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Abstract: We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear
heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci
tensor, similarly to what R. Hamilton did in [5] for the standard heat equation. We then apply these
estimates to obtain some Harnack–type inequalities, which give local bounds on the solutions in terms
of the geometric quantities involved.
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1. Introduction

We are interested in positive classical solutions of semilinear heat equations ut = ∆u + up, in Rn or
in a complete Riemannian manifold (M, g) without boundary, where p > 1.

In their celebrated paper [7], Li and Yau showed how a Harnack inequality for the classical heat
equation on a manifold with nonnegative Ricci tensor can be derived from a differential inequality
for the logarithm of a solution. Subsequently, in the case of a manifold with nonnegative sectional
curvatures and parallel Ricci tensor, Hamilton in [5] proved that the Harnack estimate of Li and Yau
can actually be obtained as the trace of a full matrix inequality, under some more restrictive geometric
assumptions. In some cases these inequalities can be useful in proving triviality of eternal solutions,
see [1], moreover, “geometric” versions of them appear naturally and play a key role in the analysis
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of mean curvature flow and of Ricci flow (which are described by much more complicated systems of
parabolic PDEs), see [4, 6].

Our aim is to extend to the semilinear setting the matrix Harnack estimate of Li & Yau–type for the
heat equation developed by Hamilton in [5].

We set some definitions and notations. In all of the paper, the Riemannian manifolds (M, g) will be
smooth, complete, connected and without boundary. We will denote with ∇ the Levi–Civita connection
of (M, g) and ∆ the associated Laplace–Beltrami operator and we assume that (M, g) has nonnegative
sectional curvatures and parallel Ricci tensor, that is, ∇Ric = 0. Finally, all the solutions we will
consider are classical (C2 in space and C1 in time, at least).

Remark 1.1. The hypothesis that M has parallel Ricci tensor and nonnegative sectional curvatures is
satisfied on a torus or a sphere or a complex projective space, or a product of such, or a quotient of a
product by a finite group of isometries.

Definition 1.2. A quintuple of real numbers (a, b, c, d, θ) is admissible, if the following inequalities
d ≥ a > c > 0
θ > b ≥ 0
(a − c)2θ2 − a(θ − b)[(2θ + na)(a − c) + a(n − 1)(θ − b)] ≥ 0

(1.1)

are satisfied.

The above system turns out to have actually solutions.

Proposition 1.3. There exists a nonempty cone C of admissible quintuples of parameters.

We can then state our main result.

Theorem 1.4. Suppose (M, g) is a complete, n–dimensional Riemannian manifold without boundary,
with nonnegative sectional curvatures and parallel Ricci tensor. Let f = log u, where u is a positive
classical solution of

∂tu = ∆u + up (1.2)

in M × (0,T ). Then, for any (a, b, c, d, θ) ∈ C there exists a constant ε > 0 such that

t
(
θ fi j + a∆ f gi j + b fi f j + c|∇ f |2gi j + de(p−1) f gi j

)
≥ −

1
ε

gi j, (1.3)

in the sense of bilinear forms, in M × (0,T ), for all 1 < p < 1 + G(a, b, c, d, θ), where

G(a, b, c, d, θ) = min{G1(b, d, θ),G2(a, b, c, d, θ)}, (1.4)

given

G1(b, d, θ) =
4d(θ − b)

θ2

and G2(a, b, c, d, θ) the positive solution of

(d − a)θ2x2 + (d − c)θ2x − 4cd(θ − b) = 0. (1.5)
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Taking the trace with the metric g in inequality (1.3), we get a scalar Li & Yau–type inequality
(which is actually weaker than the analogous one proved in [1])

t
[
(θ + na)∆ f + (b + nc)|∇ f |2 + nde(p−1) f

]
≥ −

n
ε

(1.6)

and substituting u = e f ,

(θ/n + a)∆u + (b/n + c − θ/n − a)
|∇u|2

u
+ dup ≥ −

u
εt

in M × (0,T ).

Remark 1.5. As we mentioned, inequalities like (1.3) and (1.6) are relevant for ancient (and eternal)
solutions u, that is, solutions defined in M × (−∞,T ) for some T ∈ R ∪ {+∞}, since by a standard
argument (see [1, Section 3], for instance) choosing suitable intervals for their application, they imply

θui j + a∆ugi j + (b − θ)
uiu j

u
+ (c − a)

|∇u|2

u
gi j + dupgi j ≥ 0

in the sense of bilinear forms and

(θ/n + a)∆u + (b/n + c − θ/n − a)
|∇u|2

u
+ dup ≥ 0

in M × (−∞,T ).

It is possible to have an explicit bound for the function G defined in Theorem 1.4 only in terms of
the dimension n of the manifold, as shown in the next proposition, hence giving a lower bound for the
range of exponents p for which the results hold.

Proposition 1.6. There holds
sup

(a,b,c,d,θ)∈C
G(a, b, c, d, θ) ≥ G̃(n)

where
G̃(n) =

4
(k(n) + 1)2

(
1 +

1
z(n)

)
,

and

k(n) = 3
√

n cos
(1
3

arccos
(
1/
√

n
))
,

z(n) =
k2(n) − 3n +

√
k4(n) − 6nk2(n) − 6nk(n)

3n
.

In particular, for any c > 0(
(z(n) + 1)c, k(n)c, c, (z(n) + 1)c, (k(n) + 1)c

)
∈ C

and
G̃(n) = G((z(n) + 1)c, k(n)c, c, (z(n) + 1)c, (k(n) + 1)c).

In the next sections we show these results, while in the last one we derive, along the lines of [7]
(and [5]), some consequent Harnack–type local estimates for the solutions.
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2. Proof of Theorem 1.4

We follow the line of Hamilton in [5] and, by simplicity and clarity, we show the proof when
(M, g) is Rn with its canonical metric. In the general case of a complete n–dimensional Riemannian
manifold, the extra curvature terms which appear in the computations because of the operations of
interchanging covariant derivatives “have the right sign” in the final inequality, since we assumed
nonnegative sectional curvatures and parallel Ricci tensor (see the end of this section). Furthermore,
thanks to standard localization arguments (as explicitly shown in [1], see also [4]), in applying the
maximum principle – on which the proof is based – we can argue as if we were in a compact case (all
the maximum/minimum points there exist).

Let u : M × [0,T )→ R be a positive solution of ut = ∆u + up. Setting f = log u, we have

|∇ f | =
|∇u|

u
∆ f =

∆u
u
−
|∇u|2

u2 =
∆u
u
− |∇ f |2

ft =
ut

u
=

∆u
u

+ up−1 = ∆ f + |∇ f |2 + e f (p−1).

Moreover, by Eq (1.2), we also have the following relations:

(∂t − ∆) f = |∇ f |2 + e(p−1) f

(∂t − ∆) fi = 2 fik fk + (p − 1)e(p−1) f fi

(∂t − ∆)( fi f j) = 2 fik fk f j + 2 f jk fk fi + 2(p − 1)e(p−1) f fi f j − 2 fik f jk

(∂t − ∆)|∇ f |2 = 4 flk fl fk + 2(p − 1)e(p−1) f |∇ f |2 − 2|∇2 f |2 (2.1)
(∂t − ∆) fi j = 2 fik j fk + 2 fik f jk + (p − 1)2e(p−1) f fi f j + (p − 1)e(p−1) f fi j

(∂t − ∆)∆ f = 2(∆ f )k fk + 2|∇2 f |2 + (p − 1)2e(p−1) f |∇ f |2 + (p − 1)e(p−1) f ∆ f

(∂t − ∆)e(p−1) f = 2(p − 1)e(p−1) f |∇ f |2 − p(p − 1)e(p−1) f |∇ f |2 + (p − 1)e2(p−1) f ,

where fi = ∇i f , fi j = ∇ j∇i f , fi jk = ∇k∇ j∇i f and so on. Let (a, b, c, d, θ) ∈ C and define the symmetric
bilinear form

Fi j = t
(
θ fi j + a∆ f gi j + b fi f j + c|∇ f |2gi j + de(p−1) f gi j

)
.

Observe that

∇kFi j fk

t
= θ fi jk fk + a(∆ f )k fkgi j + b( fik fk f j + f jk fk fi) + 2c flk fl fkgi j + d(p − 1)e(p−1) f |∇ f |2gi j

and, by a simple computation,

(∂t − ∆)Fi j =
Fi j

t
+ 2
∇kFi j fk

t
+ tQi j, (2.2)

where

Qi j = (p − 1)e(p−1) f Fi j

t
+ (p − 1)

[
b + (p − 1)θ

]
e(p−1) f fi f j

+ (p − 1)
[
c + a(p − 1) − dp

]
e(p−1) f |∇ f |2gi j + 2(θ − b) fik f jk + 2(a − c)|∇2 f |2gi j.

(2.3)
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Define
◦

fi j := fi j − (∆ f /n)gi j to be the tracefree part of the Hessian of f . Since

|
◦

fi j|
2 = |∇2 f |2 −

1
n

(∆ f )2,

we have

2(θ − b) fik f jk + 2(a − c)|∇2 f |2gi j

=
2(θ − b)
θ2

(θ fik + a∆ f gik)
(
θ f jk + a∆ f g jk

)
+ 2(a − c)|∇2 f |2gi j

−
4a(θ − b)

θ
∆ f fi j −

2a2(θ − b)
θ2 (∆ f )2gi j

=
2(θ − b)
θ2

(θ fik + a∆ f gik)
(
θ f jk + a∆ f g jk

)
+ 2(a − c)|

◦

fi j|
2gi j

−
4a(θ − b)

θ
∆ f

◦

fi j −
2

nθ2

[
a(θ − b)(2θ + na) − (a − c)θ2

]
(∆ f )2gi j

=
2(θ − b)
θ2

(Fik

t
− b fi fk − c|∇ f |2gik − de(p−1) f gik

) (F jk

t
− b f j fk − c|∇ f |2g jk − de(p−1) f g jk

)
+ 2(a − c)|

◦

fi j|
2gi j −

4a(θ − b)
θ

∆ f
◦

fi j +
2

nθ2

[
(a − c)θ2 − a(θ − b)(2θ + na)

]
(∆ f )2gi j.

(2.4)

In order to estimate the last three terms, we use the following algebraic inequality for traceless
symmetric bilinear forms

◦

fi j ≤
◦

ρgi j ≤

√
n − 1

n
|
◦

fi j|gi j,

where ◦

ρ = max{|λi| : λi eigenvalue of
◦

fi, j} denotes the spectral radius of
◦

fi j. By Young’s inequality, for
every K > 0, one has

2∆ f
◦

fi j ≤ 2

√
n − 1

n
∆ f |

◦

fi j|gi j ≤

√
n − 1

n

[
K(∆ f )2 +

1
K
|
◦

fi j|
2
]
gi j. (2.5)

We set

K :=

√
n − 1

n
a(θ − b)
θ(a − c)

,

where K > 0, by the first two inequalities of system (1.1) since (a, b, c, d, θ) ∈ C. Using inequality (2.5)
to estimate the last three terms of Eq (2.4) we achieve

2(a − c)|
◦

fi j|
2gi j −

4a(θ − b)
θ

∆ f
◦

fi j +
2

nθ2

[
(a − c)θ2 − a(θ − b)(2θ + na)

]
(∆ f )2gi j

≥
2

nθ2(a − c)
{
(a − c)2θ2 − a(θ − b) [(2θ + na)(a − c) + a(n − 1)(θ − b)]

}
(∆ f )2gi j ≥ 0,

where the last inequality follows from the third inequality in system (1.1) and since (a, b, c, d, θ) ∈ C.
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The computation above yields

2(θ − b) fik f jk + 2(a − c)|∇2 f |2gi j

≥
2(θ − b)
θ2

(Fik

t
− b fi fk − c|∇ f |2gik − de(p−1) f gik

) (F jk

t
− b f j fk − c|∇ f |2g jk − de(p−1) f g jk

)
=

2(θ − b)
θ2

[F2
i j

t2 −
b
t
(Fi j f j fk + F jk fi fk) −

2c
t
|∇ f |2Fi j −

2d
t

e(p−1) f Fi j + b(b + 2c)|∇ f |2 fi f j

+ 2bd e(p−1) f fi f j + c2|∇ f |4gi j + 2cd e(p−1) f |∇ f |2gi j + d2e2(p−1) f gi j

]
.

(2.6)

Now we claim that there exists ε > 0 such that if Fi j ≤ 0 then

θ2Qi j ≥
F2

i j

εt2 , (2.7)

where F2
i j = Fik Fk j. Thus, let us suppose that Fi j ≤ 0. Combining the estimate (2.6) with the definition

of Qi j given in (2.3) we get

θ2Qi j ≥ (p − 1)θ2e(p−1) f Fi j

t
+ (p − 1)θ2 [

b + (p − 1)θ
]
e(p−1) f fi f j

+ (p − 1)θ2 [
c + a(p − 1) − dp

]
e(p−1) f |∇ f |2gi j

+ 2(θ − b)
[F2

i j

t2 −
b
t
(Fi j f j fk + F jk fi fk) −

2c
t
|∇ f |2Fi j −

2d
t

e(p−1) f Fi j + b(b + 2c)|∇ f |2 fi f j

+ 2bd e(p−1) f fi f j + c2|∇ f |4gi j + 2cd e(p−1) f |∇ f |2gi j + d2e2(p−1) f gi j

]
≥ 2(θ − b)

F2
i j

t2 +
[
(p − 1)θ2 − 4d(θ − b)

]
e(p−1) f Fi j

t
+

{
(p − 1)θ2 [

c + a(p − 1) − dp
]
+ 4cd(θ − b)

}
e(p−1) f |∇ f |2gi j + 2d2(θ − b)e2(p−1) f gi j.

Recalling that for (a, b, c, d, θ) ∈ C there holds (θ − b) > 0, we only have to show that(p − 1)θ2 − 4d(θ − b) ≤ 0
(p − 1)θ2 [

c + a(p − 1) − dp
]
+ 4cd(θ − b) ≥ 0

Setting x = p − 1 ≥ 0, we can recast the previous inequalities asxθ2 − 4d(θ − b) ≤ 0
(d − a)θ2x2 + (d − c)θ2x − 4cd(θ − b) ≤ 0

(2.8)

Being 4cd(θ − b) > 0, (d − a)θ2 > 0 and (d − c)θ2 > 0, Eq (1.5) admits two solutions, of which
only one is positive. Hence, defining G1(b, d, θ) and G2(a, b, c, d, θ) as in the statement of the Theorem
and G(a, b, c, d, θ) as in (1.4), the fact that 0 ≤ x ≤ G(a, b, c, d, θ) implies that x satisfies both the
inequalities in (2.8). Thus, Eq (2.7) is satisfied with ε = 1

2(θ−b) .
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The application of maximum principle (see for example Theorem C.1.3 in [8] or Lemma 8.2 in [3])
concludes the proof.

We point out that in the case of a general Riemannian manifold extra curvature terms appear in the
computations. For instance, the second and the fifth line in formulas (2.1) would become respectively

(∂t − ∆) fi = 2 fik fk + (p − 1)e(p−1) f fi − Rik fk

and

(∂t − ∆) fi j = 2 fik j fk + 2 fik f jk + (p − 1)2e(p−1) f fi f j + (p − 1)e(p−1) f fi j

+ 2Rik jl fkl − Rik f jk − R jk fik +
(
∇lRi j − ∇iR jl − ∇ jRil

)
fl

= 2 fi jk fk + 2 fik f jk + (p − 1)2e(p−1) f fi f j + (p − 1)e(p−1) f fi j

+ 2Rik jl fkl − Rik f jk − R jk fik +
(
∇lRi j − ∇iR jl − ∇ jRil

)
fl + 2Rik jl fk fl

where Ri j and Rik jl denote the components of the Ricci and the curvature tensor, respectively (we follow
the convention in [2]). At this point it is straightforward to verify that the extra curvature terms which
would appear in Eq (2.2) either disappear or have the right sign under our geometric assumptions, as
in [5, Theorem 4.3]. �

3. Proof of Proposition 1.3

First of all, observe that if (a, b, c, d, θ) is admissible and λ > 0 is a constant, then (λa, λb, λc, λd, λθ)
is still admissible. Thus, if we show that an admissible quintuple of parameters exists, then we have a
cone of admissible parameters. Let us consider a quintuple of the form (a, b, c, a, θ) where a − c > 0
and θ − b > 0. We want to find a, b, c, θ such that the third inequality of system (1.1) is satisfied. To do
this, let us set a − c = δ for some δ > 0. Then, the third inequality of system (1.1) becomes

δ2θ2 − δ(θ − b)[(2θ + nδ + nc)δ + δ(n − 1)(θ − b) + c(n − 1)(θ − b)]
− c(θ − b)[(2θ + nδ + nc)δ + δ(n − 1)(θ − b) + c(n − 1)(θ − b)] ≥ 0.

Now let us assume that θ − b = c and b = kc for some k > 0 to achieve

−nδ3c + (k2 − 3n)δ2c2 − (3n + 2k)δc3 − c4(n − 1) ≥ 0.

Being c > 0, we can set z = δ
c and recast the previous inequality as

−nz3 + (k2 − 3n)z2 − (3n + 2k)z − (n − 1) ≥ 0.

Let us set
H(z, k) := −nz3 + (k2 − 3n)z2 − (3n + 2k)z − (n − 1).

We want to find some suitable values for z and k such that H(z, k) ≥ 0. First of all, let us determine
some necessary conditions on k in such a way that H(·, k) admits positive roots.

Proposition 3.1. There always exists a negative number z− < 0 such that H(z−, k) = 0. If there exist
two positive numbers z1, z2 > 0 such that H(zi, k) = 0, then k >

√
3n.
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Proof. Let us observe that H(0, k) = −(n−1) < 0 and limz→−∞ H(z, k) = +∞, hence we obviously have
z−. Moreover, let us observe that, by Descartes’ rule of the signs, the maximum number of positive
solutions of the equation H(z, k) = 0 for fixed k is 0 if k2 − 3n ≤ 0 and 2 if k2 − 3n > 0, thus, if two
positive solutions z1, z2 exist, then k >

√
3n. �

We can use the previous necessary condition to achieve a necessary and sufficient condition on the
existence of two positive roots.

Proposition 3.2. Fix n ≥ 2. Then H(z, k) admits two (possibly equal) positive roots if and only if
k ≥ k(n), where

k(n) = 3
√

n cos
(1
3

arccos
(
1/
√

n
))
.

Proof. As we have shown before, a necessary condition to have two positive roots is that k >
√

3n. On
the other hand, let us observe that

H(−z, k) = nz3 + (k2 − 3n)z2 + (3n + 2k)z − (n − 1)

hence, by Descartes’ rule of the signs we know that H(·, z) admits at most one negative root. Moreover,
since H(0, k) = −(n − 1) < 0 and limz→−∞ H(z, k) = +∞, then we know that H(z, k) admits exactly one
negative root for any k >

√
3n. Thus, if H(z, k) admits three real roots, two of them have to be positive.

The discriminant of H(·, k) is given by

∆H(k) = − 18n(n − 1)(k2 − 3n)(3n + 2k) + 4(n − 1)(k2 − 3n)3

+ (k2 − 3n)2(3n + 2k)2 − 4n(3n + 2k)3 − 27n2(n − 1)2

= 4(1 + k)3n
(
k3 −

27
4

kn −
27
4

n
)
.

We have that ∆H(k) ≥ 0 if and only if P1(k) := k3− 27
4 kn− 27

4 n ≥ 0. P1(k) is a depressed cubic polynomial
with p1(n) = q1(n) = −27

4 n. By Descartes’ rule of the signs and the fact that P1(0) = −27
4 n < 0 we

know that P1(k) always admits a unique positive root. The discriminant of P1(k) is given by

∆1(n) = −

(
−

273

42 n3 +
273

42 n2
)

=
273

16
n2(n − 1) > 0,

thus P1(k) admits three real roots. Since we are under the casus irreducibilis, we have to provide
trigonometric solutions to recognize what is the real solution we are interested in. To do this, we will
use Viéte’s procedure. Consider the equation P1(k) = 0 and set k = u cos(θ) to achieve

u3 cos3(θ) −
27
4

nu cos(θ) −
27
4

n = 0.

Multiplying everything by 4
u3 we get

4 cos3(θ) −
27
u2 n cos(θ) −

27
u3 n = 0.

Now set 27n
u2 = 3, that is to say u = 3

√
n, to achieve

4 cos3(θ) − 3 cos(θ) −
1
√

n
= 0.
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Recalling that 4 cos3(θ) − 3 cos(θ) = cos(3θ), we get

cos(3θ) = 1/
√

n

and then
θ =

1
3

arccos
(
1/
√

n
)

+
2π j
3
,

where j = 0, 1, 2. Finally, we get the three real roots of P1(k) as

k j = 3
√

n cos
(1
3

arccos
(
1/
√

n
)

+
2π j
3

)
, j = 0, 1, 2.

However, we know that P1(k) admits only one positive root. Being

0 ≤
1
3

arccos
(
1/
√

n
)
≤
π

3
,

we have that k0 > 0 is the solution we are searching for. Thus, let us relabel

k(n) := 3
√

n cos
(1
3

arccos
(
1/
√

n
))

to conclude that P1(k) ≥ 0 if and only if k ≥ k(n). �

Now we can conclude the proof of Proposition 1.3. Indeed, let us consider k > k(n), in such a way
that ∆H(k) > 0. For such fixed k, H(·, k) admits two positive roots 0 < z1 < z2. Consider any z ∈ [z1, z2].
Setting, without loss of generality, c = 1, we then know that the quintuple (z + 1, k, 1, z + 1, k + 1) is
admissible.

4. Proof of Proposition 1.6

To prove Proposition 1.6, we want to exhibit an admissible quintuple (a, b, c, d, θ) such that
G(a, b, c, d, θ) can be explicitly calculated. To do this, let us consider again a quintuple of the form
(z + 1, k, 1, z + 1, k + 1) where k ≥ k(n). Moreover, let us consider z(k, n) to be a positive local
maximum point of H(z, k), for fixed k ≥ k(n), such that H(z(k, n), k) ≥ 0. If k > k(n), then this
maximum always exists, by a simple application of Rolle’s theorem on the interval [z1, z2], together
with the fact that both z1, z2 are simple roots. If k = k(n), then z1 = z2 and it coincides with such local
maximum of the polynomial H(z, k(n)). Let us evaluate it explicitly.

Proposition 4.1. For fixed n ≥ 2 and k >
√

3n, H(z, k) admits two (eventually equal) critical points if
and only if these critical points are positive and k ≥ k0(n) where

k0(n) = 2
√

2n cos
[1
3

arccos
( 3

2
√

2n

)]
.

If k > k0(n), the local maximum point is given by

z(k, n) =
k2 − 3n +

√
k4 − 6nk2 − 6nk
3n

.

In particular, k0(n) ≤ k(n) and, if k ≥ k(n), there holds H(z(k, n), k) ≥ 0.

Mathematics in Engineering Volume 5, Issue 1, 1–15.



10

Proof. Let us first observe that

H′(z, k) :=
∂

∂ z
H(z, k) = −3nz2 + 2(k2 − 3n)z − (3n + 2k). (4.1)

Since k >
√

3n, Descartes’ rule of the signs tells us that, if the solutions exist, they must be positive.
Hence we have only to show that the discriminant is nonnegative. Let us determine the discriminant of
the polynomial (4.1):

∆z(k) = 4((k2 − 3n)2 − 3n(3n + 2k)) = 4k(k3 − 6nk − 6n). (4.2)

Being k > 0, ∆z(k) ≥ 0 if and only if

P2(k) := k3 − 6nk − 6n ≥ 0.

Let us first show that this polynomial admits a unique positive root. Observe that P2(0) = −6n < 0 and
limk→+∞ P2(k) = +∞, thus P2(k) admits a positive root k0(n). Moreover, Descartes’ rule of the signs
tells us that P2(k) admits at most one positive root, hence k0(n) is the unique positive root.

Now let us determine k0(n). First of all, let us observe that, since P2(k) is a depressed cubic
polynomial, its discriminant is given by

∆k = −(−4 · 63n3 + 27 · 62n2) = 108n2(8n − 9) > 0

since n ≥ 2. Thus we know P2(k) admits three different roots. Since we are under the casus
irreducibilis, we have to provide trigonometric solutions to recognize what is the real solution we are
interested in. Arguing again by Viéte’s procedure and selecting the unique positive root, we get

k0(n) = 2
√

2n cos
[1
3

arccos
( 3

2
√

2n

)]
.

Hence, as k > k0(n), we can find two solutions to equation H′(z, k) = 0. Being H(·, k) a polynomial
with H(0, k) = −(n − 1) and limz→−∞ H(z, k) = +∞, we know that H(z, k) is decreasing as z ≤ 0.
Thus, the first critical point has to be a local minimum and the second critical point a local maximum.
Therefore, writing explicitly the second solution of H′(z, k) = 0, we get

z(k, n) =
k2 − 3n +

√
k4 − 6nk2 − 6nk
3n

. (4.3)

Finally, observe that, by Rolle’s theorem, if k > k(n), then the interval [z1, z2] has to admit one of the
two critical points. Moreover, since H(z, k) > 0 as z ∈ (z1, z2) and H(z1, k) = H(z2, k) = 0, then such
critical point is the local maximum and H(z(k, n), k) is positive. If k = k(n), then z1 = z2 is a double
root and H(z1, k(n)) = H(z2, k(n)) = 0. Being H(z, k(n)) ≤ 0 for any z ≥ 0 (since the other simple root
is negative), we have that z1 = z2 = z(k(n), n) and H(z(k(n), n), k(n)) = 0. This also obviously implies
k0(n) < k(n). �

Next, we want to evaluate G on the quintuple (z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) as k ≥ k(n). To do
this, we first need to exploit a simple property of z(k, n).
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Proposition 4.2. For any k ≥ k(n) there holds z(k, n) ≥ 2.

Proof. By Eq (4.3), we have that z(k, n) ≥ 2 if and only if
√

k4 − 6nk2 − 6nk ≥ 9n − k2. (4.4)

Being k ≥ k(n), we already know that the quantity under the square root is nonnegative. On the
other hand, if k ≥ 3

√
n, then inequality (4.4) holds true. Let us consider k(n) ≤ k < 3

√
n. Then

inequality (4.4) is equivalent to

k4 − 6nk2 − 6nk ≥ 81n2 − 18nk2 + k4

that is to say
4k2 − 2k − 27n ≥ 0.

Since k(n) > 0, the previous inequality is verified as

k ≥
1 +
√

1 + 108n
4

=: k1(n) >
1
2
.

To conclude the proof, we have to show that k1(n) ≤ k(n). Being k0(n) ≤ k(n), this is obvious if
k1(n) ≤ k0(n), thus let us suppose k1(n) > k0(n).

Let us consider the function g(k) := H(z(k, n), k) for k ≥ k0(n). Being z(k, n) a local maximum of H,
there holds ∂H

∂ z (z(k, n), k) = 0. Thus, we have

g′(k) = 2kz2(k, n) − 2z(k, n) = 2z(k, n)(kz(k, n) − 1).

In particular g′(k) ≥ 0 if and only if kz(k, n) ≥ 1. The latter holds if and only if

k
√

k4 − 6nk2 − 6nk ≥ 3n + 3nk − k3 = −
∆z(k)

4k
− 3n(1 + k), (4.5)

where ∆z(k) is defined in Eq (4.2). Being k ≥ k0(n), we have that ∆z(k) ≥ 0 and then inequality (4.5)
is verified. This implies, in particular, that g(k) is increasing as k ≥ k0(n). Moreover, by definition of
k(n), there holds g(k(n)) ≥ 0. On the other hand, being z(k1(n), n) = 2 and k1(n) > 1

2 , we get

g(k1(n)) = H(2, k1(n)) = −2k1(n) + 1 < 0.

Hence, we have k1(n) < k(n), concluding the proof. �

With this property in mind, we can evaluate

G(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) .

To do this, let us first observe that

G1(k, z(k, n) + 1, k + 1) =
4(z(k, n) + 1)

(k + 1)2 .

Concerning G2(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1), it is the unique solution of

z(k, n)(k + 1)2x − 4(z(k, n) + 1) = 0
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that is to say

G2(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) =
4(z(k, n) + 1)
z(k, n)(k + 1)2 .

Hence, we have

G(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) =
4(z(k, n) + 1)

(k + 1)2 min
{
1,

1
z(k, n)

}
.

However, being z(k, n) ≥ 2 by the previous proposition, there holds

min
{
1,

1
z(k, n)

}
=

1
z(k, n)

then
G(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) =

4
(k + 1)2

(
1 +

1
z(k, n)

)
.

Now we want to optimize on k ≥ k(n). To do this, let us show the following Proposition.

Proposition 4.3. The function k 7→ z(k, n) is increasing on [k(n),+∞).

Proof. Just observe that

z′(k, n) =
1

3n

(
2k +

2k3 − 6nk − 3n
√

k4 − 6nk2 − 6nk

)
=

1
3n

(
2k +

∆z(k)

4k
√

k4 − 6nk2 − 6nk
+

k3 + 3n
√

k4 − 6nk2 − 6nk

)
≥ 0,

being ∆z(k) ≥ 0 by the fact that k ≥ k(n) ≥ k0(n). �

The previous proposition implies that the function k 7→ G(z(k, n) + 1, k, 1, z(k, n) + 1, k + 1) is
decreasing as k ≥ k(n), thus it achieve its maximum value as k = k(n). Setting

G̃(n) := G(z(k(n), n) + 1, k(n), 1, z(k(n), n) + 1, k(n) + 1), n ≥ 0,

we conclude the proof of Proposition 1.6.

5. Matrix Harnack inequalities

We begin the section with the following technical lemma.

Lemma 5.1. There exists a cone C′ of an admissible quintuples (a, b, c, d, θ) such that a = d and
b − a + c < 0.

Proof. Let us consider k ≥ k(n) with k(n) defined in Proposition 1.6 and let (z(k, n) + 1, k, 1, z(k, n) +

1, k + 1) ∈ C with z(k, n) defined in (4.3). The condition b − a + c < 0 becomes k < z(k, n), i.e.,

3nk − k2 + 3n <
√

k4 − 6nk2 − 6nk.

This is obviously true if

k >
3n +

√
9n2 + 12n
2

.

With this choice of k we conclude the proof. �

Mathematics in Engineering Volume 5, Issue 1, 1–15.



13

Remark 5.2. It is easy to see that if (a, b, c, d, θ) ∈ C then also (a, b, c, a, θ) ∈ C.

We will now derive some Harnack–type inequalities as a consequence of Theorem 1.4.

Proposition 5.3. Let (M, g) be an n–dimensional complete Riemannian manifold with nonnegative
sectional curvatures and parallel Ricci tensor. Consider (a, b, c, a, θ) ∈ C′ and
1 < p < 1 + G(a.b, c, a, θ). Let u : M × [0,T ) → R be a classical positive solution of the equation
ut = ∆u + up, then there exists ε = ε(n, p, a, b, c, θ) such that, given any 0 < t1 < t2 ≤ T and
x1, x2 ∈ M, the following inequality holds

u(x1, t1) ≤ u(x2, t2)
( t2

t1

)1/ε

exp(ψ(x1, x2, t1, t2)),

where

ψ(x1, x2, t1, t2) := inf
γ∈Γ(x1,x2)

∫ 1

0

[ a|γ̇(s)|2

4(a − b − c)(t2 − t1)
+
θ(t2 − t1)

a
ρ(γ(s), (1 − s)t2 + st1)

]
ds,

with Γ(x1, x2) given by all the paths in M parametrized by [0, 1] joining x2 to x1, f = log u and
ρ = max{|λi| : λi eigenvalue of fi j}.

Proof. By Theorem 1.4 we know that there exists ε such that

θ fi j + a∆ f gi j + b fi f j + c|∇ f |2gi j + ae(p−1) f gi j +
1
εt

gi j ≥ 0.

Recalling that f satisfies
ft = ∆ f + |∇ f |2 + e(p−1) f ,

we get

− ft gi j ≤
θ

a
fi j +

b
a

fi f j −
a − c

a
|∇ f |2gi j +

1
aεt

gi j. (5.1)

Since ρ is the spectral radius of fi j we get fi j ≤ ρgi j. On the other hand the matrix fi f j has rank one
and the only nonzero eigenvalue is |∇ f |2, then fi f j ≤ |∇ f |2gi j. Plugging these inequalities into (5.1) we
obtain

− ft gi j ≤

(
θ

a
ρ −

a − c − b
a

|∇ f |2 +
1

aεt

)
gi j. (5.2)

Now let us consider any γ ∈ Γ(x1, x2) as well as η : [0, 1] → M × [t1, t2] defined as η(s) = (γ(s), (1 −
s)t2 + st1). Evaluating (5.2) in η(s) and applying it to γ̇(s) we see that

− ft(η(s))|γ̇(s)|2 ≤
(
θ

a
ρ(η(s)) −

a − c − b
a

|∇ f (η(s))|2 +
1

aε((1 − s)t2 + st1)

)
|γ̇(s)|2.

Noticing that η(0) = (x2, t2) and η(1) = (x1, t1), we have

f (x1, t1) − f (x2, t2) =

∫ 1

0

( d
ds

f (η(s))
)

ds

=

∫ 1

0

[
〈∇ f (η(s)), γ̇(s)〉 − (t2 − t1) fs(η(s))

]
ds
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≤

∫ 1

0

[
|∇ f (η(s))||γ̇| + (t2 − t1)

( 1
aε[(1 − s)t2 + st1]

−
a − c − b

a
|∇ f (η(s))|2 +

θ

a
ρ(η(s))

)]
ds

=

∫ 1

0

t2 − t1

aε[(1 − s)t2 + st1]
ds +

∫ 1

0

[
|∇ f (η(s))||γ̇(s)|

−
(a − c − b)(t2 − t1)

a
|∇ f (η(s))|2 +

θ(t2 − t1)
a

ρ(η(s))
]

ds

≤
1
aε

log
( t2

t1

)
+

∫ 1

0

[ a|γ̇(s)|2

4(a − b − c)(t2 − t1)
+ (t2 − t1)

θ

a
ρ(η(s))

]
ds.

Being γ ∈ Γ(x1, x2) arbitrary, we conclude the proof. �

With the same strategy we can also prove the following variant.

Proposition 5.4. Let (M, g) be an n–dimensional complete Riemannian manifold with nonnegative
sectional curvatures and parallel Ricci tensor. Consider (a, b, c, a, θ) ∈ C′ and
1 < p < 1 + G(a.b, c, a, θ). Let u : M × [0,T ) → R a classical positive solution of the equation
ut = ∆u + up, then there exists ε = ε(n, p, a, b, c, θ) such that, given any 0 < t1 < t2 ≤ T and
x1, x2 ∈ M, the following inequality holds

u(x1, t1) ≤ u(x2, t2)
( t2

t1

)1/ε

exp(ψ(x1, x2, t1, t2)),

where

ψ(x1, x2, t1, t2) := inf
γ∈Γ(x1,x2)

∫ 1

0

[ na|γ̇(s)|2

4(na − nb − nc + θ)(t2 − t1)
+
θ(t2 − t1)

a
◦

ρ(γ(s), (1 − s)t2 + st1)
]

ds,

with Γ(x1, x2) given by all the paths in M parametrized by [0, 1] joining x2 to x1, f = log u,
◦

fi j =

fi j −
∆ f
n gi j and ◦

ρ = max{|λi| : λi eigenvalue of
◦

fi j}.

Finally, we also have another one coming from the scalar (trace) version of the Li & Yau
inequality (1.6). We underline that it holds up to an exponent p lower than the analogous one for the
Harnack inequality obtained in [1], moreover, this latter holds under the only hypothesis of
nonnegative Ricci tensor.

Proposition 5.5. Let (M, g) be an n–dimensional complete Riemannian manifold with nonnegative
sectional curvatures and parallel Ricci tensor. Consider (a, b, c, a, θ) ∈ C and 1 < p < 1+G(a.b, c, a, θ).
Let u : M × [0,T ) → R a classical positive solution of the equation ut = ∆u + up, then there exists
ε = ε(n, p, a, b, c, θ) such that, given any 0 < t1 < t2 ≤ T and x1, x2 ∈ M, the following inequality holds

u(x1, t1) ≤ u(x2, t2)
( t2

t1

)1/ε

exp(ψ(x1, x2, t1, t2)),

where

ψ(x1, x2, t1, t2) := inf
γ∈Γ(x1,x2)

∫ 1

0

[ (θ + na)|γ̇(s)|2

4(na − nc + θ − b)(t2 − t1)
−

θ

θ + na
up−1(γ(s), (1 − s)t2 + st1)

]
ds,

with Γ(x1, x2) given by all the paths in M parametrized by [0, 1] joining x2 to x1.
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Proof. Let f = log u, by Theorem 1.4 we know that there exists ε > 0 such that inequality (1.6) holds,
then the proof proceeds as in Proposition 5.3. �
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