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1. Introduction

Motivated by weak turbulence theory, e.g., [10], we consider nonlinear Schrödinger equations with
spatially homogeneous statistical ensembles of initial data. As a prototypical example, we study the
defocusing cubic equation in Rd,

i∂tu = −4u + |u|2u, u|t=0 = u◦. (1.1)

A statistical ensemble of initial data amounts to considering an initial condition that is a
realization u◦(·, ω) of a random field u◦ : Rd × Ω → C on some probability space (Ω,P). The spatial
homogeneity condition then implies that initial mass and energy diverge:∗

E

[∫
Rd
|u◦|2

]
= ∞, E

[∫
Rd
|∇u◦|2 + 1

2 |u
◦|4

]
= ∞.

∗Under an additional ergodicity assumption, it further entails
∫
Rd |u◦(·, ω)|2 =

∫
Rd |∇u◦(·, ω)|2 + 1

2 |u
◦(·, ω)|4 = ∞ almost surely.
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This divergence is a key aspect at the very core of weak turbulence: Strichartz’ estimates are not
applicable in this infinite-energy setting, which is thus in sharp contrast with the finite-energy
phenomenology and scattering results [7].

The present note is concerned with the global well-posedness of (1.1) in this infinite-energy setting.
The main difficulty is related to the lack of a uniform bound on the propagation speed: mass that is
initially spread out might move together and blow up. This contrasts with the case of the nonlinear wave
equation, as well as of the discrete nonlinear Schrödinger equation, for which there is an (approximate)
finite propagation speed and global well-posedness follows, see [3, Propositions 1–3]. As explained
in Examples 2.3 below, periodic and quasi-periodic initial data can in fact be viewed as particular
instances of the spatially homogeneous random setting. While the periodic case is well understood [2],
the almost periodic case remains largely open and we refer to recent work by Oh [11, 12] on the
topic. In the general random setting, the problem seems to have only been considered very recently by
Dodson, Soffer, and Spencer [3], who established local well-posedness in the real analytic category.
If the nonlinearity |u|2u in (1.1) is replaced by a regularized version |φ ∗ u|2(φ ∗ u) for some smooth
decaying kernel φ, then the problem is strongly reduced and global well-posedness is obtained in [3]
in the Ck category.

Our main result in this note states the global well-posedness of the nonlinear Schrödinger
equation (1.1) in the spatially homogeneous energy space provided that a tiny dissipation is added.
This tiny dissipation is physically relevant in the context of weak turbulence, e.g., [10], and the
constructed solution is controlled uniformly with respect to this dissipation. The definition of a
meaningful vanishing-dissipation limit remains an open problem (beyond the local-in-time real
analytic framework of [3]). Precise definitions of spatial homogeneity and of the functional space X
below are postponed to the next section.

Theorem 1. Let 1 ≤ d < 4. Given a probability space (Ω,P), let X be the Banach space of spatially
homogeneous jointly measurable random fields v : Rd ×Ω→ C with

‖v‖X := E
[
|∇v|2

] 1
2 + E

[
|v|4

] 1
4 < ∞.

For all ε > 0 and u◦ ∈ X, there exists a unique global weak solution uε ∈ L∞(R+;X) to the equation

(−ε + i)∂tuε = −4uε + |uε|2uε, uε|t=0 = u◦, (1.2)

in the sense that Duhamel’s formula holds almost everywhere,

ut
ε = e

t
ε−i4u◦ − 1

ε−i

∫ t

0
e

t−s
ε−i4(|us

ε|
2us

ε) ds, t ≥ 0.

In addition, it satisfies the following dissipation estimates: for all t ≥ 0,

E
[
|ut
ε|

2
]
≤ E

[
|ut
ε|

2
]

+ 2ε
1+ε2

∫ t

0
E

[
|∇us

ε|
2 + |us

ε|
4
]

ds = E
[
|u◦|2

]
,

E
[
|∇ut

ε|
2 + 1

2 |u
t
ε|

4] ≤ E[|∇u◦|2 + 1
2 |u
◦|4

]
.

Mathematics in Engineering Volume 4, Issue 4, 1–14.



3

Notation.

• We denote by C ≥ 1 any constant that only depends on the space dimension d. We use the notation .
(resp. &) for ≤ C× (resp. ≥ 1

C×) up to such a multiplicative constant C. We write ' when both .
and & hold. We add subscripts to C,.,&,' to indicate dependence on other parameters.

• The ball centered at x and of radius r in Rd is denoted by Br(x), and we write for abbreviation
B(x) := B1(x) and Br := Br(0).

2. Statistical spatial homogeneity

2.1. Definition and examples

Given a reference probability space (Ω,P), we recall the notion of statistical spatial homogeneity
for random fields.

Definition 2.1. A random field on Rd is a map v : Rd × Ω → C such that for all x ∈ Rd the function
v(x, ·) : Ω → C is measurable. It is said to be (statistically) spatially homogeneous if its finite-
dimensional law is shift-invariant, that is, if for any finite set E ⊂ Rd the law of {v(x + y, ·)}x∈E does not
depend on the shift y ∈ Rd. In addition, it is said to be jointly measurable if the map v : Rd × Ω → C

is jointly measurable. We denote by L0
hom(Rd ×Ω) the set of spatially homogeneous jointly measurable

random fields.

Note that the joint measurability condition ensures that realizations v(·, ω) are almost surely
measurable functions on Rd and can thus be taken as meaningful initial data in (1.1) or (1.2). The
following result by von Neumann [14] gives an alternative characterization of joint measurability in
this context, which can be viewed as a stochastic version of Lusin’s theorem (see
also [8, Section 7.1]).

Lemma 2.2 (Joint measurability; [8, 14]). A spatially homogeneous random field v is jointly
measurable if and only if it is stochastically continuous, that is, if for all δ > 0 it satisfies

P[|v(x, ·) − v(y, ·)| > δ]→ 0 as |x − y| → 0.

Examples 2.3. Important examples of spatially homogeneous random fields are found among Gaussian
fields, and we also explain how periodic and almost periodic settings can be viewed as particular
instances of this random framework (see also [13, p.846]).

(a) Gaussian fields: A gauge-invariant Gaussian random field v is a family {v(x, ·)}x∈Rd of complex-
valued Gaussian random variables such that v and eiθv have the same finite-dimensional law for
all θ ∈ [0, 2π). Equivalently, this means for all x, y,

E [v(x, ·)] = 0, Cov
[
v(x, ·); v(y, ·)

]
= 0,

and we denote by c(x, y) := Cov
[
v(x, ·); v(y, ·)

]
the covariance function. This random field v is

spatially homogeneous if and only if c is of the form c(x, y) = c0(x − y) for some function
c0 : Rd → C. Note that c0 is necessarily a positive definite bounded function. In addition, the field
v is stochastically continuous, hence jointly measurable by Lemma 2.2, if and only if c0 is
continuous at the origin.
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(b) Periodic setting: Given a 1-periodic measurable function vper : Rd → C, we choose the probability
space (Ω,P) as the periodic cell [0, 1)d endowed with Lebesgue’s measure, and we define an
associated random field v : Rd × Ω → C by v(x, ω) := vper(x + ω). The latter is clearly spatially
homogeneous and jointly measurable, and for ω = 0 we recover v(x, 0) = vper(x).

(c) Almost periodic setting: Denote by B(Rd) the Bohr compactification of the additive group (Rd,+)
and let b : Rd → B(Rd) the associated continuous homomorphism, see e.g., [9]. By definition,
given an almost periodic function vap : Rd → C, there exists a continuous function Vap : B(Rd) →
C such that vap = Vap ◦ b. We choose the probability space (Ω,P) as B(Rd) endowed with its
normalized Haar measure, and we define a random field v : Rd×Ω→ C by v(x, ω) := Vap(b(x)+ω),
where we use the notation ‘+’ for the group law on B(Rd). This random field is clearly spatially
homogeneous and jointly measurable, and for ω = 0 we recover v(x, 0) = vap(x).

2.2. Functional setting

In this section, we define more carefully the functional space X used in the statement of Theorem 1.
For 1 ≤ q < ∞, we denote by Lq

hom(Rd × Ω) the Banach space of spatially homogeneous jointly
measurable random fields v ∈ L0

hom(Rd ×Ω) such that the following norm is finite,

‖v‖Lq
hom(Rd×Ω) := ‖v‖Lq([0,1)d×Ω).

By spatial homogeneity, see Definition 2.1, this is in fact equivalent to

‖v‖Lq
hom(Rd×Ω) = ‖v(x, ·)‖Lq(Ω) for any x ∈ Rd.

As Lq
hom(Rd × Ω) is invariant under spatial translations and as its elements are almost surely locally

Lq-integrable, the spatial gradient ∇ can be defined on Lq
hom(Rd × Ω) and its domain is denoted by

W1,q
hom(Rd × Ω). More generally, for all s ≥ 0, we define W s,q

hom(Rd × Ω) as the Banach space of random
fields v ∈ Lq

hom(Rd ×Ω) such that the following norm is finite,

‖v‖W s,q
hom(Rd×Ω) := ‖(1 − 4)

s
2 v‖Lq([0,1)d×Ω),

and for q = 2 we use the usual notation H s
hom(Rd ×Ω) := W s,2

hom(Rd ×Ω). In these terms, the space X in
Theorem 1 coincides with H1

hom ∩ L4
hom(Rd ×Ω).

Next, we give an alternative description of these spaces and we explain how equations (1.1) or (1.2)
in this spatially homogeneous random setting are equivalent to abstract equations on the probability
space; this construction is standard for corrector equations in stochastic homogenization theory, see
e.g., [13, Section 2] and [8, Section 7.1]. Let u◦ ∈ L0

hom(Rd ×Ω) be a reference random field. Since we
consider equations with realizations of u◦ as initial data, we can henceforth assume that the probability
space (Ω,P) is endowed with the σ-algebra σ(u◦) generated by u◦.† Translations u◦(·, ω) 7→ u◦(·+ x, ω)
then induce a unique multiplicative linear action T = {Tx}x∈Rd of the additive group (Rd,+) on the
algebra of random variables.

Lemma 2.4 (Properties of T ).
(i) For 1 ≤ q ≤ ∞, the maps Tx’s are isometries on Lq(Ω).

(ii) For 1 ≤ q < ∞, the action T is a C0-group of isometries on Lq(Ω).
†That is, the σ-algebra generated by all sets of the form {ω ∈ Ω : u◦(x1, ω) ∈ A1, . . . , u◦(xn, ω) ∈ An} with n ≥ 1, x1, . . . , xn ∈ R

d, and
Borel subsets A1, . . . An ⊂ C.
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Proof. Item (i) follows from the fact that u◦ is spatially homogeneous. We turn to the proof of (ii).
Given q < ∞, it remains to check that ‖TxX − X‖Lq(Ω) → 0 as |x| → 0 for all X ∈ Lq(Ω). By a
truncation argument, it suffices to argue for X ∈ L∞(Ω). By the joint measurability of u◦, the map
(x, ω) 7→ (TxX)(ω) is also jointly measurable, hence stochastically continuous by Lemma 2.2. Writing
for any δ > 0,

‖TxX − X‖qLq(Ω) ≤ δq + (2‖X‖L∞(Ω))q P [|TxX − X| > δ] ,

the conclusion follows from stochastic continuity. �

In terms of T , we can define the extension X] ∈ Lq
hom(Rd × Ω) of any random variable X ∈ Lq(Ω),

and the restriction v[ ∈ Lq(Ω) of any random field v ∈ Lq
hom(Rd ×Ω), via

X](x, ω) := (TxX)(ω), v[(ω) = v(0, ω),

and we note that (X])[ = X and (v[)] = v, thus yielding a canonical isomorphism

Lq(Ω) � Lq
hom(Rd ×Ω). (2.1)

For 1 ≤ q < ∞, as T is a C0-group of isometries on Lq(Ω), cf. Lemma 2.4(ii), we can define the
T-gradient ∇[ as the generator of this group. It is a densely defined operator on Lq(Ω), its domain is
denoted by W1,q(Ω), and it is skew-adjoint on L2(Ω). Alternatively, this operator ∇[ can be reinterpreted
via the isomorphism (2.1):

W1,q(Ω) � W1,q
hom(Rd ×Ω), (∇[X)] = ∇X] for all X ∈ W1,q(Ω).

We also define the corresponding T -Laplacian −4[ := −∇[ · ∇[ on Lq(Ω), which is nonnegative and
essentially self-adjoint on L2(Ω). For all s ≥ 0, we denote by W s,q(Ω) the Banach space of random
variables X ∈ Lq(Ω) such that X] ∈ W s,q

hom(Rd ×Ω).
The above construction entails that spatially homogeneous solutions of (1.2) are equivalent to

solutions of a corresponding abstract equation on the probability space. Note that expressions like
e

t
ε−i4v in (2.2) below make sense almost surely for v ∈ Lq

hom(Rd × Ω) since the kernel of e
t
ε−i4 has

Gaussian decay while realizations of v have subexponential growth almost surely, cf. (3.13). In the
periodic case, in view of Example 2.3(b), ∇[ is the periodic gradient and this result amounts to
reducing (1.2) to the corresponding equation on the periodic cell Ω = [0, 1)d.

Lemma 2.5. Given T > 0, the following two properties are equivalent:

• A random field uε ∈ L∞([0,T ]; H1
hom ∩ L4

hom(Rd × Ω)) is a weak solution of (1.2) in the sense that
Duhamel’s formula holds almost everywhere,

ut
ε = e

t
ε−i4u◦ − 1

ε−i

∫ t

0
e

t−s
ε−i4(|us

ε|
2us

ε) ds, 0 ≤ t ≤ T. (2.2)

• We have ut
ε = (U t

ε)
] where Uε ∈ L∞([0,T ]; H1 ∩ L4(Ω)) is a weak solution of the following abstract

equation on the probability space,

(−ε + i)∂tUε = −4[Uε + |Uε|
2Uε, Uε|t=0 = (u◦)[, (2.3)

in the sense that Duhamel’s formula holds almost everywhere,

U t
ε = e

t
ε−i4

[

(u◦)[ − 1
ε−i

∫ t

0
e

t−s
ε−i4

[

(|U s
ε|

2U s
ε) ds, 0 ≤ t ≤ T.
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2.3. Lack of functional tools

In contrast with the periodic case, the T -Laplacian −4[ on L2(Ω) typically has absolutely continuous
spectrum and no spectral gap above 0. As shown in [4], the spectrum can actually be arbitrary and
depends on the structure of the underlying probability space; we focus here for simplicity on the
Gaussian setting.

Lemma 2.6 (Spectrum of T -Laplacian; [4]). Assume that u◦ ∈ L2
hom(Rd × Ω) is Gaussian in the sense

of Example 2.3(a) and that its covariance function c0 has an absolutely continuous Fourier transform.
Then, the spectrum of −4[ on L2(Ω) is [0,∞) and is made of a simple eigenvalue at 0 embedded in
absolutely continuous spectrum.

In particular, this entails that Poincaré’s inequality and compact Rellich embeddings do not hold
on H1(Ω). In addition, we show that Sobolev embeddings also fail and that the parabolic semigroup
{et4[}t≥0 yields no improved integrability. Heuristically, this lack of functional tools is related to the
fact that the T -gradient ∇[ only contains information on a finite set of directions, while Ω is typically
an infinite product space. This constitutes a key difficulty for the analysis of nonlinear equations such
as (1.2) in this setting.

Lemma 2.7 (Lack of functional tools). Assume that u◦ ∈ L2
hom(Rd × Ω) is Gaussian in the sense of

Example 2.3(a) and that its covariance function c0 is integrable. Then,

(i) Poincaré’s inequality: ‖X − E [X]‖L2(Ω) ≤ C‖∇[X‖L2(Ω) does not hold on H1(Ω).

(ii) Compact Rellich embedding: Hm(Ω) is not compactly embedded in L2(Ω) for any m > 0.

(iii) Sobolev embedding: ‖X‖Lq(Ω) ≤ C‖X‖Hm(Ω) does not hold on Hm(Ω) for any m ≥ 0 and q > 2.

(iv) Parabolic improvement of integrability: ‖ez4[X‖Lq(Ω) ≤ C‖X‖L2(Ω) does not hold on Lq(Ω) for
any q > 2 and any z ∈ C with<z ≥ 0.

Proof. We start with items (i) and (ii). They can both be viewed as consequences of Lemma 2.6, but
we rather provide a quick direct proof. Given a real-valued test function ξ ∈ C∞c (Rd), consider the
Gaussian random variables

Xn(ω) := n−
d
2

∫
Rd
ξ( y

n ) u◦(y, ω) dy, n ≥ 1.

A direct computation yields as n ↑ ∞,

‖Xn‖
2
L2(Ω) → R := ‖ξ‖2L2(Rd)

∫
Rd

c0, n2‖∇[Xn‖
2
L2(Ω) → ‖∇ξ‖

2
L2(Rd)

∫
Rd

c0, (2.4)

which contradicts the validity of Poincaré’s inequality, hence proves (i). Since the sequence (Xn)n is
bounded in Hm(Ω) for any m ≥ 0, and since it converges weakly but not strongly to 0 in L2(Ω), item (ii)
follows.

We turn to the proof of item (iii). A simple application of Wick’s theorem yields for all integers r ≥ 1,

‖Xn‖
2r
L2r(Ω) = r!‖Xn‖

2r
L2(Ω).

Mathematics in Engineering Volume 4, Issue 4, 1–14.
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Extending this to all r ≥ 1, and combining with (2.4), we find

‖Xn‖
2r
L2r(Ω)

n↑∞
−−−→ RrΓ(r + 1). (2.5)

Also note that (2.4) yields ‖∇mXn‖
2r
L2r(Ω)

→ 0 for all r,m ≥ 1. Hence, given q ≥ 2 and m ≥ 0, we deduce
for all integers p ≥ 1,

‖Xp
n ‖Lq(Ω)

‖Xp
n ‖Hm(Ω)

n↑∞
−−−→

Γ(qp + 1)1/q

Γ(2p + 1)1/2 .

For q > 2, the right-hand side blows up exponentially as p ↑ ∞, thus contradicting the validity of
Sobolev’s inequality.

It remains to prove item (iv) and we start with the easy case when <z = 0. The essential
self-adjointness of the T -Laplacian −4[ on L2(Ω) entails that e−z4[ is unitary on L2(Ω) in that case,
hence the inequality ‖ez4[X‖Lq(Ω) ≤ C‖X‖L2(Ω) for all X ∈ L2(Ω) would in fact
imply ‖X‖Lq(Ω) ≤ C‖X‖L2(Ω) for all X ∈ L2(Ω), a contradiction.

We turn to the proof of (iv) for<z > 0. As the operator ez4 has kernel Kz(x) := (4πz)−
d
2 e−

1
4z |x|

2
, and as

realizations of the Gaussian random field X]
n have subexponential growth almost surely, we can write

in view of (2.1),

ez4[Xp
n =

∫
Rd

Kz(x) X]
n(x, ·)p dx.

Appealing to Wick’s theorem as above, using (2.4) in form of

E
[
X]

n(x, ·)X]
n(y, ·)

]
n↑∞
−−−→ R,

and noting that
∫
Rd Kz = 1, we find for all r ≥ 1 and all integers p ≥ 1,

‖ez4[Xp
n ‖

2r
L2r(Ω)

n↑∞
−−−→ RprΓ(pr + 1).

Hence, combined with (2.5), given q ≥ 2, we deduce for all integers p ≥ 1,

‖ez4[Xp
n ‖Lq(Ω)

‖Xp
n ‖L2(Ω)

n↑∞
−−−→

Γ(1
2qp + 1)1/q

Γ(p + 1)1/2 .

For q > 2, the right-hand side blows up exponentially as p ↑ ∞, and the conclusion follows. �

3. Well-posedness for (1.2) with random data

We turn to the proof of Theorem 1, where we recall X = H1
hom ∩ L4

hom(Rd × Ω) with the above
notation. In order to overcome the lack of functional tools to study the nonlinear equation (1.2) in this
setting, cf. Lemma 2.7, we rather focus on almost sure realizations in local Sobolev spaces, for which
standard tools are available. Dissipation is crucial to compensate for the lack of finite propagation
speed and allows to prove well-posedness in local Sobolev spaces with polynomial growth, which is
then post-processed into a well-posedness result in the spatially homogeneous random setting.
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Proof of Theorem 1. We start by introducing local Sobolev spaces with polynomial growth, which are
natural spaces to control almost sure realizations of random fields. Given ` ≥ 0, we consider the
uniformly localized Lq and H1 norms with `-growth,

‖v‖Lq
uloc,`(R

d) := sup
x0∈Rd

(
〈x0〉

−q`
?

B(x0)
|v|q

) 1
q
,

‖v‖H1
uloc,`(R

d) := sup
x0∈Rd

(
〈x0〉

−2`
?

B(x0)
(|v|2 + |∇v|2)

) 1
2
,

and we denote by Lq
uloc,`(R

d) and H1
uloc,`(R

d) the corresponding subspaces of L1
loc(R

d). We also consider
the uniformly localized energy functional with `-growth,

Euloc,`(v) := sup
x0∈Rd

(
〈x0〉

−2`
?

B(x0)

(
|∇v|2 + 1

2 |v|
4)).

As shown below, cf. (3.13), given ` > d
q , realizations of a random field v ∈ Lq

hom(Rd ×Ω) belong almost
surely to Lq

uloc,`(R
d). With this in mind, we start by studying the nonlinear Schrödinger equation (1.2)

in H1
uloc,`(R

d), and next we exploit uniqueness to construct a unique dynamics in H1
hom ∩ L4

hom(Rd ×Ω).
Note that H1

uloc,`(R
d) embeds in L4

uloc,`(R
d) by the Sobolev embedding (with d ≤ 4), while on the

contrary H1
hom(Rd × Ω) does in general not embed in L4

hom(Rd × Ω), cf. Lemma 2.7(iii). The proof is
split into two main steps.

Step 1. Global well-posedness in H1
uloc,`(R

d).
For d < 4, given ε > 0 and ` ≥ 0, we show that for all v◦ ∈ H1

uloc,`(R
d) the equation

(−ε + i)∂tvε = −4vε + |vε|2vε, vε|t=0 = v◦

admits a unique global weak (Duhamel) solution vε in L∞loc(R
+; H1

uloc,`(R
d)). We split the proof into four

further substeps.

Substep 1.1. Equivalent definition of Lq
uloc,`(R

d).
In terms of the exponential cut-off χ(x) := e−|x|, setting for abbreviation χx0 := χ(· − x0), we show that
for all q, ` we have

‖v‖Lq
uloc,`(R

d) 'q,` sup
x0∈Rd

(
〈x0〉

−q`
∫
Rd
χx0 |v|

q
) 1

q
. (3.1)

Indeed, as χx0 & 1 on B(x0), the left-hand side in (3.1) is clearly bounded above by the right-hand side.
The converse inequality follows from the following,

(
〈x0〉

−q`
∫
Rd
χx0 |v|

q
) 1

q
≤

(
〈x0〉

−q`
∑
z∈Zd

∫
B(x0+z)

χx0 |v|
q
) 1

q

.
(
〈x0〉

−q`
∑
z∈Zd

e−|z|〈x0 + z〉q`
) 1

q
‖v‖Lq

uloc,`(R
d)

. ‖v‖Lq
uloc,`(R

d).
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Substep 1.2. Localized parabolic estimates.
Given ε > 0, ` ≥ 0, and 1 ≤ p ≤ q ≤ ∞ with d

2 ( 1
p −

1
q ) < 1, we show for all g ∈ Lq

uloc,`(R
d) and t ≥ 0,

‖e
t
ε−i4g‖Lq

uloc,`(R
d) .p,q,`,ε t−

d
2 ( 1

p−
1
q )eCεt‖g‖Lp

uloc,`(R
d), (3.2)

and in addition, provided d
2 ( 1

p −
1
q ) < 1

2 ,

‖∇e
t
ε−i4g‖Lq

uloc,`(R
d) .p,q,`,ε t−

d
2 ( 1

p−
1
q )− 1

2 eCεt‖g‖Lp
uloc,`(R

d). (3.3)

Multiplying the parabolic evolution {e
t
ε−i4g}t≥0 with the exponential cut-off χx0 , and using Duhamel’s

formula, we easily find

χx0(e
t
ε−i4g) = e

t
ε−i4(χx0g) + 1

ε−i

∫ t

0
e

t−s
ε−i4

(
(4χx0)(e

s
ε−i4g)

)
ds − 2

ε−i

∫ t

0
∇ · e

t−s
ε−i4

(
(∇χx0)(e

s
ε−i4g)

)
ds. (3.4)

Note that the parabolic semigroup {e
t
ε−i4}t≥0 has kernel Kt

ε(x) := ( ε−i
4πt )

d
2 e−

ε−i
4t |x|

2
, which implies by

Young’s convolution inequality, for all g ∈ C∞c (Rd) and 1 ≤ p ≤ q ≤ ∞, letting r be such
that 1

p + 1
r = 1

q + 1,

‖e
t
ε−i4g‖Lq(Rd) = ‖Kt

ε ∗ g‖Lq(Rd) ≤ ‖Kt
ε‖Lr(Rd)‖g‖Lp(Rd) .p,q,ε t−

d
2 ( 1

p−
1
q )
‖g‖Lp(Rd), (3.5)

and similarly,
‖∇e

t
ε−i4g‖Lq(Rd) .p,q,ε t−

d
2 ( 1

p−
1
q )− 1

2 ‖g‖Lp(Rd). (3.6)

For 1 ≤ p ≤ q ≤ ∞, taking the Lq norm in (3.4) and using these parabolic estimates, we obtain

‖χx0(e
t
ε−i4g)‖Lq(Rd) ≤ Cp,q,ε t−

d
2 ( 1

p−
1
q )
‖χx0g‖Lp(Rd) + Cε

∫ t

0

(
1 + (t − s)−

1
2
)
‖χx0(e

s
ε−i4g)‖Lq(Rd) ds,

and the claim (3.2) easily follows from Grönwall’s inequality together with (3.1). Using (3.6) instead
of (3.5), the claim (3.3) is obtained in a similar way.

Substep 1.3. Local well-posedness in Lq
uloc,`(R

d).
Given ε > 0, ` ≥ 0, and 3 ≤ q ≤ ∞ with q > d, we show that for all v◦ ∈ Lq

uloc,`(R
d) there exists T > 0

such that the equation
(−ε + i)∂tvε = −4vε + |vε|2vε, vε|t=0 = v◦

admits a unique weak (Duhamel) solution vε in L∞([0,T ]; Lq
uloc,`(R

d)). In case q > 6d
d+2 , we further have

vε ∈ L∞([0,T ]; H1
uloc,`(R

d)) provided v◦ ∈ H1
uloc,`(R

d).

To prove well-posedness in L∞([0,T ]; Lq
uloc,`(R

d)), we argue by a Picard fixed-point argument:
for T > 0 we define an operator ΦT,ε(·; v◦) on L∞([0,T ]; Lq

uloc,`(R
d)) by

(ΦT,ε(v; v◦))t := e
t
ε−i4v◦ − 1

ε−i

∫ t

0
e

t−s
ε−i4(|vs|2vs) ds, 0 ≤ t ≤ T, (3.7)
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and it suffices to show that for all v,w ∈ L∞([0,T ]; Lq
uloc,`(R

d)),

‖ΦT,ε(v; v◦)‖L∞([0,T ];Lq
uloc,`(R

d)) .q,`,ε eCεT
(
‖v◦‖Lq

uloc,`(R
d) + ‖v‖3L∞([0,T ];Lq

uloc,`(R
d))

)
, (3.8)

‖ΦT,ε(v; v◦) − ΦT,ε(w; v◦)‖L∞([0,T ];Lq
uloc,`(R

d))

.q,`,ε T 1− d
q eCεT ‖(v,w)‖2L∞([0,T ];Lq

uloc,`(R
d))‖v − w‖L∞([0,T ];Lq

uloc,`(R
d)). (3.9)

It remains to prove these two estimates. Applying the localized parabolic estimate (3.2) with exponents
q
3 ≤ q, we find for all 3 ≤ q ≤ ∞ with q > d,

‖(ΦT,ε(v; v◦))t‖Lq
uloc,`(R

d) .q,`,ε eCεt
(
‖v◦‖Lq

uloc,`(R
d) +

∫ t

0
(t − s)−

d
q ‖|vs|2vs‖Lq/3

uloc,`(R
d) ds

)
.q,`,ε eCεt

(
‖v◦‖Lq

uloc,`(R
d) + t1− d

q ‖v‖3L∞([0,t];Lq
uloc,`(R

d))

)
,

which proves (3.8). Similarly, we find

‖(ΦT,ε(v; v◦))t − (ΦT,ε(w; v◦))t‖Lq
uloc,`(R

d) .q,`,ε eCεt
∫ t

0
(t − s)−

d
q
∥∥∥|vs|2vs − |ws|2ws

∥∥∥
Lq/3

uloc,`(R
d)

ds,

and thus, further using Hölder’s inequality in form of∥∥∥|vs|2vs − |ws|2ws
∥∥∥

Lq/3
uloc,`(R

d)
. ‖(vs,ws)‖2Lq

uloc,`(R
d)‖v

s − ws‖Lq
uloc,`(R

d),

we deduce

‖(ΦT,ε(v; v◦))t − (ΦT,ε(w; v◦))t‖Lq
uloc,`(R

d) .q,`,ε t1− d
q eCεt‖(v,w)‖2L∞([0,t];Lq

uloc,`(R
d))‖v − w‖L∞([0,t];Lq

uloc,`(R
d)),

which proves (3.9).

It remains to show that for q > 6d
d+2 this local weak (Duhamel) solution vε = ΦT,ε(vε; v◦) in

L∞([0,T ]; Lq
uloc,`(R

d)) also belongs to L∞([0,T ]; H1
uloc,`(R

d)) provided v◦ ∈ H1
uloc,`(R

d). Without loss of
generality we choose q ≤ 6. As the condition on q ensures d

2 (3
q −

1
2 ) < 1

2 , we appeal to the localized
parabolic estimate (3.3) with exponents q

3 ≤ 2, to the effect of

‖∇vt
ε‖L2

uloc,`(R
d) .q,`,ε eCεt

(
‖∇v◦‖L2

uloc,`(R
d) +

∫ t

0
(t − s)−

d
2 ( 3

q−
1
2 )− 1

2 ‖vs‖3Lq
uloc,`(R

d)ds
)

.q,`,ε eCεt
(
‖∇v◦‖L2

uloc,`(R
d) + ‖v‖3L∞(R+;Lq

uloc,`(R
d))

)
,

hence vt
ε ∈ L∞([0,T ]; H1

uloc,`(R
d)).

Substep 1.4. Conclusion: global well-posedness in H1
uloc,`(R

d).
We argue that it suffices to prove the following localized energy estimate: for all T > 0 and v◦ ∈
H1

uloc,`(R
d), if vε ∈ L∞([0,T ]; H1

uloc,`(R
d)) is a weak (Duhamel) solution of

(−ε + i)∂tvε = −4vε + |vε|2vε, vε|t=0 = v◦, (3.10)
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then we have for all 0 ≤ t ≤ T ,
Euloc,`(vt

ε) .` e
1
2ε t Euloc,`(v◦). (3.11)

Since by definition
Euloc,`(g) ' ‖g‖2H1

uloc,`(R
d) + ‖g‖4L4

uloc,`/2(Rd),

we can naturally combine this energy estimate (3.11) together with the local well-posedness result of
Step 3 with q = 4. As the restriction q > 6d

d+2 reduces in that case to d < 4, and as H1
uloc,`(R

d) embeds
in L4

uloc,`(R
d) by the Sobolev embedding for d < 4, this leads us to the claimed global well-posedness

result.

It remains to prove the energy estimate (3.11). If the solution vε of (3.10) was smooth, then, using
the standard notation 〈a, b〉 := <(āb) for the scalar product in C, we could compute by Eq (3.10) and
Young’s inequality,

∂t

∫
Rd
χx0

(
|∇vε|2 + 1

2 |vε|
4) = 2

∫
Rd
χx0

(
〈∇vε,∇∂tvε〉 + 〈|vε|2vε, ∂tvε〉

)
= 2

∫
Rd
χx0〈−4vε + |vε|2vε, ∂tvε〉 − 2

∫
Rd
∇χx0 · 〈∇vε, ∂tvε〉

= −2ε
∫
Rd
χx0 |∂tvε|2 − 2

∫
Rd
∇χx0 · 〈∇vε, ∂tvε〉

≤ 1
2ε

∫
Rd
χx0 |∇vε|2,

hence, by Grönwall’s inequality,∫
Rd
χx0

(
|∇vt

ε|
2 + 1

2 |v
t
ε|

4) ≤ e
1
2ε t

∫
Rd
χx0

(
|∇v◦|2 + 1

2 |v
◦|4

)
. (3.12)

This estimate can be justified in our non-smooth setting by an approximation procedure as e.g., in [5,6],
and the claim (3.11) then follows from (3.1).

Step 2. Global well-posedness in H1
hom ∩ L4

hom(Rd ×Ω).
Let d < 4. Given u◦ ∈ H1

hom ∩ L4
hom(Rd × Ω), we prove the existence of a unique almost sure global

weak (Duhamel) solution uε in L∞(R+; H1
hom ∩ L4

hom(Rd × Ω)) of Eq (1.2). We split the proof into four
further substeps.

Substep 2.1. Existence and uniqueness for realizations.
Let ` > d

2 be fixed. The localized energy of a realization u◦(·, ω) is trivially bounded by

Euloc,`(u◦(·, ω)) . Mu◦(ω) :=
∑
z∈Zd

〈z〉−2`
?

B(z)

(
|∇u◦(·, ω)|2 + 1

2 |u
◦(·, ω)|4

)
.

As u◦ belongs to H1
hom ∩ L4

hom(Rd × Ω), the choice ` > d
2 ensures E [Mu◦] < ∞. This implies that there

is a subset Ω0 ⊂ Ω with maximal probability such that

Euloc,`(u◦(·, ω)) . Mu◦(ω) < ∞ for all ω ∈ Ω0, (3.13)
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hence u◦(·, ω) ∈ H1
uloc,`(R

d). Therefore, in view of Step 1, for all ω ∈ Ω0, there exists a unique weak
(Duhamel) solution uε(·, ω) ∈ L∞loc(R

+; H1
uloc,`(R

d)) of

(−ε + i)∂tuε(·, ω) = −4uε(·, ω) + |uε(·, ω)|2uε(·, ω), uε(·, ω)|t=0 = u◦(·, ω), (3.14)

and it satisfies the following energy estimate for all t ≥ 0,

Euloc,`(ut
ε(·, ω)) .` e

1
2ε tEuloc,`(u◦(·, ω)) . e

1
2ε tMu◦(ω). (3.15)

Substep 2.2. Measurability.
For all T we show that the above-defined map Ω0 → L∞([0,T ]; H1

uloc,`(R
d)) : ω 7→ uε(·, ω) is Bochner

measurable.

On the one hand, by Fubini’s theorem, the joint measurability of u◦ on Ω × Rd ensures that the map
Ω0 → H1

uloc,`(R
d) : ω 7→ u◦(·, ω) is weakly measurable, hence also Bochner measurable by Pettis’

theorem [1, Lemma 11.37] as H1
uloc,`(R

d) is a separable Banach space. On the other hand, arguing again
as in Substep 1.3, we note that the solution operator H1

uloc,`(R
d) → L∞([0,T ]; H1

uloc,`(R
d)) : u◦(·, ω) 7→

uε(·, ω) is locally Lipschitz continuous. The Bochner measurability of uε follows by composition.

Substep 2.3. Spatial homogeneity.
For all T , we show that uε belongs to the space L∞([0,T ]; H1

hom ∩ L4
hom(Rd ×Ω)) up to modification on

null sets.

For all ω ∈ Ω0 and x ∈ Rd, since by definition (Txu◦)(·, ω) = u◦(·+ x, ω), cf. Section 2.2, the uniqueness
of a weak (Duhamel) solution entails for almost all t, y,

(Txut
ε)(y, ω) = ut

ε(y + x, ω). (3.16)

In other words, uε satisfies an “almost everywhere” version of spatial homogeneity, and it remains to
modify it on null sets to make it spatially homogeneous in the sense of Definition 2.1. By the
measurability statement of Substep 2.2 and by the bound (3.15) with Mu◦ ∈ L1(Ω), we have
uε ∈ L2(Ω0; L∞([0,T ]; H1

uloc,`(R
d))). Up to modification on null sets, we deduce

uε ∈ L∞([0,T ]; L2(Ω; H1
uloc,`(R

d))), and we then define for all δ > 0,

U t
ε,δ(ω) :=

>
Bδ

ut
ε(·, ω).

By definition and by (3.15), the family (Uε,δ)δ>0 is bounded in L∞([0,T ]; H1 ∩ L4(Ω)). Up to an
extraction, Uε,δ converges weakly to some Uε in that space as δ ↓ 0. For all x, this implies that TxUε,δ

converges weakly to TxUε. Now by (3.16), we find TxU t
ε,δ(ω) =

>
Bδ(x)

ut
ε(·, ω) for almost all t, x, ω.

Passing to the limit yields TxU t
ε(ω) = ut

ε(x, ω) for almost all t, x, ω, and the claim follows.
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Substep 2.4. Conclusion.
It remains to check dissipation estimates. We start with mass dissipation. Let χR(x) := χ( 1

R x). If the
solution uε was smooth, Eq (1.2) would allow to compute, almost surely,

∂t

∫
Rd
χR|uε(·, ω)|2 = 2

∫
Rd
χR〈uε(·, ω), ∂tuε(·, ω)〉

= −2
∫
Rd
χR

〈
uε(·, ω), 1

ε−i

(
− 4uε(·, ω) + |uε(·, ω)|2uε(·, ω)

)〉
= − 2ε

ε2+1

∫
Rd
χR

(
|∇uε(·, ω)|2 + |uε(·, ω)|4

)
− 2

∫
Rd
∇χR ·

〈
uε(·, ω), 1

ε−i∇uε(·, ω)
〉
,

hence, by integration, with |∇χR| ≤
1
RχR,∣∣∣∣∣ ∫

Rd
χR|ut

ε(·, ω)|2 −
∫
Rd
χR|u◦(·, ω)|2 + 2ε

ε2+1

∫ t

0

∫
Rd
χR

(
|∇uε(·, ω)|2 + |uε(·, ω)|4

)∣∣∣∣∣
≤ 1

R

∫ t

0

∫
Rd
χR

(
|uε(·, ω)|2 + |∇uε(·, ω)|2

)
.

Up to convolving uε with a smooth kernel and passing to the limit, this estimate is easily justified in
our non-smooth setting. Now taking the expectation, using the spatial homogeneity, and letting R ↑ ∞,
the claimed mass dissipation identity follows.

We turn to energy dissipation. Repeating the argument for (3.12), but replacing the exponential cut-
off χx0 by χR, we get∫

Rd
χR

(
|∇ut

ε(·, ω)|2 + 1
2 |u

t
ε(·, ω)|4

)
≤ e

1
2εR2 t

∫
Rd
χR

(
|∇u◦(·, ω)|2 + 1

2 |u
◦(·, ω)|4

)
.

Now taking the expectation, using the spatial homogeneity, and letting R ↑ ∞, the claimed energy
dissipation estimate follows. �
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