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Abstract: Internal gravity waves are propagating disturbances in stably stratified fluids, and can
transport momentum and energy over large spatial extents. From a fundamental viewpoint, internal
waves are interesting due to the nature of their dispersion relation, and their linear dynamics are
reasonably well-understood. From an oceanographic viewpoint, a qualitative and quantitative
understanding of significant internal wave generation in the ocean is emerging, while their dissipation
mechanisms are being debated. This paper reviews the current knowledge on instabilities in internal
gravity waves, primarily focusing on the growth of small-amplitude disturbances. Historically,
wave-wave interactions based on weakly nonlinear expansions have driven progress in this field, to
investigate spontaneous energy transfer to various temporal and spatial scales. Recent advances in
numerical/experimental modeling and field observations have further revealed noticeable differences
between various internal wave spatial forms in terms of their instability characteristics; this in turn has
motivated theoretical calculations on appropriately chosen internal wave fields in various settings.
After a brief introduction, we present a pedagogical discussion on linear internal waves and their
different two-dimensional spatial forms. The general ideas concerning triadic resonance in internal
waves are then introduced, before proceeding towards instability characteristics of plane waves, wave
beams and modes. Results from various theoretical, experimental and numerical studies are
summarized to provide an overall picture of the gaps in our understanding. An ocean perspective is
then given, both in terms of the relevant outstanding questions and the various additional factors at
play. While the applications in this review are focused on the ocean, several ideas are relevant to
atmospheric and astrophysical systems too.
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1. Introduction

Internal gravity waves are propagating disturbances in stably stratified fluids, with buoyancy being
the restoring force mechanism [1,2]. They can transport momentum and energy to large distances both
horizontally and vertically, and are hence a significant consideration in energy budgets of stratified
flows. From a fundamental point of view, internal waves possess several interesting properties that
distinguish them from several other waves in fluids. For example, the linear internal wave dispersion
relation shows that the phase and group velocities of plane internal waves are orthogonal to each
other, and the direction of energy propagation is independent of the wave vector magnitude. Classical
wave phenomena like scattering [3,4], diffraction [5] and interference [6,7], therefore have interesting
manifestations in internal waves. Flow instabilities represent another classical phenomenon, which in
addition to transferring energy to different spatial scales, redistributes internal wave energy to different
temporal scales too. In this paper, we review the existing knowledge on instabilities in internal gravity
waves that occur in continuous stable stratifications, with a focus on oceanic applications [8, 9].

Internal waves are ubiquitous in the temperature- and salinity- stratified oceans, owing to continuous
input of energy into them from tides and winds. While barotropic tides interact with ocean floor
topography to generate internal waves at tidal frequencies [10], the action of wind on the upper ocean
mixed layer generates near-inertial internal waves [11]. The details of these internal wave generation
mechanisms are reasonably well understood [12,13], and from a mathematical viewpoint, perturbation
methods, ray tracing and Green function approaches have been insightful to study topographic effects
in internal waves [14–16]. Around 1TW of energy is understood to be irreversibly put into each
of internal tides and wind-generated near-inertial waves, respectively [17], which are thought to be
sufficient to cause the required deep ocean heat addition for maintaining the global circulation [18].
As a result, there are several ongoing efforts on understanding the spatio-temporal variability and
mechanisms associated with internal wave dissipation. In addition, internal waves are so prevalent
that they are a significant part of the ocean state even far from their generation sites [19]. Finally,
an accurate parameterization of sub-grid scale internal wave processes and associated turbulence &
mixing is critical for climate models [20]. Instabilities in internal waves, the focus of this review,
represent one of the important pathways towards dissipation [12, 21].

Internal waves, due to the dynamical relevance of both shear and buoyancy in them, are interesting
from an instabilities viewpoint. Also, since they do not fit classical one-dimensional descriptions, the
relevance of gravitational [22] and shear [23, 24] instabilities is unclear a priori. In addition, time
dependence in shear and buoyancy, such as those that occur in internal waves, can nontrivially
influence the dynamics and instability characteristics [25–27]. Wave-wave interactions based on
weakly nonlinear expansions [9, 28, 29] have been the primary approach towards understanding
instabilities in internal waves though linear stability calculations based on Floquet theory [30] have
provided significant insights too. Several studies using one of the two aforementioned approaches
have focused on plane internal waves of infinite spatial extent [31]. In the ocean, however, internal
wave energy is often put into a range of wavenumbers, even if at the same frequency. This results in
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the generation of internal wave beams of finite spatial extent, the instability characteristics of which
have received much attention in the last two decades [32]. Finite-depth effects are important too, both
in the ocean [1] and laboratory experiments [33, 34], and internal wave instabilities in finite-depth
domains are also an active area of ongoing research. With recent advances in detailed experimental
and numerical modeling, and significant improvements in sophisticated field measurements,
mathematical advances on internal wave instabilities under various settings are necessary for better
understanding and subsequently driving the field forward.

In this review, we discuss internal wave instabilities in plane waves, wave beams and modes, along
with a pedagogical discussion of linear internal waves of different spatial forms and basic ideas of
triadic resonance. Section 2 introduces the internal wave dispersion relation, along with a description
of different spatial forms of internal waves. Section 3 presents an introductory discussion of triadic
resonance in internal waves. In Section 4, the current knowledge of instabilities in internal waves is
reviewed, with plane waves, wave beams and modes being discussed separately. An ocean perspective
is provided in Section 5, followed by concluding remarks in Section 6.

2. Internal waves: governing equations and dispersion relation

In this section, we present the governing equations, followed by the internal wave dispersion relation
and a description of various fundamental spatial forms in which internal waves can occur.

2.1. Governing equations

The inviscid governing equations for an incompressible flow within the Boussinesq approximation
are [35]

∇ · u = 0, (2.1)
∂u
∂t

+ u.∇u = −
∇p
ρre f

+ bêz, (2.2)

∂b
∂t

+ u.∇b + wN2 = 0, (2.3)

where u is the velocity field of the flow, t is time, p the pressure deviation from the hydrostatic pressure
distribution, ρre f a constant reference density and b = (ρ0(z) − ρ)g/ρre f is the buoyancy field. Here,
ρ is the total density field, ρ0(z) the background density profile (assumed stable, i.e., dρ0/dz < 0,
throughout this paper), and −gêz being the gravity vector. The density differences are assumed to
satisfy |ρ − ρre f | � ρre f and |ρ0 − ρre f | � ρre f so that the Boussinesq approximation is valid. In
Eq (2.3), w is the velocity component along êz, the vertical direction. The Brunt-Väisälä frequency
N (also referred to as the buoyancy frequency) is related to the background density profile by N(z) =√

(−g/ρre f )(dρ0/dz). In summary, Eqs (2.1)–(2.3) are the mass conservation (in the incompressible
limit), momentum equation and incompressibility condition, respectively.

Assuming the flow to be two-dimensional, the velocity field can be described in terms of a
streamfunction ψ as u = uêx + wêz = (−∂ψ/∂z, ∂ψ/∂x), where x and z are the horizontal and vertical
coordinates, respectively. Equations (2.2)–(2.3), upon eliminating p, can now be re-written as [36]

∂

∂t
∇2ψ −

∂b
∂x

= −J(ψ,∇2ψ), (2.4)
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∂b
∂t

+ N2∂ψ

∂x
= −J(ψ, b). (2.5)

The Jacobian operator J is defined as J(A, B) = (∂A/∂x)(∂B/∂z)− (∂B/∂x)(∂A/∂z), and ∇2 = ∂2/∂x2 +

∂2/∂z2 is the Laplacian operator. Equations (2.4)–(2.5) represent a useful form since the linear and
nonlinear terms (in ψ and b) have been separated as the left and right hand sides, respectively. Equations
(2.4)–(2.5) can further be recast as

∂2

∂t2∇
2ψ + N2∂

2ψ

∂x2 = −
∂

∂x
[J(ψ, b)] −

∂

∂t
[J(ψ,∇2ψ)], (2.6)

from which the linear internal wave equation (in terms of ψ alone) is recovered in the limit of neglecting
the nonlinear terms on the right hand side.

2.2. Dispersion relation

In this section, we discuss the internal wave dispersion relation, as obtained from the linearized
form of Eq (2.6), in the limit of a uniform stratification (N(z) = N0, where N0 is a constant) in an
unbounded domain. To obtain the dispersion relation, the nonlinear terms in the right hand side of
Eq (2.6) are ignored, and a monochromatic plane wave solution of the form

ψ(x, z, t) =
Ψ

2
exp[i(k · x − ωt)] + c.c. (2.7)

is sought, where Ψ is a constant complex amplitude, c.c. denotes complex conjugate and x = xêx + zêz

is the position vector. Here, k = kxêx + kzêz is the wave vector and ω (assumed real) is the frequency.
The dispersion relation then follows as [36]

sin2 θ =
ω2

N2
0

, (2.8)

where θ = tan−1 (kx/kz). In the wave propagation regime (ω ≤ N0), θ is real and represents the angle
that the wave vector k makes with the vertical z−axis. As ω varies from 0 to N0, θ varies from 0 to
π/2. For ω > N0, referred to as the evanescent regime, kx/kz is imaginary, hence corresponding to
exponential decay of the wave in space.

The internal wave dispersion relation in Eq (2.8) has several interesting properties. Firstly, for a
given N0, the frequency ω specifies (via the dispersion relation) only the wave vector orientation θ, and
not the wave vector magnitude |k|. In addition, for given values of ω and N0, four possible solutions
exist for θ, with each of the corresponding wave vectors being in a different quadrant on the (kx, kz)
plane. Interestingly, the phase velocity cp = (ω/|k|2)k and the group velocity cg = (∂ω/∂kx, ∂ω/∂kz)
are orthogonal to each other and have opposite signs in their z−components for plane internal waves. In
other words, θ, in addition to representing the wave vector orientation with respect to the z−axis, also
represents the energy propagation direction with respect to the horizontal x−axis. Physically, small
(& 0) and large (. N0) values of ω correspond to shallow and steep internal waves, respectively, with
respect to the energy propagation direction.
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2.3. Internal wave forms

In the ocean or the laboratory, the forcing mechanism for internal waves is often at one (or
sometimes a few) specific frequency. For example, the principal lunar semidiurnal (so called M2)
frequency contains the most energy for internal tides in the ocean; more details are given in Section 5.
As seen in Section 2.2, fixed values of N0 and ω determine the internal wave orientation via the
dispersion relation, whereas the specific wavenumbers that are excited depend on spatial scales that
are imposed by the forcing mechanism or the domain boundaries. While energy is put into a
continuous range of wavenumbers in oceanic settings, idealized theoretical and experimental studies
on individual wavenumbers have provided significant insights. Furthermore, the finite depth nature of
the ocean or laboratory set-ups reduce the possible wavenumbers to a discrete set. In this subsection,
we describe four different spatial internal wave forms, which have either been considered in idealized
theoretical and experimental studies or observed in realistic ocean settings. Sections 3 & 4 will then
focus on various instabilities that could occur in these internal wave forms.

2.3.1. Plane wave

A plane internal wave is described by Eq (2.7), characterized by unique values of frequency ω,
wavenumbers (kx, kz) and amplitude Ψ. As described in Section 2.2, the phase velocity of a plane wave
is along kxêx + kzêz, whereas its group velocity is along sgn(kxkz)(kzêx − kxêz). Figure 1(a) shows an
experimental realization of a plane wave, though a continuous range of wavenumbers around a desired
values is excited [37]. Specifically, Gostiaux et al. [37] used a novel internal wave generator in a
uniform stratification to excite a single frequency, with the dominant wavenumber being fixed by the
wavelength in the wave generator (see the wave form shown in blue in Figure 1(a)). While the energy
propagation direction (along cg) is fixed by ω and N0, only one of the two possible solutions for θ (note
that causality allows only for left-to-right propagating waves) in Eq (2.8) is predominant as a result
of the upward phase velocity associated with the moving wave form imparted by the wave generator.
Owing to the finite-width nature of the forcing from the wave generator, the spatial Fourier spectrum of
the generated wave field shows a spread around (instead of a sharp peak at) the dominant wavenumber.
More details of plane wave generation by the novel internal wave generator, including the spectrum
in the wavenumber space, can be found in [38]. Theoretical/numerical studies on exact plane waves,
and experimental studies on quasi-plane-waves such as the one shown in Figure 1(a), are discussed in
section 4.1 from the perspective of their instability characteristics.

2.3.2. Wave beam

Unlike a quasi-plane-wave discussed in Section 2.3.1, the internal wave field generated by typical
finite-size forcing mechanisms contain a non-negligible amount of energy in a relatively wider range
of wavenumbers. For example, a cylinder oscillating at a fixed frequency in a uniform stratification
generates four internal wave beams (Figure 1(b)), each of which has an orientation θ that is consistent
with the dispersion relation in Eq (2.8). Each wave beam is a combination of plane waves over a
continuous range of wavenumbers, resulting in the energy being present only over a finite width (along
the common wave vector direction) in space. The cylinder diameter imposes a length scale on the
finite width of the wave beams. Several studies, following the pioneering experiments of [39], have
investigated the internal wave field around an oscillating cylinder [40–43]. In general, the stream
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function associated with a unidirectional internal wave beam, whose energy propagation direction
(along cg in figure 1b) makes an angle θ with the horizontal, can be written as

ψ(x, z, t) =

∫ ∞

0

Ψ(|k|)
2

exp[i(k · x − ωt)]d|k| + c.c., (2.9)

where k = |k|(sin θ êx − cos θ êz), and the amplitude distribution Ψ(|k|) depends on the forcing
characteristics. A discussion of instabilities in internal wave beams, and how they may differ from
instabilities in plane waves, is presented in section 4.2.

Figure 1. Realization of various internal wave forms: (a) A plane wave excited by an internal
wave generator [37], (b) Finite-width internal wave beams excited by a vertically oscillating
cylinder in a uniform stratification, known as the St. Andrews cross [39], (c) An internal
wave vertical mode 1 generated by an internal wave generator placed at x = 0 [38], and
(d) Beam-like features in the internal wave field generated by an oscillating finite-height
topography (shown in black) in a finite-depth uniform stratification [44]. In (a) and (b), the
directions of the group velocity cg and phase velocity cφ are indicated, along with the angle
θ that cg makes with the horizontal. In (a), (c) and (d), the color is indicative of the velocity
magnitude, whereas the grey shade in (b) is a measure of the density gradient perturbation.
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2.3.3. Finite-depth effects

Introducing horizontal boundaries, say at z = 0 and z = H, discretizes the possible wavenumbers
owing to the boundary conditions. Specifically, for no-normal-flow boundaries at z = 0 and z =

H in a uniform stratification, the allowed horizontal wavenumbers are kn
x = nπ/(H cot θ), with the

corresponding vertical mode shape for the stream function being φn(z) = sin(nπz/H), where n is the
mode number. An individual mode can then be written as

ψn(x, z, t) =
Ψn

2
sin

(nπz
H

)
exp[i(kn

x x − ωt)] + c.c., (2.10)

where Ψn is the modal amplitude. The expression in Eq (2.10) can also be constructed as a sum of
upward and downward propagating plane waves with the same horizontal wavenumber, suggesting
that an individual mode can behave quite differently from an individual plane wave. Figure 1(c) shows
an experimental realization of a left-to-right propagating mode 1 internal wave, again excited using the
novel internal wave generator [38].

Any internal wave field in a finite-depth stratified fluid satisfying the linearised governing equations
can be represented as a summation over one or more individual vertical modes, each having its own
amplitude. Such a superposition often results in beam-like features, an example of which is shown in
Figure 1(d). In Figure 1(d), the internal wave field generated by barotropic tidal forcing over bottom
topography (shown in black) is shown. Internal wave energy is clearly seen to be significant only
over finite-width wave beam-like features. In addition to the horizontal boundaries, the introduction of
features like a sloping wall [45] or a double-ridge bottom topography [46] can raise the possibility of
internal wave attractors, which are closed loops formed by the internal wave ray paths. The internal
wave attractor has also been analyzed using tools from spectral theory and microlocal analysis [47].
Instability characteristics of such internal wave attractors, while being of interest in recent studies [48–
50], will not be discussed further in this review.

2.4. Internal wave forms as nonlinear states

The various internal wave forms discussed in Sections 2.3.1–2.3.3 are solutions of the linear
internal wave equations, which ignore the right hand side terms in Eqs (2.6) and (2.5). Interestingly,
individual plane waves (Section 2.3.1) and unidirectional wave beams (Eq 2.9) in a uniform
stratification are also solutions of the fully nonlinear Eqs (2.6) and (2.5) [51]. As a result, plane waves
and unidirectional wave beams represent fully nonlinear internal wave states, whose instability
characteristics are discussed in Section 4. Similarly, it can be verified that individual modes (see
Section 2.3.3) are also solutions of the fully nonlinear internal wave equations [52]. For a
superposition of modes, however, the nonlinear terms in the right hand sides of Eqs (2.6) and (2.5) do
not vanish. For example, two different modes at frequencies ω1 and ω2 can give rise to terms
containing the frequencies ω1 + ω2 and ω1 − ω2 when the nonlinear terms J(ψ,∇2ψ) and J(ψ, b) are
evaluated. Similarly, nonlinear terms at sum and difference frequencies can emerge upon interaction
between plane waves as well, an aspect we discuss further in Sections 3 and 4.
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3. Triadic resonance

Triadic resonance is a mechanism by which a triad of waves, under certain conditions, can
spontaneously transfer energy to each other even at arbitrarily small but non zero amplitudes [29]. It
is instructive to discuss the origins of triadic resonance based on the nonlinear terms in the governing
equations. Assuming a linear wave field consisting of two plane internal
waves: Ψ1 exp[i(k1 · x − ω1t)] + c.c. and Ψ2 exp[i(k2 · x − ω2t)] + c.c., the nonlinear advection
term u.∇u in the momentum Eq (2.2) (or the Jacobian terms in the right-hand side of Eqs (2.6) and
(2.5)) would give rise to terms of the form exp[i((k1 ± k2) · x − (ω1 ± ω2)t)] + c.c. , which would then
act as forcing terms in the governing equations at second order in the linear wave amplitudes. If the
wave vector and frequency combination, i.e., (k1 + k2, ω1 + ω2) or (k1 − k2, ω1 − ω2), in any of the
aforementioned terms satisfies the dispersion relation, the governing equation for the second order
wave field would have resonant forcing terms.

In general, three plane waves satisfying the following temporal and spatial resonance conditions

s1ω1 + s2ω2 = ω3, (3.1)
s1k1 + s2k2 = k3, (3.2)

form a resonant triad, as weakly nonlinear interaction between any two of the waves resonantly forces
the third. Here, s1 = ±1 and s2 = ±1. A geometric depiction of the spatial resonance condition
in Eq (3.1) with s1 = s2 = 1 is shown in Figure 2(a). In such instances of triadic resonance, the
weakly nonlinear wave field (resulting from interactions between any wave pair within the triad) with
constant amplitudes would diverge, and the wave amplitudes in the triad would spontaneously evolve.
The corresponding amplitude evolution equations can be derived using techniques like the method of
multiple scales [29, 53] or the variational method [9, 54]. In the inviscid limit, they take the form

dΨ j

dτ
= α jΨ

∗
qΨ3, where ( j, q) = (1, 2) or (2, 1) (3.3)

dΨ3

dτ
= α3Ψ1Ψ2, (3.4)

where Ψ j(τ) is the complex wave amplitude of the jth wave, and τ is a slow time coordinate (slow
compare to the wave periods). In Eqs (3.3)–(3.4), s1 = s2 = 1 has been assumed, and the signs
of the coefficients α j (constants, which depend on the values of wavenumbers and frequencies of
waves in the triad) determine the stability characteristics of the triad. Such derivations assume that
the wave amplitudes evolve over time scales that are much larger than those corresponding to the wave
frequencies.

Pioneering studies on triadic resonance were performed within the context of surface gravity
waves by Phillipps (1960) [55] and the 2021 Nobel prize-winning Hasselmann (1962) [56], and a
detailed review of the early developments can be found in [28]. While we have thus far discussed
triadic resonance as a case of when the resonance conditions (3.1)–(3.2) are exactly satisfied,
quasi-resonance that occurs in the near vicinity of exact triadic resonance is also an important
consideration. Off-resonance amplitude evolution equations have been derived too, as discussed
in [29]. While quasi-resonance could be associated with relatively small secondary wave growth
compared to triadic resonance, it’s likelihood of occurrence is potentially larger. Finally, apart from
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the leading order triadic resonance described by resonance conditions (3.1)–(3.2), higher order
resonances are possible too. For example, a primary wave specified by (ω3,k3) could succumb to
higher order resonances containing secondary daughter waves 1 & 2 such that

s1ω1 + s2ω2 = nω3, (3.5)
s1k1 + s2k2 = nk3, (3.6)

where n > 1 is an integer, are satisfied [57].

Figure 2. (a) Schematic showing three plane wave vectors k j that satisfy the spatial triadic
resonance condition k1+k2 = k3. (b) Resonant interaction diagram showing the wave vectors
of an internal wave resonant triad on the plane of (kx,1/kx,3, kz,1/kz,3), with the curves being
obtained from Eq (3.7). (c) Variation of ω1/ω3 along the red and green curves in (b). Note
that ω2 is given by ω2 = ω3 − ω1.

With respect to internal waves, it is convenient to first assume the frequencies to be always positive.
It is noteworthy that this assumption causes no loss of generality as long as the wave vector components
are allowed to be positive or negative. With positive frequencies, s1 = s2 = −1 is ruled out in Eq (3.2).
Now, choosing the wave indices such that the triadic resonance conditions are written as ω1 +ω2 = ω3

(hence ω3 is the largest frequency) and k1 + k2 = k3, resonant triads can be identified on the plane
of (kx,1/kx,3, kz,1/kz,3) as

|kx,1|√
k2

x,1 + k2
z,1

+
|kx,3 − kx,1|√(

kx,3 − kx,1
)2

+
(
kz,3 − kz,1

)2
=

|kx,3|√
k2

x,3 + k2
z,3

, (3.7)

where (ω1,k1), (ω2,k2) and (ω3,k3) have been assumed to satisfy the dispersion relation in Eq (2.8).
For a given ω3/N0, and using the dispersion relation k2

z,3/k
2
x,3 = (N2

0 − ω
2
3)/ω2

3, Eq (3.7) can be plotted
on the (kx,1/kx,3, kz,1/kz,3) plane, as shown in Figure 2(b) for ω3/N0 = 0.7. Three different branches
(denoted A,B,C in Figure 2(b)) are identified in the upper half plane, with equivalent branches present
in the lower half plane too. In branch C, kx,1 and kx,2 have the same sign as kx,3, whereas kz,1 and kz,2

are of opposite signs. More importantly, |k1|, |k2| and |k3| all correspond to comparable wavelengths in
branch C. In contrast, branches A & B have k1 and k2 in diagonally opposite quadrants, and the
corresponding wavelengths can either be comparable or much smaller than that of k3. Two sample
resonant triads one each in branch C and branch B, are indicated in Figure 2(b), with the blue,
magenta and black vectors denoting k1, k2 and k3, respectively. Figure 2(c) shows the variation
of ω1/ω3 as we move along the triadic resonance curves in Figure 2(b). At the four corner points,
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namely (kx,1/kx,3, kz,1/kz,3) = (0, 0), (1,−1), (1, 1) and (0, 2), either wave 1 or 2 has the same frequency
as wave 3, with the corresponding wave vector inclination with the x-axis being θ3 or -θ3, where θ3 is
the angle that k3 makes with the x-axis. Finally, in the limit of |kx,1/kx,3| → ∞ (occurring on branches
A & B), waves 1 and 2 both approach half the frequency of wave 3, with the corresponding wave
vectors becoming anti-parallel to each other.

A resonant triad in any system often manifests in two different ways. The first is triadic resonant
instability, where only one of the waves in the triad represents the primary wave field (finite
amplitude), and the other two emerge from noise-level amplitudes as the secondary wave field. A
triadic resonant instability with both the secondary wave frequencies being smaller than the primary
wave frequency is also referred to as subharmonic resonance. The second manifestation of a resonant
triad, namely triadic resonance interaction, involves two waves in the triad being present in the
primary wave field, and the third being excited as the secondary wave field. When the excited
secondary wave field corresponds to a frequency that equals the sum of the primary wave frequencies,
it is referred to as superharmonic resonance. A self-interacting primary wave at frequency ω

generating a secondary wave at frequency 2ω due to triadic resonance is a specific form of
superharmonic resonance. It is noteworthy that triadic resonance due to a self-interacting plane
internal wave in a uniform stratification is not possible. In fact, it is evident from Figure 2(b) that two
plane waves with the same direction for their wave vectors cannot be part of a resonant triad, which is
consistent with a unidirectional wave beam being a solution of the fully nonlinear internal wave
equation (see Section 2.4).

Subharmonic and superharmonic resonances are instability mechanisms by which internal wave
energy at a given frequency gets transferred to other spatial scales and frequencies. In general, which
triad becomes dynamically active for a given primary wave field is a non-trivial question, and is likely
a function of the stability characteristics of the corresponding amplitude evolution Eqs (3.3)–(3.4).
To estimate growth rates, the amplitude evolution equations are often solved within the pump-wave
approximation [29], wherein it is assumed that the primary wave field remains at constant amplitude
during the early evolution of the secondary wave field. Previous theoretical studies [30,58] have argued
that resonant triad interactions are the basic mechanism behind every instability in a plane internal
wave. A more recent theoretical study has also shown that several instabilities in a plane internal wave
are related to triadic resonances at various orders [59]. In Section 4, we present and discuss the existing
knowledge on instabilities in various internal wave forms presented in Section 2.3.

4. Instabilities in internal waves

In this section, we review existing literature on instabilities in the different spatial forms of internal
waves discussed in Section 2.3. While the focus in this section is on idealized settings of single-
frequency primary wave fields, a discussion of more realistic oceanic settings is provided in Section 5.

4.1. Plane waves

Plane waves are internal waves of a specific frequency and wave vector in an infinite medium, as
summarized in section 2.3.1. Early theoretical developments on instabilities in plane waves had two
different approaches, namely (i) investigating triadic resonance and (ii) performing a linear stability
analysis. The main results from the two approaches are presented in Sections 4.1.1 and 4.1.2.
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4.1.1. Triadic resonance

As discussed in Section 3, all the triadic resonances that a plane wave is part of, can be identified
by moving along the curves shown in Figure 2(b). Two different cases are possible for triadic resonant
instability of a single primary wave: (i) the primary plane wave is of the largest frequency in the triad,
i.e., the wave denoted by subscript 3, and (ii) one of the secondary waves is of the largest frequency,
i.e., wave 1 or 2 is the primary wave. The secondary waves have a sum and difference interaction
in the aforementioned cases (i) and (ii), respectively. Hasselmann (1967) [60] has shown that the
case (i) results in an unstable growth of secondary waves, whereas the case (ii) is neutrally stable. As
a result, the following discussion is focused on case (i), where a primary plane wave of a finite initial
amplitude resonantly interacts with two secondary waves (infinitesimally small initial amplitudes) of
smaller frequencies, i.e., subharmonic resonance.

For a given primary plane wave frequency ω3, a continuous range of subharmonic
frequencies (ω1, ω3 − ω1) can be found for the secondary wave pair that is in triadic resonance with
the primary wave (Figure 2c). Inviscid amplitude evolution equations, along with the corresponding
growth rates for the secondary waves, have been derived for all such subharmonic resonances using
the method of multiple scales [60]. Of all the possible subharmonic resonances, the scenario
with kx,1/kx,3 → ∞, kz,1/kz,3 → ∞ and ω1/ω3 → 0.5, corresponding to the kx,1/kx,3 → ∞ limit of the
branch B of red curves in Figure 2(b) & (c), has the largest growth rate [61]. It is noteworthy that such
a scenario is equivalent to the kx,1/kx,3 → −∞ limit of the green curves in Figure 2(b) & (c). For the
limit with kx,1/kx,3 → ∞, kz,1/kz,3 → ∞ and ω1/ω3 → 0.5, one of the secondary waves is in the same
quadrant as the primary wave, with an infinitesimally short wavelength, while the other secondary
wave is anti-parallel to the first. This limit has come to be known as the parametric subharmonic
instability (PSI), representing a significant physical mechanism by which primary internal wave
energy could be transferred to smaller spatial scales and frequencies. As discussed in the later
sections, PSI and related phenomena are observed in other internal wave forms and the ocean too.

4.1.2. Linear stability analysis

The amplitude evolution Eqs (3.3-3.4) discussed in Sections 3 & 4.1.1 consider weakly nonlinear
interactions, and hence sufficiently small wave amplitudes, associated with triadic resonance. An
alternative approach is to perform a conventional linear stability analysis, which assumes
perturbations of sufficiently small amplitude, of a plane internal wave. A plane internal wave, being a
solution to the fully nonlinear equations (Section 2.3.1), represents a legitimate base flow irrespective
of its amplitude. As a result, linear stability analysis is potentially useful to understand instabilities in
finite-amplitude plane internal waves too.

Mied (1976) [62] considered linearized inviscid governing equations for two-dimensional
perturbations superimposed on a plane internal wave, to derive a pair of coupled partial differential
equations with periodic coefficients. Using Floquet theory [63], and considering only those
perturbations with an integer value for the non-dimensionalized wavenumber along the base flow
wave vector, Mied (1976) [62] established a connection between internal wave instabilities and the
instabilities present in the Mathieu equation. Analyzing the θ = 600 plane wave in detail,
Mied (1976) [62] concluded that plane waves of any arbitrary amplitude are parametrically unstable,
and the parametric instability coincides with subharmonic triadic resonance in the limit of
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infinitesimally small base flow amplitude. Klostermeyer (1982) [64], advancing the numerical method
proposed by Mied (1976) [62] for solving the Floquet system for two-dimensional perturbations,
surveyed all possible perturbation wave vector directions to confirm that the most unstable
perturbations for small-amplitude plane internal waves correspond to the secondary waves in PSI.
Drazin (1977) [65] independently reached a similar conclusion that plane internal waves of any
amplitude are parametrically unstable, and also showed that the marginal stability boundaries on the
space of plane wave amplitude and wavenumbers can be described by catastrophe theory [66, 67].

Klostermeyer (1991) [58] extended the linear stability analysis to three-dimensional perturbations
to conclude that three-dimensional instabilities are stronger than two-dimensional ones in
finite-amplitude plane internal waves. The three-dimensional instabilities, which were traced to
higher order wave interactions including vortical modes, were also suggested to be closely associated
with the occurrence of statically unstable regions in the base flow; as a result, static instability is not
to be thought of as a mechanism that is independent of wave interactions. Higher order resonances in
small-amplitude plane internal waves have been studied using the linear stability framework, with
such instabilities having the new possibility to align with the base flow shear [57]. More extensive
linear stability analyses have further strengthened our understanding of connections between internal
wave instabilities and resonant wave interactions at small amplitudes, with complementary energy
budget analyses revealing the physical mechanisms underlying various instabilities [30, 68].
Figure 3(a) reveals one of the important outcomes of linear stability analysis, highlighting the
different dominant instabilities on the plane of internal wave amplitude and orientation.

An important conclusion from the aforementioned studies is that several instabilities, both in
small- and finite-amplitude internal waves, occur at spatial scales that are smaller than the wavelength
of the primary plane wave. Indeed, a two-dimensional study of small-scale perturbations
superimposed on the horizontal acceleration of a large-scale internal wave field has revealed the basic
characteristics of parametric instability in a plane internal wave [69]. Recently, Ghaemsaidi &
Mathur (2019) [59] performed a local stability analysis [70], also known as geometric optics or rapid
distortion theory, of a plane internal wave. Such an approach focused on short-wavelength
perturbations allows computationally efficient investigations over a wide parameter space spanning
both the base flow and perturbation characteristics, and has previously been used to study instabilities
in geophysically relevant wave flows [71–73]. As shown in Figure 3(b), Ghaemsaidi & Mathur
(2019) [59] delineated the internal wave amplitude and orientation space into various regions of
dominant instabilities, and concluded that 2D PSI and 3D transverse instabilities are dominant at
small and large internal wave amplitudes, respectively. Importantly, they highlighted the relevance of
triadic resonances (of various orders) in small-amplitude internal waves in describing the instabilities
of finite-amplitude internal waves. They also showed that three-dimensional transverse instabilities,
which are closely related to the occurrence of statically unstable regions in finite-amplitude internal
waves, are well-described by the Mathieu equation.
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Figure 3. (a) The dominant instabilities on the plane of amplitude A and orientation Φ =

π/2 − θ of a plane internal wave, as revealed by linear stability analysis. The dashed
curve represents the transition from oblique to shear-aligned instability. The dot–dash curve
represents the overturning amplitude. (b) Dominant small-scale instabilities shown on the
plane of amplitude A and orientation Φ of a plane internal wave, as revealed by a local
stability approach. The thresholds for gravitational and shear stability are denoted by the
dashed curve and dotted lines, respectively. The figures in (a) & (b) are reproduced from [30]
and [59], respectively.

4.1.3. Numerical simulations and laboratory experiments

Direct numerical simulations have investigated the validity of conclusions reached by triadic
resonance and linear stability calculations, and further extended the studies to viscous regimes.
Lombard & Riley (1996b) [74] performed direct numerical simulations of a plane internal wave at
different values of amplitude, orientation and Reynolds number (which quantifies the viscous effects)
to report that three-dimensional instabilities are important in finite-amplitude internal waves.
Furthermore, they showed that the breakdown to turbulence is driven by both shear and convective
instabilities, even at relatively large internal wave amplitudes. Studying the energetics in detail,
Koudella & Staquet (2006) [75] performed two-dimensional direct numerical simulations of
small-amplitude plane internal waves to conclude that parametric subharmonic instability represents
an optimal mechanism by which perturbations extract energy from an internal wave that contains
oscillating shear and density gradient. Figure 4 shows buoyancy-driven instability at early times,
followed by shear-driven Kelvin Helmholtz instability at later times in the two-dimensional direct
numerical simulations of Koudella & Staquet (2006) [75]. Recently, direct numerical simulations
have explored the viscous, nonlinear regimes, and the associated turbulent mixing, that follow local
instabilities in a plane internal wave [76].

Laboratory experiments [77] have also revealed the occurrence of subharmonic triadic resonance
in plane internal waves, whose generation in an experiment improved with the advent of the novel
internal wave generator [37, 38]. Using a quasi-plane-wave, containing around two to three
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wavelengths associated with a specific wavenumber, as the primary wave (see Figure 5 (a)), Bourget
et al. (2013) [77] observed the evolution of secondary waves generated via triadic resonant
instability [77]. Figure 5(b) shows the net wave field containing both the primary and the secondary
waves. In contrast to the inviscid prediction that the most unstable secondary waves occur at half the
primary wave frequency and infinitely large wavenumber, the experiments revealed
finite-wavenumber secondary waves at frequencies noticeably far from half the primary wave
frequency. The observed difference was attributed to viscous effects. Indeed, earlier studies [78] have
highlighted that viscous effects would completely suppress the inifinite wavenumber limit of branches
A & B in Figure 2(b), and secondary waves whose wavelengths are comparable to the primary
wavelength would emerge. Bourget et al. (2013) [77] also highlighted the effect of the finite spatial
extent of the primary wave on the triadic resonant instability, which we discuss further in Section 4.2.

Figure 4. Evolution of the total density field in the direct numerical simulation of a small-
amplitude plane internal wave, with snapshots being shown at (a) t = 20.5T0, (b) t = 21.4T0,
where T0 is the internal wave time period. In (b), the region between the top two black
lines corresponds to reduced static stability, and is more susceptible to density overturns. (c)
Total vorticity field at t = 25.9T0 from the same simulation as shown in (a) and (b). Images
reproduced from [75].

Figure 5. The net wave field at (a) t = 10T0 and (b) t = 50T0, observed in a laboratory
experiment where a quasi-plane internal wave with time period T0 was forced using a wave
generator. While (a) shows only the group and phase velocity associated with the primary
wave (subscript 0), (b) shows also the group velocities associated with the subharmonic
secondary waves (subscripts 1,2) that are generated as a result of triadic resonant instability.
This figure has been reproduced from [77].
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4.1.4. Interaction with boundary

The interaction between two plane waves in the primary wave field could potentially excite a
superharmonic wave field whose wave vector and frequency are the sum of the corresponding values
of the primary waves. As discussed in Section 2.4, the right hand sides of Eqs (2.6) and (2.5) are zero
for a plane internal wave in a uniform stratification. As a result, a self-interacting plane internal wave
does not excite a superharmonic wave field. The presence of two non-collinear plane wave vectors in
the primary wave field, say k1 and k2 (with |k1| , |k2|) such as what is shown in Figure 2, could,
however, lead to resonant superharmonic generation. The interaction of a plane wave with a
boundary, such as bottom topography or free surface, typically creates a primary wave field that
contains non-collinear plane wave vectors with the same frequency. Such a scenario then enables the
generation of a superharmonic wave field.

Figure 6 shows the schematic of a plane wave incident on a sloping boundary. Conservation of
frequency and the along-slope wavenumber upon reflection results in the reflected plane wave being
of a shorter wavelength than the incident wave. The interaction between the incident and reflected
plane waves could hence result in superharmonic wave generation [79], which under certain conditions
(depending on primary wave and bottom slope orientations -β and γ, respectively in Figure 6) will
represent triadic resonance between the primary incident, reflected plane waves and the superharmonic
wave [80]. A recent theoretical study [81] has shown that the superharmonic wave amplitude increases
linearly from the slope at resonance. It is also noteworthy that in the limit of the sloping boundary
being horizontal, no superharmonic wave field is generated since the wave vector magnitude of the
incident and reflected plane waves are equal [33, 81].

Figure 6. Schematic of the reflection of a plane internal wave (incident from the left) by an
inclined slope, and the resonant excitation of a steeper superharmonic internal wave. The
figure has been reproduced from [82].

Dauxois & Young (1999) [82] theoretically investigated the near critical incidence (β ≈ γ in
figure 6) of an internal wave on a slope, to obtain the initial evolution of the superharmonic wave field
and conditions under which overturning of the buoyancy field occurs, resulting in rapid transition to
turbulence and enhanced mixing near the slope. A more recent study has shown that the exact
solution of the weakly nonlinear and weakly viscous equations at critical incidence is well
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approximated by a sum of the incident wave, a reflected second harmonic and some boundary layer
terms [83]. The theoretical predictions of Dauxois & Young (1999) [82] for the reflected wave field at
the critical incident wave frequency were recently validated in laboratory experiments [84].
Laboratory experiments of a quasi-plane wave incident on a slope [85] have also shown the excitation
of superharmonics and trapped evanescent higher harmonics near the slope. Other experiments,
however, have shown the generation of dominant wave induced mean flows near the slope, which
suppress the excitation of higher harmonics [86]. The reflection of finite-width wave beam on a slope
is also an important problem in realistic ocean settings and is discussed in section 4.2.

4.2. Internal wave beams

As discussed in Section 2.3.2, wave beams of a finite spatial width form when a distribution of
unidirectional plane waves is superimposed. The characteristics of such a distribution, like its dominant
wavenumber and width, depend on the nature of the forcing. As already pointed out, such wave beams
are also solutions to the fully nonlinear inviscid equations of motion. While the study by Bourget
et al. (2013) [77], depicted in Figure 5, focused on PSI in quasi-plane waves, the effects of finite spatial
extent of the primary wave were already evident in their experiments. Specifically, though branch C
(Figure 2b) has growth rates comparable to branch B in the presence of viscous effects at laboratory
scales, the growth of secondary waves whose wavelength is larger than the primary wave is impeded
by the finite spatial extent of the primary wave beam [77]. It is useful to recall that the subharmonic
secondary waves, owing to their smaller frequency and hence shallower propagation angles, can leave
the primary wave beam, as depicted in Figure 5(b). Finite-width effects on PSI in an internal wave
beam, using energy balance arguments [87] and asymptotic analysis [88], have now been addressed in
detail, with the growth of the secondary waves being shown to strongly depend on how rapidly they
leave the finite spatial extent of the primary wave beam. In summary, a narrow wave beam has a smaller
interaction zone, and hence a smaller growth rate, for the secondary waves, in comparison to a plane
wave of an infinite spatial extent. Furthermore, laboratory experiments and numerical simulations for
large-amplitude internal wave beams have revealed how PSI can lead to wave breaking [89]. A detailed
discussion of triadic resonant instability in internal wave beams can be found in [32].

Internal wave beams have been subject to linear stability analyses too. Performing an asymptotic
analysis of the evolution of small-amplitude long-wavelength modulations on an internal wave beam,
Kataoka & Akylas (2013) [90] found a three-dimensional instability resulting from a resonant
interaction between the primary wave beam, three-dimensional perturbations at the beam frequency
and a mean flow, which can be significant even far from the vicinity of the primary wave beam. This
instability occurs above a threshold steepness of the primary wave beam [90]. Considering
small-amplitude two-dimensional perturbations (with no assumptions on their spatial scale) on a
locally confined internal wave beam, Fan & Akylas (2020) [91] performed a Floquet analysis of the
linearized perturbation equations to discover an instability beyond a threshold wave beam amplitude.
This instability involving two subharmonic perturbations with wavepacket-like spatial structure was
observed in experimental realizations of wave beams generated by finite-amplitude oscillations of a
cylinder, and cannot be recovered in a classical triadic resonance calculation which assumes a small
amplitude for the primary wave beam as well [91]. Focusing on the limit of fine-scale perturbations,
Fan & Akylas (2021) [92] used their earlier approach [91] to show that PSI in confined internal wave
beams involves secondary waves at 3/2 times the primary wave frequency in addition to those at half
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the primary wave frequency. Furthermore, Fan & Akylas (2021) [92] have shown that
small-amplitude internal wave beams that are not susceptible to PSI may develop an instability with a
broadband frequency spectrum.

Interacting internal wave beams can allow for the constituent non-collinear plane waves to interact,
which as discussed in Section 4.1.4, can lead to superharmonic generation. Indeed, numerical studies
have investigated higher harmonic generation, and the resulting wave breaking due to trapped
evanescent waves, due to wave-wave interactions in colliding wave beams emanating from two
different momentum sources [93]. Focusing on the scenario where the higher harmonic waves can
propagate and hence radiate away from the interaction region, Tabaei et al. (2005) [94] used weakly
nonlinear expansions to derive the steady-state wave field associated with the secondary beams whose
frequencies are equal to the sum and difference of the primary wave beam frequencies. Jiang &
Marcus (2009) [95] then proposed selection rules that determine which of the possible four secondary
wave beams (that are allowed for a given higher harmonic frequency) would actually appear for a
given pair of intersecting primary wave beams. An extension to the case of obliquely intersecting
internal wave beams can be found in [96].

Figure 7. (a) Experimental observation of superharmonic generation by wave beam
reflection on an inclined slope, reproduced from [98]. (b) Depiction of superharmonic
generation by internal wave beam collision resulting from a tidal flow across 2D bottom
topography, as observed in numerical simulations [105]. The figure has been reproduced
from [94].

As for plane waves, reflection from an inclined slope paves way for interaction between the
incident and reflected wave beams. Trapping of evanescent higher harmonic waves in the interaction
region on a slope has been studied numerically by Javam et al. (1999) [97]. In the regime where
higher harmonics can propagate, laboratory studies [98] have revealed the excitation of
superharmonic wave beams when an internal wave beam is incident on a slope of a suitable
inclination (Figure 7a). As for PSI in a wave beam, viscous effects are important in wave beam
reflection off a slope at laboratory scales [81, 99], and recent theoretical studies have developed
weakly nonlinear models to incorporate viscous effects [100]. In addition to superharmonic
generation, amplitude intensification due to reflection from a slope can also render the reflected wave
beam more susceptible to PSI than the incident wave beam [101]. Interestingly, in contrast to a plane
wave [33, 81] (see Section 4.1.4), wave beam reflection from a horizontal boundary can generate
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higher harmonics too, as reported in both theory [94] and simulations [102, 103]. On a horizontal
boundary, the nature of the boundary condition can also influence the higher harmonic generation –
for example, mean currents, superharmonic and subharmonic secondary wave generation have all
been observed in numerical simulations of wave beam reflection from a free-slip surface [104].
Finally, colliding internal wave beams can also be a feature in internal wave generation by bottom
topography, as depicted in Figure 7(b) based on the numerical simulation of Lamb (2004) [105].

4.3. Vertical modes

In this section, we discuss both subharmonic and superharmonic resonances that occur in internal
waves modes, whose linear regime was discussed in Section 2.3.3. Internal wave mode interactions,
and associated amplitude evolution equations at triadic resonance, were considered by
Thorpe (1966) [106], though the focus was on resonant triads containing internal waves and surface
gravity waves. In general, the weakly nonlinear wave field associated with an interaction between
modes m and n at frequencies ω1 and ω2, respectively, in a uniform stratification contains two
different terms: one at frequency ω1 + ω2 with a vertical structure similar to that of mode |m − n|, and
the other at frequency ω1 − ω2 with a vertical structure similar to that of mode m + n [34, 106–108].
Such an interaction would then be resonant if the horizontal spatial structure of either of the
aforementioned terms corresponds to an internal wave mode. It is worth highlighting that a direct
equivalent of the triadic resonance conditions in Section 3 is easily identified only for the frequencies
and the horizontal wavenumbers of internal wave modes since they have no propagation in the vertical
direction.

With respect to subharmonic resonance, Davis & Acrivos (1967) [109] performed a combined
theoretical and experimental study to investigate subharmonic secondary wave generation from a
primary mode 1 that propagates within a continuously stratified thin layer between two constant
density layers. In the presence of viscous effects, they identified a threshold amplitude above which
the primary mode 1 succumbs to a subharmonic instability, with the subharmonic secondary modes
being at frequencies that are noticeably different from half the primary wave frequency. For a given
primary mode in a uniform stratification, inviscid theory predicts maximum growth rate for secondary
subharmonic waves at half the primary wave frequency and infinitely large mode numbers whose
difference equals the primary wave mode number [34]. Viscous effects, however, prevent this PSI
limit to occur under laboratory conditions. Martin et al. (1972) [34], using a paddle-type wave
generator that spans the entire depth of a uniformly stratified fluid, observed different subharmonic
resonant triads excited simultaneously when a mode 1 or a mode 3 primary wave was forced. The
subharmonic secondary wave frequencies were again different from half the primary wave frequency,
and the corresponding mode numbers were consistent with the most unstable set (which is similar to
the branch B identified for plane waves in Figure 2b) of triadic resonances identified by the amplitude
evolution equations. More recently, Joubaud et al. (2012) [110] have used an internal wave
generator [38] to generate a primary mode 1 wave and quantitatively measure the growth rate
associated with the dominant subharmonic resonant triad that is observed (Figure 8). The
subharmonic frequencies were shifted away from half the primary wave frequency due to viscous
effects, and the measured growth rates were then found to be reasonably consistent with the growth
rates associated with suitably chosen plane wave resonant triads. Interestingly, subharmonic
resonance seems to be readily observed only for large primary mode 1 frequencies (ω0/N & 0.9) in
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laboratory settings [110], though large primary wave amplitudes have not been studied in detail.

Figure 8. Experimental observation of TRI in an internal wave mode. Instantaneous
horizontal density gradient field at (a) t = 20T0, when a mode 1 internal wave forced from
the left is seen, (b) t = 30T0, at which the onset of triadic resonant instability is observed, and
(c) t = 40T0, at which the subharmonic wave field is seen throughout the domain. Here, T0

is the time period of the primary internal wave mode. This figure has been reproduced from
the experimental study [110].

Subharmonic resonances have been studied in horizontally finite domains too. The degeneration of
a continuously forced standing internal wave mode via a subharmonic resonant triad was investigated
theoretically and experimentally in the presence of viscous damping by McEwan (1971) [111].
Specifically, he identified a critical amplitude for a primary mode 1 (forced using a paddle type
generator at one end of the tank) above which it irreversibly loses energy to a pair of subharmonic free
wave modes belonging to the most unstable resonant triad. Subsequently, McEwan et al. (1972) [112]
allowed for multiple subharmonic resonant triads that contain the primary mode to evolve
simultaneously, and concluded that the steady state is often governed by the triad with the lowest
critical amplitude for the primary wave. Detailed two-dimensional numerical simulations in the
weakly viscous regime have then revealed that PSI, instead of a cascade of wave interactions, drives a
standing mode towards wave breaking and dissipation [113]. Benielli & Sommeria (1998) [114]
excited standing modes by vertical oscillations of a horizontally and vertically confined tank, and
again observed PSI to drive wave breaking and turbulence. However, they also highlighted the
importance of boundary layer and three-dimensional instabilities in the overall evolution, and also
reported intermittency where the primary wave alternately grows and decays over long times.

With respect to superharmonic resonance, it is instructive to recall that a left-to-right propagating
mode m of frequency ω in a uniform stratification can be constructed as the sum of an upward
propagating plane wave with (kx, kz) = (|k| sin θ, |k| cos θ) and a downward propagating plane wave
with (kx, kz) = (|k| sin θ,−|k| cos θ), where θ is as defined in Eq (2.8). As mentioned for plane wave
reflection on a horizontal boundary (Section 4.1.4), an interaction between such a pair of plane waves
with the same wave vector magnitude does not result in superharmonic generation. A combination of
modes at the same frequency, however, can result in superharmonic wave generation due to the
interaction between their constituent plane waves. Thorpe (1966) [106] identified the conditions
under which modes m and n at frequency ω are in triadic resonance with mode |m − n| at
frequency 2ω. Interestingly, in a uniform stratification, the temporal and horizontal spatial resonance
conditions in plane waves (Section 3) are necessary but not sufficient for triadic resonance in internal
wave modes [108]. Amplitude evolution equations for resonant superharmonic generation by modal
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interactions have been validated for early times in numerical simulations [115] and laboratory
experiments ( [116], see Figure 9). Relative importance of superharmonic resonance with respect to
subharmonic resonance, viscous effects and off-resonant superharmonic generation are some aspects
from the aforementioned studies that would be worthwhile to investigate further in detail. Internal
wave modes m and n at different frequencies have also been found to resonantly generate an internal
wave mode m + n at the difference frequency. Finally, an interesting recent study by Liang et al.
(2017) [117] has shown that nonlinearity in the free surface boundary condition can make even an
isolated vertical mode unstable via superharmonic resonance.

Figure 9. Experimental observation of superharmonic resonance due to resonant interaction
of modes 3 & 4. Instantaneous horizontal density gradient field filtered at (a) forcing
frequency ω0, shows mode 3 + mode 4 structure (as forced by a wave generator from the
left), and (b) Superharmonic frequency 2ω0, shows clear mode 1 structure, as predicted
theoretically (mode |m − n|). This figure has been reproduced from the experimental study
of [116].

5. Ocean perspective

The ocean is more complex than what is represented in the idealized models discussed thus far in
this review. In this section, we briefly overview the important factors and questions regarding internal
waves in the ocean, focusing on their instabilities.

One significant factor influencing internal wave dynamics in the ocean is the nonuniformity in the
vertical stratification profile. Specifically, the ocean typically contains a relatively thin unstratified
mixed layer near its surface, where turbulence driven by winds, heat and buoyancy fluxes
homogenizes the density in the top few to several tens of metres. A strongly stratified pycnocline then
lies between the mixed layer and the more or less uniformly stratified deep waters (see Figure 10(a)
for a representative stratification profile in the ocean). In the deeper ocean below the pycnocline, even
if the stratification is not uniform, it often varies sufficiently slowly with depth so that a
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) approximation, i.e., a ray tracing approach, allows for
reasonably accurate modeling of internal wave propagation [1, 118]. In the upper ocean, however, the
stratification is not necessarily slowly varying, resulting in non-trivial internal wave propagation
characteristics even in the linear regime. Several studies have pointed out selective transmission and
reflection of internal wave energy across nonuniformly stratified regions [6, 7, 119–125]. Owing to the
continuous transmission and reflection, nonuniform stratifications enable interactions between
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upward and downward propagating internal waves. A classical example in the ocean is that of an
internal wave beam incident on the pycnocline, which results in subharmonic [126–128] and
superharmonic [129–132] resonance depending on parameters such as incident wave beam profile and
amplitude, and the pycnocline characteristics.

Figure 10. (a) An idealized model of the stratification profile N(z) in the upper ocean,
highlighting the nonuniformities in stratification, (b) Measured ocean kinetic energy
spectrum over the mid-atlantic ridge near 27oN at depth of 3900 m. Semidiurnal M2,
and diurnal O1, K1 tidal peaks are marked in the spectrum. The panel (b) is reproduced
from [149].

For a finite-depth ocean, where the rigid lid approximation is mostly valid [1], the presence of a
pycnocline modifies the vertical mode shapes φn(z) from those for a uniform stratification
(Section 2.3.3). Specifically, the mode shapes in a nonuniformly stratified ocean are governed by the
Sturm-Liouville equation [1]

d2φn

dz2 +
k2

x(N2(z) − ω2)
ω2 φn = 0, (5.1)

where N(z) is the stratification profile, and the no-normal-flow boundary conditions
require φn(z = 0) = φn(z = H) = 0. Individual modes in a nonuniform stratification don’t have a
unique vertical wavelength, resulting in a non-trivial vertical structure for the weakly nonlinear wave
field associated with modal interactions. Triadic resonance in finite-depth nonuniform stratifications
has received attention in recent years, with new resonant triads being enabled in stratifications that
contain a pycnocline [108]; the occurrence of these newer resonances can be understood as a
consequence of the alternative theorem for linear differential equations of the second order [133].
Interestingly, even individual modes in nonuniform stratifications can be unstable due to resonant
self-interaction [108, 134]. Theoretical studies on amplitude evolution at and off resonance, and
numerical simulations have indeed confirmed superharmonic generation by self-interacting modes in
nonuniform stratifications [52, 115, 135].

In addition to nonuniform stratification profiles, another factor of dynamical importance in the
ocean is the Coriolis effect due to the Earth’s background rotation. Fundamentally, the internal wave
dispersion relation introduced in Section 2.2 gets modified by background rotation as [1]

cot2 θ =
N2

0 − ω
2

ω2 − f 2 , (5.2)
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where f = 2Ωe sin ζ êz, with Ωe and ζ being the Earth’s angular velocity of rotation and latitude,
respectively. As a result, the two inertia-gravity wave propagation regimes are (i) f ≤ ω ≤ N0 and
(ii) N0 ≤ ω ≤ f . An interesting limit for PSI is the near-inertial limit of ω/2 ≈ f , where the
subharmonic waves are at the edge of the aforementioned first wave propagation regime. Indeed,
northward propagating internal tides in the ocean can undergo rapid deterioration of their energy at
latitudes where f is half the tidal frequency [136, 137]. Theoretical studies have investigated energy
transfer rates to fine-scale subharmonic waves due to PSI in the near-inertial limit in plane waves,
modes and internal wave beams [138–141]. Towards understanding the lack of strong evidence of
near-inertial PSI in field observations, a recent linear stability analysis based on Floquet theory has
highlighted non-trivial latitudinal dependence of instabilities in finite-amplitude internal wave
beams [142]. Specifically, Onuki & Tanaka (2019) [142] have shown that the location of maximum
instability in finite-amplitude inertia-gravity wave beams can occur at values of f /ω smaller than 0.5,
while the largest PSI growth rate occurs at f /ω = 0.5 for small-amplitude inertia-gravity wave beams.

Maurer et al. (2016) [143] have extended the studies of Bourget et al. (2013) [77] and
Bourget et al. (2014) [87] to incorporate the effects of background rotation on TRI in plane
inertia-gravity waves and finite-width inertia-gravity wave beams. They report that TRI is enhanced in
a specific range of f , and their experiments also report the generation of sub-inertial secondary waves,
which require further investigations. Investigating triadic resonant instability in the presence of both
background rotation and stratification in a horizontally periodic domain, Sutherland &
Jefferson (2020) [144] observed subharmonic secondary waves in numerical simulations though
theory predicts that secondary waves with frequencies larger than the primary wave constitute the
most unstable resonant triad. In regards to superharmonic resonance, Varma & Mathur (2017) [108]
have considered steady-state weakly nonlinear modal interactions in the presence of both background
rotation and stratification, and highlighted the strong possibility of triadic resonance resulting from
high mode interactions at ω ≈ f . Such superharmonic resonances are potentially relevant for
near-inertial waves excited in the upper ocean by winds [145]. With respect to the second wave
propagation regime, it is often studied in the limit of N0 = 0, i.e., inertial waves for 0 ≤ ω ≤ f .
Though inertial and internal waves are similar in terms of their dispersion relation, their instability
characteristics can be different. Subharmonic resonance in inertial waves have been observed in
experiments [146], and the three-dimensionality of triadic resonant instability in inertial waves has
recently been highlighted [147]. Interestingly, a recent study has shown that transient growth and
relaxation oscillations can be important in linearly stable resonant triads of inertial waves [148].

A few important considerations drive studies on internal waves in the ocean. The first concerns the
spectrum associated with fluid motions in the ocean. For example, Figure 10(b) shows the frequency
spectrum of kinetic energy measured at a single location near the ocean floor at a site of steep
topography [149]. At high frequencies, strong peaks are observed at the local Coriolis frequency and
the semi-diurnal frequency (indicated a M2 in Figure 10(b)) associated with internal tides. The energy
content at the Coriolis frequency could be a consequence of either wind-forced near-inertial motions
(generated in the upper ocean) or subharmonic instabilities in the M2 internal tides. Interestingly,
higher harmonics, including 2M2, are also observed in the spectrum. The low frequency part of the
spectrum is dominated by eddy motions, with the relative fraction of energy in the eddy and wave
motions being a function of depth as well. It is worth noting that the slow eddy motions and the fast
internal wave motions can exchange energy too [150–152]. Moving away from strong topographic
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sites, the internal wave frequency band between f and N is usually described by a heuristic model that
has come to be known as the Garrett-Munk (GM) spectrum [19, 153]. The GM spectrum is expected
to be a result of nonlinear interactions between various frequencies observed in the spectra such as the
one shown in Figure 10(b), with the additional complexity of interaction between various spatial
scales that are sometimes introduced at the generation stage itself [12, 154]. Indeed, energy cascades
and wave turbulence resulting from various interactions in internal waves are active areas of current
research [50, 155–159].

6. Conclusions & future directions

In this paper, we have reviewed the existing knowledge on instabilities in internal waves of various
spatial forms. At sufficiently small amplitudes, internal wave instabilities occur in the form of
different manifestations of triadic resonance. While short-term evolution of isolated triadic resonances
is reasonably well-understood in the inviscid limit, several outstanding questions remain even for
seemingly simple settings. Examples of such unresolved questions include (i) which resonant triads
would drive instabilities in viscous finite-amplitude internal waves? – it is worth recalling that
classical theoretical models of TRI are often in the weakly viscous, small-amplitude regime. (ii) what
is the long-term behavior associated with triadic resonances, which is likely related to the dynamics
associated with multiple simultaneously occurring resonant triads [34]. (iii) what are the instability
dynamics in systems operating away from resonance [135, 160, 161]? In addition, the occurrence of a
mean flow in three-dimensional viscous internal waves has been recognized in several recent
studies [32], and the effects of mean flows on triadic resonances are currently being
investigated [162–164]. An alternative, and possibly more appropriate for the ocean, approach to
study energy transfer rates in a continuous internal wave spectrum through wave-wave interactions is
the kinetic equation [165, 166], which has recently been used to investigate the decay of internal tides
near the critical latitude [167].

Apart from the various considerations discussed in Section 5 for the ocean, other factors could be
important too. Three-dimensionality, associated with both the internal wave forcing mechanisms (3D
topography, for example) and the instabilities [30,59,168], is one such factor. In the lab, axisymmetric
configurations [169–172] provide useful insight as an intermediary between two-dimensional and fully
three-dimensional configurations. Internal wave interaction with background flows, such as vertical
shear [173–175] and upper ocean balanced flows [150, 152, 176], is also a relevant factor in the ocean.
Another potentially relevant topic of interest is the non-traditional effect, i.e., the role of the component
of Earth’s background rotation in the tangential plane of Earth’s surface [177].

While instabilities represent an important first step towards small-scale turbulence and dissipation
in internal waves, understanding and quantifying internal wave driven mixing remains a challenge [18,
149,178,179]. Finally, an accurate parameterization of internal wave driven mixing in large scale ocean
models is an essential ingredient of climate modeling [20,180]. We conclude this review by stating that
internal wave dynamics, including instabilities, are an important consideration in atmospheric [181]
and astrophysical [182] applications too.
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