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1. Introduction and preliminaries

Metric graphs are widely used to model a wide range of problems in chemistry, physics, or
engineering, describing quasi-one-dimensional systems such as carbon nano-structures, quantum
wires, transport networks, or thin waveguides. Concerning the applications in biology, we can cite, for
instance, the recent works [15, 16]. They are also widely studied in mathematics; see [7, 20] for an
overview.

One of the earliest accounts of a partial differential equation set on a metric graph can be found in
the 1980 work of Lumer ( [17]) on ramification spaces. Since then, the theory has seen considerable
developments, due, in particular, to the natural appearance of graphs in the modeling of various
physical situations. Among the partial differential equation problems set on metric graphs, one has
become increasingly popular: the ones set on quantum graphs. By quantum graphs one usually refers
to a metric graph Γ = (V, E) equipped with a differential operator H often referred to as the
Hamiltonian. The most popular example of a Hamiltonian is −∆ on the edges with Kirchhoff
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conditions. The book of Berkolaiko and Kuchment [7] provides an excellent introduction to the
theory of quantum graphs. In the last years, we have had a great development of other important
topics like: the wave equation in metric graphs related with control problems (see survey book [14])
and nonlinear quantum graphs associated with the nonlinear evolution equation of Schrödinger type
(see the survey paper [21]). Now, to our knowledge, there is very little literature on nonlinear
evolution problems in metric graphs, such as for the p-Laplacian operator.

The aim of this paper is to analyse the initial-boundary value problem associated with the total
variation flow in metric graphs. In this regard, we introduce the 1-Laplacian operator associated with a
metric graph. We then proceed to prove existence and uniqueness of solutions of the total variation flow
in metric graphs for data in L2(Γ) and to study their asymptotic behaviour, showing that the solutions
reach the stationary state in finite time. Furthermore, we obtain explicit solutions.

From the mathematical point of view, the study of the total variation flow in Euclidean spaces was
carried out using, as its main tools, the classical theory of maximal monotone operators due to Brezis
( [9]) and the Crandall-Liggett Theorem ( [6, 13]), being the energy space the space of function of
bounded variation. In order to characterize the solutions, the Green’s formula shown by Anzelotti in [5]
proved to be crucial (see [2–4] for a survey). The study of a similar problem in the general framework
of metric random walk spaces, which have as important particular cases the weighted graphs and
nonlocal problems with non–singular kernels, was done in [18].

Here, we use similar tools, so we introduce the space of bounded variation functions in metric
graphs and we establish a Green’s formula in order to characterize the 1-Laplacian operator in metric
graphs. Let me point out the importance of giving an adequate definition of the total variation of a
bounded variation function in the context of metric graphs that takes into account its structure and
measures the jumps in the vertices.

1.1. Metric graphs

We recall here some basic knowledge about metric graphs, see for instance [7] and the references
therein.

A graph Γ consists of a finite or countable infinite set of vertices V(Γ) = {vi} and a set of edges
E(Γ) = {e j} connecting the vertices. A graph Γ is said to be a finite graph if the number of edges and
the number of vertices are finite. An edge and a vertex on that edge are called incident. We will denote
v ∈ e when the edge e and the vertex v are incident. We define Ev(Γ) as the set of all edges incident to
v, and the degree of v as dv := ]Ev(Γ). We define the boundary of V(Γ) as

∂V(Γ) := {v ∈ V(Γ) : dv = 1},

and its interior as
int(V(Γ)) := {v ∈ V(Γ) : dv > 1}.

We will assume the absence of loops, since if these are present, one can break them into pieces by
introducing new intermediate vertices. We also assume the absence of multiple edges.

A walk is a sequence of edges {e1, e2, e3, . . . } in which, for each i (except the last), the end of ei is
the beginning of ei+1. A trail is a walk in which no edge is repeated. A path is a trail in which no vertex
is repeated.

From now on we will deal with a connected, compact and metric graph Γ:
• A graph Γ is a metric graph if
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1) each edge e is assigned with a positive length `e ∈]0,+∞];
2) for each edge e, a coordinate is assigned to each point of it, including its vertices. For that

purpose, each edge e is identified with an ordered pair (ie, fe) of vertices, being ie and fe the initial
and terminal vertex of e respectively, which has no sense of meaning when travelling along the
path but allows us to define coordinates by means of an increasing function

ce : e → [0, `e]
x  xe

such that, letting ce(ie) := 0 and ce(fe) := `e, it is exhaustive; xe is called the coordinate of the
point x ∈ e.

• A graph is said to be connected if a path exists between every pair of vertices, that is, a graph which
is connected in the usual topological sense.
• A compact metric graph is a finite metric graph whose edges all have finite length.

If a sequence of edges {e j}
n
j=1 forms a path, its length is defined as

∑n
j=1 `e j . The length of a metric

graph, denoted `(Γ), is the sum of the length of all its edges. Sometime we identify Γ with

Γ ≡
⋃

e∈E(Γ)

e.

Given a set A ⊂ Γ, we define its length as

`(A) :=
∑

e∈E(Γ),A∩e,∅

L1(ce(A ∩ e)).

For two vertices v and v̂, the distance between v and v̂, dΓ(v, v̂), is defined as the minimal length of
the paths connecting them. Let us be more precise and consider x, y two points in the graph Γ.

-if x, y ∈ e (they belong to the same edge, note that they can be vertices), we define the distance-in-
the-path-e between x and y as

diste(x, y) := |ye − xe|;

-if x ∈ ea, y ∈ eb, let P = {ea, e1, . . . , en, eb} be a path (n ≥ 0) connecting them. Let us call e0 = ea

and en+1 = eb. Following the definition given above for a path, set v0 the vertex that is the end of e0

and the beginning of e1 (note that these vertices need not be the terminal and the initial vertices of the
edges that are taken into account), and vn the vertex that is the end of en and the beginning of en+1. We
will say that the distance-in-the-path-P between x and y is equal to

diste0(x, v0) +
∑

1≤ j≤n

`e j + disten+1(vn, y).

We define the distance between x and y, that we will denote by dΓ(x, y), as the infimum of all the
distances-in-paths between x and y, that is,

dΓ(x, y) = inf
{
diste0(x, v0) +

∑
1≤ j≤n `e j + disten+1(vn, y) :

{e0, e1, . . . , en, en+1} path connecting x and y
}
.
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We remark that the distance between two points x and y belonging to the same edge e can be strictly
smaller than |ye − xe|. This happens when there is a path connecting them (using more edges than e)
with length smaller than |ye − xe|.

A function u on a metric graph Γ is a collection of functions [u]e defined on ]0, `e[ for all e ∈ E(Γ),
not just at the vertices as in discrete models.

Throughout this work,
∫

Γ
u(x)dx or

∫
Γ

u denotes
∑

e∈E(Γ)

∫ `e

0
[u]e(xe) dxe. Note that given Ω ⊂ Γ, we

have
`(Ω) =

∫
Γ

χ
Ωdx.

Let 1 ≤ p ≤ +∞. We say that u belongs to Lp(Γ) if [u]e belongs to Lp(]0, `e[) for all e ∈ E(Γ) and

‖u‖p
Lp(Γ) B

∑
e∈E(Γ)

‖[u]e‖
p
Lp(0,`e) < +∞.

The Sobolev space W1,p(Γ) is defined as the space of functions u on Γ such that [u]e ∈ W1,p(0, `e) for
all e ∈ E(Γ) and

‖u‖p
W1,p(Γ) B

∑
e∈E(Γ)

‖[u]e‖
p
Lp(0,`e) + ‖[u]e

′‖
p
Lp(0,`e) < +∞.

The space W1,p(Γ) is a Banach space for 1 ≤ p ≤ ∞. It is reflexive for 1 < p < ∞ and separable for
1 ≤ p < ∞. Observe that in the definition of W1,p(Γ) we does not assume the continuity at the vertices.

A quantum graph is a metric graph Γ equipped with a differential operator acting on the edges
together with vertex conditions. In this work, we will consider the 1−Laplacian differential operator
given by

∆1u(x) :=
(

u′(x)
|u′(x)|

)′
,

on each edge.

2. The total variation flow in metric graphs

In this section we will assume that Γ is a finite, compact and connected metric graph. To introduce
the total variation flow in the metric graph Γ, we first need to study the bounded variation functions in
Γ and to get a Green’s formula in Γ analogue to the classical Anzellotti Green’s formula.

2.1. BV functions and integration by parts

For bounded variation functions of one variable we follow [1]. Let I ⊂ R be an interval, we say that
a function u ∈ L1(I) is of bounded variation if its distributional derivative Du is a Radon measure on I
with bounded total variation |Du|(I) < +∞. We denote by BV(I) the space of all functions of bounded
variation in I. It is well known (see [1]) that given u ∈ BV(I) there exists u in the equivalence class of
u, called a good representative of u, with the following properties. If Ju is the set of atoms of Du, i.e.,
x ∈ Ju if and only if Du({x}) , 0, then u is continuous in I \ Ju and has a jump discontinuity at any
point of Ju:

u(x−) := lim
y↑x

u(y) = Du(]a, x[), u(x+) := lim
y↓x

u(y) = Du(]a, x]) ∀ x ∈ Ju,
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where by simplicity we are assuming that I =]a, b[. Consequently,

u(x+) − u(x−) = Du({x}) ∀ x ∈ Ju.

Moreover, u is differentiable atL1 a.e. point of I, and the derivative u′ is the density of Du with respect
to L1. For u ∈ BV(I), the measure Du decomposes into its absolutely continuous and singular parts
Du = Dau + Dsu. Then Dau = u′ L1. We also split Dsu in two parts: the jump part D ju and the Cantor
part Dcu.

It is well known (see for instance [1]) that

D ju = Du Ju =
∑
x∈Ju

u(x+) − u(x−),

and also,
|Du|(I) = |Dau|(I) + |D ju|(I) + |Dcu|(I)

=

∫ b

a
|u′(x)| dx +

∑
x∈Ju

|u(x+) − u(x−)| + |Dcu|(I).

Obviously, if u ∈ BV(I) then u ∈ W1,1(I) if and only if Dsu ≡ 0, and in this case we have Du = u′ L1.
A measurable subset E ⊂ I is a set of finite perimeter in I if χE ∈ BV(I), and its perimeter is defined

as
Per(E, I) := |DχE |(I).

From now on, when we deal with point-wise valued BV-functions we shall always use the good
representative. Hence, in the case u ∈ W1,1(I), we shall assume that u ∈ C(I).

Given z ∈ W1,2(]a, b[) and u ∈ BV(]a, b[), by zDu we mean the Radon measure in ]a, b[ defined as

〈ϕ, zDu〉 :=
∫ b

a
ϕz Du ∀ϕ ∈ Cc(]a, b[).

Note that if ϕ ∈ D(]a, b[) := C∞c (]a, b[), then

〈ϕ, zDu〉 = −

∫ b

a
uz′ϕdx −

∫ b

a
uzϕ′dx,

which is the definition given by Anzellotti in [5].
Working as in [5, Corollary 1.6], it is easy to see that

|zDu|(B) ≤ ‖z‖L∞(]a,b[)|Du|(B) for all Borelian B ⊂]a, b[. (2.1)

Then, zDu is absolutely continuous with respect to the measure |Du|, and we will denote by
θ(z,Du, x) the Radom-Nikodym derivative of zDu with respect to |Du|, that is∫ b

a
zDu =

∫ b

a
θ(z,Du, x)d|Du|(x).

Working as in [5, Proposition 2.8], we have that if f ∈ C1(R) is an increasing function, then

θ(z,D( f (u)), x) = θ(z,Du, x) |Du| − a.e. in ]a, b[. (2.2)

The next result was proved in [5] in RN , with N ≥ 2. We can adapt the proof for N = 1. For
convenience, we give here the details.
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Proposition 2.1. Let zn ∈ W1,2(]a, b[). If

lim
n→∞

zn = z weakly∗ in L∞(]a, b[),

and
lim
n→∞

z′n = z′ weakly in L1(]a, b[),

then for every u ∈ BV(]a, b[), we have

znDu→ zDu as measures, (2.3)

and

lim
n→∞

∫ b

a
znDu =

∫ b

a
zDu. (2.4)

Proof. We have
M := sup

n∈N
‖zn‖∞ < ∞, and then ‖z‖∞ ≤ M.

Then, ∣∣∣∣∣∣
∫ b

a
znDu

∣∣∣∣∣∣ ≤ M
∫ b

a
|Du|.

Thus, to verify that (2.3) holds; that is,

lim
n→∞

∫ b

a
ϕznDu =

∫ b

a
ϕzDu (2.5)

for every ϕ ∈ Cc(]a, b[), it is sufficient to check this limit for test functions ϕ ∈ D(]a, b[). Now, for
ϕ ∈ D(]a, b[),∫ b

a
ϕznDu = −

∫ b

a
uz′nϕdx −

∫ b

a
uznϕ

′dx→ −
∫ b

a
uz′ϕdx −

∫ b

a
uzϕ′dx =

∫ b

a
ϕzDu,

which proves (2.3). Let us prove now (2.4). Given ε > 0, since |Du| is a bounded Radon measure, there
exists an open subset U ⊂]a, b[ such that ∫

]a,b[\U
|Du| ≤

ε

4M
(2.6)

and for every ϕ ∈ D(]a, b[), there exists N ∈ N such that∣∣∣∣∣∣
∫ b

a
ϕznDu −

∫ b

a
ϕzDu

∣∣∣∣∣∣ < ε

2
, ∀ n ≥ N. (2.7)

Now, we choose ϕ ∈ D(]a, b[) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on U. Then, by (2.6) and (2.7), for all n ≥ N,
we have∣∣∣∣∣∣

∫ b

a
znDu −

∫ b

a
zDu

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ b

a
ϕznDu −

∫ b

a
ϕzDu

∣∣∣∣∣∣ +

∫ b

a
(1 − ϕ)|znDu| +

∫ b

a
(1 − ϕ)|zDu|

≤
ε

2
+

∫
]a,b[\U

|znDu| +
∫

]a,b[\U
|znDu| ≤

ε

2
+ 2M

∫
]a,b[\U

|Du| ≤ ε

proving (2.4).
�
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We need the following integration by parts formula, which can be proved using a suitable
regularization of u ∈ BV(I) as in the proof of [5, Theorem 1.9] (see also Theorem C.9. of [2]).

Lemma 2.2. If z ∈ W1,2(]a, b[) and u ∈ BV(]a, b[), then∫ b

a
zDu +

∫ b

a
u(x)z′(x) dx = z(b)u(b−) − z(a)u(a+). (2.8)

Definition 2.3. We define the set of bounded variation functions in Γ as

BV(Γ) := {u ∈ L1(Γ) : [u]e ∈ BV(]0, `e[) for all e ∈ E(Γ)}.

Given u ∈ BV(Γ), for e ∈ Ev, we define

[u]e(v) :=

 [u]e(0+), if v = ie

[u]e(`e−), if v = fe.

For u ∈ BV(Γ), we define
|Du|(Γ) :=

∑
e∈E(Γ)

|D[u]e|(]0, `e[).

We also write
|Du|(Γ) =

∫
Γ

|Du|.

Obviously, for u ∈ BV(Γ), we have

|Du|(Γ) = 0 ⇐⇒ [u]e is constant in ]0, `e[, ∀ e ∈ E(Γ). (2.9)

BV(Γ) is a Banach space with respect to the norm

‖u‖BV(Γ) B ‖u‖L1(Γ) + |Du|(Γ).

Remark 2.4. Note that we do not include a continuity condition at the vertices as in the definition of
the spaces BV(Γ). This is due to the fact that, if we include the continuity in the vertices, then typical
functions of bounded variation such as the functions of the form χD with D ⊂ Γ such that v ∈ D, being
v a common vertex to two edges, would not be elements of BV(Γ).

By the Embedding Theorem for BV-functions (cf. [1, Corollary 3.49, Remark 3.30]), we have the
following result.

Theorem 2.5. The embedding BV(Γ) ↪→ Lp(Γ) is continuous for 1 ≤ p ≤ ∞, being compact for
1 ≤ p < ∞.

We denote
D(Γ) :=

⊕
e∈E(Γ)

C∞c (]0, `e[),

and
Cc(Γ) :=

⊕
e∈E(Γ)

Cc(]0, `e[).

Mathematics in Engineering Volume 5, Issue 1, 1–38.



8

Cc(Γ) is a Banach space with respect to the norm ‖u‖∞ = sup{|u(x)| : x ∈ Γ}, we denote by

Mb(Γ) := (Cc(Γ))∗ ,

the dual of Cc(Γ), and we will call the elements ofMb(Γ) Radon measures in Γ.

Definition 2.6. Given u ∈ BV(Γ), we define Du : Cc(Γ)→ R as

〈Du, ϕ〉 :=
∑

e∈E(Γ)

∫ `e

0
ϕe dD[u]e.

Note that if ϕ ∈ D(Γ), then

〈Du, ϕ〉 = −
∑

e∈E(Γ)

∫ `e

0
ϕ′e [u]edx

We have

|〈Du, ϕ〉| ≤
∑

e∈E(Γ)

∣∣∣∣∣∣
∫ `e

0
ϕe dD[u]e

∣∣∣∣∣∣ ≤ ∑
e∈E(Γ)

‖ϕe‖∞ |D[u]e| (0, `e) = ‖ϕ‖∞|Du|(Γ).

Therefore, Du ∈ Mb(Γ) and ‖Du‖Mb(Γ) ≤ |Du|(Γ). On the other hand, given ε > 0 there exists ϕe ∈

Cc((0, `e)), with ‖ϕe‖∞ ≤ 1 such that

|D[u]e|(0, `e) ≤ 〈D[u]e, ϕe〉 +
ε

|E(Γ)|
.

Then, if ϕ :=
⊕

e∈E(Γ) ϕe ∈ Cc(Γ), we have

|Du|(Γ) =
∑

e∈E(Γ)

|D[u]e|(0, `e) ≤
∑

e∈E(Γ)

〈D[u]e, ϕe〉 + ε = 〈Du, ϕ〉 + ε ≤ ‖Du‖Mb(Γ) + ε.

Consequently,
|Du|(Γ) = ‖Du‖Mb(Γ) for all u ∈ BV(Γ). (2.10)

Let us point out that, in metric graphs, |Du|(Γ)(u) is not a good definition of the total variation of u
since it does not measure the jumps of the function at the vertices. In order to give a definition of the
total variation of a function u ∈ BV(Γ) that takes into account the jumps of the function at the vertices,
we are going to obtain a Green’s formula like the one obtained by Anzellotti in [5] for BV-functions
in Euclidean spaces. In order to do this, we start by defining the pairing zDu between an element
z ∈ W1,2(Γ) and a BV function u. This will be a metric graph analogue of the classic Anzellotti pairing
introduced in [5].

Definition 2.7. For z ∈ W1,2(Γ) and u ∈ BV(Γ), we define zDu := ([z]e,D[ue])e∈E(Γ), that is, for
ϕ ∈ Cc(Γ),

〈zDu, ϕ〉 =
∑

e∈E(Γ)

∫ `e

0
ϕe[z]e D[u]e.

We have that zDu is a Radon measure in Γ and∫
Γ

zDu =
∑

e∈E(Γ)

∫ `e

0
[z]e D[u]e.
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By (2.1), we have ∣∣∣∣∣∫
Γ

zDu
∣∣∣∣∣ ≤ ‖z‖L∞(Γ)|Du|(Γ). (2.11)

If we define
θ(z,Du, x) :=

∑
e∈E(Γ)

θ([z]e,D[u]e, x),

then ∫
Γ

zDu =

∫
Γ

θ(z,Du, x)d|Du|(x).

Moreover, by (2.2), if f ∈ C1(R) is a increasing function, then

θ(z,D( f (u)), x) = θ(z,Du, x) |Du| − a.e. in Γ. (2.12)

Given z ∈ W1,2(Γ), for e ∈ Ev, we define

[z]e(v) :=

 [z]e(`e) if v = fe,

−[z]e(0), if v = ie.
.

By Lemma 2.2, we have ∫
Γ

zDu =
∑

e∈E(Γ)

∫ `e

0
[z]e D[u]e

= −
∑

e∈E(Γ)

∫ `e

0
[u]e(x)([z]e)′(x)dx +

∑
e∈E(Γ)

([z]e(`e)[u]e((`e)−) − [z]e(0)[u]e(0+))

= −

∫
Γ

uz′ +
∑

v∈V(Γ)

∑
e∈Ev(Γ)

[z]e(v)[u]e(v).

Then, if we define ∫
∂Γ

zu :=
∑

v∈V(Γ)

∑
e∈Ev(Γ)

[z]e(v)[u]e(v),

for z ∈ W1,2(Γ) and u ∈ BV(Γ), we have the following Green’s formula:∫
Γ

zDu +

∫
Γ

uz′ =

∫
∂Γ

zu. (2.13)

We define
X0(Γ) := {z ∈ W1,2(Γ) : z(v) = 0, ∀v ∈ V(Γ)}.

For u ∈ BV(Γ) and z ∈ X0(Γ), we have the following Green’s formula∫
Γ

zDu +

∫
Γ

uz′ = 0. (2.14)

Proposition 2.8. For u ∈ BV(Γ), we have

|Du|(Γ) = sup
{∫

Γ

u(x)z′(x)dx : z ∈ X0(Γ), ‖z‖L∞(Γ) ≤ 1
}
. (2.15)
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Proof. Let u ∈ BV(Γ). Given z ∈ X0(Γ) with ‖z‖L∞(Γ) ≤ 1, applying Green’s formula (2.14) and (2.11),
we have ∫

Γ

uz′ = −

∫
Γ

zDu ≤ |Du|(Γ).

Therefore,

sup
{∫

Γ

u(x)z′(x)d(x) : z ∈ X0(Γ), ‖z‖L∞(Γ) ≤ 1
}
≤ |Du|(Γ).

On the other hand,

|Du|(Γ) =
∑

e∈E(Γ)

|D[u]e|(0, `e) =
∑

e∈E(Γ)

sup
{∫ `e

0
[u]eϕ

′
e : ϕe ∈ C∞c ((0, `e)), ‖ϕe‖∞ ≤ 1

}
.

Now, given (ϕe) ∈ D(Γ), if we define z such that [z]e = ϕe for all e ∈ E(Γ), we have z ∈ X(Γ). Hence,
we get

|Du|(Γ) ≤ sup
{∫

Γ

u(x)z′(x)d(x) : z ∈ X0(Γ), ‖z‖L∞(Γ) ≤ 1
}
.

�

Remark 2.9. By the above result, we have that the energy functional EΓ : L2(Γ)→ [0,+∞] defined by

EΓ(u) :=

 |Du|(Γ) if u ∈ BV(Γ),

+∞ if u ∈ L2(Γ) \ BV(Γ),

is convex and lower semi-continuous. Therefore, we could study the gradient flow associated with EΓ

as a possible definition of the total variation flow in metric graphs. However, I would like to point out
that this is not the adequate way since the solutions of this gradient flow coincide with the solutions of
the Neumann problem at each edge, regardless of the structure of the metric graph. This is the reason
for which we are going to introduce our concept of total variation in metric graphs.

We consider now the elements of W1,2(Γ) that satisfies a Kirchhoff condition, that is, the set

XK(Γ) :=

z ∈ W1,2(Γ) :
∑

e∈Ev(Γ)

[z]e(v) = 0, ∀v ∈ V(Γ)

 .
Note that if z ∈ XK(Γ), then [z]e(v) = 0 for all v ∈ ∂V(Γ). Therefore, for u ∈ BV(Γ) and z ∈ XK(Γ),

we have the following Green’s formula∫
Γ

zDu +

∫
Γ

uz′ =
∑

v∈int(V(Γ))

∑
e∈Ev(Γ)

[z]e(v)[u]e(v). (2.16)

Now, for v ∈ int(V(Γ)), we have∑
e∈Ev(Γ)

[z]e(v)[u]ê(v) = 0, for all ê ∈ Ev(Γ).
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Hence ∑
e∈Ev(Γ)

[z]e(v)[u]e(v) =
1
dv

∑
ê∈Ev(Γ)

∑
e∈Ev(Γ)

[z]e(v) ([u]e(v) − [u]ê(v)) .

Therefore, we can rewrite the Green’s formula (2.16) as∫
Γ

zDu +

∫
Γ

uz′ =
∑

v∈int(V(Γ))

1
dv

∑
ê∈Ev(Γ)

∑
e∈Ev(Γ)

[z]e(v) ([u]e(v) − [u]ê(v)) . (2.17)

Remark 2.10. Given a function u in the metric graph Γ, we say that u is continuous at the vertex v if

[u]e1(v) = [u]e2(v) for all e1, e2 ∈ Ev(Γ).

We denote this common value as u(v). We denote by C(int(V(Γ))) the set of all functions in Γ

continuous at the vertices v ∈ int(V(Γ))
Note that if u ∈ BV(Γ) ∩C(int(V(Γ))) and z ∈ XK(Γ), then by (2.16), we have∫

Γ

zDu +

∫
Γ

uz′ = 0. (2.18)

We can now give our concept of total variation of a function in BV(Γ).

Definition 2.11. For u ∈ BV(Γ), we define its total variation as

TVΓ(u) = sup
{∣∣∣∣∣∫

Γ

u(x)z′(x)dx
∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1

}
. (2.19)

We say that a measurable set E ⊂ Γ is a set of finite perimeter if χE ∈ BV(Γ), and we define its
Γ-perimeter as

PerΓ(E) := TVΓ(χE),

that is

PerΓ(E) = sup
{∣∣∣∣∣∫

E
z′(x)dx

∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1
}
. (2.20)

As a consequence of the above definition, we have the following result.

Proposition 2.12. TVΓ is lower semi-continuous with respect to the convergence in L2(Γ).

As in the local case, we have the following coarea formula relating the total variation of a function
with the perimeter of its superlevel sets.

Theorem 2.13 (Coarea formula). For any u ∈ L1(Γ), let Et(u) := {x ∈ Γ : u(x) > t}. Then,

TVΓ(u) =

∫ +∞

−∞

PerΓ(Et(u)) dt. (2.21)

Proof. We have

u(x) =

∫ +∞

0

χEt(u)(x) dt −
∫ 0

−∞

(1 − χEt(u)(x)) dt. (2.22)
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Given z ∈ XK(Γ) with ‖z‖L∞(Γ) ≤ 1, since by Green’s formula (2.16)∫
Γ

z′ = 0,

and having in mind (2.20), we get∫
Γ

u(x)z′(x)dx =

∫
Γ

(∫ +∞

−∞

χEt(u)(x) dt
)

z′(x)dx

=

∫ +∞

−∞

∫
Γ

χEt(u)(x)z′(x)dxdt ≤
∫ +∞

−∞

PerΓ(Et(u)) dt.

Therefore, by (2.19), we obtain that

TVΓ(u) ≤
∫ +∞

−∞

PerΓ(Et(u)) dt.

To prove the other inequality, we can assume that TVΓ(u) < ∞ and, consequently, u ∈ BV(Γ). Then,
we can find a sequence un ∈ C∞(Γ), such that un → u in L1(Γ) and∫

Γ

|u′n(x)|dx→ |Du|(Γ).

Now, taking a subsequence if necessary, we also have that χEt(un) → χEt(u) in L1(Γ) for almost all t ∈ R.
Then, by the lower semi-continuity of PerΓ and using the coarea formula for Lipschitz functions, we
have ∫ +∞

−∞

PerΓ(Et(u)) dt ≤
∫ +∞

−∞

lim inf
n→∞

PerΓ(Et(un)) dt

≤ lim inf
n→∞

∫ +∞

−∞

PerΓ(Et(un)) dt = lim
n→∞

∫
Γ

|u′n(x)|dx = |Du|(Γ) ≤ TVΓ(u).

�

We introduce now

JVΓ(u) :=
∑

v∈int(V(Γ))

1
dv

∑
ê∈Ev(Γ)

∑
e∈Ev(Γ)

|[u]e(v) − [u]ê(v)|.

Note that JVΓ(u) measures, in a weighted way, the jumps of u at the vertices.

Proposition 2.14. For u ∈ BV(Γ), we have

|Du|(Γ) ≤ TVΓ(u) ≤ |Du|(Γ) + JVΓ(u). (2.23)

If u ∈ BV(Γ) ∩C(int(V(Γ))), then
TVΓ(u) = |Du|(Γ). (2.24)

If Γ is linear, that is dv = 2 for all v ∈ int(V(Γ)), then

TVΓ(u) = |Du|(Γ) + JVΓ(u). (2.25)
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Proof. The inequality |Du|(Γ) ≤ TVΓ(u) is a consequence of Proposition 2.8. Let u ∈ BV(Γ). Given
z ∈ XK(Γ) with ‖z‖L∞(Γ) ≤ 1, applying Green’s formula (2.17) and (2.11), we have∣∣∣∣∣∫

Γ

uz′
∣∣∣∣∣ =

∣∣∣∣∣∣∣−
∫

Γ

zDu +
∑

v∈int(V(Γ))

1
dv

∑
ê∈Ev(Γ)

∑
e∈Ev(Γ)

[z]e(v)([u]e(v) − [u]ê(v))

∣∣∣∣∣∣∣
≤ |Du|(Γ) +

∑
v∈int(V(Γ))

1
dv

∑
ê∈Ev(Γ)

∑
e∈Ev(Γ)

|[u]e(v) − [u]ê(v)| = |Du|(Γ) + JVΓ(u).

Therefore,

TVΓ(u) = sup
{∣∣∣∣∣∫

Γ

u(x)z′(x)d(x)
∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1

}
≤ |Du|(Γ) + JVΓ(u).

Suppose now that u ∈ BV(Γ) ∩C(int(V(Γ))). Since JVΓ(u) = 0, by (2.23), we have

TVΓ(u) ≤ |Du|(Γ)

On the other hand,

|Du|(Γ) =
∑

e∈E(Γ)

|D[u]e|(0, `e) =
∑

e∈E(Γ)

sup
{∫ `e

0
[u]eϕ

′
e : ϕe ∈ C∞c (]0, `e[), ‖ϕe‖∞ ≤ 1

}
. (2.26)

Then, sinceD(Γ) ⊂ XK(Γ), we have |Du|(Γ) ≤ TVΓ(u) and (2.24) holds.
Finally, let us see that (2.25) holds. By (2.26), for any n ∈ N, we have that there exists ϕn

e ∈

C∞c ((0, `e)), ‖ϕn
e‖∞ ≤ 1

|Du|(Γ) ≤
∫ `e

0
[u]e(ϕn

e)′ −
1
n
. (2.27)

Let supp(ϕn
e) = [an

e , b
n
e], 0 < an

e < bn
e < `e. Now, given v ∈ int(V(Γ)) and e ∈ Ev(Γ), suppose that

v = fe and ie < int(V(Γ)). Then, we make the following definition: for n ∈ N such that `e −
1
n > bn

e ,

φn
e(x) :=

 0, if 0 ≤ x ≤ `e −
1
n

−nx + n`e − 1, if `e −
1
n < x < `e.

Suppose now that v = ie and fe < int(V(Γ)). In this case, we define, for n ∈ N such that 1
n < an

e ,

φn
e(x) :=

 −nx + 1, if 0 ≤ x ≤ 1
n

0, if 1
n < x < `e.

Finally, suppose that v = fe and ie ∈ int(V(Γ)). Then, we define, for n ∈ N, such that 1
n < an

e and
`e −

1
n > bn

ê ,

φn
e(x) :=


−nx + 1, if 0 ≤ x ≤ 1

n

0, if 1
n < x < `e −

1
n

−nx + n`e − 1, if `e −
1
n < x < `e.
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Then, since dv = 2 for all v ∈ int(V(Γ)), if we define zn such that [zn]e := ϕn
e ± φ

n
e , taking the sign of

φn
e depending on the orientation of e, we have zn ∈ XK(Γ), and∫

Γ

u(x)(zn)′(x)d(x) =
∑

e∈E(Γ)

∫ `e

0
[u]e[zn]′edx =

∑
e∈E(Γ)

∫ `e

0
[u]e(ϕn

e)′dx ±
∑

e∈E(Γ)

∫ `e

0
[u]e(φn

e)′dx.

See the next Example for the definition of φn
e in a particular case.

Hence, we get

sup
{∫

Γ

u(x)z′(x)d(x) : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1
}

≥

{∫
Γ

u(x)(zn)′(x)d(x) : n ∈ N
}

=
∑

e∈E(Γ)

∫ `e

0
[u]e)ϕn)′e ±

∑
e∈E(Γ)

∫ `e

0
[u]e(φn

e)′dx

≥ |Du|(Γ) +
1
n
±

∑
e∈E(Γ)

∫ `e

0
[u]e(φn

e)′dx.

Now,

∫ `e

0
[u]e(φn

e)′dx =


±n

∫ 1
n

0
[u]edx

±n
∫ `e

`e−
1
n

[u]edx.

Hence,

lim
n→∞

∫ `e

0
[u]e(φn

e)′dx =

 ±[u]e(fe)

±[u]e(ie).

Therefore,

lim
n→∞
±

∑
e∈E(Γ)

∫ `e

0
[u]e(φn

e)′dx =
∑

v∈int(V(Γ))

∑
e,ê∈Ev(Γ)

|[u]e(v) − [u]ê(v)|.

Consequently, taking limit as n→ ∞, we obtain that

sup
{∫

Γ

u(x)z′(x)d(x) : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1
}
≥ |Du|(Γ) + JVΓ(u) = TVΓ(u).

�

Corollary 2.15. For u ∈ BV(Γ), we have

TVΓ(u) = 0 ⇐⇒ u is constant. (2.28)

Then
PerΓ(E) = 0 ⇐⇒ E = Γ. (2.29)

Mathematics in Engineering Volume 5, Issue 1, 1–38.



15

Proof. Obviously, if u is constant, then TVΓ(u) = 0. Suppose that TVΓ(u) = 0. By (2.23), we have
|Du|(Γ) = 0. Then, [u]e = ae is constant for all e ∈ E(Γ). Suppose that u is not constant, then there exist
e1, e2 ∈ E(Γ), with ae1 , ae2 . We have

TVΓ(u) = sup
{∣∣∣∣∣∫

Γ

u(x)z′(x)d(x)
∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1

}

= sup


∣∣∣∣∣∣∣ ∑e∈E(Γ)

ae([ze](fe) + [ze](ie))

∣∣∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1

 .
We can assume that v = fe1 = ie2 ∈ int(V(Γ)). Then if we take z ∈ W1,2(Γ) such that [ze1](v) = 1, [ze2](v) = −1, and [ze](v) = 0, for e , ei, i = 1, 2,

[z]e(w) = 0, for w , v and all e ∈ E(Γ),

we have that z ∈ XK(Γ) and ‖z‖L∞(Γ) ≤ 1. Therefore

TVΓ(u) ≥

∣∣∣∣∣∣∣ ∑e∈E(Γ)

ae([ze](fe) + [ze](ie))

∣∣∣∣∣∣∣ = |ae1 − ae2 | > 0,

which is a contradiction and consequently u is constant. �

Example 2.16. Consider the linear metric graph Γ with four vertices and three edges,
V(Γ) = {v1, v2, v3, v4} and E(Γ) = {e1 := [v1, v2], e2 := [v3, v2], e3 := [v3, v4]}.

v1 v2

e1 e2

v3 v4

e3

Let u ∈ BV(Γ) and suppose that

[u]e2(v2) ≥ [u]e1(v2) and [u]e3(v3) ≥ [u]e2(v3).

For n ∈ N large enough, we define

φn
e1

(x) :=

 0, if 0 ≤ x ≤ `e1 −
1
n

−nx + n`e1 − 1, if `e1 −
1
n < x < `e1 ,

φn
e2

(x) :=


−nx + 1, if 0 ≤ x ≤ 1

n

0, if 1
n < x < `e2 −

1
n

nx − n`e2 + 1, if `e2 −
1
n < x < `e2 ,
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and

φn
e3

(x) :=

 nx − 1, if 0 ≤ x ≤ 1
n

0, if 1
n < x < `e3 .

Then, we have

[zn]e1(v2) = φn
e1

(`e1) = −1, [zn]e2(v2) = φn
e2

(`e2) = 1 ⇒ [zn]e1(v2) + [zn]e2(v2) = 0,

and
[zn]e2(v3) = φn

e2
(0) = 1, [zn]e3(v3) = φn

e3
(0) = −1 ⇒ [zn]e2(v2) + [zn]e2(v3) = 0.

Thus, zn ∈ XK(Γ). Moreover,

lim
n→∞

∫ `e1

0
[u]e1(φ

n
e1

)′dx = lim
n→∞

∫ `e1

`e1−
1
n

(−n)[u]e1 = −[u]e1(v2),

lim
n→∞

∫ `e2

0
[u]e2(φ

n
e2

)′dx = lim
n→∞

∫ 1
n

0
(−n)[u]e2 + lim

n→∞

∫ `e2

`e2−
1
n

n[u]e2 = −[u]e2(v3) + [u]e2(v2),

and

lim
n→∞

∫ `e3

0
[u]e3(φ

n
e3

)′dx = lim
n→∞

∫ 1
n

0
n[u]e3 = [u]e3(v3).

Therefore,

lim
n→∞

∑
e∈E(Γ)

∫ `e

0
[u]e(φn

e)′dx = −[u]e1(v2) − [u]e2(v3) + [u]e2(v2) + [u]e3(v3)

=
(
[u]e2(v2) − [u]e1(v2)

)
+

(
[u]e3(v3) − [u]e2(v3)

)
= JVΓ(u).

In the next example we will see that the equality (2.25) does not hold if u < C(int(V(Γ))) or there
exists v ∈ int(V(Γ)) with dv ≥ 3.

Example 2.17. Consider the metric graph Γ with four vertices and three edges, V(Γ) = {v1, v2, v3, v4}

and E(Γ) = {e1 := [v1, v2], e2 := [v2, v3], e3 := [v2, v4]}.

v1

v3

v2

v4

e1

e2

e3
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Let u := χe1 − χe2 . Then,

JVΓ(u) :=
∑

v∈int(V(Γ))

1
dv

∑
e,ê∈Ev(Γ)

|[u]e(v) − [u]ê(v)|

=
2
3

(
|[u]e1(v2) − [u]e2(v2)| + |[u]e1(v2) − [u]e3(v2)| + |[u]e2(v2) − [u]e3(v2)|

)
=

8
3
.

By Green’s formula (2.17), we have

TVΓ(u) = sup
{∣∣∣∣∣∫

Γ

u(x)z′(x)d(x)
∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1

}

= sup


∣∣∣∣∣∣∣ ∑
v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([u]e(v) − [u]ê(v))

∣∣∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1


= sup


∣∣∣∣∣∣∣∣
(
1
3

) ∑
e,ê∈Ev2 (Γ)

[z]e(v)([u]e(v2) − [u]ê(v2))

∣∣∣∣∣∣∣∣ : z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1

 .
Now, given z ∈ X(Γ) with ‖z‖L∞(Γ) ≤ 1, we have [z]e1(v2) = [z]e2(v2) + [z]e3(v2). Hence,∣∣∣∣∣∣∣∣

(
1
3

) ∑
e,ê∈Ev2 (Γ)

[z]e(v)([u]e(v2) − [u]ê(v2))

∣∣∣∣∣∣∣∣
=

1
3

∣∣∣∣[z]e1(v)([u]e1(v2) − [u]e2(v2)) + [z]e1(v)([u]e1(v2) − [u]e3(v2)) + [z]e2(v)([u]e2(v2) − [u]e1(v2))

+[z]e2(v)([u]e2(v2) − [u]e3(v2)) + [z]e3(v)([u]e3(v2) − [u]e1(v2)) + [z]e3(v)([u]e3(v2) − [u]e2(v2))
∣∣∣∣

=
1
3

∣∣∣∣3[z]e1 − [z]e2

∣∣∣∣ =
1
3

∣∣∣∣2[z]e2 + 3[z]e3

∣∣∣∣ ≤ 5
3
.

Therefore,
2
3
≤ TVΓ(u) ≤

5
3
<

8
3

= JVΓ(u).

2.2. The total variation flow in metric graphs

In order to study the total variation flow in the metric graph Γ we consider the energy functional
FΓ : L2(Γ)→ [0,+∞] defined by

FΓ(u) :=

 TVΓ(u) if u ∈ BV(Γ),

+∞ if u ∈ L2(Γ) \ BV(Γ),

which is convex and lower semi-continuous. Following the method used in [2] we will characterize the
subdifferential of the functional FΓ.
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Given a functional Φ : L2(Γ)→ [0,∞], we define Φ̃ : L2(Γ)→ [0,∞] as

Φ̃(v) := sup


∫

Γ

v(x)w(x)d(x)

Φ(w)
: w ∈ L2(Γ)

 (2.30)

with the convention that 0
0 = 0

∞
= 0. Obviously, if Φ1 ≤ Φ2, then Φ̃2 ≤ Φ̃1.

Theorem 2.18. Let u ∈ BV(Γ) and v ∈ L2(Γ). The following assertions are equivalent:
(i) v ∈ ∂FΓ(u);
(ii) there exists z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1 such that

v = −z′, that is, [v]e = −[z]′e inD′(]0, `e[) ∀e ∈ E(Γ) (2.31)

and ∫
Γ

u(x)v(x)dx = FΓ(u); (2.32)

(iii) there exists z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1 such that (2.31) holds and

FΓ(u) =

∫
Γ

zDu −
∑

v∈int(V(Γ))

1
dv

∑
ê∈Ev(Γ)

∑
e∈Ev(Γ)

[z]e(v) ([u]e(v) − [u]ê(v)) . (2.33)

Moreover, D(∂FΓ) is dense in L2(Γ).

Proof. Since FΓ is convex, lower semi-continuous and positive homogeneous of degree 1,
by [2, Theorem 1.8], we have

∂FΓ(u) =

{
v ∈ L2(Γ) : F̃Γ(v) ≤ 1,

∫
Γ

u(x)v(x)dx = FΓ(u)
}
. (2.34)

We define, for v ∈ L2(Γ),

Ψ(v) :=

 inf
{
‖z‖L∞(Γ) : z ∈ XK(Γ), v = −z′

}
+∞ if does not exists z ∈ XK(Γ), s.t., v = −z′.

(2.35)

Observe that Ψ is convex, lower semi-continuous and positive homogeneous of degree 1. Moreover, if
Ψ(v) < ∞, the infimum in (2.35) is attained, i.e., there exists some z ∈ XK(Γ) such that v = −z′ and
Ψ(v) = ‖z‖L∞(Γ). In fact, let zn ∈ XK(Γ) with v = −z′n for all n ∈ N, such that Ψ(v) = limn→∞ ‖zn‖∞. We
can assume that

lim
n→∞

zn = z weakly∗ in L∞(Γ), and z′ = v.

We must show that z satisfies the Kirchhoff condition. Now, by Proposition 2.1, we have that

lim
n→∞

∫
Γ

znDu =

∫
Γ

zDu, ∀ u ∈ BV(Γ). (2.36)
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Fix v ∈ V(Γ). Applying Green’s formula (2.16) to zn and u ∈ BV(Γ) , we get∫
znDu +

∫
Γ

uz′n =
∑

v∈V(Γ)

∑
e∈Ev(Γ)

[z]e(v)[u]e(v).

Hence, taking u such that [u]e(v) = 1 for all e ∈ Ev(Γ) and [u]ê = 0 if v < Ev(Γ), we have∫
znDu +

∫
Γ

uz′n =
∑

e∈Ev(Γ)

[zn]e(v)[u]e(v) = 0.

Then, taking the limit as n→ ∞ and having in mind (2.13), we obtain

0 =

∫
zDu +

∫
Γ

uz′ =
∑

e∈Ev(Γ)

[z]e(v)[u]e(v).

Therefore, z ∈ XK(Γ) and Ψ(v) = ‖z‖L∞(Γ).
Let us see that

Ψ = F̃Γ.

We begin by proving that F̃Γ(v) ≤ Ψ(v). If Ψ(v) = +∞ then this assertion is trivial. Therefore, suppose
that Ψ(v) < +∞. Given ε > 0, there exists z ∈ XK(Γ) such that v = −z′ and ‖z‖L∞(Γ) ≤ Ψ(v) + ε. Then,
for w ∈ BV(Γ), applying Green’s formula (2.17) and (2.11), we have∫

Γ

w(x)v(x)dx = −

∫
Γ

w(x)z′(x)dx =

∫
Γ

zDw

−
∑

v∈int(V(Γ))

1
dv

∑
ê∈Ev(Γ)

∑
e∈Ev(Γ)

[z]e(v) ([u]e(v) − [u]ê(v)) ≤ ‖z‖L∞(Γ)TVΓ(w).

Taking the supremum over w we obtain that F̃Γ(v) ≤ ‖z‖L∞(Γ) ≤ Ψ(v) + ε, and since this is true for all
ε > 0, we get F̃Γ(v) ≤ Ψ(v).

To prove the opposite inequality let us denote

D := {z′ : z ∈ XK(Γ)}.

Then, by (2.19), we have that, for v ∈ L2(Γ),

Ψ̃(v) = sup
w∈L2(Γ)

∫
Γ

w(x)v(x)dx

Ψ(w)
≥ sup

w∈D

∫
Γ

w(x)v(x)dx

Ψ(w)

= sup
z∈XK (Γ)

∫
Γ

z′(x)v(x)dx

‖z‖L∞(Γ)
= FΓ(v).

Thus, FΓ ≤ Ψ̃, which implies, by [2, Proposition 1.6], that Ψ =
˜̃
Ψ ≤ F̃Γ. Therefore, Ψ = F̃Γ, and,

consequently, from (2.34), we get

∂FΓ(u) =

{
v ∈ L2(Γ) : Ψ(v) ≤ 1,

∫
Γ

u(x)v(x)dx = FΓ(u)
}

=

{
v ∈ L2(Γ) : ∃z ∈ XK(Γ), v = −z′, ‖z‖L∞(Γ) ≤ 1,

∫
Γ

u(x)v(x)dx = FΓ(u)
}
,
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from where the equivalence between (i) and (ii) follows.
To prove the equivalence between (ii) and (iii) we only need to apply Green’s formula (2.17).
Finally, by [9, Proposition 2.11], we have

D(∂FΓ) ⊂ D(FΓ) = BV(Γ) ⊂ D(FΓ)
L2(Γ)
⊂ D(∂FΓ)

L2(Γ)
,

from which the density of the domain follows.
�

We can also prove the following characterization of the subdifferential in terms of variational
inequalities.

Proposition 2.19. The following conditions are equivalent:
(a) (u, v) ∈ ∂FΓ;
(b) u, v ∈ L2(Γ), u ∈ BV(Γ) and there exists z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1 such that v = −z′, and for every
w ∈ BV(Γ) ∫

Γ

v(w − u) dx

≤

∫
Γ

zDw −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([w]e(v) − [w]ê(v)) − TVΓ(u);
(2.37)

(c) u, v ∈ L2(Γ), u ∈ BV(Γ) and there exists z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1 such that v = −z′, and for every
w ∈ BV(Γ) ∫

Γ

v(w − u) dx

=

∫
Γ

zDw −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([w]e(v) − [w]ê(v)) − TVΓ(u).
(2.38)

Proof. (a)⇒ (c): By Theorem 2.18, we have that there exists z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1 such that v = −z′
and

FΓ(u) =

∫
Γ

zDu −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([u]e(v) − [u]ê(v)).

Then, given w ∈ BV(Γ), multiplying v = −z′ by w − u, integrating over Γ and using Green’s formula
(2.17), we get ∫

Γ

v(w − u) dx = −

∫
Γ

(w − u)z′ dx

=

∫
Γ

zDw −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([w]e(v) − [w]ê(v)) − TVΓ(u).

Obviously, (c) implies (b). To finish the proof, let us see that (b) implies (a). If we take w = u in
(2.37), we get

TVΓ(u) ≤
∫

Γ

zDu −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([u]e(v) − [u]ê(v)),
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and, therefore, by (2.11), we have

TVΓ(u) =

∫
Γ

zDu −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([u]e(v) − [u]ê(v)).

�

Proposition 2.20. For any v ∈ ∂FΓ(u) it holds that∫
Γ

vwdx ≤ FΓ(w) for all w ∈ BV(Γ), (2.39)

and ∫
Γ

vudx = FΓ(u). (2.40)

Proof. Since v ∈ ∂FΓ(u), given w ∈ BV(Γ), we have that∫
Γ

vwdx ≤ FΓ(u + w) − FΓ(u) ≤ FΓ(w),

so we get (2.39). On the other hand, (2.40) is given in Theorem 2.18. �

Definition 2.21. We define the 1-Laplacian operator in the metric graph Γ as

(u, v) ∈ ∆Γ
1 ⇐⇒ −v ∈ ∂FΓ(u),

that is, if u ∈ BV(Γ), v ∈ L2(Γ) and there exists z ∈ XK(Γ), ‖z‖L∞(Γ) ≤ 1 such that

v = z′, that is, [v]e = [z]′e inD′(]0, `e[) ∀e ∈ E(Γ), (2.41)

and

FΓ(u) =

∫
Γ

zDu −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z]e(v)([u]e(v) − [u]ê(v). (2.42)

We have that the Cauchy problem
∂u
∂t

(t) ∈ ∆Γ
1u(t) t ≥ 0

u(0) = u0 u0 ∈ L2(Γ)

(2.43)

can be rewritten as the abstract Cauchy problem in L2(Γ),
u′(t) + ∂FΓu(t) 3 0 t ≥ 0

u(0) = u0 u0 ∈ L2(Γ).
(2.44)

Since FΓ is convex and lower semi-continuous in L2(Γ) and D(∂FΓ) is dense in L2(Γ) by the Brezis-
Komura theory (see [9]), we have that for any initial data u0 ∈ L2(Γ) there exists a unique strong
solution to problem (2.44). Therefore, we have the following existence and uniqueness result.
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Theorem 2.22. For any initial data u0 ∈ L2(Γ) there exists a unique solution u(t) of the Cauchy problem
(2.43), in the sense that u ∈ C(0,T ; L2(Γ)) ∩W1,1(0,T ; L2(Γ)) for any T > 0, u(t) ∈ BV(Γ) and there
exists z ∈ L∞(0,T ; L∞(Γ)), z(t) ∈ XK(Γ), ‖z(t)‖L∞(Γ) ≤ 1, for almost all t ∈ (0,T ), such that

u′(t) = z(t)′, that is, [u(t)]′e = [z(t)]′e inD′(]0, `e[) ∀e ∈ E(Γ) (2.45)

and

TVΓ(u(t)) =

∫
Γ

z(t)Du(t) −
∑

v∈int(V(Γ))

(
1
dv

) ∑
e,ê∈Ev(Γ)

[z(t)]e(v)([u(t)]e(v) − [u(t)]ê(v)). (2.46)

Definition 2.23. Given u0 ∈ L2(Γ), we denote by et∆Γ
1 u0 the unique solution of problem (2.43). We call

the semigroup {et∆Γ
1 }t≥0 in L2(X, ν) the total variational flow in the metric graph Γ.

The total variational flow in the metric graph satisfies the mass conservation property.

Proposition 2.24. For u0 ∈ L2(Γ),∫
Γ

et∆Γ
1 u0dx =

∫
Γ

u0dx for any t ≥ 0.

Proof. By (ii) in Theorem 2.18 and Green’s formula (2.16), we have

−
d
dt

∫
Γ

et∆Γ
1 u0dx = −

∫
Γ

z(t)′dx =

∫
Γ

z(t)DχΓ ≤ TVΓ(χΓ) = 0,

and
d
dt

∫
Γ

et∆Γ
1 u0dx ≤ TVΓ(−χΓ) = 0.

Hence,
d
dt

∫
Γ

et∆Γ
1 u0dx = 0,

and, consequently, ∫
Γ

et∆Γ
1 u0dx =

∫
Γ

u0dx for any t ≥ 0.

�

2.3. Asymptotic behaviour

By (2.28), we have

N(FΓ) := {u ∈ L2(Γ) : FΓ(u) = 0} = {u ∈ L2(Γ) : u is constant}.

SinceFΓ is a proper and lower semicontinuous function in L2(Γ) attaining a minimum at the constant
zero function and, moreover, FΓ is even, by [12, Theorem 5],we have that there exists v0 ∈ N(FΓ) such
that

lim
t→∞

et∆Γ
1 u0 = v0 in L2(Γ).

Now, having in mind Proposition 2.24, we have
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v0 = u0 :=
1
`(Γ)

∫
Γ

u0dx.

We denote
Tex(u0) := inf{T > 0 : et∆Γ

1 u0 = u0, ∀ t ≥ T }.

We will see that the total variational flow in the metric graph Γ reaches the mean u0 of the initial data
u0 in finite time, that is, Tex(u0) < ∞. We will rely on the results proved by Bungert and Burger
in [10] (see also [11]) for the gradient flow of a coercive (in the sense described below), absolutely
1-homogeneous convex functional defined on a Hilbert space.

Let us recall some notation used in [10]. LetH be a Hilbert space and J : H → (−∞,+∞] a proper,
convex, lower semi-continuous functional. Then, it is well known (see [9]) that the abstract Cauchy
problem  u′(t) + ∂J(u(t)) 3 0, t ∈ [0,T ]

u(0) = u0,
(2.47)

has a unique strong solution u(t) for any initial datum u0 ∈ D(J).
We say that J is coercive, if there exists a constant C > 0 such that

‖u‖ ≤ CJ(u), ∀ u ∈ H0, (2.48)

where
H0 := {u ∈ H : J(u) = 0}⊥ \ {0}.

Clearly, this inequality is equivalent to positive lower bound of the Rayleigh quotient associated with
J, i.e.,

λ1(J) := inf
u∈H0

J(u)
‖u‖

> 0.

For u0 ∈ H0, if u(t) is the strong solution of (2.47), we define its extinction time as

Tex(u0) := inf{T > 0 : u(t) = 0, ∀ t ≥ T }.

In the next result, we summarize the results obtained by Bungert and Burger in [10].

Theorem 2.25. Let J be a convex, lower-semicontinuous functional onH with dense domain. Assume
that J is absolutely 1-homogeneous and coercive. For u0 ∈ H0, let u(t) be the strong solution of (2.47).
Then, we have

(i) (Finite extinction time)

Tex(u0) ≤
‖u0‖

λ1(J)
.

(ii) (General upper bounds)
‖u(t)‖ ≤ ‖u0‖ − λ1(J)t,

(iii) (Sharper bound for the finite extinction)

λ1(J)(Tex(u0) − t) ≤ ‖u(t)‖ ≤ Λ(t)(Tex(u0) − t),

where
Λ(t) :=

J(u(t))
‖u(t)‖

.
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Now we are going to apply Theorem 2.25 to study the asymptotic behaviour of the solutions of the
Cauchy problem (2.43).

Obviously, the convex, lower semi-continuous functional FΓ is absolutely 1-homogeneous, that is,
FΓ(λu) = |λ|FΓ(u), for all λ ∈ R and all u ∈ L2(Γ). In this case,

L2(Γ)0 := N(FΓ)⊥ \ {0} =

{
u ∈ L2(Γ) :

∫
Γ

u(x)dx = 0
}
\ {0}.

Let us see that FΓ is coercive. In fact, if it weren’t we could find a sequence un ∈ L2(Γ)0 such that

‖un‖L2(Γ) ≥ nFΓ(un), ∀ n ∈ N.

Now, by homogeneity, we can asume that ‖un‖L2(Γ) = 1 for all n ∈ N, so

TVΓ(un) ≤
1
n
, ∀ n ∈ N.

By Theorem 2.5, we can assume, taking a subsequence if necessary, that

un → u, in L2(Γ).

Then, by the lower semi-continuity of TVΓ (Proposition 2.12), we have TVΓ(u) = 0. Then, by (2.28), u
is constant. Now, since un ∈ L2(Γ)0,∫

Γ

un(x)dx = 0, for all n ∈ N.

Therefore, ‖u‖L2(Γ) = 0, which is a contradiction since ‖u‖L2(Γ) = 1.
If we denote

λΓ := inf
{

TVΓ(u)
‖u‖L2(Γ)

: u ∈ L2(Γ)0

}
> 0,

we have
‖u‖L2(Γ ≤ λΓTVΓ(u) for all u ∈ L2(Γ)0. (2.49)

Then, by Theorem 2.25, we have the following result.

Theorem 2.26. For any u0 ∈ L2(Γ), we have

Tex(u0) ≤
‖u0 − u0‖L2(Γ)

λΓ

. (2.50)

Moreover,
λΓ(Tex(u0) − t) ≤ ‖u(t) − u0‖L2(Γ) ≤ Λ(t)(Tex(u0) − t), (2.51)

where
Λ(t) :=

FΓ(u(t))
‖u(t) − u0‖L2(Γ)

.

Proof. It is a direct application of Theorem 2.25, having in mind that for any constant function v0 and
any u0 ∈ L2(Γ), we have FΓ(u0 + u0) = FΓ(u0) and ∂FΓ(u0 + u0) = ∂FΓ(u0) (see [10, Proposition A.3]).

�
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To obtain a lower bound on the extinction time, we introduce the following space which, in the
continuous setting, was introduced in [19]:

Gm(Γ) := {v ∈ L2(Γ) : ∃z ∈ XK(Γ), v = −z′ a.e. inΓ},

and consider in Gm(Γ) the norm

‖v‖m,∗ := inf{‖z‖∞ : z ∈ XK(Γ), v = −z′ a.e. in Γ}.

Note that, for v ∈ Gm(Γ), we have that there exists zv ∈ X(Γ), such that v = −z′v and ‖v‖m,∗ = ‖zv‖∞.
From the proof of Theorem 2.18, for f ∈ Gm(Γ), we have

‖ f ‖m,∗ := sup
{∣∣∣∣∣∫

Γ

f (x)u(x)dx
∣∣∣∣∣ : u ∈ BV(Γ), TVΓ(u) ≤ 1

}
, (2.52)

and, moreover,

∂FΓ(u) =

{
v ∈ L2(Γ) : ‖v‖m,∗ ≤ 1,

∫
Γ

u(x)v(x)dx = TVΓ(u)
}
. (2.53)

The next result is consequence of [11, Proposition 6.9]. We give the proof to be self-contained

Theorem 2.27. Given u0 ∈ L2(Γ), we have

Tex(u0) ≥ ‖u0 − u0‖m,∗. (2.54)

Proof. If u(t) := et∆Γ
1 u0, we have

u0 − u0 = −

∫ Tex(u0)

0
u′(t)dt.

Then, by Proposition 2.20, we get

‖u0 − u0‖m,∗ = sup
{∫

Γ

w(u0 − u0)dx : TVm(w) ≤ 1
}

= sup
{∫

Γ

w
(∫ Tex(u0)

0
−u′(t)dt

)
dx : TVm(w) ≤ 1

}

= sup
{∫ Tex(u0)

0

∫
Γ

−wu′(t)dtdx : TVm(w) ≤ 1
}

≤ sup
{∫ Tex(u0)

0
TVm(w)dt : TVm(w) ≤ 1

}
= Tex(u0).

�
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2.4. Explicit solutions

Let us now see that we can compute explicitly the evolution of characteristic functions. First we
need to do the computations for the Neumann problem for the total variation flow in an interval (0, L)
of R, that is, for the problem 

ut = div
(

Du
|Du|

)
, in ]0,T [×]0, L[,

Du
|Du| · η = 0, in ]0,T [×{0, L},

u(0) = u0.

(2.55)

In [3], we have proved the existence and uniqueness of solutions to problem (2.55), where the
concept of solution is the following. For u0 ∈ L2(]0, L[) we say that
u ∈ C(0,T ; L2(]0, L[) ∩W1,1(0,T ; L2(]0, L[) is a weak solution of (2.55) if u(0) = u0, u(t) ∈ BV((0, L))
and there exists z ∈ L∞(0,T ; L∞(]0, L[),‖z(t)‖L∞(]0,L[) ≤ 1, for almost all t ∈]0,T [, such that

u′(t) = z(t)′, inD′(]0, L[), (2.56)

z(t)(0) = z(t)(L) = 0, (2.57)

and ∫ L

0
|Du(t)| =

∫ L

0
z(t)Du(t). (2.58)

Lemma 2.28. Let 0 < a, b, c < L and k > 0. Then, we have

(1) If u0 = kχ(0,a), then the solution of (2.55) is given by

u(t) =

(
k −

t
a

)
χ]0,a,[ +

t
L − a

χ]a,L], for 0 ≤ t ≤ T,

where T =
ka(L−a)

L , and

u(t) =
ka
L
χ]0,L[, for t ≥ T.

(2) If u0 = kχ]b,L[, then the solution of (2.55) is given by

u(t) =

(
k −

t
L − b

)
χ]b,L[ +

t
b
χ]0,b[, for 0 ≤ t ≤ T,

where T =
k(L−b)

L , and

u(t) = k
L − b

L
χ]0,L[, for t ≥ T.

(3) Let 0 < k1 < k2. If u0 = k1χ]0,c[ + k2χ]c,L[, then the solution of (2.55) is given by

u(t) =

(
k1 +

t
c

)
χ]0,c[ +

(
k2 −

t
L − c

)
χ]c,L[, for 0 ≤ t ≤ T,

where T =
(k2−k1)c(L−c)

L , and

u(t) =

(
k1 +

(k2 − k1)(L − c)
L

)
χ]0,L[, for t ≥ T.
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(4) Assume that 0 < a < b < L and also that L < a + b . If u0 = kχ]a,b[, then the solution of (2.55) is
given by

u(t) =
t
a
χ]0,a[ +

(
k −

2
b − a

t
)
χ]a,b[ +

t
L − b

χ]b,L[, for 0 ≤ t ≤ T1,

where T1 =
(b−a)(L−b)
2L−(a+b) k,

u(t) =

(T1

a
+

t
a

)
χ]0,a[ +

((
k −

2
b − a

T1

)
−

t
L − a

)
χ]a,L[, for T1 ≤ t ≤ T2,

where

T2 =

((
k − 2

b−aT1

)
−

T1
a

)
a(L − a)

L
,

and
u(t) =

(T1 + T2

a

)
χ]0,L[, for t > T2.

Proof. (1): Given the initial datum u0 = χ]0,a[ we look for a solution of the form

u(t) = α(t)χ]0,a[ + β(t)χ]a,L[

on some interval ]0,T [ defined by the inequality α(t) > β(t) for t ∈]0,T [, and α(0) = k, β(0) = 0. Then,
we shall look for some z ∈ L∞(0,T ; L∞(]0, L[), ‖z(t)‖L∞(]0,L[) ≤ 1 for almost all t ∈]0,T [, such that

u′(t) = z(t)′, inD′(]0, a[), (2.59)

u′(t) = z(t)′, inD′(]a, L[), (2.60)

z(t)(0) = z(t)(L) = 0, (2.61)

and ∫ L

0
|Du(t)| =

∫
Γ

z(t)Du(t). (2.62)

For 0 ≤ t ≤ T , we define

z(t)(x) :=

 −
x
a , if 0 ≤ x ≤ a,

x−L
L−a , if a ≤ x ≤ L.

Integrating equation (2.59) over (0, a), we obtain

α′(t)a =

∫ a

0
z(t)′(x)dx = z(t)(a) = −1.

Thus α′(t) = −1
a and, therefore, α(t) = k − t

a . Similarly, we deduce that β′(t) = 1
L−a , hence β(t) = t

L−a .
Then, the first T such that α(T ) = β(T ), is given by T =

ka(L−a)
L . An easy computation shows that (2.62)

holds for all t ∈]0,T [. Finally, if we take z(t) = 0 for t > T , we have that

u(t) = k
(
1 −

L − a
L

)
χ]0,L[
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is a solution for t ≥ T.
The proof of (2) is similar to the proof of (1), taking in this case, for 0 ≤ t ≤ T ,

z(t)(x) :=


x
b , if 0 ≤ x ≤ b,

L−x
L−b , if b ≤ x ≤ L

(3): We look for a solution of the form

u(t) = α(t)χ]0,c[ + β(t)χ]c,L[

on some interval ]0,T [ defined by the inequality α(t) < β(t) for t ∈]0,T [, and α(0) = k1, β(0) = k2.
Working as in the proof of (1), we shall look for some z ∈ L∞(0,T ; L∞(]0, L[), with ‖z(t)‖L∞(]0,L[) ≤ 1
for almost all t ∈]0,T [ and z(t)(0) = z(t)(L) = 0, satisfying

α′(t)c =

∫ c

0
z(t)′(x)dx = z(t)(c)

and

β′(t)(L − c) =

∫ L

c
z(t)′(x)dx = −z(t)(c).

Then,

α(t) = k1 +
z(t)(c)

c
, β(t) = k2 −

z(t)(c)
L − c

.

Hence, taking, for 0 ≤ t ≤ T ,

z(t)(x) :=


x
c , if 0 ≤ x ≤ c,

L−x
L−c , if c ≤ x ≤ L,

it is easy to see that
u′(t) = z(t)′, inD′(]0, L[),

and ∫ L

0
|Du(t)| =

∫
Γ

z(t)Du(t).

Therefore, for 0 < t ≤ T =
(k2−k1)c(L−c)

L , the solution is given by

u(t) =

(
k1 +

t
c

)
χ]0,c[ +

(
k2 −

t
L − c

)
χ]c,L[.

Moreover,

u(t) =

(
k1 +

(k2 − k1)(L − c)
L

)
χ]0,L[, for t ≥ T.

(4): In this case we look for a solution of the form

u(t) = α(t)χ]0,a[ + β(t)χ]a,b[ + γ(t)χ]b,L[
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on some interval (0,T ) defined by the inequality α(t) < β(t), γ(t) < β(t) for t ∈]0,T [, and α(0) = γ(t) =

0, β(0) = k. Working as in the proof of (1), we need to find a vector field z ∈ L∞(0,T ; L∞(]0, L[),
‖z(t)‖L∞(]0,L[) ≤ 1, for almost all t ∈]0,T [, satisfying

α(t) =
z(t)(a)

a
, β(t) = k +

(
z(t)(b) − z(t)(a)

b − a

)
t, γ(t) = −

z(t)(b)
L − b

.

Now, if we take, for 0 ≤ t ≤ T ,

z(t)(x) :=


x
a , if 0 ≤ x ≤ a,

−2 x−a
b−a + 1, if a ≤ x ≤ b,

x−L
L−b , if b ≤ x ≤ L.

Hence,

α(t) =
t
a
, β(t) = k +

(
−2

b − a

)
t, γ(t) =

t
L − b

.

Since we are assuming that L − b < a, we have α(t) < γ(t). Then, for

T1 :=
(b − a)(L − b)
2L − (a + b)

k,

we have β(T1) = γ(T1). Hence, for 0 < t ≤ T1, if

u(t) =
t
a
χ]0,a[ +

(
k −

2
b − a

t
)
χ]a,b[ +

t
L − b

χ]b,L[,

it is easy to see that
u′(t) = z(t)′ inD′(]0, L[),

and ∫ L

0
|Du(t)| =

∫
Γ

z(t)Du(t).

Therefore, for 0 < t ≤ T1, u(t) is the solution. Now,

u(T1) =
T1

a
χ]0,a[ +

(
k −

2
b − a

T1

)
χ]a,L[.

Then, applying (3), we have

u(t) =

(T1

a
+

t
a

)
χ]0,a[ +

((
k −

2
b − a

T1

)
−

t
L − a

)
χ]a,L[, for T1 ≤ t ≤ T2,

where

T2 =
a(L − a)

L

(
k − T1

a + b
a(b − a)

)
.

Finally, for t > T2, the solution in given by

u(t) =

(T1 + T2

a

)
χ]0,L[.

�
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Remark 2.29. Let us point out that it is obtained in [8] that for the initial data u0 = k1χ(a,b) + k2χ(b,L)

with 0 < k1 < k2, the solution of (2.55) is given by

u(t) =
t
a
χ]0,a[ + k1χ]a,b[ +

(
k2 −

t
L − b

)
χ]b,L[,

for 0 ≤ t ≤ T1, with
T1 = min{ak1, (k2 − k1)(L − b)}.

We are now going to find an explicit solution in the case of a simpler metric graph in order to see the
difference in behaviour with the case of the total variation flow in an interval with Neumann boundary
conditions that we have considered in the above result.

Example 2.30. Consider the metric graph Γ with three vertices and two edges, that is V(Γ) = {v1, v2, v3}

and E(Γ) = {e1 := [v1, v2], e2 := [v2, v3], }. Let 0 < a < `e2 and assume that `e1 > `e2 − a. We are
going to find the solution of the total variation flow for the initial datum u0 := kχD, with k > 0 and
D := (v2, c−1

e2
(a)).

v1 v2 v3

e1 e2

c−1
e1

(a)

We look for solutions of the form:

[u(t)]e1 = α1(t)χ]0,`e1 [ α1(0) = 0,

[u(t)]e2 = α2(t)χ]0,a[ + α3(t)χ]a,`e2 [, α2(0) = k, α3(0) = 0,

for all 0 < t ≤ T such that
α1(t) ≤ α2(t), α2(t) ≤ α3(t).

Then, we need to find z(t) ∈ XK(Γ), with ‖z(t)‖∞ ≤ 1, satisfying:

[u(t)]′ei
= [z(t)]′ei

, i = 1, 2, that is (2.63)

α′1(t)χ]0,`e1 [ = [z(t)]′e1
, α′2(t)χ]0,a[ + α′3(t)χ]a,`e2 [ = [z(t)]′e2

.

TVΓ(u(t)) =

∫
Γ

z(t)Du(t)

−1
2

(
[z(t)]e1(v2)([u(t)]e1(v2) − [u(t)]e2(v2)) + [z(t)]e2(v2)([u(t)]e2(v2) − [u(t)]e1(v2))

)
.

(2.64)

By (2.25), we can write (2.64) as

|Du(t)|(Γ) + JVΓ(u(t)) =

∫
Γ

z(t)Du(t)

= −1
2

(
[z(t)]e1(v2)([u(t)]e1(v2) − [u(t)]e2(v2)) + [z(t)]e2(v2)([u(t)]e2(v2) − [u(t)]e1(v2))

)
.

Now,
Du(t) = (α3(t) − α2(t))δa.
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Hence,
|Du(t)|(Γ) = (α2(t) − α3(t)),

and ∫
Γ

z(t)Du(t) = (α3(t) − α2(t))[z]e2(a).

Thus, if we assume that [z]e2(a) = −1, and having in mind that [z(t)]e1(v2) = −[z(t)]e2(v2), we have that
we can rewrite (2.64) as

JVΓ(u(t)) = −[z(t)]e1(v2)([u(t)]e1(v2) − [u(t)]e2(v2)) = −[z(t)]e1(v2)(α1(t) − α2(t)).

Now,
JVΓ(u(t)) = |[u(t)]e1(v2) − [u(t)]e2(v2)| = α2(t) − α1(t),

and then, (2.64) is equivalent to

α2(t) − α1(t) = −[z(t)]e1(v2)(α1(t) − α2(t)).

Therefore, if [z(t)]e1(v2) = [z(t)]e1(`e1) = 1, we have that (2.64) holds.
We define

[z(t)]e1(x) :=
x
`e1

, if 0 ≤ x ≤ `e1 ,

and

[z(t)]e2(x) :=


−2x

a + 1, if 0 ≤ x ≤ a,

x−`e2
`e2−a , if a ≤ x ≤ `e2 .

Note that
[z(t)]e1(v2) + [z(t)]e2(v2) = [z(t)]e1(`e1) − [z(t)]e2(0) = 0,

thus z(t) ∈ XK(Γ).
On the other hand, integrating in (2.63), we get

α′1(t)`e1 =

∫ `e1

0
[z(t)]′e1

dx = [z(t)]e1(`e1) ⇒ α1(t) =
[z(t)]e1(`e1)

`e1

t =
1
`e1

t,

α′2(t)a =

∫ a

0
[z(t)]′e2

dx = [z(t)]e2(a) − [z(t)]e2(0) ⇒ α2(t) = k +
[z(t)]e2(a) − [z(t)]e2(0)

a
= k −

2
a

t,

α′3(t)(`e2 − a) =

∫ `e2

a
[z(t)]′e2

dx = −[z(t)]e2(a) ⇒ α3(t) = −
[z(t)]e2(a)
`e2 − a

t =
1

`e2 − a
t.

Consequently, since `e1 > `e2 − a, the solution is given by

[u(t)]e1 =
t
`e1

χ]0,`e1 [, for 0 ≤ t ≤ T1,

and

[u(t)]e2 =

(
k −

2t
a

)
χ]0,a[ +

t
`e2 − a

χ]a,`e2 [, for 0 ≤ t ≤ T1,
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where
T1 =

ka(`e2 − a)
2`e2 − a

.

We have

[u(T1)]e2 =

(
k −

2T1

a

)
χ]0,`e2 [ =

(
k −

2k(`e2 − a)
2`e2 − a

)
χ]0,`e2 [ = k

a
2`e2 − a

χ]0,`e2 [.

Now, for t > T1, we look for a solution of the form

[u(t)]e1 = γ1(t)χ]0,`e1 [ γ1(T1) = α1(T1),

[u(t)]e2 = γ2(t)χ]0,`e2 [ γ2(T1) = α2(T1),

for all T1 < t ≤ T2 such that
γ1(t) ≤ γ2(t).

Then, we need to find z(t) ∈ XK(Γ), with ‖z(t)‖∞ ≤ 1, satisfying:

[u(t)]′ei
= [z(t)]′ei

, i = 1, 2, that is, (2.65)

γ′1(t)χ]0,`e1 [ = [z(t)]′e1
, γ′2(t)χ]0,`e2 [ = [z(t)]′e2

.

TVΓ(u(t)) =

∫
Γ

z(t)Du(t)

−1
2

(
[z(t)]e1(v2)([u(t)]e1(v2) − [u(t)]e2(v2)) + [z(t)]e2(v2)([u(t)]e2(v2) − [u(t)]e1(v2))

)
.

(2.66)

By (2.25), we can write (2.66) as

|Du(t)|(Γ) + JVΓ(u(t)) =

∫
Γ

z(t)Du(t)

= −1
2

(
[z(t)]e1(v2)([u(t)]e1(v2) − [u(t)]e2(v2)) + [z(t)]e2(v2)([u(t)]e2(v2) − [u(t)]e1(v2))

)
,

which, having in mind that [z(t)]e1(v2) + [z(t)]e2(v2) = 0, is equivalent to

γ2(t) − γ1(t) = |[u(t)]e1(v2) − [u(t)]e2(v2)| = −[z(t)]e1(v2)(γ1(t) − γ2(t)).

Then, if [z(t)]e1(v2) = 1, we have that (2.66) holds.
We define

[z(t)]e1(x) :=
x
`e1

, if 0 ≤ x ≤ `e1 ,

and
[z(t)]e2(x) :=

`e2 − x
`e2

, if 0 ≤ x ≤ `e2 .

Now, integrating in (2.65), for T1 < t ≤ T2, we get

γ′1(t)`e1 =

∫ `e1

0
[z(t)]′e1

dx = [z(t)]e1(`e1) = 1 ⇒ γ1(t) = α1(T1) +
1
`e1

t,

γ′2(t)`e2 =

∫ `e2

0
[z(t)]′e2

dx = −[z(t)]e2(0) = −1 ⇒ γ2(t) = α2(T1) −
1
`e2

t,
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where T2 is given by

α1(T1) +
1
`e1

T2 = α2(T1) −
1
`e2

T2,

that is,

T2 = `e1`e2

α2(T1) − α1(T1)
`e1 + `e2

.

Consequently, the solution u(t) of the Cauchy problem (2.43) for the initial datum u0 := kχD is
given by

[u(t)]e1 =


t
`e1

χ]0,`e1 [, for 0 ≤ t ≤ T1,

1
`e1

(
ka(`e2 − a)

2`e2 − a
+ t

)
χ]0,`e1 [, for T1 ≤ t ≤ T2

and

[u(t)]e2 =



(
k −

2t
a

)
χ(0,a) +

t
`e2 − a

χ]a,`e2 [, for 0 ≤ t ≤ T1

(
k a

2`e2−a −
t
`e2

)
χ]0,`e2 [, for T1 ≤ t ≤ T2

where

T1 =
ka(`e2 − a)

2`e2 − a
, and T2 = `e1`e2

α2(T1) − α1(T1)
`e1 + `e2

.

Moreover, for t ≥ T2,

u(t) =
T1

`e1

= `e2

α2(T1) − α1(T1)
`e1 + `e2

.

Remark 2.31. Let us point out that in the above example, we see that the solution does not coincide
with the solution of the Neumann problem in each edge. However, this happens if we consider that
the total variation of a function u is given by |Du|(Γ), in which case it does not take into account the
structure of the metric graph.

Example 2.32. Consider the metric graph Γ of the example 2.17

v1

v3

v2

v4

c−1
e1

(a)

e1

e2

e3

Mathematics in Engineering Volume 5, Issue 1, 1–38.



34

Assume that ` := `e2 = `e3 and let 0 < a < `e1 such that a < 2`. We are going to find the solution of
the total variation flow for the initial datum u0 := kχD, with k > 0 and D := (c−1

e1
(a), v2).

We look for solutions of the form:

[u(t)]e1 = α1(t)χ]0,a[ + α2(t)χ]a,`e1 [ α1(0) = 0, α2(0) = k,

[u(t)]e2 = [u(t)]e3 = β(t)χ(0,`), β(0) = 0,

for all 0 < t ≤ T1 such that
α1(t) ≤ α2(t), β(t) ≤ α2(t).

Then, we need to find z(t) ∈ XK(Γ), with ‖z(t)‖∞ ≤ 1, satisfying:

[u(t)]′e1
= [z(t)]′e1

, [u(t)]′ei
= [z(t)]′ei

i = 2, 3 that is (2.67)

α′1(t)χ]0,a[ + α′2(t)χ]a,`e1 [ = [z(t)]′e1
, β′(t)χ(0,`) = [z(t)]′ei

, i = 2, 3.

TVΓ(u(t)) =

∫
Γ

z(t)Du(t) −
3∑

i=1

[z(t)]ei(v2)([u(t)]ei(v2). (2.68)

Now
Du(t) = (α2(t) − α1(t))δa,

hence ∫
Γ

z(t)Du(t) = (α2(t) − α1(t))[z(t)]e1(a).

Since z(t) ∈ XK(Γ), [z(t)]e1(v2) = −[z(t)]e2(v2) − [z(t)]e3(v2), thus

3∑
i=1

[z(t)]ei(v2)([u(t)]ei(v2) = [z(t)]e1(v2)(α2(t) − β(t)).

Therefore, we can write (2.68) as

TVΓ(u(t)) = (α2(t) − α1(t))[z(t)]e1(a) − [z(t)]e1(v2)(α2(t) − β(t)). (2.69)

On the other hand,

TVΓ(u(t)) = sup
{∣∣∣∣∣∫

Γ

u(t)(x)w′(x)dx
∣∣∣∣∣ : w ∈ XK(Γ), ‖w‖L∞(Γ) ≤ 1

}

= sup


∣∣∣∣∣∣∣

3∑
i=1

∫ `ei

0
[u(t)]ei(x)[w]′ei

(x)dx

∣∣∣∣∣∣∣ : w ∈ XK(Γ), ‖w‖L∞(Γ) ≤ 1

 .
Now,

3∑
i=1

∫ `ei

0
[u(t)]ei(x)[w]′ei

(x)dx = α1(t)
∫ a

0
[w]′e1

(x)dx + α2(t)
∫ `e1

a
[w]′e1

(x)dx

+β(t)
∫ `e2

0
[w]′e2

(x)dx + β(t)
∫ `e3

0
[w]′e3

(x)dx = (α1(t) − α2(t))[w]e1(a)
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+α2(t))[w]e1(v2) + β([w]e2(v2) + [w]e3(v2))

= (α1(t) − α2(t))[w]e1(a) + (α2(t) − β(t))[w]e1(v2).

Thus
TVΓ(u(t))

= sup
{
|(α1(t) − α2(t))[w]e1(a) + (α2(t) − β(t))[w]e1(v2)| : w ∈ XK(Γ), ‖w‖L∞(Γ) ≤ 1

}
= (α2(t) − α1(t)) + (α2(t) − β(t)).

Then, if [z(t)]e1(a) = 1 and [z(t)]e1(v2) = −1, (2.69) holds.
We define

[z(t)]e1(x) :=


x
a
, if 0 ≤ x ≤ a,

`e1 + a − 2x
`e1 − a

if a ≤ x ≤ `e1 .

Now, integrating in (2.67), we get

aα′1(t) =

∫ a

0
[z(t)]′e1

(x)dx = [z(t)]e1(a) = 1 ⇒ α1(t) =
t
a
,

α′2(t)(`e1 − a) =

∫ `ei

a
[z(t)]′e1

(x)dx = [z(t)]e1(`e1) − [z(t)]e1(a) = −2 ⇒ α2(t) =

(
k −

2t
`e1 − a

)
,

for i = 2, 3, β′(t)`ei =

∫ `ei

0
[z(t)]′ei

(x)dx = −[z(t)]ei(0) = [z(t)]ei(v2) =
1
2
⇒ β(t) =

t
2`
.

Consequently, the solution is given by

[u(t)]e1 =
t
a
χ]0,a[ +

(
k −

2t
`e1 − a

)
χ]a,`e1 [ for 0 ≤ t ≤ T1,

and
[u(t)]e2 = [u(t)]e3 =

t
2`
χ]0,`[, for 0 ≤ t ≤ T1,

where
T1 =

ka(`e1 − a)
`e1 + a

,

since we are assuming that a < 2`.
Now, for t > T1, we look for a solution of the form

[u(t)]e1 = γ1(t)χ]0,`e1 [,

[u(t)]ei = γ2(t)χ]0,`ei [, i = 2, 3,

with

γ1(T1) =
T1

a
=

(
k −

2T1

`e1 − a

)
, γ2(T1) = γ3(T1) =

T1

2`
, i = 2, 3,
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such that
γ1(t) ≥ γi(t), i = 2, 3., for T1 ≤ t ≤ T2.

Then, we need to find z(t) ∈ XK(Γ), with ‖z(t)‖∞ ≤ 1, satisfying:

[u(t)]′e1
= [z(t)]′e1

, [u(t)]′ei
= [z(t)]′ei

i = 2, 3, that is (2.70)

γ′1(t)χ(0,`e1 ) = [z(t)]′e1
, γ′i (t)χ(0,`) = [z(t)]′ei

, i = 2, 3

and

TVΓ(u(t)) =

∫
Γ

z(t)Du(t) −
3∑

i=1

[z(t)]ei(v2)[u(t)]ei(v2). (2.71)

Now Du(t) = 0, hence ∫
Γ

z(t)Du(t) = 0.

Since z(t) ∈ XK(Γ), we have

−

3∑
i=1

[z(t)]ei(v2)[u(t)]ei(v2) = −[z(t)]ei(v2)(γ1(t) − γ2(t)).

On the other hand,

TVΓ(u(t)) = sup


∣∣∣∣∣∣∣

3∑
i=1

∫ `ei

0
[u(t)]ei(x)[w]′ei

(x)dx

∣∣∣∣∣∣∣ : w ∈ XK(Γ), ‖w‖L∞(Γ) ≤ 1

 .
Now,

3∑
i=1

∫ `ei

0
[u(t)]ei(x)[w]′ei

(x)dx

= γ1(t)
∫ `e1

0
[w]′e1

(x)dx + γ2(t)
∫ `e2

0
[w]′e2

(x)dx + γ3(t)
∫ `e3

0
[w]′e3

(x)dx

= γ1(t)[w]e1(`e1) − γ2(t)[w]e2(0) − γ3(t)[w]e3(0

= γ1(t)[w]e1(v2) + γ2(t)[w]e2(v2) + γ3(t)[w]e3(v2) = (γ1(t) − γ2(t))[w]e1(v2).

Hence,
TVΓ(u(t)) = (γ1(t) − γ2(t)).

Therefore, (2.71) holds , if [z(t)]e1(v2) = −1.
Now, integrating (2.70), for T1 ≤ t ≤ T2, we have

γ1(t)′`e1 =

∫ `e1

0
[z(t)]′e1

(x)dx = [z(t)]e1(v2) = −1 ⇒ γ1(t) =
T1

a
−

t
`e1

,

for i = 2, 3, γi(t)′`ei =

∫ `ei

0
[z(t)]′ei

(x)dx = [z(t)]ei(v2) =
1
2
⇒ γi(t) =

T1

2`
+

t
2`
.
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Consequently, the solution is given by

[u(t)]e1 =
T1

a
−

t
`e1

χ]0,`e1 [ for ≤ T1 ≤ t ≤ T2,

and
[u(t)]e2 = [u(t)]e3 =

T1

2`
+

t
2`
, for ≤ T1 ≤ t ≤ T2,

where
T2 = T1

(2` − a)`e1

a(`e1 + 2`)

For t ≥ T2, we have

u(t) =
T1

a
−

T2

`e1

= T1

(
1
a
−

(2` − a)
a(`e1 + 2`)

)
= T1

`e1 + a
(`e1 + 2`)

= k
`e1 − a

(`e1 + 2`)
= u0.
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