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Abstract: In this manuscript, we consider well-known multi-task learning (MTL) models from
the literature for linear regression problems, such as clustered MTL or weakly constrained MTL.
We propose novel reformulations of the training problem for these models, based on mixed-
integer quadratic programming (MIQP) techniques. We show that our approach allows to drive the
optimization process up to certified global optimality, exploiting popular off-the-shelf software solvers.
By computational experiments on both synthetic and real-world datasets, we show that this strategy
generally leads to improvements in terms of the predictive performance of the models, if compared
to the classical local optimization techniques, based on alternating minimization strategies, that are
usually employed. We also suggest a number of possible extensions of our model that should further
improve the quality of the obtained regressors, introducing, for example, sparsity and features selection
elements.
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1. Introduction

In a seminal work of 1997, Rich Caruana introduced the idea of the multi-task learning (MTL)
paradigm in machine learning [12]. Multi-task learning is based on the intuitive idea that, like humans,
machines may jointly learn distinct tasks that are yet somehow related one with the other. In this
way, the knowledge acquired from learning one task can be exploited to improve performance with
the other tasks, and vice versa. Sharing information between related tasks is a particularly useful idea
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in applications where only small amounts of samples are available for each single task, but it is also
effective in more general situations.

In fact, multi-task learning strategies have been successfully employed in several settings: with
supervised, unsupervised or semi-supervised tasks, with reinforcement learning problems, with
graphical models. Also, the range of applications is wide: computer vision [29, 32, 38],
bioinformatics [25, 33, 37], natural language processing [22, 36], web applications [2, 5], ubiquitous
computing [26, 41]. For the supervised learning setting alone, several different multi-task approaches
have been proposed in the literature. Namely, we can list Feature-based approaches [4, 12], Low-rank
approaches [1, 3], Task Clustering approaches [6, 16, 21, 24, 42, 43], Task Relation Learning
approaches [35, 40] and Decomposition approaches [13, 23]. The latter four classes of methodologies
are collectively referred to as parameter-based approaches. We refer the reader to [39] for a thorough
review of multi-task learning models.

In this work, we are interested in parameter-based multi-task approaches to regression problems
in a homogeneous setting, i.e., where the input space is the same for all tasks [39]. Many strategies
have been proposed in the literature to tackle regression problems in a multi-task environment by linear
models, employing the common squared error loss function for training.

The main contribution of this work consists in showing that, in some of the aforementioned cases,
the underlying optimization problem can in fact be equivalently reformulated as a Mixed-Integer
Quadratic Programming (MIQP) problem. MIQP solvers, like Gurobi, CPLEX, CBC or GLPK, are
nowadays able to efficiently manage problems with a large number of integer variables, finding the
certified global optimum. This is in contrast with the local optimization procedures, typically
employed to tackle the original continuous formulations, that only attain local minima. Furthermore
we argue, and also numerically show, that solving to global optimality the training problems provides
benefits in terms of generalization capabilities and predictive performance of the trained models.

The manuscript is organized as follows. In Section 2, we briefly review some basic multi-task
learning models from the literature. Then, we show in Section 3 how such approaches can be
reformulated by employing mixed-integer programming techniques. In Section 4, we present
computational experiments aiming to assess the practical advantages of solving our reformulations,
compared to using classical algorithmic schemes. Finally, we draw some conclusions in Section 5. In
Appendix A, we list some possible additional elements that can be taken into account within our
models, whereas in Appendix B we show the results of a computational study aimed at evaluating the
scalability of the proposed approaches.

2. Preliminaries

In this section, after introducing the notation employed in this work, we briefly review some of the
most basic approaches to multi-task learning in regression problems.

2.1. Notation

We are interested in multi-task linear regression problems. We are given a set of m tasks T1, . . . ,Tm,
each one associated with a dataset Di = (Xi, yi), i = 1, . . . ,m. We consider the homogeneous setting,
therefore Xi = (xi

1, . . . , x
i
Ni

) with xi
j ∈ R

n for all i = 1, . . . ,m and all j = 1, . . . ,Ni. We also have yi
j ∈ R,

as we are considering regression tasks. For each task Ti, we want to construct a linear regression model
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wi ∈ R
n. The loss function Li(·) associated to model wi on the datasetDi is the mean squared error:

Li(wi) =
1
Ni

Ni∑
j=1

(wT
i xi

j − yi
j)

2.

2.2. Basic continuous MTL modes

Many works in parameter-based homogeneous MTL have focused on the idea that similarity among
tasks shall be transferred to the learned models by enforcing that corresponding feature weights across
tasks are close to each other. With linear regression models, one of the simplest ways to enforce this
requirement is by introducing an additional regularization term into the ridge regression setting, as first
shown by [16, 17]:

min
w1,...,wm,w̄

m∑
i=1

(
Li(wi) + λ‖wi‖

2 + ν‖wi − w̄‖2
)
, (2.1)

where w̄ acts as a connection term. Problem (2.1) is quadratic, convex and unconstrained, hence it
is easily solvable to global optimality. However, the model has evident limitations. First, not all
tasks may be related to each other, and hence enforcing proximity may in fact deteriorate predictive
performance. Moreover, the assumption that weights of related models are similar is often too strong
with most real-world data.

For this reason, many variants and alternatives to model (2.1) have been proposed. A first
extension is the important class of Clustered Multi-Task Learning (CMTL) models. Evegeniou
et al. [16] have shown that by a simple extension of (2.1) it is possible to retrieve the Task-clustering
setting. Task-clustering models have been reformulated in many different fashions [6, 21, 24, 42, 43].
If the hard-clustering setting is considered, in which any task is associated to one and only one cluster,
the following basic formulation can be considered:

min
w1,...,wm
z1,...,zK ,δ

m∑
i=1

Li(wi) + λ‖wi‖
2 + ν

K∑
k=1

δik‖wi − zk‖
2

 , (2.2)

where K is the number of clusters, zk ∈ R
n for all k and δik, for i = 1, . . . ,m and k = 1, . . . ,K, is a

binary indicator variable which is set to 1 if task i belongs to cluster k and is 0 otherwise. In the soft-
clustering setting, the problem can be formulated similarly, with variables δik representing probability
values: δik ∈ [0, 1],

∑K
k=1 δik = 1.

Problem (2.2) and similar formulations such those in [24,42,43] are typically solved by Alternating
Minimization, where three steps are iteratively repeated:

1) minimize the objective function with respect to model weights, having fixed clusters composition
and representatives:

wt+1
i = arg min

wi

Li(wi) + λ‖wi‖
2 + ν

K∑
k=1

δt
ik‖wi − zt

k‖
2 ∀i = 1, . . . ,m;
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2) assign each task model to the cluster with the nearest representative (for the hard-clustering
setting):

δt+1
ik =

1 if zt
k = arg minh=1,...,K ‖w

t+1
i − zt

h‖
2,

0 otherwise,
∀i = 1, . . . ,m, ∀k = 1, . . . ,K;

3) set the representative of each cluster as the mean of the models belonging to that cluster:

zt+1
k =

1∑m
i=1 δ

t+1
ik

m∑
i=1

δt+1
ik wt+1

i ∀k = 1, . . . ,K.

This approach can be shown to converge, but global optimality of the retrieved solution cannot be
guaranteed; in fact, global optimality is rarely attained.

As an alternative to regularization-based approaches, with weaker assumptions on data and task
relatedness, a polarity-constrained multi-task learning (or weakly constrained MTL, wcMTL) model
has been recently proposed [30, 34]; the idea is that corresponding weights in related tasks are not
necessarily close in magnitude, but reasonably share the polarity, i.e., if a feature is positively relevant
to the output of a task, then its weight will also be positive for the other ones. This is modeled by the
following optimization problem:

min
w1,...,wm

m∑
i=1

(
Li(wi) + λ‖wi‖

2
)

s.t. wi, jwi+1, j ≥ 0 for all i = 1, . . . ,m − 1, j = 1, . . . , n,

(2.3)

which, again, can be solved by alternating minimization approaches such as Block Coordinate
Descent (BCD) [7] or the Alternating Direction Method of Multipliers (ADMM) [10] up to
stationarity. Specifically, the main steps in the ADMM loop are carried out as follows for the
considered problem [34]:

1) Sequentially update models wi, i = 1, . . . ,m:

wt+1
i = arg min

wi

L(wi) + λ‖wi‖
2 + τ‖wi − zt

i + yt
i/τ‖

2

s.t. wi, jwt
i+1, j ≥ 0 ∀ j = 1, . . . , n;

2) Update auxiliary variables:

zt+1
i = wt+1

i + yt/τ ∀i = 1, . . . ,m;

3) Compute primal and dual residuals:

st+1
i = zt+1

i − zt
i, rt+1

i = wt+1
i − zt+1

i ∀i = 1, . . . ,m;

4) Update dual variables:
yt+1

i = yt + τrt+1 ∀i = 1, . . . ,m.
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3. Mixed-integer reformulations

In this section, we show how problems (2.2) and (2.3) can be reformulated as MIQP problems. In
particular, Task-clustering multi-task learning (2.2) can be formulated, in the hard-clustering setting,
as:

min
w1,...,wm∈R

n

z1,...,zK∈R
n

δ∈{0,1}m×K ,s∈Rm×K×n

m∑
i=1

Li(wi) + λ‖wi‖
2 + ν

K∑
k=1

‖sik‖
2

 (3.1a)

s.t.
K∑

k=1

δik = 1 ∀i = 1, . . . ,m, (3.1b)

sik ≥ −M(1 − δik)e + (wi − zk) for all i = 1, . . . ,m, k = 1, . . . ,K, (3.1c)
sik ≤ M(1 − δik)e + (wi − zk) for all i = 1, . . . ,m, k = 1, . . . ,K, (3.1d)

where sik ∈ R
n and M is a sufficiently large constant to be used in big-M type constraints and e ∈ Rn is

the vector of all ones.
Constraints (3.1c)–(3.1d) are used to model the implication δik = 1 =⇒ sik = wi−zk: if δik = 1, i.e.,

the i-th task belongs to the k-th cluster, sik is equal to the distance between the model and the cluster
representative; this quantity will be quadratically penalized in the objective function; otherwise, sik is
free and, since we are minimizing its squared norm, it will be set to zero, i.e., the distance between the
model and the representative is not penalized. Therefore, equivalently as in model (2.2), the squared
distance between a model and its cluster representative is penalized in the optimization process.

On the other hand, problem (2.3) can be reformulated as:

min
w1,...,wm∈R

n

y∈{0,1}n

m∑
i=1

(
Li(wi) + λ‖wi‖

2
)

s.t. − M(1 − y j) ≤ wi, j ≤ My j for all j = 1, . . . , n, i = 1, . . . ,m.

(3.2)

This time, the big-M constraint models the following implication: if y j = 0, then the j-th weight will
be non positive in all models; if y j = 1, it will be non negative for all tasks. Basically, y j denotes the
polarity sign of the j-th feature, which is shared among all tasks.

Since the number of introduced binary variables is limited - K × m for problem (3.1), with both K
and m usually small, and n for problem (3.2) - such formulations can be solved, in a reasonable amount
of time, to certified global optimality by employing off-the-shelf mixed-integer programming solvers
such as Gurobi [20]. In the following section, we will show how this is advantageous, in terms of
predictive performance, w.r.t. using local optimization techniques such as Alternate Minimization or
the Alternating Direction Method of Multipliers.

A remark shall be pointed out at this point; exact optimization approaches for mixed-integer
problems are well-known to be computationally hard. Local algorithms are certainly cheaper and
possess better scalability properties. However, the intent when multi-task approaches are employed in
linear regression tasks is to obtain the best possible improvement for models that have poor
performance because of the lack of training data. We are hence in a context where it is worth
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employing greater computational resources in order to obtain even slight performance boosts.
Nonetheless, we present in Appendix B a computational study suggesting the applicability limits of
the proposed approach.

Note that models (3.1) and (3.2) are quite flexible and it is possible to introduce additional
modeling elements aimed at further improving the predictive performance. For example, the two
considered models can be combined in different ways; moreover, mixed-integer formulations allow to
introduce sparsity and feature selection with ease. We formalize these aspects more in detail in
Appendix A. However, in the computational analysis we will focus on the basic models, leaving a
robust experimentation of these variants to future work.

4. Computational experiments

In this section we evaluate the benefits, in terms of generalization performance, of solving the basic
CMTL (2.2) and wcMTL (2.3) models to global optimality using reformulations (3.1) and (3.2).

To this aim, we implemented and solved with Gurobi [20] models (3.1) and (3.2). As also
suggested in Gurobi documentation, we found that directly implementing big-M constraints, with the
reasonable value of M = 10000, is computationally more convenient than employing the “indicator
constraint” construct provided by the library. We then implemented in Python3 the AM and ADMM
procedures to solve respectively problems (2.2) and (2.3). We employed the numpy library for all
basic operations and the L-BFGS-B solver [11] to solve the bound-constrained subproblems in
ADMM. As for the parameter setting, we set to 100 the number of iterations for the Alternate
Minimization of problem (2.2), while for ADMM we set τ = 1000 and the tolerance for the stopping
criterion based on residual convergence to ‖st+1‖ ≤ 0.01. As for the models hyperparameters, we will
detail our choices case by case in the following. As starting points of the local optimization
procedures, we initialized each model with the optimal solution of the least squares regression
considering each task independently. Single task least-squares regression can easily be obtained by
solving the normal equations.

Concerning the starting cluster assignment in CMTL, this is randomly extracted from a uniform
distribution. The approach is thus nondeterministic, therefore we took into account 10 independent
runs with different random cluster initializations every time we employed the Alternate Minimization
method.

In the experiments we employed both synthetic and real-world benchmarks, that we describe in the
following section.

4.1. Datasets

4.1.1. Synthetic datasets

We generated 10 datasets as follows. Each dataset contains 16 tasks, all concerning regression
problems with data in R12. The size of the training set for each task is equal to N, where N = 3, . . . , 12
varies for every dataset, while the size of the test set is 5 for all tasks and all datasets. The samples
are generated from the normal distribution N12(0, 1), while the output for a sample x of the i-th task is
given by y = wT

i x, where wi is generated as follows:
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wi =


wiA

wiB

wiC

 =


w̄A + 0.3w̄k

A + 0.1N5(0, 1)
w̄B �U6([0, 4])
N1(0, 1),


where A = {1, 2, 3, 4, 5}, B = {6, 7, 8, 9, 10, 11}, C = {12}, w̄k

A ∼ N5(0, 1) for k = 1, . . . , 3, with the i-th
task belonging to one of the K = 3 clusters, w̄B ∼ N6(0, 1), � denotes the element-wise product andU
the uniform distribution.

4.2. Real-world datasets

We considered a total of 4 real-world datasets for multi-task linear regression problems:

• school∗ [18]: the dataset concerns the estimation problem of examination scores of 15,362
students from 139 British secondary schools in the period 1985–87. Each school is treated as a
task, the inputs consist of four school-specific and three student-specific attributes.

• parkinson† [31]: the dataset contains 5,875 data points for 42 patients suffering from the
Parkinson’s disease, each one being a separate task. Given 19 bio-medical features, the aim is to
predict the disease progress status at different times. The target can be measured by two different
technical scores: motor UPDRS and total UPDRS. We can hence obtain two different datasets:
parkinson motor and parkinson total.

• insurance‡: the dataset concerns the prediction of the individual medical costs billed by health
insurance. There are 1,338 data samples, with 5 features each. We used the sixth feature, i.e., the
residential area in the US, to identify 4 different tasks.

4.3. Results

We performed three groups of experiments. In the first one, we considered the synthetic datasets
described in Section 4.1.1. We compare the test mean squared error (MSE) attained by the CMTL and
the wcMTL models trained by solving the optimization problem both via mixed-integer and continuous
(local) optimization procedures. We also report the result of training each task independently (single
task learning, ST).

For this experiment we set to 3 the number of clusters in the task-clustering model. We set ν = 1 and
λ = 0.01 for all models. We recall that the results of Alternate Minimization for CMTL are the mean
of 10 independent runs with different random clusters initializations. The results of the experiment
are reported in Table 1. We can observe that, with the only exception of the CMTL model with the
problems of size N = 3 and N = 4, solving the optimization problem to global optimality has clear
benefits in terms of the predictive performance of the models. We can also observe that the CMTL
model appears to be superior on this class of problems than the wcMTL. Also, we can note that both
models are indeed an upgrade if compared to the single task models.

Next, we turn to the real-world datasets. We begin by evaluating the performance of the MIQP
approach, compared to the local minimization approaches, on the school dataset for different

∗http://www.bristol.ac.uk/cmm/learning/support/datasets/
†https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
‡https://www.kaggle.com/mirichoi0218/insurance
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hyperparameters settings. For this experiment, we have kept fixed the train-test split (80/20) of all the
tasks, which is obtained randomly. We show the results of the experiment in Tables 2 and 3. Again,
we can see that finding a better solution in terms of the training optimization problems consistently
translates into benefits when it comes to generalization performance.

Table 1. Test MSE values obtained on the synthetic datasets by the weakly-constrained and
the clustered multi-task models, trained by different algorithms. For the wcMTL we set
λ = 0.01, for the CMTL we set λ = 0.01, ν = 1 and K = 3. We also report the score obtained
training the models independently (ST).

N CMTL-MIQP CMTL-AM wcMTL-MIQP wcMTL-ADMM ST
3 10.0681 9.5189±1.7874 14.0276 17.0070 16.6861
4 16.8705 13.1457±2.6602 25.4401 26.7594 35.3628
5 11.8681 20.7552±7.1580 22.6021 35.1270 39.6169
6 6.32260 10.4790±2.7821 15.9449 27.0943 24.8687
7 1.6975 3.6934±0.5992 6.1491 9.0188 10.4652
8 2.5645 2.7944±0.3428 4.2290 5.9489 5.2729
9 1.2142 3.5931±1.2425 1.7224 5.0305 5.3522
10 2.8012 5.2928±0.7232 5.0192 7.1570 7.9376
11 1.2442 1.9041±0.4506 1.8354 3.7030 3.0068
12 0.9910 1.7944±0.2132 2.1547 2.5624 2.1963

Table 2. Test MSE values obtained on a fixed train-test split of the School dataset by the
weakly-constrained multi-task model, trained by MIQP and ADMM approaches for different
values of λ.

λ MIQP ADMM
0.005 112.5894 113.1634
0.01 111.4319 112.9807
0.05 108.3934 112.0678
0.1 110.4160 111.6596

Table 3. Test MSE values obtained on a fixed train-test split of the School dataset by the
clustered multi-task model, trained by MIQP and AM approaches for different values of λ, ν
and K. Note that AM is not deterministc (it depends on the starting cluster representatives),
so mean and standard deviation are reported for 10 runs with different random initializations.

(λ, ν,K) MIQP AM
(0.05, 0.2, 2) 106.0100 106.1563 ± 0.1585
(0.05, 0.2, 3) 106.2453 106.4122 ± 0.3213
(0.05, 1, 2) 105.3637 106.3416 ± 0.1816
(0.05, 1, 3) 105.3434 106.2400 ± 0.1337
(0.05, 3, 2) 106.4584 107.5607 ± 0.1299
(0.05, 3, 3) 106.2833 107.4739 ± 0.2285
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Finally, we carried out a wider experiment on all 4 real-world datasets. This time we repeated the
training and testing process on 10 different train-test splits for each dataset. For each run, we selected
the hyperparameters of each model by a 5-fold cross-validation step on the training set. The results of
the experiment are reported in Tables 4 and 5.

From Table 4 we can observe that the MIQP approach always outperforms the corresponding local
minimization one, with the only exception of the polarity-constrained model on the insurance dataset.
On the other hand, the wcMTL is competitive with the CMTL on the two parkinson datasets only if
the mixed-integer approach is employed. We also note that Task-clustering solved as a MIQP is the
overall best approach among those considered.

From Table 5, we can further see that solving the weakly-constrained model as an MIQP one is
consistently advantageous as the train-test splits vary, except for the case of the insurance dataset.
As for task-clustering, because of the nondeterministic nature of the Alternate Minimization procedure,
we consider both the mean and the best MSE obtained among 10 different initializations for each split
of each dataset. If the average is taken into account, the mixed-integer approach confirms to be certainly
preferable than the AM approach. Even if we consider the best run of Alternate Minimization for each
split, the MIQP method continues to be slightly superior.

In the end, we can conclude that basic models for multi-task linear regression should definitely be
reformulated as MIQP problems, so that the global optimum of the training problem can be found with
benefits in the prediction phase.

Table 4. Mean and standard deviation of test MSE values obtained on 10 different random
train-test splits of the school, parkinson-total, parkinson-motor and insurance
datasets by the CMTL and weakly-constrained MTL models, trained by different approaches.
For each method, hyperparameters were selected by a 5-fold cross-validation. Note that
CMTL-AM is not deterministic, so for each test split we consider the mean test MSE value
obtained by 10 independent runs.

dataset CMTL-AM CMTL-MIQP wcMTL-ADMM wcMTL-MIQP
school 102.1546 ± 1.9639 102.0610 ± 2.4465 109.5408 ± 2.2877 108.2532 ± 2.5660
parkinson-total 2.0644 ± 0.0765 2.0544 ± 0.0832 2.9461 ± 0.1755 2.0778 ± 0.0791
parkinson-motor 1.6268 ± 0.0621 1.6266 ± 0.0609 1.9612 ± 0.0753 1.6353 ± 0.0665
insurance 0.2653 ± 0.029 0.2637 ± 0.0281 0.2641 ± 0.0274 0.2642 ± 0.0280

Table 5. Direct comparison of MIQP and local optimization approaches on real datasets in
terms of predictive performance. The results take into account 10 different train-test splits
for each dataset. For the nondeterministic CMTL-AM approach we consider both the best
and the mean results over 10 runs.

dataset school parkinson-total parkinson-motor insurance

CMTL - MIQP/AM mean wins 7/3 7/3 7/3 8/2
CMTL - MIQP/AM best wins 5/5 7/3 3/7 7/3
wcMTL - MIQP/ADMM wins 8/2 10/0 10/0 5/5
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5. Conclusions

In this work, we showed that basic multi-task learning models for linear regression can be
equivalently reformulated by means of mixed-integer quadratic programming techniques. This is
useful, as MIQP problems can be solved to global optimality by using off-the-shelf solvers like
Gurobi, in contrast with the local optimization strategies usually employed. By a set of computational
experiments, we also showed that this strategy indeed leads to a general improvement of the
performance of the models at predicting out-of-sample values. In conclusion, the proposed
approaches should allow practitioners to obtain stronger performance from classical MTL models
with a very limited implementation effort. We shall highlight, however, that the computational cost of
the proposed strategy is not just as cheap, especially as the number of employed integer variables
grows (see Appendix B).

Future research should be focused on evaluating the performance of the extensions and
combinations of the proposed models, such as those discussed in Appendix A. Moreover, the
nontrivial extension of the proposed approach to classification problems might be considered. This
could be achieved, for example, taking inspiration from works such as [8, 14, 28], where the problem
of best subset selection in logistic regression is tackled by mixed-integer programming formulations.
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A. Extensions

In this Appendix, we show possible extensions of the basic models (2.2) and (2.3) that mixed-integer
modeling makes possible to handle.

Firstly, we highlight that the CMTL and the wcMTL models might be combined in several ways:

• Trivially, corresponding weights could be simultaneously forced to share the sign and to be close
to each other if the tasks belong to the same cluster. We would have model (3.1) with the addition
of the constraints of (3.2).

• Some weights could be forced to be close while others to only share the polarity. This requirement
can be modeled by the following formulation:

min
w1,...,wm∈R

n

z1,...,zK∈R
nc

δ∈{0,1}m×K ,s∈Rm×K×nc

y∈{0,1}np

m∑
i=1

Li(wi) + λ‖wi‖
2 + ν

K∑
k=1

‖sik‖
2



s.t.
K∑

k=1

δik = 1 ∀i = 1, . . . ,m,

wi = (wi,C,wi,P), wi,C ∈ R
nc , wi,P ∈ R

np for all i = 1, . . . ,m
sik ≥ −M(1 − δik)e + (wi,C − zk) for all i = 1, . . . ,m, k = 1, . . . ,K,
sik ≤ M(1 − δik)e + (wi,C − zk) for all i = 1, . . . ,m, k = 1, . . . ,K,
− M(1 − y j) ≤ wi, j ≤ My j for all j = nc + 1, . . . , nc + np, i = 1, . . . ,m.

• Sign constraints could be based on the clusters structure. The constraints would have the
following form:
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K∑
k=1

δik = 1 ∀i = 1, . . . ,m,

−M(2 − y jk − δik) ≤ wi, j ≤ M(1 + y jk − δik) for all j = 1, . . . , n, i = 1, . . . ,m, k = 1, . . . ,K.

A second modeling element that could be handled by mixed-integer approaches concerns sparsity
and feature selection. Indeed, the best feature subset selection task in linear regression problems has
been tackled by MIQP formulations in many works in the recent years [9, 15, 19, 27].

Now, in the multi-task setting, we can either:

• force a feature selection which is in common for all tasks by adding to the model binary variables
ν and the following constraints:

−Mν j ≤ wi, j ≤ Mν j for all i = 1, . . . ,m, j = 1, . . . , n,
n∑

j=1

ν j ≤ S ;

• select a different set of relevant features for each cluster:

−M(1 + ν jk − δik) ≤ wi, j ≤ M(1 + ν jk − δik) for all i = 1, . . . ,m, j = 1, . . . , n,
n∑

j=1

ν jk ≤ S for all k = 1, . . . ,K;

• select a different set of relevant features for each individual task:

−Mνi j ≤ wi, j ≤ Mνi j for all i = 1, . . . ,m, j = 1, . . . , n,
n∑

j=1

νi j ≤ S for all i = 1, . . . ,m.

Note that the latter approach introduces n × m binary variables, which may excessively increase the
computational cost of the approach.

Employing analogous mechanisms, it is also possible to select variables to which impose the
polarity constraints and those to consider when forcing cluster compactness.

B. Scalability of the proposed approach

In this Appendix we focus on scalability issues regarding our proposed approaches. The hardness
of mixed-integer mathematical programming problems is well known: the computational cost of exact

Mathematics in Engineering Volume 5, Issue 1, 1–16.



15

solvers for mixed-integer problems grows significantly with the number of integer variables. This still
holds true with the powerful modern software developed in recent years.

We are therefore interested in providing readers with an insight on the computational resources
demanded by the mixed-integer approaches and the extent it may be practically sustainable.

To this aim, we generated two new problems benchmarks. The first one is designed for testing the
CMTL model: we generated MTL problems with n = 8 features, 4 examples per task and a variable
number of tasks m = 2, . . . , 30. The number of clusters K was fixed to 3, so that the problems have a
minimum of 6 and a maximum number of 90 binary variables. We also set M = 1000, λ = 0.01, ν = 1.

As for the wcMTL case, we generated problems with m = 15 tasks, n = 3t features for t = 3, . . . , 30
and N = bn/2c examples per task; the number of binary variables is determined by n, so we have again
problems with up to 90 integer variables. Here, we set M = 500 and λ = 0.01.

For both benchmarks, we extracted samples xi
j from the uniform distributionNn(0, 1) whereas labels

are generated computing yi
j = (wcommon + 0.1w j)T xi

j +N(0, 0.2), where wcommon,w j ∼ Nm(0, 1).
The results of the experiments, performed running Gurobi 9.1.0 on a computer with Ubuntu Server

20.04 LTS OS, Intel Xeon E5-2430 v2 @ 2.50GHz CPU, 12 cores and 16GB RAM, are reported in
Figures 1 and 2.
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Figure 1. Computing time required by Gurobi to find the globally optimal solution to
problem (3.1) for a number of binary variables from 6 up to 90. Note that we report here
the time required to get to the global optimum, not taking into account the additional time
required to certify optimality.

We can observe that, for problems of the considered size, globally optimal solutions can be
obtained in a reasonable amount of time (∼102-103s for the hardest problems); nonetheless, the order
of magnitude of the cost, measured by CPU time, not surprisingly grows quite fast with the number of
integer variables. This fact makes us guess that problems with hundreds of integer variables may
become computationally unsustainable to be solved by the proposed approaches; we also shall note
that we did not test problems of larger size, as certifying global optimality of the solutions becomes
impractical.
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Figure 2. Computing time required by Gurobi to find the globally optimal solution to
problem (3.2) for a number of binary variables from 9 up to 90. Note that we report here
the time required to get to the global optimum, not taking into account the additional time
required to certify optimality.

In conclusion, the proposed methods appear to be reasonably employable in the typical MTL use
case where few data are available and we want to obtain the most accurate possible model out of
them. As the size of the problem grows, the computational cost likely becomes significant and the
approach may become unsustainable in very large scale scenarios. However, we shall note that in our
experiments we employed a very efficient, yet general purpose off-the-shelf solver; specific branching
or bounding strategies for our problem may be able to further improve the performance of the training
procedure.

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 5, Issue 1, 1–16.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Notation
	Basic continuous MTL modes

	Mixed-integer reformulations
	Computational experiments
	Datasets
	Synthetic datasets

	Real-world datasets
	Results

	Conclusions
	Extensions
	Scalability of the proposed approach

