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Abstract: In this paper we consider traveling waves for the Gross-Pitaevskii equation which are
T -periodic in each variable. We prove that if T is large enough, there exists a solution as a global
minimizer of the corresponding action functional. In the subsonic case, we can use variational methods
to prove the existence of a mountain-pass solution. Moreover, we show that for small T the problem
admits only constant solutions.
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On June 29, 2020, Ireneo posted: “I miss my normal life”.
We do miss you having your normal life, my friend.

1. Introduction

In this paper we are concerned with the Gross-Pitaevskii equation

i∂tΨ = ∆Ψ + Ψ
(
1 − |Ψ|2

)
on RN × R. (1.1)

Here Ψ is the wave function and N = 2 or 3 is the spatial dimension. This is a Nonlinear Schrödinger
Equation under the effect of a Ginzburg-Landau potential. The Gross-Pitaevskii equation was proposed
in 1961 ( [18,28]) to model a quantum system of bosons in a Bose-Einstein condensate, via a Hartree-
Fock approximation (see also [3, 5, 20, 21]). It appears also in other contexts such as the study of dark
solitons in nonlinear optics ( [23, 24]).
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From the point of view of the dynamics, the Cauchy problem for the Gross-Pitaevskii equation was
first studied in one space dimension by Zhidkov [30] and in dimension N = 2, 3 by Béthuel and Saut [9]
(see also [16, 17, 22]). At least formally, Eq (1.1) presents two invariants, namely:

• Energy:

E =

∫
1
2
|∇Ψ|2 +

1
4

(
1 − |Ψ|2

)2
,

• Momentum:
P =

1
2

∫
(i∇Ψ) · Ψ,

where f · g = Re( f )Re(g) + Im( f )Im(g). For later use the first component of the momentum will
be of special interest:

P =
1
2

∫
(i∂x1Ψ) · Ψ.

In this work, we are concerned with the existence of periodic traveling waves of (1.1). Traveling
waves for (1.1) are special solutions to (1.1) of the form

Ψ(x, t) = ψ(x1 − ct, x̃), x̃ = (x2 . . . xN) ∈ RN−1, (1.2)

where the parameter c > 0 characterizes the speed of the traveling wave and x1 indicates the direction
of the wave. By the ansatz (1.2) the equation for the profile ψ is given by

ic∂x1ψ + ∆ψ + (1 − |ψ|2)ψ = 0. (TWc)

The case of solutions ψ : RN → C with finite energy has attracted a lot of attention in the literature.
The existence, nonexistence and qualitative behavior has been very much studied as part of the
so-called Jones-Putterman-Roberts program. In particular, in [20, 21] it was conjectured that such
solutions exist only if c ∈ (0,

√
2). The value c =

√
2 is interpreted as the speed of sound, and is

related to the behavior of the linearization around the constant solutions of modulus 1. Indeed, finite
energy traveling waves for supersonic speed c >

√
2 are constant, see [14]. In dimension N = 2 this

result holds also for c =
√

2, see [15].
For small c > 0 existence of solutions were proved in [9], see also [2, 10–12, 19, 25, 26] for its

asymptotic behavior and multiplicity results. A general existence result for all c ∈ (0,
√

2) was missing
until the work [27], where the case N ≥ 3 is addressed. For the planar case N = 2, an existence
result for almost all c ∈ (0,

√
2) has been recently given, see [4]. More references can be found in the

survey [7].
In this paper we are concerned with the periodic case, that is, solutions which are T -periodic in all

variables xi. This question has been addressed in [6, 8] as a tool to get finite energy solutions as the
period goes to infinity. The approach of [6, 8] consists in minimizing the energy under a constraint
P(ψ) = p. In this way the speed c appears as a Lagrange multiplier and is not controlled.

It is to be noted that, as commented in [6], the case of periodic solutions is interesting in its own
right. The main goal of this paper is to give existence and nonexistence results of periodic traveling
waves with fixed speed c.

In general, T -periodic solutions of (TWc) are stationary points of the action functional:

Ic
T : H1

T (RN)→ R, I = E − c P
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where H1
T (RN) is the Sobolev space of T -periodic complex-valued functions. More precisely,

Ic
T (ψ) =

1
2

∫
T(T )
|∇ψ|2 dx +

1
4

∫
T(T )

(1 − |ψ|2)2 dx −
c
2

∫
T(T )

(i∂x1ψ) · ψ dx, (1.3)

with T(T ) = [0,T ]N .
In this paper we first use variational methods to give existence of solutions. Indeed the functional

Ic
T attains its infimum, which is a nonconstant solution for T sufficiently large. Being more specific, we

can prove the following result:

Theorem 1.1. For N = 2, 3, and for any c > 0 there exists T̄ (c) > 0 such that, for any T > T̄ (c), there
exists a non-constant T-periodic solution ψ̄T of (TWc). This solution is a global minimizer for Ic

T , and

Ic
T (ψ̄T ) < 0.

More interestingly, one can also show the existence of a mountain pass solution. The main idea is
that the constant solutions of modulus 1 form a nondegenerate curve of local minimizers if c ∈ (0,

√
2),

and that the global minimizer given in Theorem 1.1 has negative energy.

Theorem 1.2. For N = 2, 3 and any c ∈ (0,
√

2) there exists T̄ (c) > 0 such that, for any T > T̄ (c),
there exists a non-constant T-periodic solution ψ̃T of (TWc). This solution is a mountain-pass solution
for Ic

T , and

0 < Ic
T (ψ̃T ) ≤ M(c), (1.4)

for some M(c) > 0 independent of T .

The proof of the above theorem is the original motivation of this paper. The reason is that one can
conjecture that the above solution converges locally, as T → +∞, to a finite energy solution in RN .
This strategy could be of use in the future to prove the existence of finite energy solutions in R2 for all
c ∈ (0,

√
2), a problem that remains open in its full generality despite many attempts. In order to pass

to the limit, one of the main challenges could be to find uniform bounds on the energy.
The above theorems have been stated for dimensions N = 2, 3. Under minor changes everything

works also in dimension 4; the only point there is that the nonlinear term in Ic
T becomes critical in the

sense of the Sobolev embeddings. For higher dimensions, Ic
T is not well defined in H1

T (RN), and hence
a truncation would be in order. For the sake of simplicity, we have prefered to restrict ourselves to the
physically relevant dimensions 2 and 3.

With those results at hand, the first question that arises naturally is whether the size requirement on
the period T is necessary or not. In the next theorem we show that this is indeed the case.

Theorem 1.3. For all c > 0, there exists T ∗ > 0 such that for any T ∈ (0,T ∗), any T-periodic solution
of (TWc) is necessarily constant.

The proof of the above theorem is by contradiction. If we assume the existence of Tn periodic
solutions ψn with Tn → 0, by uniform L∞ estimates (see [13]) and regularity arguments, one can
pass to the limit in Ck sense. In this way the solutions converge to a constant solution ψ0. Constant
solutions of (TWc) are either 0 or a complex number of modulus one. The idea of the proof is that for
n sufficiently large, ψn becomes exactly equal to its limit.
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In both cases, the proof uses as a main tool the min-max characterization of the first nontrivial
eigenvalue of the Laplacian. The case ψ0 = 0 follows from a somewhat simple manipulation. The
case |ψ0| = 1 is more delicate. First, it requires the use of a lifting, that is, to write the solution as
ψn = ρneiθn , for some functions ρn : RN → R+, θn : RN → R. Here it is important to realize that θn

becomes periodic for large n. Finally we combine some cancellations with the Poincaré inequality for
the functions 1 − ρn and θn to conclude.

The existence results commented above will be presented in Section 2. Section 3 is devoted to the
nonexistence result given in Theorem 1.3.

2. Existence results

In this section we will prove the existence of T -periodic solutions to (TWc) for large T . As
commented in the introduction, our proof is variational, and we will consider (weak) solutions as
critical points of the action functional Ic

T : H1
T (RN) → R. We will denote the usual scalar product

H1
T (RN),

〈φ, ψ〉 =

∫
T(T )
∇φ · ∇ψ + φ · ψ =

∫
T(T )

N∑
k=1

(∂xkφ) · (∂xkψ) + φ · ψ,

where T(T ) = [0,T ]N . The norm is then denoted as:

‖φ‖2 = 〈φ, φ〉.

Other norms will be denoted with a subscript.

2.1. Proof of Theorem 1.1

Lemma 2.1. The functional Ic
T is weakly lower semicontinuous for all c,T > 0.

Proof. Let {ψn} ⊂ H1(T(T )) be a sequence weakly convergent to some ψ ∈ H1(T(T )). On one hand,
∇ψn ⇀ ∇ψ in L2(T(T )) and by the weak lower semicontinuity,∫

T(T )
|∇ψ|2 dx ≤ lim inf

n→+∞

∫
T(T )
|∇ψn|

2 dx.

On the other hand, by Rellich-Kondrachov theorem, there is a subsequence of {ψn} strongly convergent
to ψ in L2(T(T )) and L4(T(T )). Then, up to such subsequence,∫

T(T )
(1 − |ψ|2)2 dx = lim

n→+∞

∫
T(T )

(1 − |ψn|
2)2 dx.

This completes the weakly lower semicontinuity of the energy E. Regarding the momentum p, recall
that ψn → ψ in L2(T(T )) and ∂x1ψn ⇀ ∂x1ψ in L2(T(T )), therefore lim P(ψn) = P(ψ) and P is weakly
continuous. Finally, Ic

T = E − c P is weakly lower semicontinuous in view of the weakly lower
semicontinuity of E and the weak continuity of P. �

Lemma 2.2. The functional Ic
T is coercive for all c,T > 0.

Mathematics in Engineering Volume 5, Issue 1, 1–14.
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Proof. Indeed, using the fact that for every λ > 0 there exists a positive constant Kλ > 0 (depending
only on λ) such that (1 − x2)2 ≥ 4λx2 − Kλ for all x ∈ R, we have

E(ψ) =
1
2

∫
T(T )
|∇ψ|2 dx +

1
4

∫
T(T )

(1 − |ψ|2)2 dx

≥
1
2

∫
T(T )
|∇ψ|2 dx + λ

∫
T(T )
|ψ|2 dx − Kλ

=
1
2
‖∇ψ‖2L2 + λ‖ψ‖2L2 − Kλ,

for some λ > 0 to be determined later. The Hölder inequality leads to

P(ψ) =
1
2

∫
T(T )

(i∂x1ψ) · ψ dx ≤
1
2
‖∇ψ‖L2‖ψ‖L2 .

In other words,

Ic
T (ψ) ≥

1
2
‖∇ψ‖2L2 + λ‖ψ‖2L2 − Kλ −

c
2
‖∇ψ‖L2‖ψ‖L2 .

We now make use of the inequality

‖∇ψ‖L2‖ψ‖L2 ≤
1
2c
‖∇ψ‖2L2 +

c
2
‖ψ‖2L2 .

Combining these two inequalities,

Ic
T (ψ) ≥

1
2
‖∇ψ‖2L2 +

λ

2
‖ψ‖2L2 − Kλ −

c
2
‖∇ψ‖L2‖ψ‖L2 ≥

=
1
4
‖∇ψ‖2L2 +

(
λ −

c2

4

)
‖ψ‖2L2 − Kλ.

It suffices to choose λ > c2

4 to conclude.
�

As a consequence of the two previous lemmas, the functional Ic
T attains its infimum. It remains to

show that the minimizer is different from a constant solution. Observe that:

Ic
T (0) =

1
4

T N , Ic
T (eiθ) = 0 for any θ ∈ R.

Next lemma, due to [27], will be the key to show that Ic
T may achieve negative values if T is

sufficiently large.

Lemma 2.3 (lemma 4.4 of [27]). For any N ∈ N, N ≥ 2, there exists a continuous map R 7→ υR from
[2,∞) to H1(RN) such that vR ∈ C0(RN) for any R ≥ 2 and the following estimates hold:

(i)
∫
RN
|∇υR|

2 dx ≤ ARN−2 log R,
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(ii)
∣∣∣∣∣∫
RN

(1 − |(1 + υR)|2)2 dx
∣∣∣∣∣ ≤ BRN−2,

(iii) πω1(R − 2)N−1 ≤ P(1 + υR) ≤ πω1RN−1.

where A, B > 0 are constants and ω1 denotes the measure of the unit ball in RN .

Proof of Theorem 1.1. By Lemmas 2.1 and 2.2, the functional Ic
T attains its infimum. Our aim now is

to show that the minimizer cannot be a constant function.
Take R sufficiently large so that E(1 + υR) − cP(1 + υR) < 0, where υR is given in Lemma 2.3. We

now take T̄ > diam(supp υR). For any T > T̄ we can assume that supp υR ⊂ T(T ), up to a suitable
translation. We define:

wR is the extension of υR by 0 in T(T ), and periodically to RN . (2.1)

In this way we obtain that 1 + wR ∈ H1
T (RN) and Ic

T (1 + wR) < 0. As a consequence, the minimum
of Ic

T is negative and cannot be achieved by a constant function.
�

2.2. Proof of Theorem 1.2

In the previous subsection we have proved the existence of a global minimizer at a negative value
of the functional. Here we will be concerned with the existence of a mountain pass solution. For this,
let us define:

Z = {eiθ, θ ∈ [0, 2π]},

which is a smooth curve in H1
T (RN) of constant solutions to (TWc). As commented before, Ic

T (eiθ) = 0
for any θ ∈ [0, 2π]. In next result we study the behavior of Ic

T around Z:

Lemma 2.4. If c ∈ (0,
√

2) the set Z is a nondegenerate curve of local minimizers of Ic
T .

Proof. The proof is based on the study of the second derivative (Ic
T )′′(eiθ). Of course this operator is 0

on the tangent space to Z, or, in other words,

(Ic
T )′′(eiθ)[ieiθ] = 0.

The proof will be concluded if we show that (Ic
T )′′(eiθ)(φ, φ) is positive definite for φ orthogonal to ieiθ.

By phase invariance, we can restrict ourselves to the case θ = 0. Observe that, denoting u = Re φ,
v = Im φ, we have:

〈φ, i〉 =

∫
T(T )

φ · i =

∫
T(T )

v.

We now compute:

(Ic
T )′′(1)[φ, φ] =

∫
T(T )
|∇φ|2 + 2(φ · 1)2 − c(i∂x1φ) · φ. (2.2)

We now check that,

Mathematics in Engineering Volume 5, Issue 1, 1–14.
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(φ · 1)2 = u2,

and, integrating by parts,∫
T(T )

(i∂x1φ) · φ =

∫
T(T )

(∂x1u)v − (∂x1v)u = −2
∫
T(T )

(∂x1v)u.

Hence,

c

∣∣∣∣∣∣
∫
T(T )

(i∂x1φ) · φ

∣∣∣∣∣∣ = 2c

∣∣∣∣∣∣
∫
T(T )

(∂x1v)u

∣∣∣∣∣∣ ≤ c
√

2
|∇v|2 +

√
2cu2.

Plugging this estimate in (2.2), we have:

(Ic
T )′′(1)[φ, φ] ≥

∫
T(T )
|∇u|2 + |∇v|2 + 2u2 −

c
√

2
|∇v|2 −

√
2cu2

=

∫
T(T )
|∇u|2 +

(
1 −

c
√

2

)
|∇v|2 +

(
2 −
√

2c
)

u2.

Observe now that if φ is orthogonal to the constant function i, then
∫
T(T )

v = 0 and the Poincaré
inequality implies that: ∫

T(T )
|∇v|2 ≥ c(T )‖v‖2,

for some c(T ) > 0. Then,

(Ic
T )′′(1)[φ, φ] ≥ ε‖φ‖2,

for some ε > 0, concluding the proof.
�

The above result, together with Lemma 2.3, imply the presence of a Mountain Pass geometry. Next
proposition is devoted to the study of the Palais-Smale property.

Proposition 2.5. The functional Ic
T satisfies the Palais-Smale condition for any c,T > 0.

Proof. Let ψn be a Palais-Smale sequence for Ic
T , that, is, a sequence such that:

Ic
T (ψn) is bounded, (Ic

T )′(ψn)→ 0 in (HT )−1 sense.

By Lemma 2.2, we conclude that ψn is a bounded sequence. Up to a subsequence, we can assume
that ψn ⇀ ψ. Our aim now is to show strong convergence.

By the Rellich-Kondrachov Theorem we have that ψn → ψ in L2 and L4 sense. As in Lemma 2.1,
we have:

lim inf
n→+∞

∫
T(T )
|∇ψn|

2 ≥

∫
T(T )
|∇ψ|2.

Mathematics in Engineering Volume 5, Issue 1, 1–14.
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lim
n→+∞

∫
T(T )

(i∂x1ψn) · ψn =

∫
T(T )

(i∂x1ψ) · ψ,

Observe that,

0← (Ic
T )′(ψn)(ψn) =

∫
T(T )
|∇ψn|

2 − c(i∂x1ψn) · ψn − |ψn|
2 + |ψn|

4.

Moreover,

0← (Ic
T )′(ψn)(ψ) =

∫
T(T )
∇ψn · ∇ψ − c(i∂x1ψn) · ψ − ψn · ψ + |ψn|

2ψn · ψ

→

∫
T(T )
|∇ψ|2 − c(i∂x1ψ) · ψ − |ψ|2 + |ψ|4.

As a consequence we conclude that∫
T(T )
|∇ψn|

2 →

∫
T(T )
|∇ψ|2,

which implies that ψn → ψ in H1
T (RN). The proof is completed.

�

Proof of Theorem 1.2. By Lemma 2.4, there exists δ0 > 0 such that, for any δ ∈ (0, δ0), there exists
ε > 0 such that Ic

T (ψ) > ε for any ψ ∈ ∂N(δ), where

N(δ) = {ψ ∈ H1
T (RN) : d(ψ,Z) < δ}. (2.3)

Here d(ψ,Z) = min{‖ψ − z‖, z ∈ Z}.
Take T̄ as given by Theorem 1.1, and wR as in (2.1). Clearly, 1 + wR < N(δ). Define:

γ(T ) = inf
α∈Γ

max
t∈[0,1]

Ic
T (α(t)),

where
Γ = {α : [0, 1]→ H1

T (RN) continuous: α(0) = 1, α(1) = 1 + wR}.

By (2.3), γ(T ) > ε > 0, whereas Ic
T (1) = 0, Ic

T (1 + wR) < 0. By the well-known Mountain-Pass
lemma (see for instance [1]), we conclude that there exists ψ such that (Ic

T )′(ψ) = 0, Ic
T (ψ) = γ(T ).

We only need now to show that γ(T ) is bounded in T . For this, take α0 ∈ Γ, α0(t) = 1+ twR. Observe
that by the definition of wR, I(α0(t)) is independent of T > T̄ for any t ∈ [0, 1]. If we denote:

M = max
t∈[0,1]

Ic
T (α0(t)),

we conclude that γ(T ) ≤ M, concluding the proof.
�
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3. All solutions are constant if T is small

This section is devoted to prove Theorem 1.3. First, we state and prove a useful lemma, that can be
seen as a version of the Poincaré inequality that fits perfectly in our setting.

Lemma 3.1. Let f : T(T )→ R be a measurable function satisfying 1/2 ≤ f ≤ 2 on T(T ). Then for all
T > 0 there exists CT > 0 such that∫

T(T )
|∇u(x)|2 dx ≥ CT

∫
T(T )
|u(x)|2 dx

for any u ∈ H1(T(T )) with ∫
T(T )

f (x)u(x) dx = 0.

Futhermore, CT does not depend on f and CT → +∞ as T → 0.

Proof. Let us define the eigenvalue

λT ( f ) = inf


∫
T(T )
|∇u|2∫

T(T )
f |u|2

, u ∈ H1
T \ {0},

∫
T(T )

f u = 0

 > 0.

Note that the particular case f = 1 is related to the classical Poincaré inequality with constant
denoted by λT (1). From the above formula it is obvious that λT (2) = λT (1)/2.

Let us point out that λT ( f ) admits the equivalent min-max characterization (see, for instance, [29,
Chapter 11]):

λT ( f ) = inf
U

max
u∈U


∫
T(T )
|∇u|2∫

T(T )
f |u|2

, u ∈ U \ {0}

 U ⊂ H1
T , dim(U) = 2

 .
From this definition of λT ( f ) we conclude immediately the following monotonicity property, which

will be essential in our argument:
λT ( f ) ≥ λT (2).

As a consequence, if
∫
T(T )

f (x)u(x) = 0,∫
T(T )
|∇u(x)|2 dx ≥ λT ( f )

∫
T(T )

f (x)|u(x)|2 dx ≥
λT (1)

2

∫
T(T )

f (x)|u(x)|2 dx

≥
λT (1)

4

∫
T(T )
|u(x)|2 dx.

Then we can take CT = λT (1)/4. Finally, it is well known that λT (1) diverges when T is small,
concluding the proof.

�

Proof of Theorem 1.3. Suppose that {ψn} is a sequence of solutions to

∆ψn + ic∂x1ψn + (1 − |ψn|
2)ψn = 0 on T(Tn) (3.1)
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with Tn → 0. We aim to show that there exists m ∈ N such that ψn is constant if n ≥ m. Just by
integration of the equation on T(Tn) one obtains:∫

T(Tn)
(1 − |ψn|

2)ψn = 0. (3.2)

This identity will be of use in what follows.
By [13], all solutions are uniformly bounded, which implies uniform Ck bounds via elliptic

estimates, for any k ∈ N. As a consequence, {ψn} converges to a constant function ψ0 in Ck sense.
Such constant must solve (TWc), hence we have two possibilities: ψ0 = 0 or ψ0 is a constant of
modulus one.

Case 1: ψ0 = 0. Multiplying the equation (3.1) by ψn and integrating, yields∫
T(Tn)
|∇ψn(x)|2 dx − c

∫
T(Tn)

(i∂x1ψn(x)) · ψn(x) dx −
∫
T(Tn)

(1 − |ψn(x)|2)|ψn(x)|2 dx = 0.

Now, we compute this useful estimate in light of Cauchy-Schwartz inequality:∫
T(Tn)
|c(∂x1ψn(x)) · ψn(x)| dx ≤

c2

2

∫
T(Tn)
|ψn(x)|2 dx +

1
2

∫
T(Tn)
|∇ψn(x)|2 dx.

This inequality allows us to write the following

0 =

∫
T(Tn)
|∇ψn(x)|2 − (1 − |ψn(x)|2)|ψn(x)|2 − c(i∂x1ψn(x)) · ψn(x) ≥

≥

∫
T(Tn)
|∇ψn(x)|2 − |ψn(x)|2 −

c2

2
|ψn(x)|2 −

1
2
|∇ψn(x)|2 =

=
1
2

∫
T(Tn)
|∇ψn(x)|2 − (1 + c2/2)

∫
T(Tn)
|ψn(x)|2 ≥

≥

(
CTn

2
− 1 −

c2

2

) ∫
T(Tn)
|ψn(x)|2,

where in the last inequality we have used Lemma 3.1 applied to f = 1 − |ψn|
2, taking advantage of

(3.2). Observe now that if Tn is sufficiently small, CTn
2 − 1− c2

2 > 0, which implies that ψn is identically
equal to 0.

Case 2: |ψ0| = 1. By the phase invariance, we can assume that ψ0 = 1. In this case, the function ψn

extended to RN is vortexless for large n, and hence there exists a lifting ψn = ρneiθn with:

ρn : RN → R+, Tn-periodic, ρn → 1 in Ck sense,

θn : RN → R|2πZ, Tn-periodic.

Observe now that since ψn → 1 in C1 sense, the oscillation max θn − min θn converges to 0. This
implies that, for large n,
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θn : RN → R, Tn-periodic, θn → 0 in Ck sense.

Observe that:

1
|T(Tn)|

∫
T(Tn)

θn(x) dx = Θn → 0.

By phase invariance, the functions ρn(x)ei(θn(x)−Θn) are also solutions of the problem. By abuse of
notation we can assume that ψn = ρneiθn satisfies that:∫

T(Tn)
θn(x) dx = 0. (3.3)

In terms of the lifting, Eq (3.2) reads as:∫
T(Tn)

(1 − ρ2
n(x))ρn(x)eiθn(x) dx = 0. (3.4)

With all these preliminaries, we are now ready to begin our argument. Multiplying Eq (3.1) by ψn

and integrating we obtain, in terms of the lifting:∫
T(Tn)
|∇ρn|

2 + ρ2
n|∇θn|

2 + c(ρ2
n − 1)∂x1θn − (1 − ρ2

n)ρ2
n = 0. (3.5)

Observe that the periodicity of θn has been used in the above expression.
Note that, by Cauchy-Schwartz,∫

T(Tn)
|c(ρ2

n − 1)∂x1θn| ≤
1
2

∫
T(Tn)
|∂x1θn|

2 +
c2

2

∫
T(Tn)

(1 − ρ2
n)2.

Taking into account (3.4) we obtain:∫
T(Tn)

(1 − ρ2
n)ρ2

n =

∫
T(Tn)

(1 − ρ2
n)(ρ2

n − ρn)︸                      ︷︷                      ︸
A

+

∫
T(Tn)

(1 − ρ2
n)ρn(1 − eiθn)︸                         ︷︷                         ︸
B

.

For sufficiently large n we have that:

A = −

∫
T(Tn)

(ρn + ρ2
n)(1 − ρn)2 ≤ 0.

In addition, using the fact that |1 − eit| ≤ |t| for all t ∈ R and Cauchy-Schwartz,

|B| =

∣∣∣∣∣∣
∫
T(Tn)

(1 − ρ2
n)ρn(1 − eiθn)

∣∣∣∣∣∣ ≤
∫
T(Tn)

(ρn + ρ2
n)|1 − ρn||θn| ≤

≤ 3
∫
T(Tn)
|1 − ρn||θn| ≤

3
2

∫
T(Tn)
|1 − ρn|

2 +
3
2

∫
T(Tn)
|θn|

2.
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Using these estimates in (3.5),

0 =

∫
T(Tn)
|∇ρn|

2 + ρ2
n|∇θn|

2 + c(ρ2
n − 1)∂x1θ − (1 − ρ2

n)ρ2
n ≥

≥

∫
T(Tn)
|∇ρn|

2 +
(
ρ2

n − 1/2
)
|∇θn|

2 −
c2

2
(1 − ρ2

n)2

−3
∫
T(Tn)

1
2

(1 − ρn)2 +
1
2
|θn|

2.

In sum, we obtain that for sufficiently large n,

0 ≥
∫
T(Tn)
|∇ρn|

2 −
(c2 + 3

2

)
(1 − ρn)2 +

1
4
|∇θn|

2 −
3
2
|θn|

2. (3.6)

We now plan to apply Lemma 3.1 to the functions θn and (1 − ρn). Actually, (3.3) allows us to use
the classical Poincaré inequality to θn, and for large n we have that∫

T(Tn)
|∇θn|

2 ≥ 7
∫
T(Tn)
|θn|

2.

With respect to (1 − ρn), observe that taking the real part of (3.4) we obtain:∫
T(Tn)

(1 − ρn)(ρn + ρ2
n) cos(θn) = 0.

Hence we can use Lemma 3.1 with f = 1
2 (ρn + ρ2

n) cos(θn) to conclude that for large n, we have

∫
T(Tn)
|∇ρn|

2 ≥
(c2 + 3

2
+ 1

)
(1 − ρn)2.

As a consequence, the inequality (3.6) can hold only if ρn = 1, θn = 0 for all x ∈ T(Tn) and n large
enough. This finishes the proof.
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22. R. Killip, T. Oh, O. Pocovnicu, M. Vişan, Global well-posedness of the Gross-Pitaevskii and cubic-
quintic nonlinear Schrödinger equations with nonvanishing boundary conditions, Math. Res. Lett.,
19 (2012), 969–986. http://dx.doi.org/10.4310/MRL.2012.v19.n5.a1

23. Y. S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep., 298
(1998), 81–197. http://dx.doi.org/10.1016/S0370-1573(97)00073-2

24. Y. S. Kivshar, D. E. Pelinovsky, Y. A. Stepanyants, Self-focusing of plane dark
solitons in nonlinear defocusing media, Phys. Rev. E, 51 (1995), 5016–5026.
http://dx.doi.org/10.1103/PhysRevE.51.5016

25. T. Lin, J. Wei, J. Yang, Vortex rings for the Gross-Pitaevskii equation in R3, J. Math. Pures Appl.,
100 (2013), 69–112. http://dx.doi.org/10.1016/j.matpur.2012.10.012

26. Y. Liu, J. Wei, Multi-vortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser
polynomials, SIAM J. Math. Anal., 52 (2020), 3546–3579. http://dx.doi.org/10.1137/18M119940X
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