple, S k(F ) does not depend on φk. By Courant-type arguments, the cardinality of
S k(F ) cannot exceed k. We then define:

S (F ) = ∪∞k=1S k(F ). (3.3)

It is clear that S (F ) is countable and does not depend on the isometry, that is S (F ) = S (h · F ) for
any isometry h.

We are now in position to prove our second main theorem:

Theorem 3.3. Let (M,F ) be an isoparametric foliation and let S (F ) be the subset of (0,D(F )) defined
by (3.3). Then

i) The isoparametric tube Ωt fails to have the Pompeiu property for all t ∈ S (F ).

ii) The set S (F ) is countable and dense in (0,D(F )).

Proof. i) If t ∈ S k(F ) then Ψk(t) = 0 that is,
∫

Ωt
φk = 0. To show that Ωt fails to have the Pompeiu

property, it is enough to show that, for any isometry h, one has:∫
h(Ωt)

φk = 0.

Fix an isometry h and consider the congruent foliation h · F , with focal set M̃+ = h(M+). Let ρ̃ be the
distance function to M̃+ and consider the isoparametric tube Ω̃t = {ρ̃ < t}. It is clear that Ω̃t = h(Ωt)
and, since the mean curvature of the leaves {ρ = t} and {ρ̃ = t} are the same, we see that the density
functions θ(t) and θ̃(t) are equal. Therefore the content function

Ψ̃k(t) =

∫
Ω̃t

φk =

∫
h(Ωt)

φk

is also a solution to problem (3.1). Since the eigenspace of λk is one dimensional, we conclude that
there is c(h) ∈ R such that ∫

h(Ωt)
φk = c(h)

∫
Ωt

φk.

Note that c(h) could be zero, but at any rate we see that if
∫

Ωt
φk = 0 for some t then

∫
h(Ωt)

φk for all h.
This proves that Ωt fails to have the Pompeiu property for all t ∈ S (F ).

ii) We already remarked that S (F ) is countable. We prove that S (F ) is dense in (0,D(F )). Assume
that the complement of S (F ) contains an open interval (a, b).

By assumptions, any eigenfunction Ψ of (3.1) with eigenvalue λ does not vanish on (a, b). We let
(α, β) be the smallest interval containing (a, b) and such that Ψ(α) = Ψ(β) = 0. As Ψ does not change
sign on (α, β) we see that it is a first eigenfunction of (3.1) with Dirichlet boundary conditions on such
interval. We denote by λ1(α, β) the corresponding eigenvalue. Then

λ = λ1(α, β),
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A standard argument of domain monotonicity shows that, as (a, b) ⊆ (α, β):

λ1(α, β) ≤ λ1(a, b),

where λ1(a, b) is the first eigenvalue of (3.1) on (a, b) with Dirichlet boundary conditions. We conclude
that, for all radial eigenvalues λ, one has:

λ ≤ λ1(a, b),

This is impossible because the radial eigenvalues form an unbounded sequence. The assertion follows.
�

Remark 3.4. Looking at the proof of Theorem 3.3 we easily deduce an alternative argument for proving
Theorem 3.1. In fact, note that the eigenvalues of (3.1) coincide with the radial spectrum. Therefore, if
λ is not a radial eigenvalue, and f is an associated eigenfunction, the only possibility that Ψ(t) =

∫
Ωt

f
satisfies (3.1) is Ψ ≡ 0 on (0,D(F )).

Theorem 3.3 (Theorem 1.3) is valid regardless of the fact that Spec(M,F ) = Spec1(M). This result
is proved in [20] for compact irreducible symmetric spaces of the first rank, extending the results
of [26] for spherical caps in S2. However, in view of Theorem 3.1, we see that S = (0,D(F )) when
Spec(M,F ) , Spec1(M).

4. Freak theorem on compact two-point homogeneous spaces

We will present here a simple proof of Theorem 1.4 based on the following Addition Formula,
first proved in [9], and for which we provide a short proof. We give the proof for compact two-point
homogeneous spaces: it is a classical fact that this family is equivalent to the family of compact rank
one symmetric spaces, see [10, 27].

Lemma 4.1. Let M be a compact two-point homogeneous space and let λ ∈ Spec1(M). Then:

i) For any y ∈ M there is a unique normalized eigenfunction in V(λ) which is radial around y and
positive at y. We denote it by φ[y].

ii) For any orthonormal basis of V(λ), say (u1, . . . , um), one has:

φ[y](x) =

√
|M|
m

m∑
j=1

u j(x)u j(y) (4.1)

for all x, y ∈ M.

Proof. i) Fix y ∈ M and let φ be any normalized eigenfunction associated to λ. Pick a point z ∈ M
where φ(z) > 0; the radialization of φ around z will give a normalized eigenfunction which is radial
around z. Now fix an isometry h sending z to y: the function φ[y] = φ ◦ h satisfies the assumptions.

ii) Consider the function:

A(x, y) =

m∑
j=1

u j(x)u j(y). (4.2)
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We claim that A(x, y) does not depend on the orthonormal basis chosen.
In fact, if πδx denotes the orthogonal projection of the Dirac delta at x onto the eigenspace V(λ), it

is readily seen that πδx =
∑mk

j=1 u j(x)u j hence

A(x, y) = 〈πδx, πδy〉.

Consider the eigenfunction φ[y](x) as in i), unique normalized eigenfunction which is radial around
y and positive at y. Extend it to an orthonormal basis of V(λ) by adding w2, . . . ,wm. We claim that
every w j must vanish at y. In fact, if not, we can radialize w j around y and get a radial eigenfunction
orthogonal to φ[y], which is impossible. Therefore, using the orthonormal basis (φ[y],w2, . . . ,wm) to
compute A(x, y), we see that

A(x, y) = φ[y](x)φ[y](y). (4.3)

Now A(y, y) = φ[y](y)2 is independent on y because isometries preserve eigenfunctions and their mean
values over spheres. Integrating A(y, y) =

∑m
j=1 u j(y)2 over M we obtain A(y, y) =

m
|M|

and then

φ[y](y) =

√
m
|M|

(4.4)

Putting together (4.2), (4.3) and (4.4) we obtain

φ[y](x) =

√
|M|
m

m∑
j=1

u j(x)u j(y).

�

We remark that on S1 (i.e., in one dimension) formula (4.1) is just the addition formula for the
cosine:

cos(n(x − y)) = cos(nx) cos(ny) + sin(nx) sin(ny),

with n ∈ N. In this case, in (4.1) we have λ = n2, φ[y](x) =
cos(n(x−y))
√
π

, |M| = 2π, m = 2 (if n ≥ 1),

u1(x) =
cos(nx)
√
π

, u2(x) =
sin(nx)
√
π

.
Here is what we want to prove.

Theorem 4.2. Let M be a compact two-point homogeneous space with diameter D. There is a
countable dense set S ⊂ (0,D) such that the geodesic ball of radius t fails to have the Pompeiu
property if t ∈ S and has the Pompeiu property if t ∈ (0,D) \ S .

Proof. As a matter of fact, we prove the theorem for S = S (F ) as in the previous section, when F is
the foliation by geodesic spheres centered at a fixed point y0. Thus, Ωt is simply the ball of center y0

and radius t, namely Ωt = B(y0, t).
If t ∈ S (F ) then Ωt fails to have the Pompeiu property by Theorem 3.3. Therefore, we only need to

show that, if t < S (F ), then Ωt has the Pompeiu property.
In other words, if f is continuous and satisfies

∫
h(Ωt)

f = 0 for all isometries h, then necessarily
f = 0.
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We fix once and for all a spectral resolution {uk j} of M, where k = 1, 2, . . . and j = 1, . . . ,mk, the
multiplicity of λk. Expand f and get:

f (x) =

∞∑
k=1

mk∑
j=1

ak juk j(x)

We want to show that, under the given assumptions, ak j = 0 for all k, j. Fix the isometry h, and consider
h(Ωt): this is the ball of center h(y0) and same radius t:

h(Ωt) = B(h(y0), t).

Let χh(Ωt) denote the characteristic function of h(Ωt). We can express it as follows:

χh(Ωt) =

∞∑
k=1

ckφ
[h(y0)]
k , (4.5)

where φ[h(y0)]
k is the normalized eigenfunction associated with λk(M,F ), which is radial around h(y0)

and positive at h(y0). In fact, just extend φ[h(y0)]
k to an orthonormal basis of the eigenspace V(λk) by

adding the eigenfunctions w2, . . . ,wmk ; any of these is orthogonal to the subspace of radial functions
around h(y0), in particular, it is orthogonal to χh(Ωt). Hence, only the radial eigenfunctions φ[h(y0)]

k appear
in the Fourier expansion of χh(Ωt).

Next, observe that

ck =

∫
h(Ωt)

φ
[h(y0)]
k =

∫
Ωt

φ
[y0]
k , 0

for all k, because otherwise t ∈ S (F ). Note that ck does not depend on h. We want to express χh(Ωt) in
terms of the fixed basis {uk j}; for that, we apply the Addition Formula (4.1) to y = h(y0) and λ = λk and
obtain, for each k:

φ
[h(y0)]
k (x) =

√
|M|
mk

mk∑
j=1

uk j(x)uk j(h(y0))

so that (4.5) becomes:

χh(Ωt)(x) =

∞∑
k=1

mk∑
j=1

bkuk j(h(y0))uk j(x)

with bk =

√
|M|
mk

ck , 0 for all k. We have then∫
h(Ωt)

f =

∫
M
χh(Ωt) f

=

∫
M

 ∞∑
k=1

mk∑
j=1

bkuk j(h(y0))uk j(x)


 ∞∑

i=1

mi∑
l=1

ailuil(x)

 dx

=

∞∑
k=1

mk∑
j=1

bkak juk j(h(y0)).
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By assumption,
∫

h(Ωt)
f = 0 for any isometry h, hence the right-hand side vanishes for all isometries h;

since G acts transitively on M, we conclude that
∞∑

k=1

mk∑
j=1

bkak juk j(y) = 0

for all y ∈ M. Multiplying by u`m(y) and integrating over M we obtain that b`a`m = 0, hence a`m = 0,
for all `,m. The proof is complete.

�

5. Isoparametric foliations and the Pompeiu property on the sphere

When M = Sn, n ≥ 2, is the standard n-sphere, we have a more explicit characterization of proper
isoparametric foliations. The geometric classification of connected isoparametric hypersurfaces of Sn

is a long standing problem started with Cartan [4] which has been completed only very recently [6].
We resume here a few fundamental results proved in [12, 13].

Let Σ be a connected isoparametric hypersurface of Sn. Then

i) the number g of distinct principal curvatures of Σ can only be 1, 2, 3, 4, 6;

ii) if κ1 < · · · < κi < · · · κg denote the distinct principal curvatures, their multiplicities assume only
two values m0,m1 and are repeated as m0,m1,m0, ...; moreover n − 1 =

g(m0+m1)
2 ;

iii) if Σ has g distinct principal curvatures then it is a level surface of a Cartan polynomial p(x),
x ∈ Rn+1, namely a polynomial satisfying∆p(x) = −c|x|g−2 ,

|∇p|2 = g2|x|2g−2,
(5.1)

where ∆ and ∇ are the Laplacian and gradient of Rn+1, and c = (m1 −m0)g2/2. Denoting F = p|Sn ,
then F(Sn) = [−1, 1], F is a proper isoparametric function and Σ = F−1(t) for some t ∈ (−1, 1).

Conversely, let p(x) be a Cartan polynomial satisfying (5.1) with g(n − 1) ± c , 0, and let F = p|Sn .
Then F−1(t) for t ∈ (−1, 1) is a regular connected isoparametric hypersurface with g distinct principal
curvatures. Moreover F satisfies ∆F = g(g + n − 1)F − c,

|∇F|2 = g2(1 − F2),
(5.2)

where ∆ and ∇ are the usual Laplacian and gradient on Sn.
Throughout this section, by F we denote the restriction of a Cartan polynomial on Sn. As usual, let

M+ and M− denote the focal sets of the isoparametric foliation F associated with F. We can write then

F(x) = cos(gρ(x)), (5.3)

where ρ(x) = dist(x,M+). From (5.3) we deduce that

∆ρ(x) = −
F(x)|∇F(x)|2

g(1 − F(x)2)3/2 −
∆F(x)

g(1 − F(x)2)1/2 ,
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which combined with (5.2) gives

∆ρ(x) = −(n − 1) cot(gρ(x)) +
c

g sin(gρ(x))
. (5.4)

If f = ψ ◦ ρ for some smooth ψ, then from (2.3) and (5.4) we obtain that ∆ f = λ f on Sn is equivalent
to

ψ′′(t) +

(
(n − 1) cot(gt) −

c
g sin(gt)

)
ψ′(t) + λψ(t) = 0 , t ∈

(
0,
π

g

)
, (5.5)

and ψ′(0) = ψ′(π/g) = 0.
It is well-known that Spec1(Sn) = {k(k + n − 1) : k ∈ N}. In order to apply Theorem 3.1 we need to

compute Spec(Sn,F ).

Theorem 5.1. Let (Sn,F ) be an isoparametric foliation with g distinct principal curvatures. Then

Spec(Sn,F ) = {gk(gk + n − 1) : k ∈ N}.

Proof. By setting ψ(t) = y(cos(gt)), problem (5.5) is recast to the following singular Sturm-Liouville
problem

(1 − x2)y′′(x) +

(
c
g2 −

(
n − 1

g
+ 1

)
x
)

y′(x) +
λ

g2 y(x) = 0, (5.6)

for x ∈ (−1, 1). We require that y, along with its derivatives, remains bounded at x = ±1.
Part 1. First, we show that the eigenvalues are simple. In fact, if y1, y2 are two bounded solutions

of (5.6) with same eigenvalue λ then

(1 − x)
n−1
2g −

c
2g2 + 1

2 (1 + x)
n−1
2g + c

2g2 + 1
2 (y′1(x)y2(x) − y′2(x)y1(x)) = C

on (−1, 1), for some C ∈ R. By letting x → ±1 we deduce that C = 0, since n−1
g ±

c
g2 ≥ 1. Then y1 and

y2 are linearly dependent.
Part 2. We prove now that (5.6) admits a polynomial solution if and only if λ = gk(gk + n − 1)

for k ∈ N. To simplify the presentation, we will consider the case c = 0. The case c , 0 is treated
similarly. Let y be any function satisfying (5.6) for some λ ∈ R. It is analytic in (−1, 1) hence we can
write y(x) =

∑∞
j=0 a jx j. Substituting this expression in (5.6) we obtain

(1 − x2)
∞∑
j=2

j( j − 1)a jx j−2 −

∞∑
j=1

((
n − 1

g
+ 1

)
x
)

ja jx j−1 +

∞∑
j=0

λ

g2 a jx j = 0. (5.7)

Comparing the coefficients we find the recurrence relations

a2 = −
λ

2g2 a0 , a3 =
1
6

((
n − 1

g
+ 1

)
−
λ

g2

)
a1 , a j+2 =

j
(

j + n−1
g

)
− λ

g2

( j + 2)( j + 1)
a j. (5.8)

If y is a polynomial of degree k, then from (5.8) with j = k we see that λ = gk(gk + n− 1). Conversely,
if λ = gk(gk + n − 1) for some k ∈ N, then ak+2` = 0 for all ` ≥ 1. Without loss of generality, assume
k even. Then y(x) = Pk(x) +

∑∞
j=0 a2 j+1x2 j+1, where Pk is an even polynomial of degree k. If a2 j+1 = 0
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for some j, then from (5.8) we see that a2 j+1 = 0 for all j ∈ N. Assume that a2 j+1 , 0 for some j ∈ N
(hence for all j ∈ N). Relation (5.8) is rewritten as

a2 j+3 =
(2 j + 1)

(
2 j + 1 + n−1

g

)
− λ

g2

(2 j + 3)(2 j + 2)
a2 j+1. (5.9)

We note that there exists j0 ∈ N such that (2 j + 1)(2 j + 1 + n−1
g )− λ

g2 > 0 and a2 j+1 does not change sign
for all j ≥ j0. Without loss of generality, assume a2 j+1 > 0 for all j ≥ j0. Since n−1

g ≥ 1, we have, for
all j ≥ j0

a2 j+1 ≥
(2 j + 1)(2 j + 2) − λ

g2

(2 j + 3)(2 j + 2)
· · ·

(2 j0 + 1)(2 j0 + 2) − λ
g2

(2 j0 + 3)(2 j0 + 2)
a2 j0+1

=
2 j0 + 1
2 j + 3

j∏
`= j0

(
1 −

λ

g2(2` + 1)(2` + 2)

)

Since
∏∞

`=0

(
1 − λ

g2(2`+1)(2`+2)

)
converges to a positive number, we deduce that there exists C > 0 such

that a2 j+1 ≥
C

2 j+3 for all j ≥ j0. Then limx→±1 y(x) = ±∞. Thus a2 j+1 must be zero for all j ∈ N and
y = Pk.

Part 3. Assume now λ , gk(gk + n − 1) for all k ∈ N and let y , 0 be a bounded eigenfunction
associated to λ. Then ∫ 1

−1
(1 − x)

n−1
2g −

c
2g2 −

1
2 (1 + x)

n−1
2g + c

2g2 −
1
2 y(x)Pk(x)dx = 0 (5.10)

for all k ∈ N, where Pk(x) is an eigenfunction associated to the eigenvalue gk(gk + n − 1), i.e., a
polynomial of degree k. By the Stone-Weierstrass Theorem we know that y can be uniformly
approximated in C0([−1, 1]) by polynomials. Therefore we can replace Pk by y in (5.10) and deduce
that ∫ 1

−1
(1 − x)

n−1
2g −

c
2g2 −

1
2 (1 + x)

n−1
2g + c

2g2 −
1
2 y(x)2dx = 0

hence y = 0.
�

Remark 5.2. Standard computations show that the polynomials defined by

Pk(x) =
1

(1 − x)
n−1
2g −

c
2g2 −

1
2 (1 + x)

n−1
2g + c

2g2 −
1
2

dk

dxk

(
(1 − x)

n−1
2g −

c
2g2 −

1
2 +k(1 + x)

n−1
2g + c

2g2 −
1
2 +k

)
(5.11)

are bounded eigenfunctions of (5.6) associated with λk = gk(gk + n − 1). For k = 0, 1, 2, 3, we have

P0(x) = 1,

P1(x) =
c
g2 −

(
1 +

n − 1
g

)
x

P2(x) =
c2

g4 −

(
3 +

n − 1
g

)
−

2c
g2

(
2 +

n − 1
g

)
x +

(
2 +

n − 1
g

) (
3 +

n − 1
g

)
x2
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P3(x) =
c3

g6 −
c
g2

(
13 +

3(n − 1)
g

)
+

(
3
(
3 +

n − 1
g

) (
5 +

n − 1
g

)
−

3c2

g4

(
3 +

n − 1
g

))
x

+
3c
g2

(
3 +

n − 1
g

) (
4 +

n − 1
g

)
x2

−

(
3 +

n − 1
g

) (
4 +

n − 1
g

) (
5 +

n − 1
g

)
x3.

Note that for c = 0, Pk(x) is an even polynomial for k even and it is odd for k odd.

Corollary 5.3. Let F be an isoparametric foliation of Sn with g , 1. Then every isoparametric tube
of F fails to have the Pompeiu property.

Proof. The corollary follows from Theorem 3.1. If g , 1, then, from Theorem 5.1 we have
Spec(Sn,F ) = {gk(gk + n − 1) : k ∈ N} ( Spec1(Sn) = {k(k + n − 1) : k ∈ N}. �

When g = 1 the isoparametric foliations are given by concentric spheres, and all the eigenvalues of
the Laplacian are radial. In particular, up to isometries, F = x1 |Sn . Any eigenspace contains exactly one
radial eigenfunction (up to scalar multiplication).

When g = 2, n ≥ 3 isoparametric foliations are given by Clifford tori. Namely, up to isometries,
F = p|Sn , where p(x) =

∑`
i=1 x2

i −
∑`+m

i=` x2
i , n + 1 = ` + m, `,m > 1. The radial eigenvalues are

{2k(2k + n − 1) : k ∈ N}.
As already mentioned, Theorems 3.1 and 3.3 hold also in the case of non proper isoparametric

foliations. In this case, the focal sets can have codimension 1, or they can be disconnected. For
example, on Sn ⊂ Rn+1 we consider the function F = (1 − x2

1)
k
2
|Sn

, where x = (x1, .., xn+1) denotes a
point in Rn+1, k ∈ N. For k ≥ 2 the function F is isoparametric but it is not proper. For simplicity, let us
consider k = 2. If x0 = (1, 0, · · · , 0), then F = sin(ρ(x))2, where ρ(x) = dist(x, x0). The focal sets are
M+ = {x0} ∪ {−x0} and M− = {ρ(x) = π

2 } (i.e., the equator). We see that one focal set is disconnected,
while the other has codimension 1.

Isoparametric tubes Ωt with boundary F−1(t), t ∈
(
0, π2

)
, are either equidistant bands around the

equator, or opposite congruent spherical caps. Theorems 3.1 and 3.3 hold with no modifications. In
particular, one can verify that Spec(Sn,F ) ( Spec1(Sn), hence Ωt fails to have the Pompeiu property
for all t ∈

(
0, π2

)
. In fact the coordinate functions xi |Sn are not in the radial spectrum and integrate zero

over all Ωt. In particular, the origin of Rn+1 is always the barycenter of Ωt (see also Section 6).

6. A simple argument using antipodal invariance

In this section we show, by very simple arguments, that the Pompeiu property fails for a rather large
class of spherical domains, namely, those domains which are invariant under the antipodal map. In
what follows, we call a function f : Rn+1 → R linear if it is of the form f (x1, ..., xn+1) =

∑
j a jx j for

some a1, ..., an+1 ∈ R.

Proposition 6.1. Let Ω be an antipodal invariant domain in Sn. Then:

i) One has
∫

Ω
u = 0 for all linear functions u. In particular, the barycenter of Ω is always the origin.
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ii) Ω fails to have the Pompeiu property.

Proof. i) For any isometry σ of the sphere and any function u one has
∫
σ(Ω)

u =
∫

Ω
u ◦σ. Let σ(x) = −x

be the canonical involution; it is an isometry and by assumption σ(Ω) = Ω. Now, for any linear
function u, we have u ◦ σ = −u; this implies that:∫

Ω

u =

∫
σ(Ω)

u =

∫
Ω

u ◦ σ = −

∫
Ω

u

which shows the assertion.
ii) We know that the space of linear functions is invariant by the isometry group of Sn (it corresponds

to the eigenspace associated to λ2(Sn)). Fix a linear function u and let h be any isometry. Then:∫
h(Ω)

u =

∫
Ω

u ◦ h = 0

because u ◦ h is linear as well. �

A simple consequence is that, if F : Rn+1 → R is any polynomial function of even degree, and if
Ω = {x ∈ Sn : F(x) < c} for some c, then Ω is antipodal invariant simply because F(x) = F(−x) for
all x ∈ Sn. Since any isoparametric tube with g even is of that type ( its Cartan polynomial has in fact
degree g), we immediately get

Corollary 6.2. Any isoparametric tube with g = 2, 4, 6 fails to have the Pompeiu property.

It remains to deal with the cases g = 1 and g = 3. When g = 1 we are dealing with the standard
isoparametric foliation, and isoparametric tubes are geodesic balls: by the Freak Theorem (or
Theorem 1.4) we know that in that case Ω = B(r) fails to have the Pompeiu property only for r in a
countable and dense subset of (0, π). In the case g = 3 (in which case isoparametric tubes are never
antipodal invariant), the fact that all isoparametric tubes fail to have the Pompeiu property is a
consequence of Theorem 3.1, as explained in Corollary 5.3.

7. An upper bound for the first positive eigenvalue of isoparametric hypersurfaces

A well known conjecture of Yau [31] states that the first positive eigenvalue λ2(Σ) of any embedded
minimal hypersurface Σ of Sn is n−1. In [22,23] Yau’s conjecture is proved for minimal isoparametric
hypersurfaces. Theorem 3.1 and Theorem 5.1 allow to prove that for g , 1 the minimal regular
hypersurface is the maximizer of λ2(Σ) in the isoparametric family.

When g = 1 isoparametric hypersurfaces are geodesic spheres and n − 1 is actually a minimizer for
λ2(Σ) which takes values in [n − 1,+∞).

Theorem 7.1. Let Σ be a connected isoparametric hypersurface of Sn with g > 1 distinct principal
curvatures. Then

λ2(Σ) ≤ n − 1.

Equality holds if and only if Σ is minimal.
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Proof. The restrictions of the coordinate functions x1, ..., xn+1 to Sn are eigenfunctions of the Laplacian
on Sn with eigenvalue n. From Theorem 5.1 it follows that if g > 1 then n < Spec(Sn,F ). From
Theorem 3.1 we deduce that ∫

Σ

xi = 0 , i = 1, ..., n + 1.

Then

λ2(Σ) ≤

∫
Σ
|∇Σxi|

2∫
Σ

x2
i

, i = 1, ..., n + 1. (7.1)

Here ∇Σ denotes the gradient on Σ. Multiplying both sides of (7.1) by
∫

Σ
x2

i and summing over i =

1, ..., n + 1 we obtain

|Σ|λ2(Σ) ≤
∫

Σ

n+1∑
i=1

|∇Σxi|
2.

The result follows since
n+1∑
i=1

|∇Σxi|
2 =

n+1∑
i=1

(
|∇xi|

2 − |〈∇xi, x〉|2 − |〈∇xi,∇ρ(x)〉|2
)

= n − 1.

Here ρ(x) = dist(x,M+) with M+ a focal set of Σ, dist and ∇ are the usual distance and gradient on Sn

and ∇ is the standard gradient of Rn+1.
If Σmin is minimal then from [22] we have λ2(Σmin) = n − 1. Conversely, if λ2(Σ) = n − 1, then

x1, ..., xn+1 is a set of corresponding eigenfunctions. A classical result by Takahashi [21] implies that
Σmin is minimal. �

8. One-dimensional case and the role of compactness

We have seen from [2, 26] (alternatively, from Theorems 1.3 and 1.4) that there exists a countable
and dense set of radii S ( (0, π) such that the spherical cap B(r) ⊂ Sn (the ball of radius r) fails to
have the Pompeiu property whenever r ∈ S , while it has the Pompeiu property whenever r < S . On
the other hand, on Rn all balls fail to have the Pompeiu property. As already observed, this difference
is quite striking and is certainly one of the reasons why Ungar, the first to have noticed it for S2, called
this result the “Freak Theorem”.

This difference seems to be intimately connected with the compactness of the space, and
consequently with the discreteness of the spectrum of the Laplacian. We want to provide here a very
simple interpretation of this fact, based on elementary computations in one dimension.

First, we note that all balls in R (i.e., all segments) fail to have the Pompeiu property, exactly as it
happens in Rn. In fact, for all values of α > 0 we find non-zero functions f such that∫ c+2α

c
f (x)dx = 0

for all c ∈ R. It is sufficient to take any 2α-periodic function on R which integrates to zero on [0, 2α],
for example f (x) = a cos( π

α
x) + b sin( π

α
x). In this case we note that the spectrum of the Laplacian on R

is the whole interval [0,+∞), and f is a generalized eigenfunction with eigenvalue π2

α2 .
On the other hand, Ungar’s Freak Theorem can be appreciated already in the case of S1, and the

corresponding proof is an easy exercise.
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Proposition 8.1. Let α ∈ (0, π) and let f be a continuous function on S1 such that
∫ c+2α

c
f (x)dx = 0 for

all c ∈ (−π, π). Then f = 0 unless α
π
∈ (0, 1) ∩ Q.

Proof. We write

f (x) = a0 +

∞∑
j=1

(a j cos( jx) + b j sin( jx)), (8.1)

with a2
0 +

∑∞
j=1(a2

j + b2
j) < +∞. Then∫ c+2α

c
f (x)dx = 2a0α +

∞∑
j=1

2
j

sin ( jα)
(
a j(cos( j(c + α))) + b j(sin( j(c + α)))

)
. (8.2)

If α
π

= m
n ∈ (0, 1) ∩ Q (m, n ∈ N, n , 0), we choose f (x) = an cos(nx) + bn sin(nx), (an, bn) , (0, 0).

The sum (8.2) is then zero for all c ∈ (−π, π), i.e., arcs of length 2α fail to have the Pompeiu property.
Let now α = πs with s ∈ (0, 1) \ Q. We set

g(c) :=
∫ c+2α

c
f (x)dx = 2πsa0 +

∞∑
j=1

2
j

sin( jπs)
(
a j(cos( jc + jπs))) + b j(sin( jc + jπs))

)
. (8.3)

Then g(c) = A0 +
∑∞

j=1 A j cos( jc) + B j sin( jc), where the coefficients are given by A0 = a0α, A j =
2 sin(πs)

j

(
a j cos( jπs) + b j sin( jπs)

)
, B j =

2 sin(πs)
j

(
b j cos( jπs) − a j sin( jπs)

)
. Assume g(c) = 0 for all

c ∈ (−π, π). The series defining g is absolutely convergent hence A0 = 0 and A j = B j = 0 for all
j ∈ N. Since sin( jπs) , 0, this happens if and only if a0 = 0 and a j = b j = 0 for all j ≥ 1. Therefore
f = 0. �

Note that in the case of S1 and the foliation with focal set given by a point, the set S (F ) of
Theorem 1.3 is {πs : s ∈ (0, 1) ∩ Q}. Then balls (arcs) fail to have the Pompeiu problem only for a
countable and dense subset. The corresponding functions integrating zero on all arcs of length
2α = 2πm

n (m, n ∈ N, n , 0) are the eigenfunctions of the Laplacian on S1 corresponding to the
eigenvalues `2, for ` ∈ N, ` ≥ n.

We conclude this section with a brief discussion on other (non proper) isoparametric foliations on
S1 for which the corresponding tubes are not connected and yet the results of Theorem 1.2 hold as well.
These examples may be not interesting per se, however they are useful to have a simple interpretation
of Theorem 1.2 and Corollary 1.7.

Let x ∈ S1 and let F(x) = cos(kx). The function F is isoparametric and the corresponding tubes of
radius t ∈ (0, π/k) with focal points at F = ±1 are given by Ωt(0), where

Ωt(c) :=
k−1⋃
j=0

(
c +

π

2k
+

jπ
k
− t, c +

π

2k
+

jπ
k

+ t
)
,

Choosing as test functions f (x) = a cos(`x) + b sin(`x) we see that
∫

Ωt(c)
f (x)dx = 0 for all c ∈ (0, π/k)

if and only if `2

k2 , m2, with m ∈ N, and we can always find such an ` when k ≥ 2. We remark that this
condition is exactly the analogous of the condition described in Corollary 5.3, namely {gm(gm+n−1) :
m ∈ N} ( {`(` + n − 1) : ` ∈ N} with n = 1 and g = k.
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