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Abstract: We study the asymptotic behavior as p Ñ 8 of the Gelfand problem
#

´∆pu “ λ eu in Ω Ă Rn

u “ 0 on BΩ.

Under an appropriate rescaling on u and λ, we prove uniform convergence of solutions of the Gelfand
problem to solutions of

#

min t|∇u| ´ Λ eu,´∆8uu “ 0 in Ω,

u “ 0 on BΩ.

We discuss existence, non-existence, and multiplicity of solutions of the limit problem in terms of Λ.
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1. Introduction

We are interested in the asymptotic behavior as p Ñ 8 of sequences of solutions of the problem
#

´∆pu “ λ eu in Ω Ă Rn

u “ 0 on BΩ.
(1.1)

In the case p “ 2, problem (1.1) is known as the Liouville-Bratu-Gelfand problem [5, 22, 37]; see
also [15,26]. It appears in connection with prescribed Gaussian curvature problems [9,37], emission of
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electricity from hot bodies [40], and the equilibrium of gas spheres and the structure of stars [8,17,42].
Problem (1.1) with p “ 2 was also studied by Barenblatt in relation to combustion theory in a volume
edited by Gelfand [22]. For general p, problem (1.1) is often known in the literature as the “Gelfand
problem” or a “Gelfand-type problem”. It was studied by Garcı́a-Azorero, Peral, and Puel in [20, 21];
see also [7, 24, 41] and the references therein.

The asymptotic study of p-Laplacian problems as p Ñ 8 offers a qualitative and quantitative
understanding of their solution sets for large p, see [4, 10–13, 18, 30]. Additionally, they have been
used in [23] to obtain optimal bounds for the diameter of manifolds in terms of their curvature.

In [4, 10–13, 18, 30], the authors study limits of p-Laplacian equations with power-type right-hand
sides and combinations of these. In all these cases, the parameter λ is allowed to vary with p in order
to get nontrivial limits of sequences tuλ,pup of solutions to the corresponding p-Laplacian problem;
namely,

λ
1{p
p Ñ Λ and uλp,p Ñ u as p Ñ 8.

With an exponential right-hand side, the solution sets change more drastically as p Ñ 8 and more
severe rescalings become necessary. To take limits in (1.1), we consider

#

´∆puλp,p “ λp euλp ,p in Ω

uλp,p “ 0 on BΩ,
(1.2)

with the rescaling
λ

1{p
p

p
Ñ Λ as p Ñ 8. (1.3)

Under this normalization, we prove that any uniform limit

uλp,p

p
Ñ u as p Ñ 8 (1.4)

is a viscosity solution of the limit problem
#

min t|∇u| ´ Λ eu,´∆8uu “ 0 in Ω,

u “ 0 on BΩ.
(1.5)

It is worth noting that in [38], the authors consider problem (1.1) without the rescalings (1.3)
and (1.4). They obtain that, regardless of λ, the solutions up converge uniformly as p Ñ 8 to the
unique viscosity solution of

#

min t|∇u| ´ 1,´∆8uu “ 0 in Ω,

u “ 0 on BΩ,

which is the distance function to the boundary of the domain. As the authors of [38] acknowledge
in their paper, this result is not unexpected since for each nonnegative function f P L8pΩqzt0u, the
sequence of unique solutions of

#

´∆pvp “ f pxq in Ω

vp “ 0 on BΩ,
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converges uniformly in Ω to the distance function to the boundary of the domain; see [3, 27, 31]. This
highlights a critical feature of these problems, a precise scaling between u and λ that balances reaction
and diffusion and produces a nontrivial limit problem.

Therefore, in this paper, we prove passage to the limit of the sequence of minimal solutions of
problem (1.2) under the rescaling (1.3), (1.4). Furthermore, we show that the resulting limit is a
minimal solution of (1.5). Note that the fact that the limit solution is minimal is nontrivial; in
principle, limit and minimal solutions could differ. To prove this, we use a comparison principle for
“small solutions” of problem (1.5), which we prove in Section 4. As it turns out, minimal solutions to
problem (1.5) are “small” in the sense of this comparison principle. To the best of our knowledge, no
corresponding comparison and uniqueness results for small solutions were known in the literature for
p ă 8.

In Section 8, we find a second solution to the limit problem (1.5) under certain geometric
assumptions on the domain Ω. Furthermore, we show that both solutions lie on an explicit curve of
solutions. Some examples of domains satisfying the geometric condition are the ball, the annulus, and
the stadium (convex hull of two balls of the same radius); squares or ellipses do not verify the
condition. We conjecture that this second solution is a limit of appropriately rescaled mountain-pass
solutions of (1.2).

The paper is organized as follows. In Section 2, we provide some necessary preliminaries, and
Section 3 formally introduces the limit problem. We have chosen to introduce the limit problem before
proving any convergence results to streamline the presentation. In Section 4, we prove the comparison
principle for small solutions of the limit equation (1.5). Section 5 concerns non-existence of solutions
to (1.5) for large values of Λ. In Section 6, we find a branch of minimal solutions to (1.5) up to a
maximal Λ. Section 7 discusses uniform convergence as p Ñ 8 of p-minimal solutions to minimal
solutions of (1.5). Finally, in Section 8, we show the multiplicity result and exhibit a curve of explicit
solutions under a geometric condition on the domain.

2. Preliminaries

In this section, we state some necessary preliminaries and notation. First, let us recall that weak
solutions of problem (1.1) are also viscosity solutions. The proof, which we omit here, follows [30,
Lemma 1.8]; see also [3].

Lemma 2.1. If u is a continuous weak solution of (1.1), then it is a viscosity solution of the same
problem, rewritten as

"

Fpp∇u,D2uq “ λ eu in Ω

u “ 0 on BΩ,

where

Fppξ, Xq “ ´|ξ|p´2
¨ trace

ˆ

´

I ` pp´ 2q
ξ b ξ

|ξ|2

¯

X
˙

. (2.1)

The divergence form of the p-Laplacian, i.e., divp|∇u|p´2∇uq, is better suited for variational
techniques, while the expanded form (2.1) is preferable in the viscosity framework. In the sequel, we
will always consider the most suitable form without further mention.

Mathematics in Engineering Volume 5, Issue 2, 1–28.



4

In [31] the problem
#

´∆pvp “ 1 in Ω

vp P W1,p
0 pΩq

is studied in connection with torsional creep problems when Ω is a general bounded domain. Since
we are interested in the case p Ñ 8, we can assume p ą n without loss of generality. Then every
function in vp P W1,p

0 pΩq can be considered continuous in Ω and 0 on the boundary in the classical
sense. The existence result we will need below is the following. We refer the interested reader to [31]
and [27, Theorem 3.11 and Remark 4.23] for the proof.

Proposition 2.2. Let Ω be a bounded domain and n ă p ă 8. Then, there exists a unique solution
vp P W1,p

0 pΩq XCpΩq of the p-torsion problem
#

´∆pvp “ 1 in Ω

vp “ 0 on BΩ,
(2.2)

and vp converge uniformly as p Ñ 8 to the unique viscosity solution to
#

mint|∇v| ´ 1,´∆8vu “ 0 in Ω,

v “ 0 on BΩ.

Moreover, vpxq “ distpx, BΩq.

The uniqueness of the solution in Proposition 2.2 follows from the following comparison principle.

Lemma 2.3. Let f : Ω Ñ R be a continuous, bounded, and positive function. Suppose that u, v :
Ω Ñ R are bounded, u is upper semicontinuous and v is lower semicontinuous in Ω. If u and v are,
respectively, a viscosity sub- and supersolution of

mint|∇w| ´ f pxq,´∆8wu “ 0 in Ω,

and u ď v on BΩ, then u ď v in Ω.

We refer the interested reader for instance to [27, Theorem 4.18 and Remark 4.23] and also [25,
Theorem 2.1] (for the proof of [27, Theorem 4.18], notice that every 8-superharmonic function is
Lipschitz continuous, see [35]).

We also need some facts about first eigenvalues and eigenfunctions of the p-Laplacian. Let us recall
that the first eigenvalue λ1pp; Ωq is characterized by the nonlinear Rayleigh quotient

λ1pp; Ωq “ inf
φPW1,p

0 pΩq

ş

Ω
|∇φ|p dx

ş

Ω
|φ|p dx

.

In [32] (see also [33]), it is proved that the first eigenvalue of the p-Laplacian is simple (that is,
the first eigenfunction is unique up to multiplication by constants) when Ω is a bounded domain; see
also [2,19,39] and the references in [32]. Moreover, it is also proved in [32] that in a bounded domain,
only the first eigenfunction is positive and that the first eigenvalue is isolated (there exists ε ą 0 such
that there are no eigenvalues in pλ1, λ1 ` εs).
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Proposition 2.4 ( [32]). Let Ω be a bounded domain and n ă p ă 8. Then, there exists a solution
ψp P W1,p

0 pΩq XCpΩq of
#

´∆pψp “ λ1pp; Ωq |ψp|
p´2ψp in Ω

ψp “ 0 on BΩ.

Moreover, λ1pp; Ωq is simple and isolated.

Lastly, we recall the behavior as p Ñ 8 of the first eigenvalue of the p-Laplacian, see [30] for the
proof.

Lemma 2.5. lim
pÑ8

λ1pp,Ωq1{p “ Λ1pΩq “ }distp¨, BΩq}´1
8 .

We denote the first8-eigenvalue by Λ1pΩq, see [30].

3. The limit problem

In the present section, we characterize uniform limits of appropriate rescalings of solutions of (1.2)
as solutions of a PDE. See [4, 10–13, 18, 30] for related results.

Proposition 3.1. Consider a sequence tpλp, uλp,pqup of solutions of (1.2) and assume

lim
pÑ8

λ
1{p
p

p
“ Λ.

Then, any uniform limit

uΛ “ lim
pÑ8

uλp,p

p
is a viscosity solution of the problem

#

min
 

|∇u| ´ Λ eu,´∆8u
(

“ 0 in Ω,

u “ 0 on BΩ.
(3.1)

Proof. Consider a point x0 P Ω and a function φ P C2pΩq such that uΛ´φ has a strict local minimum at
x0. As uΛ is the uniform limit of uλp,p{p, there exists a sequence of points xp Ñ x0 such that uλp,p´ p φ
attains a local minimum at xp for each p. As uλp,p is a continuous weak solution of (1.2), it is also a
viscosity solution and a supersolution. Then, we get

´pp´ 2q pp´1
|∇φpxpq|

p´4

"

|∇φpxpq|
2

p´ 2
∆φpxpq` xD2φpxpq∇φpxpq,∇φpxpqy

*

“ ´pp´1∆pφpxpq ě λp euλ,ppxpq.

Rearranging terms, we obtain

´pp´ 2q

»

—

—

–

|∇φpxpq|

´

λp

pp´1 euλ,ppxpq

¯
1

p´4

fi

ffi

ffi

fl

p´4
"

|∇φpxpq|
2

p´ 2
∆φpxpq ` xD2φpxpq∇φpxpq,∇φpxpqy

*

ě 1.
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If we suppose that |∇φpx0q| ă ΛeuΛpx0q we obtain a contradiction letting p Ñ 8 in the previous
inequality. Thus, it must be

|∇φpx0q| ´ ΛeuΛpx0q ě 0. (3.2)

We also have that
´ ∆8φpx0q “ ´xD2φpx0q∇φpx0q,∇φpx0qy ě 0, (3.3)

because we would get a contradiction otherwise. Therefore, we can put together (3.2) and (3.3) writing

min
 

|∇φpx0q| ´ ΛeuΛpx0q,´∆8φpx0q
(

ě 0,

and conclude that uΛ is a viscosity supersolution of (3.1).
It remains to show that uΛ is a viscosity subsolution of the limit equation (3.1). More precisely, we

have to show that, for each x0 P Ω and φ P C2pΩq such that uΛ´ φ attains a strict local maximum at x0

(note that x0 and φ are not the same than before) we have

min
 

|∇φpx0q| ´ ΛeuΛpx0q,´∆8φpx0q
(

ď 0.

We can suppose that
|∇φpx0q| ą ΛeuΛpx0q,

since we are done otherwise. Again, the uniform convergence of uλ,p{p to uΛ provides a sequence of
points xp Ñ x0 which are local maxima of uλ,p ´ p φ. Recalling the definition of viscosity subsolution
we have

´pp´ 2q

»

—

—

–

|∇φpxpq|

´

λp

pp´1 euλ,ppxpq

¯
1

p´4

fi

ffi

ffi

fl

p´4
"

|∇φpxpq|
2

p´ 2
∆φpxpq ` xD2φpxpq∇φpxpq,∇φpxpqy

*

ď 1,

for each p. Letting p Ñ 8, we find ´∆8φpx0q ď 0, or else we get a contradiction. �

In the previous argument, the fact that euΛpx0q is strictly positive independently of the value of uΛpx0q

makes a difference with the case with a power-type right-hand side (see [10–13, 18, 30]), where one
needs to make sure that uΛ ą 0 in Ω. Furthermore, in the power-type right-hand side case, one can
consider sign-changing solutions, see [10, 29] and get a more involved limit equation that takes into
account sign changes. In the next result, we show that all solutions to the limit problem (3.1) are
positive. Moreover, we show that solutions cannot be arbitrarily small for every given Λ and must
grow (at least) linearly from the boundary.

Proposition 3.2. Let Ω Ă Rn be a bounded domain and Λ ą 0. Then, every solution uΛ of (3.1)
verifies

uΛ ě Λ distp¨, BΩq in Ω.

In particular, every solution of (3.1) is strictly positive and satisfies the estimate

}uΛ}L8pΩq ě ΛΛ1pΩq
´1.
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Proof. Let uΛ be a solution of (3.1). Then, uΛ ě 0 in Ω by Lemma 2.3. Let us show that

mint|∇uΛ| ´ Λ,´∆8uΛu ě 0 in Ω

in the viscosity sense. To see this, consider x0 P Ω and φ P C2 such that uΛ ´ φ has a minimum at x0.
Since uΛpxq is a solution of (3.1), we have

min
 

|∇φpx0q| ´ Λ euΛpx0q,´∆8φpx0q
(

ě 0 in Ω.

We deduce ´∆8φpx0q ě 0 and |∇φpx0q| ě Λ euΛpx0q ě Λ and we get

min t|∇φpx0q| ´ Λ,´∆8φpx0qu ě 0 in Ω

as desired.
On the other hand, vΛpxq “ Λ distpx, BΩq is the unique viscosity solution of

mint|∇vΛ| ´ Λ,´∆8vΛu “ 0 in Ω.

Then, one gets uΛ ě vΛ “ Λ distp¨, BΩq by comparison, see Lemma 2.3. �

4. Comparison for small solutions of the limit problem

In this section, we prove a comparison principle for small solutions of the limit equation (1.5). This
result is interesting for two main reasons. Firstly, Eq (1.5) is not proper in the terminology of [14],
a basic requirement for comparison. Secondly, based on the multiplicity results for the p-Laplacian
equation (1.2), see [20,21], one cannot expect comparison to hold in general. The key idea is a change
of variables that allows us to obtain a proper equation for solutions with }u}8 ă 1. Remarkably,
minimal solutions of (1.5) verify this condition (see Section 6 below), and we can conclude they are
the only ones with }u}8 ă 1. The change of variables we use here is the same that was used to prove
comparison for the limit problem with concave right-hand side in [12].

We prove a more general result with a “right-hand” side f puq that satisfies a hypothesis reminiscent
of the celebrated Brezis-Oswald condition, see [6] and Remark 4.2 below.

Theorem 4.1. Let f : R Ñ R be a continuous function for which there exist c P p0,8s and q P p0, 1q
such that

f ptq
tq is positive and non-increasing for all t P p0, cq. (4.1)

Let Ω Ă Rn be a bounded domain and let u, v P CpΩq with maxt}u}8, }v}8u ă c be, respectively, a
positive viscosity sub- and supersolution of

min t|∇w| ´ f pwq,´∆8wu “ 0 in Ω. (4.2)

Then, whenever u ď v on BΩ, we have u ď v in Ω.

Remark 4.2. It is possible to prove a comparison principle for Eq (4.2) under the Brezis-Oswald [6]
condition

f ptq
t

is decreasing for all t ą 0.
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Under this condition, the power-type change of variables used in [12] and in the proof of Theorem 4.1
no longer applies. Instead, we need a logarithmic change of variables, similarly to the comparison
principle for the eigenvalue problem for the infinity Laplacian in [30]. However, a viscosity
comparison principle obtained through a logarithmic change of variables requires that either the sub-
or the supersolution are strictly positive in Ω and does not allow us to conclude uniqueness of
solutions for the Dirichlet problem with homogeneous boundary data, which our result does.

Before going into the proof of Theorem 4.1, let us discuss an important consequence of
Theorem 4.1, the uniqueness of “small” solutions of problem (3.1).

Corollary 4.3. Let Ω Ă Rn be a bounded domain. For every Λ ą 0, the problem
#

min t|∇u| ´ Λ eu,´∆8uu “ 0 in Ω,

u “ 0 on BΩ,
(4.3)

has at most one viscosity solution with }u}8 ă 1.

Proof of Corollary 4.3. Suppose for the sake of contradiction that there are two viscosity solutions,
u, v of (4.3) with maxt}u}8, }v}8u ă 1. Notice that both u and v are strictly positive in Ω by
Proposition 3.2. In this case we have f ptq “ Λ et and (4.1) is satisfied with c “ q for every q P p0, 1q.
Then, we can choose q P p0, 1q such that maxt}u}8, }v}8u ă q ă 1, and all the hypotheses of
Theorem 4.1 are satisfied. Because u “ v on BΩ, we conclude u ” v. �

We devote the rest of the section to the proof of Theorem 4.1. In the next lemma we apply a change
of variables to Eq (4.2) to obtain a proper equation for small solutions.

Lemma 4.4. Let q P p0, 1q and let v be a positive viscosity supersolution (respectively, subsolution) of
(4.2) in Ω. Then, ṽpxq “ v1´qpxq is a viscosity supersolution (subsolution) of

min

$

&

%

|∇w̃pxq| ´ p1´ qq
f
´

w̃pxq
1

1´q

¯

w̃pxq
q

1´q
,´∆8w̃pxq ´

q
1´ q

|∇w̃pxq|4

w̃pxq

,

.

-

“ 0 (4.4)

in every subdomain U compactly contained in Ω.

Proof. Let φ̃ P C2pΩq touch ṽ from below at x0 P Ω. If we define φpxq “ φ̃pxq
1

1´q , then φ touches v
from below at x0. Note that φpxq is C2 in a neighborhood of x0, since v ą 0 in Ω implies φ̃pxq ą 0
around x0. Then

∇φpx0q “
1

1´ q
φ̃px0q

q
1´q ∇φ̃px0q,

D2φpx0q “
1

1´ q
φ̃px0q

q
1´q D2φ̃px0q `

q
p1´ qq2

φ̃px0q
2q´1
1´q ∇φ̃px0q b ∇φ̃px0q.

Because v is a viscosity supersolution of (4.2) and φpx0q “ vpx0q ą 0, we have

0 ď min
 

|∇φpx0q| ´ f
`

φpx0q
˘

,´xD2φpx0q∇φpx0q,∇φpx0qy
(
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“ min

#

1
1´ q

φ̃px0q
q

1´q

˜

|∇φ̃px0q| ´ p1´ qq
f
´

φ̃px0q
1

1´q

¯

φ̃px0q
q

1´q

¸

,

´

´ 1
1´ q

φ̃px0q
q

1´q

¯3
ˆ

∆8φ̃px0q `
q

1´ q
|∇φ̃px0q|

4

φ̃px0q

˙

+

.

Therefore,

min

$

&

%

|∇φ̃px0q| ´ p1´ qq
f
´

φ̃px0q
1

1´q

¯

φ̃px0q
q

1´q
,´∆8φ̃px0q ´

q
1´ q

|∇φ̃px0q|
4

φ̃px0q

,

.

-

ě 0,

that is, ṽ is a viscosity supersolution of (4.4). The subsolution case is analogous. �

Equation (4.4) is given by the functional

F : R` ˆ Rn
ˆ Sn

ÝÑ R

pt, p, Xq ÝÑ min
"

|p| ´ p1´ qq f
´

t
1

1´q

¯

t´
q

1´q ,´xXp, py ´
q

1´ q
|p|4

t

*

,

which is degenerate elliptic and non-decreasing in t for 0 ă t ă c1´q by hypothesis (4.1). Under
these conditions, it is well-known (see [14, Section 5.C]) that it is possible to establish a comparison
principle when the supersolution or the subsolution are strict. In the next lemma we show that we
can find a perturbation of the supersolution that is a strict supersolution, see [12, 27, 30] for related
constructions.

Lemma 4.5. Consider a subdomain U compactly contained in Ω, and q P p0, 1q, c ą 0 as in (4.1). Let
ṽ ą 0 with }ṽ}8 ă c1´q be a viscosity supersolution of (4.4) in U. Define

ṽεpxq “ p1` εq
`

ṽpxq ` ε
˘

. (4.5)

Then, ṽε Ñ ṽ uniformly in U as ε Ñ 0, and for every ε ą 0 small enough, there exists a positive
constant C “ Cpε, q, }ṽ}8q such that

min

$

&

%

|∇ṽεpxq| ´ p1´ qq
f
´

ṽεpxq
1

1´q

¯

ṽεpxq
q

1´q
,´∆8ṽεpxq ´

q
1´ q

|∇ṽεpxq|4

ṽεpxq

,

.

-

ě C ą 0 in U, (4.6)

in the viscosity sense, that is, ṽε is a strict viscosity supersolution of (4.4) in U with }ṽε}8 ă c1´q.

Proof. Let φ̃ε P C2 touch ṽεpxq from below at x0 P U. Define

φ̃pxq “
1

1` ε
φ̃εpxq ´ ε,

which clearly touches ṽpxq from below at x0. Then,

∇φ̃px0q “ p1` εq´1 ∇φ̃εpx0q and D2φ̃px0q “ p1` εq´1 D2φ̃εpx0q. (4.7)
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Since ṽpxq is a viscosity supersolution of (4.4) in U, we deduce

|∇φ̃px0q| ě p1´ qq
f
´

ṽpx0q
1

1´q

¯

ṽpx0q
q

1´q
, (4.8)

and

´
@

D2φ̃px0q∇φ̃px0q,∇φ̃px0q
D

´
q

1´ q
|∇φ̃px0q|

4

ṽpx0q
ě 0. (4.9)

In the sequel we assume ε small enough so that }ṽ}8 ă }ṽε}8 “ p1` εq
`

}ṽ}8` ε
˘

ă c1´q. Then, from
(4.1), (4.5), (4.7) and (4.8), we obtain

|∇φ̃εpx0q| ´ p1´ qq
f
´

ṽεpx0q
1

1´q

¯

ṽεpx0q
q

1´q

ě ε p1´ qq
f
´

ṽpx0q
1

1´q

¯

ṽpx0q
q

1´q
` p1´ qq

¨

˝

f
´

ṽpx0q
1

1´q

¯

ṽpx0q
q

1´q
´

f
´

ṽεpx0q
1

1´q

¯

ṽεpx0q
q

1´q

˛

‚

ě ε p1´ qq
f
ˆ

}ṽ}
1

1´q
8

˙

}ṽ}
q

1´q
8

.

(4.10)

Similarly, from (4.1), (4.5), (4.7), (4.8), and (4.9) we arrive at

´
@

D2φ̃εpx0q∇φ̃εpx0q,∇φ̃εpx0q
D

´
q

1´ q
|∇φ̃εpx0q|

4

ṽεpx0q

ě p1` εq3
q

1´ q

ˆ

1
ṽpx0q

´
1

ṽpx0q ` ε

˙

|∇φ̃px0q|
4

ě
εp1` εq3qp1´ qq3

}ṽ}8 p}ṽ}8 ` εq

¨

˝

f
´

ṽpx0q
1

1´q

¯

ṽpx0q
q

1´q

˛

‚

4

ě
εp1` εq3qp1´ qq3

}ṽ}8 p}ṽ}8 ` εq

¨

˚

˚

˝

f
ˆ

}ṽ}
1

1´q
8

˙

}ṽ}
q

1´q
8

˛

‹

‹

‚

4

.

(4.11)

Finally, we get (4.6) from (4.10) and (4.11) as desired, which concludes the proof. �

Proof of Theorem 4.1. Since u´v P CpΩq and Ω is compact, u´v attains its maximum in Ω. Suppose,
for the sake of contradiction, that maxΩpu´ vq ą 0. Let

ũpxq “ upxq1´q, ṽpxq “ vpxq1´q,

and define ṽεpxq as in (4.5). Notice that u´ v ď 0 on BΩ gives

ũ´ ṽε “ ũ´ p1` εq ṽ´ p1` εq ε ă 0 on BΩ.

Moreover, by uniform convergence, we have maxΩpũ ´ ṽεq ą 0 for ε small enough. Therefore, we
can fix ε ą 0 small as in Lemma 4.5 for the rest of the proof and assume there exists U compactly
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contained in Ω that contains all maximum points of ũ ´ ṽε . We have proved in Lemmas 4.4 and 4.5
that ũ and ṽε are, respectively, a viscosity subsolution and strict supersolution of (4.4) in U.

For every τ ą 0, let pxτ, yτq be a maximum point of ũpxq ´ ṽεpyq ´ τ
2 |x ´ y|2 in Ω ˆ Ω. By the

compactness of Ω, we can assume that xτ Ñ x̂ as τ Ñ 8 for some x̂ P Ω (notice that also yτ Ñ x̂).
Then, [14, Proposition 3.7] implies that x̂ is a maximum point of ũ´ ṽε and, therefore, an interior point
of U. We also have that

lim
τÑ8

´

ũpxτq ´ ṽεpyτq ´
τ

2
|xτ ´ yτ|2

¯

“ ũpx̂q ´ ṽεpx̂q ą 0,

and, consequently, both xτ and yτ are interior points of U for τ large enough and

ũpxτq ´ ṽεpyτq ´
τ

2
|xτ ´ yτ|2 ą 0. (4.12)

The definition of viscosity solution and the maximum principle for semicontinuous functions, see [14],
imply that there exist symmetric matrices Xτ, Yτ with Xτ ď Yτ such that

min

#

τ |xτ ´ yτ| ´ p1´ qq
f
´

ũpxτq
1

1´q

¯

ũpxτq
q

1´q
,´τ2

xXτpxτ ´ yτq, pxτ ´ yτqy ´
q

1´ q
τ4|xτ ´ yτ|4

ũpxτq

+

ď 0,

and

min

#

τ |xτ ´ yτ| ´ p1´ qq
f
´

ṽεpyτq
1

1´q

¯

ṽεpyτq
q

1´q
,

´ τ2
xYτpxτ ´ yτq, pxτ ´ yτqy ´

q
1´ q

τ4|xτ ´ yτ|4

ṽεpyτq

+

ě Cpε, q, }ṽ}8q ą 0.

Subtracting both equations, we get

0 ă Cpε, q, }ṽ}8qďmin

#

τ |xτ ´ yτ| ´ p1´ qq
f
´

ṽεpyτq
1

1´q

¯

ṽεpyτq
q

1´q
,

´τ2
xYτpxτ ´ yτq, pxτ ´ yτqy ´

q
1´ q

τ4|xτ ´ yτ|4

ṽεpyτq

+

(4.13)

´min

#

τ |xτ ´ yτ| ´ p1´ qq
f
´

ũpxτq
1

1´q

¯

ũpxτq
q

1´q
,

´τ2
xXτpxτ ´ yτq, pxτ ´ yτqy ´

q
1´ q

τ4|xτ ´ yτ|4

ũpxτq

+

. (4.14)

We consider four cases, depending on the values where the minima in (4.13) and (4.14) are attained. In
all cases we obtain a contradiction using that Xτ ď Yτ and ṽεpyτq ď ũpxτq, which follows from (4.12).
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1) Both minima are attained by the first terms and (4.1) implies a contradiction, i.e.,

0 ă Cpε, q, }ṽ}8q ď p1´ qq

¨

˝

f
´

ũpxτq
1

1´q

¯

ũpxτq
q

1´q
´

f
´

ṽεpyτq
1

1´q

¯

ṽεpyτq
q

1´q

˛

‚ď 0.

2) Both minima are attained by the second terms. Then,

0 ă Cpε, q, }ṽ}8q

ď ´τ2
@

pYτ ´ Xτqpxτ ´ yτq, pxτ ´ yτq
D

`
q

1´ q
τ4
|xτ ´ yτ|4

ˆ

1
ũpxτq

´
1

ṽεpyτq

˙

ď 0,

a contradiction.
3) The minima in (4.13) and (4.14) are attained by the second and first term, respectively. This case

can be reduced to case (1) above and we again obtain a contradiction. Namely,

0 ă Cpε, q, }ṽ}8q ď ´ τ2
xYτpxτ ´ yτq, pxτ ´ yτqy ´

q
1´ q

τ4|xτ ´ yτ|4

ṽεpyτq

´ τ |xτ ´ yτ| ` p1´ qq
f
´

ũpxτq
1

1´q

¯

ũpxτq
q

1´q

ďp1´ qq

¨

˝

f
´

ũpxτq
1

1´q

¯

ũpxτq
q

1´q
´

f
´

ṽεpyτq
1

1´q

¯

ṽεpyτq
q

1´q

˛

‚ď 0.

4) Finally, if the minima in (4.13) and (4.14) are respectively attained by the first and second term,
we obtain a contradiction as in case (2) above, i.e.,

0 ă Cpε, q, }ṽ}8q ď τ |xτ ´ yτ| ´ p1´ qq
f
´

ṽεpyτq
1

1´q

¯

ṽεpyτq
q

1´q

` τ2
xXτpxτ ´ yτq, pxτ ´ yτqy `

q
1´ q

τ4|xτ ´ yτ|4

ũpxτq

ď ´ τ2
@

pYτ ´ Xτqpxτ ´ yτq, pxτ ´ yτq
D

`
q

1´ q
τ4
|xτ ´ yτ|4

ˆ

1
ũpxτq

´
1

ṽεpyτq

˙

ď 0.

Since all the alternatives lead to a contradiction, the proof is complete. �

5. Non-existence of solutions with large Λ for the limit problem

We show here that due to the structure of the limit problem (3.1), there exists a threshold Λmax

beyond which the problem has no solutions.

Proposition 5.1. Let Ω Ă Rn be a bounded domain. Problem (3.1) has no solutions for Λ ą Λmax,
where

Λmax “ e´1Λ1pΩq, (5.1)

and Λ1pΩq “ }distp¨, BΩq}8
´1 is the first8-eigenvalue, see [30].
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Proof. Define µ “ Λ1pΩq ` ε with ε ą 0. Suppose for contradiction that problem (3.1) has a solution
uΛ for some Λ ą e´1µ.

First we are going to use this uΛ to construct a supersolution to the eigenvalue problem with
parameter µ. More precisely, we are going to show that

min
 

|∇uΛ| ´ µ uΛ,´∆8uΛ

(

ě 0 in Ω (5.2)

in the viscosity sense. To this aim, let x0 P Ω and φ P C2 such that uΛ ´ φ has a minimum in x0. Since
uΛpxq is a solution of problem (3.1) we have

min
 

|∇φpx0q| ´ Λ euΛpx0q,´∆8φpx0q
(

ě 0 in Ω.

We deduce that ´∆8φpx0q ě 0 and |∇φpx0q| ě Λ euΛpx0q. Hence,

|∇φpx0q| ´ µ uΛpx0q ě Λ euΛpx0q ´ µ uΛpx0q.

To deduce (5.2) it is enough to show that

min
tPR

ΦΛptq ě 0 where ΦΛptq “ Λ et
´ µ t.

It is elementary to check that the function ΦΛ is convex and has a unique minimum point at tmin “

logpµΛ´1q. Notice that limtÑ˘8 ΦΛptq “ `8, and hence tmin is a global minimum. Then, it is easy to
check that Λ ą e´1µ implies ΦΛptminq ě 0.

Next, we notice that any first 8-eigenfunction is a subsolution of the eigenvalue problem with
parameter µ. So, let v be a first8´eigenfunction, that is, a solution of

$

’

&

’

%

min
 

|∇v| ´ Λ1pΩq v,´∆8v
(

“ 0 in Ω,

v ą 0 in Ω

v “ 0 on BΩ

normalized in such a way that }v}8 ă e´1. Clearly, by definition of µ,

min
 

|∇v| ´ µ v,´∆8v
(

ď 0 in Ω.

Now, we have to show that uΛ and v are ordered, namely, that 0 ă v ď uΛ in Ω. Indeed, using that
}v}8 ă e´1 and Λ1pΩq ă µ ă Λe, it is easy to see that

min
 

|∇v| ´ Λ,´∆8v
(

ď 0 in Ω,

and using that euΛpxq ě 1 in Ω one gets

min
 

|∇uΛ| ´ Λ,´∆8uΛ

(

ě 0 in Ω.

As v “ uΛ “ 0 on BΩ, we get 0 ă v ď uΛ by comparison, see Lemma 2.3.
So far, we have a subsolution v and a supersolution uΛ of the eigenvalue problem

min
 

|∇w| ´ µw,´∆8w
(

“ 0 in Ω (5.3)
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which verify 0 ă v ď uΛ. Next we claim that it is possible to construct a solution of (5.3) iterating
between v and uΛ. The argument finishes noticing that we have constructed a positive8´eigenfunction
associated to µ “ Λ1 ` ε, which is a contradiction with the fact that Λ1 is isolated (see [29, Theorem
8.1] and [30, Theorem 3.1]). Since the argument above works for every ε ą 0, we conclude that there
is no solution of (3.1) for Λ ą Λmax.

We conclude by proving the claim. First, define w1pxq, viscosity solution of
#

min
 

|∇w1| ´ µ v,´∆8w1
(

“ 0 in Ω

w1 “ 0 on BΩ.

To prove that such a w1 exists, notice that v is a subsolution of the problem and that uΛ is a
supersolution, since, from (5.2) and v ď uΛ we deduce

min
 

|∇uΛ| ´ µ v,´∆8uΛ

(

ě 0.

Then, we can apply the comparison principle in Lemma 2.3 as above and apply the Perron method
( [14, Theorem 4.1]), to get a unique w1 such that

v ď w1 ď uΛ in Ω.

Then, we define w2, the solution of
#

min
 

|∇w2| ´ µw1,´∆8w2
(

“ 0 in Ω

w2 “ 0 on BΩ.

In this case, w1 is a subsolution and uΛ is a supersolution, since

min
 

|∇w1| ´ µ v,´∆8w1
(

“ 0 ñ min
 

|∇w1| ´ µw1,´∆8w1
(

ď 0,

while
min

 

|∇uΛ| ´ µ uΛ,´∆8uΛ

(

ě 0 ñ min
 

|∇uΛ| ´ µw1,´∆8uΛ

(

ě 0.

As w1 “ uΛ “ 0 on BΩ, by comparison and the Perron method, we obtain that there exists a unique w2

satisfying
v ď w1 ď w2 ď uΛ in Ω.

Iterating this procedure, we construct a non-decreasing sequence

v ď w1 ď w2 ď . . . ď wk´1 ď wk ď uΛ

of solutions of
#

min
 

|∇wk| ´ µwk´1,´∆8wk
(

“ 0 in Ω

wk “ 0 on BΩ.
(5.4)

Notice that }wk}8 is uniformly bounded by construction. On the other hand, as ´∆8wk ě 0 in Ω, we
have (see [34, 35] and also [28] for a related construction) that

|∇wkpxq| ď
wkpxq

distpx, BΩq
ď

uΛpxq
distpx, BΩq

a.e. x P Ω,
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for all k ą 1. From there, both }wk}8 and }∇wk}8 are uniformly bounded in compact subsets of Ω.
We observe that v, uΛ are barriers in BΩ for each wk. Hence by the Ascoli-Arzela theorem and the
monotonicity of the sequence twku, the whole sequence converges uniformly in Ω to some w P CpΩq
which verifies w “ 0 on BΩ. Then, we can take limits in the viscosity sense in (5.4) and obtain that the
limit w is a viscosity solution of (5.3), which proves the claim. �

6. Existence of a branch of minimal solutions for the limit problem

In this section we show that for every Λ P p0,Λmaxs there is a minimal solution of the problem
#

min
 

|∇u| ´ Λ eu,´∆8u
(

“ 0 in Ω,

u “ 0 on BΩ.
(6.1)

The proof is based on the ideas in [20], although our construction is different in order to take advantage
of Corollary 4.3, our result of uniqueness for small solutions (the construction in [20] would only allow
us to conclude that the minimal solution satisfies }u}8 ď }uΛmax}8 “ 1, and Corollary 4.3 requires a
strict inequality).

Theorem 6.1. Let Ω Ă Rn be a bounded domain. Then, problem (6.1) has a minimal solution uΛ for
every Λ P p0,Λmaxs, where Λmax is given by (5.1). Moreover,

1) We have the estimate
Λ distpx, BΩq ď uΛpxq ď eΛ distpx, BΩq.

In particular, }uΛ}8 ď eΛΛ1pΩq
´1 ă 1 for Λ P p0,Λmaxq.

2) For every Λ P p0,Λmaxq, uΛ is the only solution of (6.1) with }u}8 ă 1.

3) The branch of minimal solutions is a non-decreasing continuum, in the sense that if 0 ă Λ ă

Υ ă Λmax, then uΛ ď uΥ and whenever Υ Ñ Λ P p0,Λmaxq, then uΥ Ñ uΛ uniformly.

Proof. 1) Let u and u be the unique viscosity solutions of
$

&

%

min
!

|∇u| ´ Λ,´∆8u
)

“ 0 in Ω

u “ 0 on BΩ
(6.2)

and
$

&

%

min
!

|∇u| ´ eΛ,´∆8u
)

“ 0 in Ω

u “ 0 on BΩ,
(6.3)

respectively. By Proposition 2.2, we have the explicit expressions

upxq “ Λ distpx, BΩq and upxq “ eΛ distpx, BΩq (6.4)

and u ď u follows trivially (alternatively, this can be proved by comparison, Lemma 2.3, using that u
is a viscosity supersolution of (6.2)).
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2) Define now u1, viscosity solution of
$

&

%

min
!

|∇u1| ´ Λ eu,´∆8u1

)

“ 0 in Ω

u1 “ 0 on BΩ.
(6.5)

Let us show that
u ď u1 ď u in Ω. (6.6)

First, we prove u1 ď u. We aim to show that min
 

|∇u1| ´ eΛ,´∆8u1
(

ď 0 in the viscosity sense
and then apply comparison for Eq (6.3), see Lemma 2.3. Therefore, let x0 P Ω and φ P C2pΩq such
that u1 ´ φ attains a local maximum at x0. We can assume that ´∆8φpx0q ą 0 because we are done
otherwise. Then, from (6.5), (6.4), and (5.1), we have

|∇φpx0q| ď Λ eupx0q ď Λ eΛmax Λ1pΩq
´1
ă eΛ.

In order to show that u1 ě u, we prove that min
 

|∇u1|´Λ,´∆8u1
(

ě 0 in the viscosity sense and then
proceed by comparison for Eq (6.2). Indeed, since u1 is a supersolution of (6.5), we have ´∆8u1 ě 0
and |∇u1| ě Λ eu ě Λ in the viscosity sense, as desired.
3) For each k ě 0, we define uk`1 as the viscosity solution of

$

&

%

min
!

|∇uk`1| ´ Λ euk ,´∆8uk`1

)

“ 0 in Ω

uk`1 “ 0 on BΩ
(6.7)

with u0 “ u and u1 given by (6.5). Let us show that for all k ě 0

u ď uk ď uk`1 ď u in Ω, (6.8)

that is, the sequence tukukě0 is non-decreasing and uniformly bounded.
We prove (6.8) by induction. First, notice that (6.6) proves the case when k “ 0. Assume (6.8) holds

true for k ´ 1 and let us prove that uk ď uk`1. Since uk`1 is, by definition, a viscosity supersolution
of (6.7), we have ´∆8uk`1 ě 0 and |∇uk`1| ě Λ euk ě Λ euk´1 in the viscosity sense by the induction
hypothesis. Therefore, uk`1 is a viscosity solution of

min
 

|∇uk`1| ´ Λ euk´1 ,´∆8uk`1
(

ě 0 in Ω.

By definition, we have min
 

|∇uk| ´ Λ euk´1 ,´∆8uk
(

“ 0 and uk ď uk`1 follows by comparison, see
Lemma 2.3 (notice that euk´1 is bounded, positive, and continuous, since the 8-superharmonicity of
uk´1 imply its Lipschitz continuity, see [35]).

To prove that uk`1 ď u, we show that

min
 

|∇uk`1| ´ eΛ,´∆8uk`1
(

ď 0 in Ω

and use comparison for Eq (6.3) (see Lemma 2.3). Therefore, let x0 P Ω and φ P C2pΩq such that
uk`1 ´ φ attains a local maximum at x0. Assume that ´∆8φpx0q ą 0 since we are done otherwise.
Then, from (6.7), (6.4), (5.1), and the induction hypothesis we get

|∇φpx0q| ď Λ eukpx0q ď Λ e}u}8 ď eΛ.
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4) We have obtained a non-decreasing sequence tukukě0, uniformly bounded by u and u given
by (6.4). Therefore, we can pass to the limit in the viscosity sense in the same way as in
Proposition 5.1 and get a viscosity solution uΛ of problem (6.1) as intended. It is also clear that the
solution uΛ we just found is minimal for every Λ P p0,Λmaxs, because any solution of (6.1) could be
taken as u in the iteration (note that the function uΛ does not depend on u). Moreover, by (6.4)
and (6.8), we have

Λ distpx, BΩq ď uΛpxq ď eΛ distpx, BΩq in Ω.

Therefore, by Corollary 4.3, for every Λ P p0,Λmaxq, uΛ is the only solution of (6.1) with }u}8 ă 1.
5) Let us prove that the branch of minimal solutions is non-decreasing, i.e., uΛ ď uΥ whenever
0 ă Λ ă Υ ă Λmax. To this aim, let us just observe that we can repeat the above construction taking
u “ uΥ and keeping upxq “ Λ distpx, BΩq as before. In this way, we recover the minimal solution uΛ

with the estimate uΛ ď uΥ ă 1.
We conclude by showing that the branch of minimal solutions is a continuum. Arguing again as in

the proof of Proposition 5.1, we see that, for every Λ P p0,Λmaxq, the uniform limits

puΛ “ lim
ΥÑΛ`

uΥ, and quΛ “ lim
ΥÑΛ´

uΥ

are both viscosity solutions of (6.1) with max
 

}puΛ}8, }quΛ}8
(

ă 1. Therefore puΛ ” quΛ by
Corollary 4.3, as desired. �

7. Minimal solutions achieved as limits of p-minimal solutions as p Ñ 8

This section shows that uniform limits of appropriately scaled, minimal solutions of
#

´∆pu “ λ eu in Ω Ă Rn

u “ 0 on BΩ
(7.1)

converge to the minimal solutions of the limit problem (6.1), found in Section 6. Observe that the fact
that the limit solution is minimal is nontrivial; in principle, a limit solution could be different from the
minimal one. Here is where we use the uniqueness results from Section 4. We prove the following.

Theorem 7.1. Let Λ P p0,Λmaxq, and tλpup be a sequence such that

lim
pÑ8

λ
1{p
p

p
“ Λ.

For each λp, consider uλp,p, the minimal solution of (7.1) for λ “ λp. Then,

uλp,p

p
Ñ uΛ, uniformly as p Ñ 8,

where uΛ is the minimal solution of the limit problem (6.1).

We devote the rest of the section to the proof of Theorem 7.1. In order to obtain estimates that allow
us to pass to the limit, we provide an explicit construction of the branch of minimal solutions of (7.1).
Although these are rather classic facts, see [20,21], some of our results appear to be new. Additionally,
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we provide a modified, more streamlined, and systematic construction that exhibits the dependences
on p at each step, which is necessary in order to pass to the limit.

First, we show that problem (7.1) has a minimal solution up to a certain, explicit qλp.

Proposition 7.2. Let Ω Ă Rn be a bounded domain and p ą n. Then, problem (7.1) has a minimal
solution uλ,ppxq for every λ P p0,qλps, where

qλp “

ˆ

p´ 1
e}vp}8

˙p´1

(7.2)

and vp is given by (2.2). Moreover,

1) For every λ ď qλp, we have the estimate

λ
1

p´1 vppxq ď uλ,ppxq ď e λ
1

p´1 vppxq in Ω. (7.3)

2) For every λ ď qλp, the minimal solution uλ,p is the only solution of (7.1) with }u}8 ď p´ 1.

3) The branch of minimal solutions is non-decreasing, in the sense that if 0 ă λ ă µ ď qλp, then
uλ,p ď uµ,p in Ω.

The uniqueness result in part 2 of Proposition 7.2 appears to be new. For the proof, we use the
following comparison principle, an adaptation of [1, Lemma 4.1] to problems that are proper (in the
sense of [14]) only for “small” sub- and supersolutions.

Lemma 7.3. Let p ą 1 and f : R Ñ R be a non-negative continuous function for which there exists
c P p0,8s such that

f ptq
tp´1 is non-increasing for all t P p0, cq.

Assume that u, v P W1,p
0 pΩq XC1pΩq are positive in Ω, maxt}u}8, }v}8u ď c and

´∆pu ď f puq and ´ ∆pv ě f pvq in Ω.

Then u ď v in Ω.

We omit the proof of the lemma since it is a straightforward modification of [1, Lemma 4.1] (note
that c “ 8 in [1]). We proceed now with the proof of Proposition 7.2.

Proof of Proposition 7.2. 1) Consider u and u, the respective solutions of

#

´∆pu “ λ in Ω

u “ 0 on BΩ

and
#

´∆pu “ λ ep´1 in Ω

u “ 0 on BΩ.
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By the weak comparison principle for the p-Laplacian, we have that 0 ď u ď u in Ω. Define now u1,
solution of

#

´∆pu1 “ λ eu in Ω

u1 “ 0 on BΩ.
(7.4)

We clearly have ´∆pu1 ě λ “ ´∆pu. On the other hand, we find u “ λ
1

p´1 vp by rescaling, which
together with (7.2) yields

´∆pu1 ď λ e}u}8 ď λ epqλpq
1{pp´1q}vp}8 “ λ epp´1q{e

ď ´∆pu.

Then, by the weak comparison principle we have u ď u1 ď u in Ω.

2) Now, for each k ě 1 define uk`1, solution of
#

´∆puk`1 “ λ euk in Ω

uk`1 “ 0 on BΩ

with u1 defined by (7.4). Let us show by induction that

u ď uk ď uk`1 ď u in Ω

for all k ě 1. It is easy to see that u ď uk ď uk`1 by comparison. To prove uk`1 ď u, notice that the
induction hypothesis, the rescaling u “ λ

1
p´1 e vp, and (7.2) yield

´∆puk`1 “ λ euk ď λ e}u}8 ď λ epqλpq
1{pp´1qe }vp}8 “ λ ep´1

“ ´∆pu.

Then, uk`1 ď u follows by comparison.
3) We have obtained an increasing sequence tukukě0, uniformly bounded by u and u. Therefore, we
can pass to the limit and get a solution uλ,p that satisfies the bounds (7.3). It is also clear that uλ,p is
minimal, because any solution of (7.1) could be taken as u in the iterative scheme (note that each uk

does not depend on u). Similarly, we see that the branch of minimal solutions is non-decreasing, since
whenever λ ă µ, we can take u “ uµ,p in the construction of uλ,p and obtain uλ,p ď uµ,p.
4) Finally, let us denote f ptq “ λ et. It is elementary to see that f ptq{tp´1 is non-increasing for
0 ă t ă p ´ 1. Moreover, by (7.2) and (7.3) we have that }uλ,p}8 ď p ´ 1. Therefore, we can apply
Lemma 7.3 with c “ p ´ 1 and conclude that uλ,p is the only solution of (7.1) with }u}8 ď p ´ 1 for
every λ P p0,qλps. �

The next result states that problem (7.1) has no solution for large λ; that is, there is a value pλp ą 0
such that (7.1) has no weak solution with λ ą pλp.

Proposition 7.4 ( [20, Theorem 2.1]). Problem (7.1) does not have a solution for λ ą pλp, where

pλp “ λ1pp,Ωq ¨max

#

1,
ˆ

p´ 1
e

˙p´1
+

. (7.5)

At this point we can define

λmax,p “ sup
 

λ ą 0 : problem (7.1) has a solution
(

. (7.6)

In the next result we show that λmax,p is well-defined, find its asymptotic behavior as p Ñ 8, and
complete the construction of the branch of minimal solutions.

Mathematics in Engineering Volume 5, Issue 2, 1–28.



20

Proposition 7.5. Let Ω Ă Rn be a bounded domain and p ą n. Then, λmax,p given by (7.6) is well-
defined (in the sense that it is positive and finite). Moreover, (7.1) has a minimal solution uλ,ppxq for
every λ P p0, λmax,pq and no solution for λ ą λmax,p. In addition,

qλp ď λmax,p ď pλp, (7.7)

where qλp and pλp are respectively given by (7.2), (7.5), and

lim
pÑ8

λ
1{p
max,p

p
“ Λmax

for Λmax defined by (5.1).

Proof. By Propositions 7.2 and 7.4, we have that 0 ă qλp ď λmax,p ď pλp ă 8. Moreover, although we
do not know λmax,p explicitly, (7.2), (7.5), and (7.7), along with Proposition 2.2 and Lemma 2.5 provide
its asymptotic behavior, namely,

lim
pÑ8

λ
1{p
max,p

p
“ lim

pÑ8

qλ
1{p
p

p
“ lim

pÑ8

pλ
1{p
p

p
“ e´1Λ1pΩq “ Λmax.

Let us now complete the construction of the branch of minimal solutions. Since λmax,p ă 8 we can
take µ arbitrarily close to λmax,p and uµ solution of

#

´∆puµ “ µ euµ in Ω,

uµ “ 0 on BΩ.

Then, for every λ P pqλp, µs we can produce a minimal solution as in Proposition 7.2, taking u “ uµ in
the iteration. �

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. 1) We have that
#

´∆puλp,p “ λp euλp ,p in Ω

uλp,p “ 0 on BΩ.

Multiplying the equation by uλp,p and integrating by parts, we get
ż

Ω

|∇uλp,ppxq|
p dx “ λp

ż

Ω

uλp,ppxq euλp ,ppxq dx.

Let us fix p ą n ` 1. Then, for every x, y P Ω, there exists a positive constant C independent of p
(see [10, Lemma 3.3]) such that

|uλp,ppxq ´ uλp,ppyq|

|x´ y|1´
n

n`1
ď C

ˆ
ż

Ω

ˇ

ˇ∇uλp,p

ˇ

ˇ

n`1
dx
˙1{pn`1q

ď C |Ω|
1

n`1´
1
p

ˆ
ż

Ω

ˇ

ˇ∇uλp,p

ˇ

ˇ

p
dx
˙1{p
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“ C |Ω|
1

n`1´
1
p

ˆ

λp

ż

Ω

uλp,p euλp ,p dx
˙1{p

ď C |Ω|
1

n`1

´

λp}uλp,p}8 e}uλp ,p}8

¯1{p
. (7.8)

Let us now find estimates for }uλp,p}8.
2) Consider qλp, given by (7.2). Since

lim
pÑ8

qλ
1{p
p

p
“ Λmax ą Λ “ lim

pÑ8

λ
1{p
p

p
,

there exists p0 such that λp ă qλp for all p ě p0. Then, by estimate (7.3), we have

λ
1

p´1
p

p
vppxq ď

uλp,ppxq
p

ď
λ

1
p´1
p

p
e vppxq in Ω,

where vp is given by (2.2). Take ε ą 0 such that p1 ` εqΛ ă Λmax. By Proposition 2.2, we know that
vp Ñ distp¨, BΩq uniformly as p Ñ 8 and we deduce that

}uλp,p}8

p
ď p1` εqΛe}distp¨, BΩq}8 “ p1` εqΛΛ´1

max ă 1 (7.9)

for p large enough. Then, from (7.8) and the Arzelà-Ascoli theorem, we find that there exists a
subsequence p1 and a limit function uΛ such that

uλp1 ,p1

p1
Ñ uΛ, uniformly as p1 Ñ 8.

3) By Proposition 3.1, we have that uΛ is a viscosity solution of the limit problem (6.1). Additionally,
from estimate (7.9) we deduce }uΛ}8 ď ΛΛ´1

max ă 1, and then Theorem 6.1 implies that uΛ must be
the minimal solution of the limit problem (6.1). Therefore, the whole sequence uλp,p converges, and
not only a subsequence, which concludes the proof. �

8. Multiplicity results in special domains

This section proves that, under certain geometric assumptions on the domain Ω, it is possible to
compute an explicit curve of solutions. Moreover, we establish a further non-existence result with the
aid of this curve of solutions. To this aim, we consider the ridge set of Ω,

R “ tx P Ω : distpx, BΩq is not differentiable at xu

“ tx P Ω : D x1, x2 P BΩ, x1 ‰ x2, s.t. |x´ x1| “ |x´ x2| “ distpx, BΩqu

and its subsetM, the set of maximal distance to the boundary,

M “
 

x P Ω : distpx, BΩq “ }distp¨, BΩq}8
(

.

We have proved in Theorem 6.1 the existence of minimal solutions for the limit problem (1.5),
as well as several non-existence results in Propositions 3.2 and 5.1. These results hold for general
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bounded domains Ω. In this section, we find a second solution to the limit problem (1.5) under the
additional assumptionM ” R. Furthermore, both solutions lie on an explicit curve of solutions (see
Figure 1). Some examples of domains satisfying M ” R are the ball, the annulus, and the stadium
(convex hull of two balls of the same radius). A square or an ellipse does not verify the condition.

Figure 1. Curve of explicit solutions Λ1pΩq }uΛ}8 ´ Λ e}uΛ}8 “ 0 in Theorem 8.1 and
regions of non-existence derived from Proposition 5.1, Theorem 8.4, and the uniqueness
result in Theorem 6.1.

8.1. A curve of explicit solutions

We have the following result.

Theorem 8.1. Let Λ ą 0 and Λmax given by (5.1). Assume that Ω Ă Rn is a bounded domain that
satisfiesM ” R. Let us consider solutions of the form

upxq “ α ¨ distpx, BΩq, α ą 0 (8.1)

for the problem
#

min
 

|∇upxq| ´ Λ eupxq,´∆8upxq
(

“ 0 in Ω,

u “ 0 on BΩ.
(8.2)

Then, problem (8.2)

iq Has two solutions of the form (8.1) if 0 ă Λ ă Λmax, corresponding to the two roots of

α´ Λ eα }distp¨,BΩq}8 “ 0. (8.3)

iiq Has one solution of the form (8.1) for Λ “ Λmax, with α “ }distp¨, BΩq}´1
8 .
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iiiq Has no solutions for Λ ą Λmax, and only the trivial solution for Λ “ 0.

Remark 8.2. By Theorem 6.1, for 0 ă Λ ă Λmax the solution of the form (8.1) with smallest α is the
minimal solution of (8.2).

Proof. First of all, we are going to check that

´∆8upxq “ 0 in ΩzR

in the viscosity sense. Let φ P C2 and x0 P ΩzR such that u ´ φ has a local maximum at x0. We can
assume upx0q “ φpx0q and ∇φpx0q ‰ 0. A Taylor expansion, and the fact that φ touches u from above
at x0 yield

´
∆8φpx0q

|∇φpx0q|
2 ` op1q ď

1
ε2

ˆ

2upx0q ´ max
yPBεpx0q

upyq ´ min
yPBεpx0q

upyq
˙

as ε Ñ 0. From (8.1) we have that

max
yPBεpx0q

upyq “ upx0q ` αε, min
yPBεpx0q

upyq “ upx0q ´ αε

and we deduce that u is 8-subharmonic in ΩzR. The proof that it is also 8-superharmonic is
analogous. Hence, we need make sure that

|∇upxq| ´ Λ eupxq
ě 0 @x P ΩzR.

Indeed, we find that
|∇upxq| ´ Λ eupxq

“ α´ Λ eα¨distpx,BΩq

(recall that x R R and the derivatives are classical). Since we can choose points x R R ”M arbitrarily
close toM, we find the necessary condition

α´ Λ eα¨}distp¨,BΩq}8 ě 0. (8.4)

Next, we turn our attention to the ridge set R. First, observe that cones as in (8.1) are always
supersolutions of (8.2) in the ridge set, since they cannot be touched from below with C2 functions at
those points. Hence, we only have to consider the subsolution case. So, let x0 P R and φ P C2 such
that u´ φ has a local maximum point at x0. We aim to prove that

min
 

|∇φpx0q| ´ Λ eupx0q,´∆8φpx0q
(

ď 0. (8.5)

It is well-known (see for instance [27, Lemma 6.10]) that

min
!

|∇upxq| ´ α,´∆8upxq
)

“ 0

in the viscosity sense. Thus, by definition of viscosity subsolution we have that either |∇φpx0q| ď α

or ´∆8φpx0q ď 0. In the latter case, (8.5) holds and there is nothing to prove. Thus, we can assume
in the sequel that ´∆8φpx0q ą 0 and |∇φpx0q| ď α. Then, since x0 P R ” M, we have upx0q “

α }distp¨, BΩq}8 and
|∇φpx0q| ´ Λ eupx0q ď α´ Λ eα }distp¨,BΩq}8 .
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Recalling (8.4), we discover that the only possibility is that (8.3) holds. The rest of the proof is devoted
to study the number of positive solutions of equation (8.3).

Consider ΦΛpαq “ Λ eα}distp¨,BΩq}8 ´ α. It is elementary to show that ΦΛ is convex and has a global
minimum at

αmin “ ´}distp¨, BΩq}´1
8 log pΛ}distp¨, BΩq}8q .

This minimum value is

min
αPR

ΦΛpαq “ ΦΛpαminq “ }distp¨, BΩq}´1
8

`

1` log pΛ}distp¨, BΩq}8q
˘

.

Whenever this minimum is strictly positive, Eq (8.3) has no solution. This happens when Λ ą Λmax

(in fact, Proposition 5.1 gives a stronger result in this case). Furthermore, notice that if Λ “ 0, then
necessarily α “ 0. These facts amount to piiiq. When the minimum equals 0, that is, when Λ “ Λmax,
then there exists a unique solution with α “ }distp¨, BΩq}´1

8 . This is part piiq. And finally, for part piq,
notice that when the minimum is strictly negative (0 ă Λ ă Λmax), equation (8.3) has two roots. �

Remark 8.3. Theorem 8.1 yields the following implicit curve of cone solutions

Λ1pΩq }uΛ}8 ´ Λ e}uΛ}8 “ 0,

where Λ1pΩq “ }distp¨, BΩq}´1
8 is the first 8-eigenvalue, see [30]. The same curve was deduced

heuristically by Lions in the context of the Gelfand problem for the Laplacian in [36, p. 465, item (h)
and Remark 2.4]. Unfortunately, Lions uses this example to caution against the heuristic reasoning
since the bifurcation diagram is of corkscrew-type for dimensions 3 ď n ď 9. One could wonder
why we do not see a similar situation in Theorem 8.1. However, according to [16, Lemma 2.3], the
corresponding corkscrew-type diagram for the p-Laplacian in the radial case occurs in the range

p ă n ă
p pp` 3q

p´ 1
,

which cannot happen as p Ñ 8.

8.2. Further non-existence results

The following result shows that we can enlarge the region of nonexistence of solutions for certain
domains by taking advantage of the curve of explicit solutions.

Theorem 8.4. Let Ω be a bounded domain such thatM ” R, and assumeM is Lipschitz connected.
Then, for every Λ ą 0, the only solutions of the problem

#

min
 

|∇uΛpxq| ´ Λ euΛpxq,´∆8uΛpxq
(

“ 0 in Ω,

uΛ “ 0 on BΩ
(8.6)

satisfying
Λ1pΩq }uΛ}8 ´ Λ e}uΛ}8 ě 0, (8.7)

are the explicit solutions found in Theorem 8.1, which satisfy (8.7) with an equality.
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The idea of the proof of Theorem 8.4 is to show that any solution uΛ satisfying (8.7) must necessarily
be a cone and therefore belong to the curve of solutions given by Theorem 8.1. First, we show that
solutions of (8.6) that satisfy (8.7) must lie below a cone with their same height.

Lemma 8.5. Let Ω be a bounded domain and uΛ be a viscosity solution of (8.6) satisfying (8.7). Then,

uΛ ď
}uΛ}8

}distp¨, BΩq}8
distp¨, BΩq in Ω.

Proof. It is enough to prove that

min t|∇uΛpxq| ´ Λ1pΩq }uΛ}8,´∆8uΛpxqu ď 0 in Ω (8.8)

in the viscosity sense. Then one gets uΛpxq ď }uΛ}8 }distp¨, BΩq}´1
8 distpx, BΩq in Ω by comparison

(Lemma 2.3), and the result follows.
To prove (8.8), let φ P C2 such that uΛ ´ φ has a maximum at x0 P Ω. As uΛ is a viscosity solution

of (8.6), it satisfies
min

 

|∇φpx0q| ´ Λ euΛpx0q,´∆8φpx0q
(

ď 0 in Ω.

If ´∆8φpx0q ď 0 we are done, so assume ´∆8φpx0q ą 0 and |∇φpx0q| ´ Λ euΛpx0q ď 0. Using (8.7),
we have

|∇φpx0q| ´ Λ1pΩq }uΛ}8 ď Λ euΛpx0q ´ Λ1pΩq }uΛ}8 ď 0,

and then
min t|∇φpx0q| ´ Λ1pΩq }uΛ}8,´∆8φpx0qu ď 0 in Ω

as desired. �

Remark 8.6. Lemma 8.5 holds for any bounded domain Ω without the assumptionM ” R.

Next, we recall the following result from [43, Theorem 2.4, (i)], which is a crucial point in the proof
of Theorem 8.4.

Lemma 8.7. Let Ω be a bounded domain such thatM is Lipschitz connected. If u is8-superharmonic
(see [34, 35]) then,

 

x P Ω : upxq “ }u}L8pΩq
(

”M.

Now, we can complete the proof of Theorem 8.4.

Proof of Theorem 8.4. Consider uΛ solution of (8.6) satisfying (8.7). Notice that

vpxq “
}uΛ}8

}distp¨, BΩq}8
distp¨, BΩq

is the unique (see [25]) viscosity solution of the problem
$

’

&

’

%

´∆8vpxq “ 0 in ΩzM

vpxq “ }uΛ}8 onM
vpxq “ 0 on BΩ.

(8.9)
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Since uΛ is8-superharmonic, it is also a viscosity supersolution of (8.9) by Lemma 8.7. Then, we get
v ď uΛ by comparison (see [25]), and Lemma 8.5 yields uΛ ” v. That is, uΛ is of the form (8.1). Since
all the solutions of (8.6) of the form (8.1) are given by Theorem 8.1, we find that there are no solutions
with

Λ1pΩq }uΛ}8 ´ Λ e}uΛ}8 ą 0.

Furthermore, if Λ1pΩq }uΛ}8´Λ e}uΛ}8 “ 0, then uΛ must be one of the explicit solutions in Theorem
8.1. �
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