
http://www.aimspress.com/journal/mine

Mathematics in Engineering, 4(6): 1–28.
DOI:10.3934/mine.2022049
Received: 25 May 2021
Accepted: 26 August 2021
Published: 16 November 2021

Research article

Multiphase modelling of glioma pseudopalisading under acidosis:

Pawan Kumar1, Christina Surulescu1,* and Anna Zhigun2

1 Felix-Klein-Zentrum für Mathematik, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31,
67663 Kaiserslautern, Germany

2 School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7
1NN, Northern Ireland, UK

: This contribution is part of the Special Issue: Advances in the analysis of chemotaxis systems
Guest Editor: Michael Winkler
Link: www.aimspress.com/mine/article/6067/special-articles

* Correspondence: Email: surulescu@mathematik.uni-kl.de.

Abstract: We propose a multiphase modeling approach to describe glioma pseudopalisade patterning
under the influence of acidosis. The phases considered at the model onset are glioma, normal
tissue, necrotic matter, and interstitial fluid in a void-free volume with acidity represented by proton
concentration. We start from mass and momentum balance to characterize the respective volume
fractions and deduce reaction-cross diffusion equations for the space-time evolution of glioma, normal
tissue, and necrosis. These are supplemented with a reaction-diffusion equation for the acidity
dynamics and lead to formation of patterns which are typical for high grade gliomas. Unlike
previous works, our deduction also works in higher dimensions and involves less restrictions. We also
investigate the existence of weak solutions to the obtained system of equations and perform numerical
simulations to illustrate the solution behavior and the pattern occurrence.
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1. Introduction

Glioblastoma is the most common type of primary brain tumors in adults, with a dismal prognosis.
The histological features include characteristic patterns called pseudopalisades, which exhibit garland-
like structures made of aggregates of glioma cells stacked in rows at the periphery of regions with low
pH and high necrosis surrounding the occlusion site(s) of one or several capillaries [39]. Such patterns
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are used to grade the tumor and are essential for diagnosis [6, 23].
The few continuous mathematical models proposed for the description of pseudopalisade

patterns [1, 26, 27, 30], involve systems of ODEs and PDEs which were set up in a heuristic manner or
obtained from lower scale dynamics. They account for various aspects like phenotypic switch
between proliferating and migrating glioma as a consequence of vasoocclusion and nutrient
suppression associated therewith [1], interplay between normoxic/hypoxic glioma, necrotic matter,
and oxygen supply [30], or tissue anisotropy and repellent pH-taxis, with [27] or without [26]
vascularisation. The latter two works deduced effective equations for glioma dynamics from models
set on the lower, microscopic and mesoscopic scales in the kinetic theory of active particles (KTAP)
framework explained e.g., in [4]. Those deductions are in line with previous works concerning glioma
invasion in anisotropic tissue [9–11, 14–16, 18, 31], which use parabolic scaling to obtain the
equations for glioma evolution on the macroscale from descriptions of subcellular and mesoscopic
dynamics. Here we propose yet another approach, relying on the interpretation of the relevant
components (glioma, normal tissue, necrotic matter, and acidity) as phases in a mixture - with the
exception of acidity, which is characterised by proton concentration in the volume occupied by the
phases.

Multiphase models in the framework of mixture theory [2, 12] have been considered in connection
with cancer growth and invasion, (arguably) starting with [7, 8] and followed by many others,
involving different mathematical and biological aspects; see e.g., [17, 19, 32–34, 36, 37, 40] and
references therein. Particularly [34] provides a comprehensive discussion of the classes of multiphase
models, along with their strengths and drawbacks. Such models employ a population level description
with conservation laws analogous to balance equations for single cells, with supplementary terms
accounting for interphase effects. Thereby, the living cells and tissues are most often seen as viscous
fluids, while the interstitial fluid is inviscid. Few of the existing models (e.g., [17, 34, 40]) are
explicitly handling necrosis, which is, however, an important component of advanced tumors.
Likewise, there are relatively few models accounting for chemoattracting or chemorepellent agents
(e.g., [17, 37]), which are known to bias in a decisive way the expansion of the neoplasm and
therewith associated dynamics of tumor cells and surrounding tissue. To our knowledge there are no
multiphase models for glioma pseudopalisade development. In this context we propose such a model
comprising necrotic matter as one of the phases in the mixture (although there are a few issues related
to this approach, as mentioned, e.g., in [34]). As our main aim is to describe glioma behavior in an
acidic environment fastly leading to extensive necrosis, we explicitly include these influences in our
model. From the mass and momentum balance equations written for the phases composing the
neoplasm and supplemented with appropriate constitutive relations, we then deduce, under some
simplifying assumptions, a system of reaction-cross diffusion equations with repellent pH-taxis for
the glioma cells and normal and necrotic tissues, also including a solenoidality constraint on the total
flux. Our deduction has some similarities with that in [19], however is done in N dimensions instead
of 1D, it accounts explicitly for the evolution of necrotic matter and the effects of acidity, and does not
require the drag coefficients between the phases to be equal. The obtained equations are able to
reproduce qualitatively the typical pseudopalisade patterns with all their aspects related to the glioma
aggregates, acidity, necrotic inner region, normal tissue dynamics.

The rest of this paper is organized as follows: Section 2 contains some notations and conventions.
Section 3.1 contains the model setup with the considered phases (glioma cells, normal tissue, necrotic
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matter, and interstitial fluid) and the corresponding mass and momentum balance equations, along with
their associated constitutive relations. That description is used to deduce the announced reaction-cross
diffusion equations. Thereby, we investigate a model with an immovable component and observe that
enforcing one of the phases to be fixed prevents the simultaneous validity of all basic conservation
laws needed in the setting. Then we neglect the interstitial fluid, thus reducing the number of phases,
and obtain the PDEs with reaction, nonlinear diffusion and taxis terms, while still ensuring all balance
equations. The total flux needs to be given, satisfying a solenoidality constraint. Section 4 is dedicated
to the existence of weak solutions to the obtained cross diffusion system coupled with the reaction-
diffusion equation for acidity dynamics in the volume of interest. Finally, in Section 5 we provide
numerical simulations for that system, studying several parameter scenarios in order to put in evidence
the effect of acidity and of different drag coefficients on the obtained patterns exhibiting pseudopalisade
formation.

2. Preliminaries

We will use the following notation throughout this paper:

Notation 2.1. 1) By vector we always mean a column vector.

2) We denote by e the vector of length 4 and all components equal to one. As usual, Il stands for the
identity matrix of size l.

3) For two vectors wp1q and wp2q of the same length we denote by wp1q.wp2q the vector with elements
wp1qi wp2qi . Similarly, for a vector w with nonzero elements we write w.´1 meaning the vector with
coordinates w´1

i .

4) For a vector w we denote by diagpwq the diagonal matrix with pdiagpwqqii “ wi.

5) As usual, ¨ denotes the scalar product.

6) As usual, ∇ refers to the gradient with respect to the spatial variable x.

Notation 2.2. Throughout the paper we often skip the arguments of coefficient functions.

3. Modelling

3.1. Model setup

Model variables Motivated by the multiphase approach developed in [19] we view the tumour and
its environment as a saturated mixture of several components. We assume these components to be:
tumour cells, normal tissue (mainly the extracellular matrix, but also normal cells), necrotic tissue
(was not included in [19]), and interstitial fluid. The latter, in turn, has several constituents, among
which are protons. Depending on their concentration, the environment can be more or less acidic. pH
levels drop due to enhanced glycolytic activity of neoplastic cells. We assume that neither cells nor
living tissue are produced due to an already very acidic, and hence very unfavourable, environment.
Thus we assume that the total volume of the mixture is preserved, the phases only transferring from
one into another. The main variables in our models, all depending on time t ě 0 and position in space
x P Ω Ă RN , Ω a domain, are:
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• vector u : r0,8q ˆΩ Ñ r0, 1s4 of volume fractions of
– tumour cells, uc,
– normal tissue, um,
– necrotic tissue, un,
– interstitial fluid, uw.

• acidity (concentration of protons), h : r0,8q ˆΩ Ñ r0,8q.

Unlike [19] we do not require the space dimension, N P N, to be one. The main goal of this section
is to derive equations for the volume fractions based primarily on the conservation laws for mass and
momentum as well as additional assumptions on some of the phases. To write down the physical laws,
we introduce additional variables that are subsequently eliminated. These are:

• fluxes of the components, Ji : r0,8q ˆΩ Ñ RN , i P tc,m, n,wu,
• common pressure, p : r0,8q ˆΩ Ñ R.

Model parameters The equations we develop below involve the following set of parameters:

• matrix of drag coefficients associated with each pair of components, K P R4ˆ4;
• additional, isotropic pressures by the components, τi : r0, 1s4 ˆ RÑ R, i P tc,m, n,wu;
• reaction terms, fi : r0, 1s4 ˆ RÑ R, i P tc,m, n,w, hu;
• diffusion coefficient of the protons, Dh ą 0.

Assumptions on K. We assume throughout that

Ki j ą 0 and Ki j “ K ji for i, j P tc,m, n,wu, i ‰ j.

Assumptions on fi’s. In order to ensure that the sum of all volume fractions in the mixture is always
one, we require

ÿ

iPtc,m,n,wu

fi ” 0. (3.1)

Since ui’s and uh should be nonnegative, we require further that

fi ě 0 for ui “ 0, i P tc,m, n,wu,

fh ě 0 for h “ 0.

Possible choices for the reaction terms are:

Example 3.1. fcpuc, un, hq “ ´c1ucunph ´ hmaxq, fmpum, hq “ ´
c2umph´hmaxq`

1`um`h ´ c3um, fn “ ´ fc ´ fm,
fw “ 0. This accounts for the fact that the amount of both tissue and viable cancer cells (the latter
being in interaction with the necrotic matter embedded in the acidic environment) decreases when the
proton concentration h exceeds a certain maximum threshold, leading to acidosis and hypoxia. The
tissue infers degradation due to causes other than direct influence of acidity or tumor cells, and, on
the other hand, it experiences a certain amount of self-regeneration, which is limited by the already
available tissue and low pH. Thereby, c1, c2, c3 ą 0 are constant rates; they could, however, also
include further dependencies. For the reaction term in the acidity equation we choose e.g., fh “

´a1uwh{p1 ` uwh{hmaxq ` a2uc ´ a3h, with ai ě 0 (i “ 1, 2, 3) constants. This choice ensures proton
uptake by the interstitial fluid (with saturation), production by glioma cells, and decay with rate a3.
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Assumptions on τi’s. We assume that the non-living components (necrotic matter and extracellular
fluid) acquire a tendency to reach equilibrium, so that only living matter exerts additional pressure,
thus

τn ” τw ” 0. (3.2)

The mechanical properties of living matter (tumour cells and normal tissue) are different; among
others, they are able to generate both intra- and interphase forces in response to changes in the local
environment. The influences include variations in the volume fraction of the cell phase and the
presence of chemical cues, of which we account for the local acidity (via proton concentration). The
corresponding forces manifest themselves as an additional intraphase pressure. It is assumed that the
pressure in the tumour and normal tissue phases increases with their respective densities; moreover,
glioma cells exert supplementary (isotropic) pressure on the normal tissue. Taking these effects into
account, we choose for the additional pressure terms

τcpuc, hq :“ αcuc ` gphq, gphq :“
χh

1` h
hmax

, (3.3)

τmpuc, umq :“ αmp1` θucqum, (3.4)

where αc, αm, θ, hmax, χ ą 0 are constants. In (3.3) we combine the influence of local cell mass and
acidity, both adding to cancer cell pressure which, in turn, enhances glioma motility. Cell stress
increases with growing cell mass, pushing the cells away from overcrowded regions. Stress due to
acidity saturates for large acidity levels. Indeed, in highly acidic regions cell ion channels and
pH-sensing receptors are mostly occupied, thus making cells insensitive to the presence of protons in
their environment. As in [11, 24, 26, 27], we call this a repellent pH-tactic behaviour. Similarly, the
choice in (3.4) means that there is some intraspecific tissue stress (compression) further accentuated
by the interaction between glioma cells and their fibrous environment. The forms proposed in (3.3),
(3.4) are reminiscent of those chosen in [19].

Main equations To derive our models we will rely on a set of equations describing physical laws.
They are as follows.

• Since the the components of u are volume fractions, we have
ÿ

iPtc,m,n,wu

ui “ 1. (3.5)

This is the so-called ’no void’ condition.
• Mass conservation for ith component is given by

Btui “ ´∇ ¨ Ji ` fi. (3.6)

It would be reasonable to assume that this equation should hold for all phases. However, this may
come into conflict with additional assumptions, see subsequent Subsection 3.2.
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• Conservation of momentum for ith component is given by

´∇ ¨ puiσiq “ Fi, (3.7)

where

σi “ ´pp` τiqIN (3.8)

is the stress tensor involving the common pressure p and the additional pressure τi. It is assumed
that the response of the tumour to stress is elastic and isotropic, which implies that the
deformation induced by the applied force on each of the considered cellular and tissue
components is limited. An unlimited deformation would correspond to a viscoelastic
material [20], which is not considered here. The forms of the stress tensors depend on the
material properties of each phase and their response to mechanical and chemical cues in the
environment. As in [19, 28] the interstitial fluid is considered to be inert and isotropic and
viscous effects within each phase are neglected.
The right hand side in (3.7) represents the force acting on the ith phase and, neglecting any inertial
effects and exterior body forces, it takes the following form:

Fi “ p∇ui `
ÿ

jPtc,m,n,wuztiu

Ki jpuiJ j ´ u jJiq. (3.9)

The first term on the right hand side in (3.9) accounts as usual (see, e.g., [7,19,28]) for the pressure
distribution at the interface between phases. The remaining term represents viscous drag between
the phases, with drag coefficients Ki j.
Plugging (3.8) and (3.9) into (3.7) yields an equation for the variables we introduced above:

∇ ¨ puipp` τiqINq “ p∇ui `
ÿ

jPtc,m,n,wuztiu

Ki jpuiJ j ´ u jJiq. (3.10)

Equation (3.10) is assumed to hold for all four phases.
• The proton concentration satisfies the reaction-diffusion equation

Bth “ Dh∆h` fh. (3.11)

In the remainder of this section we derive two models based on these laws. To begin with, we simplify
Eq (3.10). Given that p and τi are scalar functions, we have for all i P tc,m, n,wu

ÿ

jPtc,m,n,wuztiu

Ki jpuiJ j ´ u jJiq “∇ ¨ puipp` τiqINq ´ p∇ui

“∇puipp` τiqq ´ p∇ui

“∇puiτiq ` ui∇p. (3.12)

Since K is symmetric, adding together the left-hand sides of (3.12) for all i P tc,m, n,wu, we find that
ÿ

iPtc,m,n,wu

ÿ

jPtc,m,n,wuztiu

Ki jpuiJ j ´ u jJiq “ 0. (3.13)
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Combining (3.12) with (3.5) and (3.13), we obtain

0 “
ÿ

iPtc,m,n,wu

∇puiτiq ´ ui∇p

“∇pu ¨ τq ` ∇p,

so that

∇p “ ´∇pu ¨ τq. (3.14)

Plugging (3.14) into (3.12) we arrive at a system which no longer involves p:
ÿ

jPtc,m,n,wuztiu

Ki jpuiJ j ´ u jJiq “ ´ui∇pu ¨ τq ` ∇puiτiq, i P tc,m, n,wu, (3.15)

and it holds that
ÿ

iPtc,m,n,wu

p´ui∇pu ¨ τq ` ∇puiτiqq “ 0. (3.16)

Next, we introduce a matrix function

A : r0, 1s4 Ñ R4ˆ4, Aim :“

#

´
ř

jPtc,m,n,wuztiu Ki ju j, i “ m,

Kimui, i ‰ m,
i,m P tc,m, n,wu. (3.17)

The symmetry of K once again implies that
ÿ

iPtc,m,n,wu

Aim ” 0, m P tc,m, n,wu. (3.18)

System (3.15) can now be written in the form

AJplq “ ´uBxlpu ¨ τq ` Bxlpτ.uq, l P t1, . . . ,Nu, (3.19)

where we denote by Jplq the vector made up of the lth coordinates of each Ji. Due to (3.16) and (3.18)
for each l (at least) one equation is redundant. We exploit this in more detail in the next Subsections.

3.2. A model with an immovable component

Recall that um and un correspond to normal and necrotic tissues, respectively. A standard modelling
assumption is that any tissue is completely immovable. This means that its flux is a zero function,
turning the mass conservation law (3.6) into an ODE. However, as we show in this Section, already
presupposing, e.g.,

Jn ” 0 (3.20)

is problematic.
Singling out the nth phase, we use the following convenient notation.
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Notation 3.2. For a vector y with components corresponding to the four phases we denote by ỹ the
vector which is obtained by removing the component which corresponds to nth phase. Similarly, for
a matrix A we denote by Ã the submatrix which results from removing the row and column of A
corresponding to that phase.

Recall that fluxes Ji, i P tc,m, n,wu, satisfy system (3.19) which is underdetermined. We notice that
the submatrix Ã is diagonal-dominant due to (3.18) and the nonnegativity of ui’s and Ki j’s. Using the
Gershgorin circle theorem, we infer that the real parts of the eigenvalues of Ã do not exceed ´ρApuiq,
where

ρA :“ un min
iPtc,m,wu

Kni. (3.21)

Therefore, for un ą 0 the submatrix Ã of A is invertible. Consequently, system (3.19)–(3.20) is
uniquely solvable.

To simplify the calculations, let us now assume that the following technical assumption holds:

K “ kkT for some k P r0, 1s4. (3.22)

In other words, the symmetric matrix K has rank one. One readily verifies the following formulas:

Lemma 3.3. Let assumption (3.22) hold. Then:

Ã “ ´pk ¨ uq
ˆ

I3 ´
1

k ¨ u
pk̃.ũqẽT

˙

diagpk̃q (3.23)

and

Ã´1
“ ´

1
k ¨ u

diag´1
pk̃q

ˆ

I3 `
1

knun
pk̃.ũqẽT

˙

, (3.24)

so that

Ã´1w̃ “´
1

k ¨ u

ˆ

k̃.´1.w̃`
1

knun
ũpẽ ¨ w̃q

˙

. (3.25)

Using (3.25) we can resolve system (3.19)–(3.20) with respect to the components of the fluxes. For
l P t1, . . . ,Nu and i P tc,m,wu we obtain

Jplqi “´
1

k ¨ u

ˆ

1
ki
p´uiBxlpu ¨ τq ` Bxlpuiτiqq `

1
knun

uiẽ ¨ p´ũBxlpu ¨ τq ` Bxlpτ̃.ũqq
˙

“´
1

k ¨ u

ˆ

1
ki
p´uiBxlpu ¨ τq ` Bxlpuiτiqq `

1
knun

uip´pẽ ¨ ũqBxlpu ¨ τq ` Bxlpũ ¨ τ̃qq
˙

“´
1

k ¨ u

ˆ

1
ki
p´uiBxlpu ¨ τq ` Bxlpuiτiqq `

1
knun

uip´p1´ unqBxlpu ¨ τq ` Bxlpũ ¨ τ̃qq
˙

“´
1

k ¨ u

ˆ

1
ki
p´uiBxlpũ ¨ τ̃q ` Bxlpuiτiqq `

1
kn

uiBxlpũ ¨ τ̃q
˙

“´
1

k ¨ u

ˆ

1
ki
Bxlpuiτiq ´

ˆ

1
ki
´

1
kn

˙

uiBxlpũ ¨ τ̃q
˙

. (3.26)
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We used (3.5) and (3.2) in the third and fourth equalities, respectively. Plugging (3.26) into (3.6) and
using (3.2), we obtain

Btui “ ∇ ¨

ˆ

1
k ¨ u

ˆ

1
ki
∇puiτiq ´

ˆ

1
ki
´

1
kn

˙

ui∇pucτc ` umτmq

˙˙

` fi, i P tc,mu, (3.27a)

Btuw “ ∇ ¨

ˆ

1
k ¨ u

ˆ

´

ˆ

1
kw
´

1
kn

˙

uw∇pucτc ` umτmq

˙˙

` fw. (3.27b)

For variable un we have due to (3.6) and (3.20) that it satisfies an ODE:

Btun “ fn. (3.28)

However, the structure of the fluxes in (3.27) would ensure (3.5) only if

∇ ¨
ÿ

iPtc,m,wu

Ji ” 0.

This condition fails to hold in general, unless for τc and τm such that

ÿ

iPtc,m,wu

ˆ

1
ki
∇upuiτiq ´

ˆ

1
ki
´

1
kn

˙

ui∇upucτc ` umτmq

˙

“ 0 for all 0 ď uc, um, un,
ÿ

iPtc,m,wu

ui ď 1.

(3.29)

It is not fulfilled by the coefficients we have in mind, see Subsection 3.1.
Let us assume that (3.27) holds only for i P tc,wu. Assume further that

uw ” 0, (3.30)

i.e., that the liquid phase is negligible. In this case we obtain a haptotaxis model:

Btuc “ ∇ ¨

ˆ

1
k ¨ u

ˆ

1
kc
∇pucτcpu, hqq ´

ˆ

1
kc
´

1
kn

˙

uc∇pucτcpu, hq ` p1´ puc ` unqqτmpu, hqq
˙˙

` fcpu, hq, (3.31a)
Btun “ fnpu, hq, (3.31b)
um “ 1´ puc ` unq, (3.31c)
u “ puc, um, unq. (3.31d)

Unless τc is zero for uc ` un “ 1, this model cannot ensure um ě 0.
Altogether we see that trying to explicitly enforce an immovable phase leads to a situation where

not all basic conservation laws can hold at the same time.

3.3. A model with total flux control

Let us now assume that the number of components in the mixture is three since

uw ” 0,
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thus, unlike previous multiphase models in a related context (see e.g., [19,37]), but compare also [36],
we neglect the interstitial fluid and only take into account the more ‘solid’ components, namely
cancer cells, necrotic matter, and normal tissue, all of which are assumed to be more or less
heterogeneously interspersed within the volume of interest. In this Subsection we assume all physical
laws from Subsection 3.1 to hold in full, so that, in particular, the mass conservation law (3.6) holds
for each i P tc,m, nu. Due to (3.1) and (3.5) we can replace (3.6) for i “ n by

∇ ¨ Jsum “ 0, (3.32)

where

Jsum :“
ÿ

iPtc,m,nu

Ji.

As we have seen previously, system (3.19) is underdetermined. However, if Jsum is given, then the
system is equivalent to the following matrix equation:

ĀpJc, Jm, Jnq
T
“ pzc, zm, Jsumq

T , (3.33)

where

Ā “

¨

˝

´pKcmum ` Kcnunq Kcmuc Kcnuc

Kcmum ´pKcmuc ` Kmnunq Kmnum

1 1 1

˛

‚ (3.34)

and

zi :“ ´ui∇pu ¨ τq ` ∇puiτiq.

One can readily verify that

Ā´1
“

1
K2

cmS 1

¨

˝

´Kcmuc ´ Kmnpum ` unq ucpKcn ´ Kcmq ucK2
cmS 1

umpKmn ´ Kcmq ´Kcmum ´ Kcnpuc ` unq umK2
cmS 1

Kcmpuc ` umq ` Kmnun Kcmpuc ` umq ` Kcnun unK2
cmS 1

˛

‚, (3.35)

where

S 1 :“
1

K2
cm
pKcmKcnuc ` KcmKmnum ` KcnKmnunq. (3.36)

Using (3.5), we can rewrite (3.35) as

Ā´1
“

1
K2

cmS 1

¨

˝

ucpKmn ´ Kcmq ´ Kmn ucpKcn ´ Kcmq ucK2
cmS 1

umpKmn ´ Kcmq umpKcn ´ Kcmq ´ Kcn umK2
cmS 1

unpKmn ´ Kcmq ` Kcm unpKcn ´ Kcmq ` Kcm unK2
cmS 1

˛

‚

“
1

K2
cmS 1

pupB1, B2,K2
cmS 1q ` pb1, b2, p0, 0, 0qT qq, (3.37)
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where

pB1, B2q :“ pKmn ´ Kcm,Kcn ´ Kcmq, (3.38)

pb1, b2q :“

¨

˝

´Kmn 0
0 ´Kcn

Kcm Kcm

˛

‚. (3.39)

Resolving (3.33) with respect to Ji’s and using (3.37), we get

pJc, Jm, Jnq “
1

K2
cmS 1

``

u
`

B1, B2,K2
cmS 1

˘

`
`

b1, b2, p0, 0, 0qT
˘˘

pzc, zm, Jsumq
T
˘T

“
1

K2
cmS 1

`

zcpB1u` b1q
T
` zmpB2u` b2q

T
˘

` JsumuT . (3.40)

Combining (3.38)–(3.40), we obtain

´Jc “
1

K2
cmS 1

ppKcmuc ` Kmnp1´ ucqqzc ` pKcm ´ Kcnquczmq ´ Jsumuc

“
1

K2
cmS 1

ppKcmuc ` Kmnp1´ ucqqp´uc∇pu ¨ τq ` ∇pucτcqq

` pKcm ´ Kcnqucp´um∇pu ¨ τq ` ∇pumτmqqq ´ Jsumuc (3.41)

and

´Jm “
1

K2
cmS 1

ppKcm ´ Kmnqumzc ` pKcmum ` Kcnp1´ umqqzmq ´ Jsumum

“
1

K2
cmS 1

ppKcm ´ Kmnqump´uc∇pu ¨ τq ` ∇pucτcqq

` pKcmum ` Kcnp1´ umqqp´um∇pu ¨ τq ` ∇pumτmqqq ´ Jsumum. (3.42)

Recalling that τn “ 0 due to (3.2), we conclude from (3.41)–(3.42) that

´Jc ` Jsumuc “
1

K2
cmS 1

pKcmuc ` Kmnp1´ ucqqpp1´ ucq∇pucτcq ´ uc∇pumτmqq

`
1

K2
cmS 1

pKcm ´ Kcnqucp´um∇pucτcq ` p1´ umq∇pumτmqq

“
1

K2
cmS 1

ppKcmuc ` Kmnp1´ ucqqp1´ ucq ´ pKcm ´ Kcnqucumq∇pucτcq

`
1

K2
cmS 1

p´pKcmuc ` Kmnp1´ ucqquc ` pKcm ´ Kcnqucp1´ umqq∇pumτmq. (3.43)

and, similarly,

´Jm ` Jsumum “
1

K2
cmS 1

p´pKcmum ` Kcnp1´ umqqum ` pKcm ´ Kmnqump1´ ucqq∇pucτcq
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`
1

K2
cmS 1

ppKcmum ` Kcnp1´ umqqp1´ umq ´ pKcm ´ Kmnqucumq∇pumτmq. (3.44)

Set

Dcc :“ pKcmuc ` Kmnp1´ ucqqp1´ ucq ` pKcn ´ Kcmqucum, (3.45)
Dcm :“ ´pKcmuc ` Kmnp1´ ucqquc ´ pKcn ´ Kcmqucp1´ umq, (3.46)
Dmc :“ ´pKcmum ` Kcnp1´ umqqum ´ pKmn ´ Kcmqump1´ ucq, (3.47)
Dmm :“ pKcmum ` Kcnp1´ umqqp1´ umq ` pKmn ´ Kcmqucum. (3.48)

Then (3.43) and (3.44) take the form

´ Jc “
1

K2
cmS 1

Dcc∇pucτcq `
1

K2
cmS 1

Dcm∇pumτmq ´ Jsumuc, (3.49)

´ Jm “
1

K2
cmS 1

Dmc∇pucτcq `
1

K2
cmS 1

Dmm∇pumτmq ´ Jsumum. (3.50)

Finally, combining (3.2)–(3.6), (3.32), (3.49), and (3.50) we arrive at the system

Btuc “ ∇ ¨

ˆ

Dcc

K2
cmS 1

puc, umq∇pucτcpuc, hqq `
Dcm

K2
cmS 1

puc, umq∇pumτmpuc, umqq ´ Jsumuc

˙

` fcpuc, um, hq, (3.51a)

Btum “ ∇ ¨

ˆ

Dmc

K2
cmS 1

puc, umq∇pucτcpuc, hqq `
Dmm

K2
cmS 1

puc, umq∇pumτmpuc, umqq ´ Jsumum

˙

` fmpuc, um, hq, (3.51b)
un :“ 1´ uc ´ um, (3.51c)
∇ ¨ Jsum “ 0. (3.51d)

Our construction guarantees that un satisfies an equation similar to (3.51a) and (3.51b):

Btun “∇ ¨

ˆ

Dwc

K2
cmS 1

puc, umq∇pucτcpuc, um, hqq `
Dwm

K2
cmS 1

puc, umq∇pumτmpuc, um, hqq ´ Jsumun

˙

` fwpuc, um, hq, (3.52)

where

Dwc :“ ´pDcc ` Dmcq,

Dwm :“ ´pDcm ` Dmmq,

and

Dwc “ Dwm “ 0 for all u such that uc ` um “ 1.

This a priori ensures that un ě 0 is satisfied if the solution components are smooth.

Remark 3.4. Model (3.51) is a generalisation of the model derived in [19]. Unlike that work we
require neither the constants Ki j to be equal nor the space dimension N to be one.
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Remark 3.5. Our allowing the tissues to be displaced (thus giving up the hypothesis of their
immovability) led to nonlinear diffusion and drift in (3.51b) (or, for that matter, in (3.52)). This might
seem unusual, as most reaction-difusion-transport systems describing cell motility in tissues assume
the latter fixed and use ODEs for their evolution. We emphasize that the obtained terms do not state a
self-driven motion of these components, but rather the effect of population- and biochemical pressure
exerted thereon.

Remark 3.6. To close model (3.51), one needs to choose some divergence-free Jsum. In dimension
one and for no-flux boundary conditions Jsum ” 0 is the only option. In higher dimensions Jsum can
be a curl field (in 3D) or, more generally in N dimensions (cf. [3]), an exterior product of gradients:
Jsum “ ∇γ1^∇γ2^¨ ¨ ¨^∇γN´1. In the physically relevant 3D case this means that Jsum “ ∇γ1ˆ∇γ2,
thus there exist some scalar quantities γ1, γ2 (e.g., densities/volume fractions/concentrations) such that
the total flux is orthogonal to each of their gradients, or, put in another way, Jsum is tangential to a curve
which lies in the intersection of the surfaces described by γ1 and γ2. This would mean that the total
flux is following a direction which is equally biased by those two species. The solenoidality of Jsum

is a reasonable assumption in view of our previous requirement that there were no sources or sinks of
material, either.

Diffusion matrix Without loss of generality we assume that

Kmn ě Kcn ě Kcm ą 0. (3.53)

One readily verifies that

1
K2

cmS 1

ˆ

Dcc Dcm

Dmc Dmm

˙

“
S 2

KcmS 1

ˆ

1´ uc ´
un
S 2
εc ´uc

´um 1´ um ´
un
S 2
εm

˙

, (3.54)

where

εc :“
Kcn

Kcm
´ 1, εm :“

Kmn

Kcm
´ 1, (3.55)

S 1 :“ p1` εcquc ` p1` εmqum ` p1` εcqp1` εmqp1´ uc ´ umq, (3.56)
S 2 :“ 1` εcp1´ umq ` εmp1´ ucq. (3.57)

Due to assumptions (3.53) we have for 0 ď uc, um, uc ` um ď 1 that

Dcc,Dmm ě 0, Dcm,Dmc ď 0,
0 ď εc ď εm,

S 1 P r1` εc, p1` εcqp1` εmqs, (3.58)
S 2 P r1` εc, 1` ε1 ` εms. (3.59)

In particular, for small εi matrix (3.54) can be regarded as a perturbation of matrix

1
Kcm

ˆ

1´ uc ´uc

´um 1´ um

˙
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corresponding to
εc “ εm “ 0,

i.e., to
Kmn “ Kcn “ Kcm.

This case was addressed in [22]. Further, we compute
ˆ

Bucpucτcq Bumpucτcq Bhpucτcq

Bucpumτmq Bumpumτmq Bhpumτmq

˙

“

ˆ

2αcuc 0 ucg1

θαmu2
m 2αmp1` θucqum 0

˙

. (3.60)

Overall, the diffusion matrix of equations (3.51a) and (3.51b) takes the form

S 2

KcmS 1

ˆ

1´ uc ´
un
S 2
εc ´uc

´um 1´ um ´
un
S 2
εm

˙ˆ

2αcuc 0 ucg1

θαmu2
m 2αmp1` θucqum 0

˙

. (3.61)

The complete diffusion matrix of (3.51a), (3.51b), and (3.11) includes the third line

p0, 0,Dhq. (3.62)

4. Existence of weak solutions to (3.51a)–(3.51c), (3.11)

In this section we use the method that was presented in [21] in order to establish an existence result
for our cross diffusion system (3.51a)–(3.51c), (3.11). The key to applying the method is finding a
suitable so-called entropy density. Motivated by the study in [22], where the case of equal Ki j’s and no
acidity was treated, we consider the following entropy density:

E : DÑ R, D :“ Dcm ˆ p0,8q, Dcm :“ tpuc, umq P p0, 1q2 : uc ` um ă 1u, (4.1a)

Epuc, um, hq :“ Lpuc, umq `
a
2

h2, (4.1b)

Lpuc, umq :“ucplnpucq ´ 1q ` umplnpumq ´ 1q ` unplnpunq ´ 1q, (4.1c)
un :“ 1´ puc ` umq. (4.1d)

Here L is the well-known logarithmic entropy and a ą 0 is a sufficiently large constant yet to be fixed.
For the subsequent computations we need the matrix of second-order partial derivatives of E:

D2Epuc, um, hq “

¨

˝

1
un

1´um
uc

1
un

0
1
un

1
un

1´uc
um

0
0 0 a

˛

‚. (4.2)

In order to be able to apply the method from [21], we need to ensure positive (semi-)definiteness of
matrix pD2EqM inDwhere M is the diffusion matrix of (3.51a), (3.51b), and (3.11). In this Subsection
we verify this property for the parameter values satisfying the following conditions:

0 ămin
yPr0,1s

p4αm p1` εcp1´ yqq
`

4αc p1` εmq ´ 2θαmy2εm
˘

´ α2
my2 pθ p1` εcp1´ yqq ´ 2εmq

2
q (4.3)

Mathematics in Engineering Volume 4, Issue 6, 1–28.



15

and

0 ămin
yPr0,1s

`

4αm p1` θyq p1` εcyq
`

4αc p1` εmp1´ yqq ´ 2θαmp1´ yq2εm
˘

´p´2αcyεc ` θαmp1´ yq p1` εcyq ´ 2αmp1´ yq p1` θyq εmq
2
¯

, (4.4)

where εc and εm are constants defined in (3.55).

Remark 4.1. Since both functions which need to be minimised in (4.3) and (4.4) are fourth degree
polynomials in y, these conditions can be readily checked numerically for a set of given parameters.

Lemma 4.2 (Uniform ellipticity). Let (4.3) and (4.4) hold. Let E be as defined in (4.1). Then there
exist some constants a ą 0 and 0 ă C1 ď C2 ă 8, such that:

C1|y|2 ď yT
ppD2EqMqpuc, um, hqy ď C2|y|2 for all puc, um, hq P D, y P R3. (4.5)

Proof. To begin with, we compute

S 2

ˆ

B2
ucuc

E B2
ucum

E
B2

ucum
E B2

umum
E

˙ˆ

1´ uc ´
un
S 2
εc ´uc

´um 1´ um ´
un
S 2
εm

˙

“

ˆ 1
uc
βc ´εm

´εc
1

um
βm

˙

, (4.6)

where

βc :“ 1` εmp1´ ucq, βm :“ 1` εcp1´ umq,

so that

βc P r1, 1` εms, βm P r1, 1` εcs. (4.7)

Combining (3.61), (3.62), (4.2), and (4.6), we obtain (arguments of functions are omitted)

pD2EqM “
1

KcmS 1

¨

˝

2αcβc ´ θαmu2
mεm ´2αmp1` θucqumεm βcg1

´2αcucεc ` θαmumβm 2αmp1` θucqβm ´ucεcg1

0 0 aDhS 2

˛

‚. (4.8)

We introduce the symmetric matrix

P :“ pD2EqM ` ppD2EqMqT “
1

KcmS 1

¨

˝

P̃
βcg1

´ucεcg1

βcg1 ´ucεcg1 2aDhS 2

˛

‚,

where

P̃ :“
ˆ

4αcβc ´ 2θαmu2
mεm ´2αcucεc ` θαmumβm ´ 2αmp1` θucqumεm

´2αcucεc ` θαmumβm ´ 2αmp1` θucqumεm 4αmp1` θucqβm

˙

.

(4.9)

Next, we study detpP̃q inDcm. We compute

dP :“ detpP̃q
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“4αmp1` θucqβmp4αcβc ´ 2θαmu2
mεmq ´ p´2αcucεc ` θαmumβm ´ 2αmp1` θucqumεmq

2

“4αm p1` θucq p1` εcp1´ umqq
`

4αc p1` εmp1´ ucqq ´ 2θαmu2
mεm

˘

´ p´2αcucεc ` θαmum p1` εcp1´ umqq ´ 2αm p1` θucq umεmq
2
.

Observe that dP is quadratic with respect to uc, and the coefficient of u2
c is negative. Consequently, dP

cannot attain its minimum inside Dcm Y pp0, 1q ˆ t0uq. It remains to ensure that dP is positive on the
sets t0u ˆ r0, 1s and tpuc, umq P p0, 1s ˆ r0, 1q : uc ` um “ 1u. This the case if

min
yPr0,1s

dPp0, yq

“min
yPr0,1s

p4αm p1` εcp1´ yqq
`

4αc p1` εmq ´ 2θαmy2εm
˘

´ α2
my2 pθ p1` εcp1´ yqq ´ 2εmq

2
q

ą0 (4.10)

and

min
yPr0,1s

dPpy, 1´ yq “min
yPr0,1s

`

4αm p1` θyq p1` εcyq
`

4αc p1` εmp1´ yqq ´ 2θαmp1´ yq2εm
˘

´p´2αcyεc ` θαmp1´ yq p1` εcyq ´ 2αmp1´ yq p1` θyq εmq
2
¯

ą0. (4.11)

By Sylvester’s criterion, P is positive definite if and only if P̃ is positive definite and detpPq ą 0.
Due to (3.58)–(3.59), (4.7), and g Lipschitz all functions involved in (4.9) are bounded and functions
S 1, S 2, βc, βm have positive lower bounds in D. In particular, P̃22 ě 2αm ą 0, so that P̃ is positive
definite if and only if detpP̃q ą 0. Further, we have

detpPq “aDhS 2 detpP̃q ` ϕ

ěaDh detpP̃q ` ϕ,

where ϕ : D Ñ R is a bounded function (recall that g is Lipschitz). Thus, for sufficiently large a,
detpPq ą 0 holds provided that detpP̃q ą 0. Altogether, we conclude that conditions (4.10) and (4.11)
imply that matrix P is positive for all triples in D. Assuming these conditions to be satisfied, let λpPq
denote an eigenvalue of P. Then

detpPq
trace2pPq

ď λpPq ď tracepPq.

In D, functions tracepPq and detpPq are bounded from above and from below, respectively, by some
positive constants. Hence, we have positive lower and upper bounds for the eigenvalues of P. �

Now we are ready to state our existence result.

Theorem 4.3. Let 0 ă Kcm ď Kcn ď Kmn and αc, αm, θ, hmax, χ ą 0 be some constants which satisfy
(3.55), (4.3), and (4.4). Let coefficients τc and τm be as defined in (3.3) and (3.4) and let Lipschitz
functions fc, fm, fh : DÑ R, with domainD as in (4.1a), be such that

fi ě 0 for ui “ 0, i P tc,mu, (4.12a)
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fc ` fn ď 0 for uc ` um “ 1, (4.12b)
fh ě 0 for h “ 0. (4.12c)

Then for every given Jsum P L2
locpr0,8q; pL

2pΩqqnq and puc0, um0, hq P pL8pΩqq2 ˆ L2pΩq such that
puc0, um0, hqpxq P D for a.a. x P Ω there exists a weak solution puc, um, hq : r0,8q ˆ Ω Ñ D to system
(3.51a)–(3.51c), (3.11) under no-flux boundary conditions. This means that:

puc, um, hq P L2
locpr0,8q; pH

1
pΩqq3q, Btpuc, um, hq P L2

locpr0,8q; ppH
1
pΩqq3q1q, (4.13)

〈Btuc, ϕ〉 “´

ż

Ω

ˆ

Dcc

K2
cmS 1

puc, umq∇pucτcpuc, hqq `
Dcm

K2
cmS 1

puc, umq∇pumτmpuc, umqq ´ Jsumuc

˙

¨ ∇ϕ dx

`

ż

Ω

ϕ fcpuc, un, hq dx, (4.14a)

〈Btum, ϕ〉 “´

ż

Ω

ˆ

Dmc

K2
cmS 1

puc, umq∇pucτcpuc, hqq `
Dmm

K2
cmS 1

puc, umq∇pumτmpuc, umqq ´ Jsumum

˙

¨ ∇ϕ dx

`

ż

Ω

ϕ fmpuc, um, hq dx, (4.14b)

〈Bth, ϕ〉 “´
ż

Ω

Dh∇h ¨ ∇ϕ dx`
ż

Ω

ϕ fhpuc, um, hq dx (4.14c)

a.e. in p0,8q for all ϕ P H1pΩq3, and the initial conditions for each variable are satisfied in L2pΩq-
sense.

Remark 4.4. Using the assumptions on the coefficients of system (3.51a)–(3.51c), (3.11), one readily
verifies that if puc, um, hq satisfies (4.13) and puc, um, hq P D a.e., then the gradients ∇pucτcpuc, umqq and
∇pumτmpuc, umqq as well as the fluxes in (4.14a) and (4.14b) belong to L2

locpr0,8q; pL
2pΩqqNq.

Proof of Theorem 4.3 (sketch). We rely on the theory of weak solvability for cross diffusion systems
which was developed in [21]. We recall that the main tool of the method in [21] is a suitable entropy
density. Here we use function E : D Ñ R previously defined in (4.1). This function is the sum
of the standard logarithmic entropy L for variables u1 and u2 and the quadratic ah2. Combining the
corresponding properties of the logarithmic entropy and our previous calculations in this section, we
obtain:

H1: E P C2pDq and is convex and bounded below by

min
D

E “ E
ˆ

1
3
,

1
3
,

1
3
, 0
˙

.

The derivative

DE : DÑ R3, DE “ plnpucq ´ lnpunq, lnpumq ´ lnpunq, ahq (4.15)

is invertible, the inverse being

pDEqp´1q
pz1, z2, z3q “

ˆ

ez1

1` ez1 ` ez2
,

ez2

1` ez1 ` ez2
,

1
a

z3

˙

.
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H2’: For sufficiently large a, left multiplying the diffusion matrix M by D2E yields a uniformly positive
definite matrix (see Lemma 4.2).

H2”: The diffusion matrix M is uniformly bounded in D (compare (3.61) and (3.62), recall that g is
Lipschitz).

H3: M and fi, i P tc,m, hu, are continuous mappings and there exists a constant C3 such that

DE ¨ p fc, fm, fhq ď C3

´

1` E ´min
D

E
¯

inD. (4.16)

Estimate (4.16) is a standard consequence of the assumptions (4.12). Indeed, since z ÞÑ z ln z is
negative and bounded below in p0, 1q, the part originating from the logarithmic entropy satisfies

pBuc L, Bum Lq ¨ p fc, fmq “ fc lnpucq ` fm lnpumq ` p´ fc ´ fmq lnpunq

ď ´ }∇ fc}L8pDquc lnpucq ´ }∇ fm}L8pDqum lnpumq

´
`

}∇ fc}L8pDq ` }∇ fm}L8pDq
˘

p1´ puc ` umqq lnp1´ puc ` umqq

ďC4 inD (4.17)

for some constant C4 ą 0. Further, since fh is Lipschitz, we also have

BhE fh ď C5p1` ah2
q inD (4.18)

for some constant C5 ą 0. Adding (4.17) and (4.18) together, we obtain

DE ¨ p fc, fm, fhq ďC6p1` ah2
q

ďC3

´

1` L´min
D

L` ah2
¯

“C3

´

1` E ´min
D

E
¯

inD

since obviously min E “ min L.
The main result of [21], Theorem 2 on existence of bounded weak solutions, cannot be directly

applied in our case for two reasons: firstly, apart from diffusion and reaction, equations for uc and um

also involve transport in the direction of a given vector-valued function Jsum; secondly, the domain D
is not bounded. Were it not for these differences, the above properties H1–H3 would correspond to
the hypotheses H1–H3 in [21]. Still, the proof of existence of weak solutions can be carried out very
similar to the proofs presented in [21]. The latter go through the following steps: approximation of the
time derivative using the implicit Euler scheme, regularisation of the diffusion operator by adding a
higher order differential operator such as εpI`p´∆qmq for m ą N{2 and small ε, solving the linearised
approximation problem using the Lax-Milgram lemma, solving the nonlinear approximation problem
using the Leray-Schauder theorem, establishing uniform estimates, and, finally, using the compactness
method in order to pass to the limit and solve the original problem. Our case can be handled in the very
same way. Indeed, on the one hand the linear transport along Jsum is subordinate to diffusion, so that
it, e.g., does not hinder the derivation of estimates. On the other hand even though D is not bounded,
we actually know that for bounded h0 the h-component of a solution is a priori bounded on all finite
time cylinders. This is a consequence of the standard theory of semilinear parabolic PDEs. General
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h0 P L2pΩq can be regularised and a corresponding solution obtained by means of yet one more limit
procedure.

We omit further details and refer the interested reader to [21] where the complete proofs for very
similar cases can be found. �

5. Numerical study

We perform numerical simulations of the system (3.51) supplemented with the PDE (3.11) for the
evolution of proton concentration h, endowed with no-flux boundary conditions. For simplicity we
choose Jsum “ 0. We also perform a nondimensionalisation of the model and use it in our simulations
(for its concrete form and for the employed parameters refer to the Appendix). The initial conditions
are as follows:

ucp0, xq “ 0.05
ˆ

e
´px´500q2´py´500q2

2p25q2 ` e
´px´600q2´py´500q2

2p20q2 ` e
´px´300q2´py´400q2

2p10q2

˙

, (5.1a)

hp0, xq “ 10´7e
´px´500q2´py´500q2

2p15q2 ` 10´7e
´px´600q2´py´500q2

2p10q2 ` 10´6.4e
´px´300q2´py´400q2

2p7.5q2 , (5.1b)

unp0, xq “ 0.9
ˆ

e
´px´500q2´py´500q2

2p5q2 ` e
´px´600q2´py´500q2

2p2q2 ` e
´px´300q2´py´400q2

2p1q2

˙

, (5.1c)

ump0, xq “ 1´ ucp0, xq ´ unp0, xq with ump0, 500, 500q “ ump0, 600, 500q “ ump0, 300, 400q “ 0.
(5.1d)

These are illustrated in Figure 1. The problem is set in a square r0, 1000s ˆ r0, 1000s (in µm),
corresponding to the size of large pseudopalisades [5]. For the discretisation we use a method of lines
approach. Thereby, the diffusion terms in all involved PDEs are computed by using a standard central
difference scheme, while a first order upwind scheme is employed for the advection terms occurring
in the equations for glioma and normal tissue. For the acidity equation we discretise time upon using
an implicit-explicit (IMEX) method, with forward and backward Euler schemes for the diffusion and
reaction terms, respectively. The glioma and normal tissue PDEs are discretised in time by an explicit
Euler method.

(a) Glioma cells (b) Acidity (c) Normal tissue (d) Necrotic matter

Figure 1. Initial conditions (5.1).
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(a) Glioma cells (b) Acidity (c) Normal tissue (d) Necrotic matter

Figure 2. Computed uc, h, um, and un from (3.51) and (3.11) with initial conditions (5.1) and
with no-flux boundary conditions.
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(a) Glioma cells difference (b) Acidity difference (c) Normal tissue difference (d) Necrotic matter difference

Figure 3. Difference between solution components obtained with χ ą 0 and those computed
with χ “ 0.
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(a) Glioma cells difference (b) Acidity difference (c) Normal tissue difference (d) Necrotic matter difference

Figure 4. Difference between solution components obtained with Kcm ă Kmn ă Kcn and
those computed with Kcm “ Kmn “ Kcn, all at the previously lower value Kcm.
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Figure 5. Difference between solution components obtained with Kcm ă Kmn ă Kcn and
those computed with Kcm “ Kmn “ Kcn, all at the previously intermediate value Kmn.
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Figure 2 shows the computed volume fractions of glioma (first column), normal tissue (3rd column),
necrotic matter (last column), and acidity concentration (second column) at several times, in a total
time span which is relevant for pseudopalisade formation. The typical garland-like structure of glioma
pseudopalisades is clearly visible. The tumor cells encircle a highly acidic and necrotic region, while
outwards, beyond the glioma ring, the normal tissue remains non-depleted and the acidity decreases.

To investigate the effect of acidity we compare the previous results with those obtained for χ “ 0,
i.e., in the absence of additional pressure on glioma cells due to acidosis, recall (3.3). The
corresponding plots are shown in Figure 3. The effect of repellent pH-taxis can be seen in the
difference between the solution components in two situations (with χ ą 0, with pH-taxis and
acid-influenced motility, respectively with χ “ 0). The pseudopalisades develop faster and get thicker
and more extensive in the former case, accompanied by enhanced acidity in the proximity of higher
cancer cell densities and enhanced normal tissue depletion inside the ring-shaped structures and
around the glioma aggregates, which also triggers a higher volume fraction for the necrotic matter.
These observations are in line with those obtained in [26] by another modeling approach: the repellent
pH-taxis is not the driving factor of pseudopalisade formation, but it leads to wider such structures.

Finally, we also study the effect of drag coefficients Kcm,Kmn,Kcn in (3.9). Recall that they represent
the resistance inferred by the phases in contact when passing over each other. They are contained in the
diffusion and drift coefficients of system (3.51). In the computations for Figure 2 we had considered
them to be different, more precisely Kcm ă Kmn ă Kcn. This ensured a relatively easy movement of
glioma through normal tissue when compared to the shift over necrotic matter of both normal tissue
and cancer cells. Now let all these drag coefficients be equal (as was assumed in [19]) and take the
previously lowermost value Kcm, thus reducing the drag between necrotic matter and the other two
phases. The differences between the two cases are plotted in Figure 4 and show in the second case
an enhanced outward migration of glioma cells, away from the highly acidic area at the core of the
pseudopalisade and with a pronounced suppression of normal cells, and emergence of larger necrotic
matter. An opposite effect is noticed when letting Kcm “ Kmn “ Kcn, all at the previously highest value
Kcn; we do not show here those results (we refer for them to [25]), but rather illustrate in Figure 5 the
situation when all drag coefficients equal the previously intermediate value Kmn. This means that the
drag between cancer cells and normal tissue is increased, while they can easier shift over the necrotic
matter. As a consequence, the extent of the pseudopalisades is reduced, but the glioma aggregates in
the garland-like structures are larger. This is due not only to the higher drag between cancer cells and
normal tissue, but also to the lower Kcn value, which ensures that the glioma cells can leave faster than
previously the acidic area inside the ‘ring’. Around the site where the cancer cells were initially more
concentrated the necrosis is reduced and the normal tissue is better preserved.
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23. P. Kleihues, F. Soylemezoglu, B. Schäuble, B. W. Scheithauer, P. C. Burger, Histopathology,
classification, and grading of gliomas, Glia, 15 (1995), 211–221.

24. N. Kolbe, N. Sfakianakis, C. Stinner, C. Surulescu, J. Lenz, Modeling multiple taxis: Tumor
invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence, Discrete
Contin. Dyn. Syst. Ser. B, 26 (2021), 443–481.

25. P. Kumar, Mathematical modeling of glioma patterns as a consequence of acidosis and hypoxia,
PhD thesis of TU Kaiserslautern, 2021.

26. P. Kumar, J. Li, C. Surulescu, Multiscale modeling of glioma pseudopalisades: contributions from
the tumor microenvironment, J. Math. Biol., 82 (2021), 49.

27. P. Kumar, C. Surulescu, A flux-limited model for glioma patterning with hypoxia-induced
angiogenesis, Symmetry, 12 (2020), 1870.

28. G. Lemon, J. King, Multiphase modelling of cell behaviour on artificial scaffolds: effects of
nutrient depletion and spatially nonuniform porosity, Math. Med. Biol., 24 (2007), 57–83.

29. G. R. Martin, R. K. Jain, Noninvasive measurement of interstitial pH profiles in normal and
neoplastic tissue using fluorescence ratio imaging microscopy, Cancer Res., 54 (1994), 5670–
5674.
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Appendix

Non-dimensionalisation

The following rescalings of the dimensional quantities involved in the obtain equations are
considered:

h̃ :“
h

hmax
, t̃ :“ ta3, x̃ :“ x

c

a3

DH
c̃1 :“

c1

a3
, c̃2 :“

c2

a3
,

c̃3 :“
c3

a3
, K̃mn :“

KmnDH

αc
, K̃cm :“

KcmDH

αc
, K̃cn :“

KcnDH

αc
,

χ̃ :“
χhmax

αc
, α̃m :“

αm

αc
, ã2 :“

a2

a3hmax
, g̃ph̃q :“

χ̃h̃
1` h̃

,

D̃ccpuc, um, unq :“ pK̃cmuc ` K̃mnp1´ ucqqp1´ ucq ´ pK̃cm ´ K̃cnqucum,

D̃cmpuc, um, unq :“ ´pK̃cmuc ` K̃mnp1´ ucqquc ` pK̃cm ´ K̃cnqucp1´ umq,

D̃mcpuc, um, unq :“ ´pK̃cmum ` K̃cnp1´ umqqum ` pK̃cm ´ K̃mnqump1´ ucq,

D̃mmpuc, um, unq :“ pK̃cmum ` K̃cnp1´ umqqp1´ umq ´ pK̃cm ´ K̃mnqucum,

S̃ puc, um, unq :“ K̃cmK̃cnuc ` K̃cmK̃mnum ` K̃cnK̃mnp1´ uc ´ umq.

Dropping the tildes for simplicity, system (3.51), (3.11) writes in the nondimensional form as

Btuc “ ∇ ¨

ˆ

1
S puc, um, unq

“

Dcc p2uc ` gphqq ` Dcmαmu2
mθ
‰

∇uc

˙

` ∇ ¨

ˆ

1
S puc, um, unq

rDccuc∇ pgphqq ` 2Dcmαmum p1` θucq∇ums

˙

´ c1ucun ph´ 1q , (5.2a)

Btum “ ∇ ¨

ˆ

1
S puc, um, unq

r2Dmmαmum p1` θucqs∇um,

˙

` ∇ ¨

ˆ

1
S puc, um, unq

“

Dmc∇
`

u2
c ` gphquc

˘

` Dmmαmθu2
m∇uc

‰

˙

´
c2umph´ 1q`
1` um ` h

´ c3um, (5.2b)

Bth “ ∆h` a2uc ´ h, (5.2c)
un “ 1´ uc ´ um. (5.2d)
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Parameters

The following table (see Table 1) summarises the parameters used in the simulations of Section 5.

Table 1. Parameters (dimensional quantities) involved in (3.51).

Parameter Meaning Value Reference
hmax acidity threshold for cancer cell

death
10´6.4 mol/L [38]

a2 proton production rate 10´9 mol /(L¨s) [27, 29]
a3 proton removal rate 10´11 /s [26]
Dh acidity diffusion coefficient 5 ¨ 10´14 ´ 10´11 m2/s [26, 27]
c1 glioma growth/decay rate 2.31 ¨ 10´6 /s [13, 35]
c2 normal cells decay rate 3.47 ¨ 10´6 /s this work
c3 normal cells decay rate 3.47 ¨ 10´8 /s this work
Kcm drag force coefficient between

glioma and normal cells
1.62 ¨ 1010 N m´4s this work

Kmn drag force coefficient between
normal and necrotic cells

1.66 ¨ 1010 N m´4s this work

Kcn drag force coefficient between
glioma and normal cells

1.7 ¨ 1010 N m´4s this work

χ coefficient in the additional
pressure on glioma due to acidity
interaction

2.98 N m´2 L/mol this work

θ dimensionless coefficient in the
additional pressure on normal cells
due to glioma

1 this work

αm coefficient in the additional
pressure on normal cells due to
glioma

1.49 ¨ 10´7 N m´2 this work

αc coefficient in the additional
pressure on glioma due to their
crowding

1.49 ¨ 10´7 N m´2 this work
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