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Abstract: The paper treats pseudodifferential operators P = Op(p(ξ)) with homogeneous complex
symbol p(ξ) of order 2a > 0, generalizing the fractional Laplacian (−∆)a but lacking its symmetries,
and taken to act on the halfspace Rn

+. The operators are seen to satisfy a principal µ-transmission
condition relative to Rn

+, but generally not the full µ-transmission condition satisfied by (−∆)a and
related operators (with µ = a). However, P acts well on the so-called µ-transmission spaces over
Rn

+ (defined in earlier works), and when P moreover is strongly elliptic, these spaces are the solution
spaces for the homogeneous Dirichlet problem for P, leading to regularity results with a factor xµn
(in a limited range of Sobolev spaces). The information is then shown to be sufficient to establish
an integration by parts formula over Rn

+ for P acting on such functions. The formulation in Sobolev
spaces, and the results on strongly elliptic operators going beyond certain operators with real kernels,
are new. Furthermore, large solutions with nonzero Dirichlet traces are described, and a halfways
Green’s formula is established, as new results for these operators. Since the principal µ-transmission
condition has weaker requirements than the full µ-transmission condition assumed in earlier papers,
new arguments were needed, relying on work of Vishik and Eskin instead of the Boutet de Monvel
theory. The results cover the case of nonsymmetric operators with real kernel that were only partially
treated in a preceding paper.

Keywords: fractional-order pseudodifferential operator; α-stable Lévy process; homogeneous
symbol; Dirichlet problem on the halfspace; regularity estimate; halfways Green’s formula

1. Introduction

Boundary value problems for fractional-order pseudodifferential operators P, in particular where
P is a generalization of the fractional Laplacian (−∆)a (0 < a < 1), have currently received much
interest in applications, such as in financial theory and probability (but also in mathematical physics
and differential geometry), and many methods have been used, most often probabilistic or potential-
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theoretic methods.
The author has studied such problems by pseudodifferential methods in [8–13], under the

assumption that the operators satisfy a µ-transmission condition at the boundary of the domain
Ω ⊂ Rn, which allows to show regularity results for solutions of the Dirichlet problem in elliptic
cases, to show integration by parts formulas, and much else.

In the present paper we consider translation-invariant pseudodifferential operators (ψdo’s)
P = Op(p(ξ)) of order 2a > 0 with homogeneous symbol p(ξ), which are only taken to satisfy the
top-order equation in the µ-transmission condition (relative to the domain Ω = Rn

+), we call this the
principal µ-transmission condition. It is shown that they retain some of the features: The solution
spaces for the homogeneous Dirichlet problem in the elliptic case equal the µ-transmission spaces
from [8] (in a setting of low-order Sobolev spaces), having a factor xµn. The integration by parts
formula holds (even when P is not elliptic):∫

Rn
+

Pu ∂nū′ dx +

∫
Rn

+

∂nuP∗u′ dx

= Γ(µ + 1)Γ(µ′ + 1)
∫
Rn−1

s0γ0(u/xµn) γ0(ū′/xµ
′

n ) dx′,

when u and u′ are in xµnC∞(R
n
+) resp. xµ̄

′

n C∞(R
n
+) (µ′ = 2a − µ) and compactly supported.

We also treat nonhomogeneous local Dirichlet problems with Dirichlet trace γ0(u/xµ−1
n ), and show

how the above formula implies a “halfways” Green’s formula where one factor has nonzero Dirichlet
trace. P can be of any positive order, and µ can be complex.

The results apply in particular to the operator L = Op(A(ξ) + iB(ξ)) withA real, positive and even
in ξ, B real and odd in ξ, which satisfies the principal µ-transmission equation for a suitable real µ.
Hereby we can compensate for an error made in the recent publication [13] (see also [14]), where it
was overlooked that L may not satisfy the full µ-transmission condition when B , 0 (it does so for
B = 0). The general L are now covered by the present work. They were treated earlier by Dipierro,
Ros-Oton, Serrra and Valdinoci [5] under some hypotheses on a and µ; they come up in applications
as infinitesimal generators of α-stable n-dimensional Lévy processes, see [5]. (The calculations in [13]
are valid when applied to operators satisfying the full µ-transmission condition.)

The study of x-independent ψdo’s P on the half-space Rn
+ serves as a model case for operators on

domains Ω ⊂ Rn with curved boundary and possible x-dependence, and can be expected to be a useful
ingredient in the general treatment, as carried out for the operator L in [5].

Plan of the paper: In Section 2 we give an overview of the aims and results of the paper with only
few technicalities. Section 3 introduces the principal transmission condition in detail for homogeneous
ψdo symbols. In Section 4, the Wiener-Hopf method is applied to derive basic decomposition and
factorization formulas for such symbols. This is used in Section 5 to establish mapping properties
for the operators, and regularity properties for solutions of the homogeneous Dirichlet problem in
strongly elliptic cases; here µ-transmission spaces (known from [8]) defined in an L2-framework play
an important role. Section 6 gives the proof of the above-mentioned integration by parts formula on
Rn

+. Section 7 treats nonhomogeneous local Dirichlet conditions, and a halfways Green’s formula is
established.
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2. Presentation of the main results

The study is concerned with the so-called model case, where the pseudodifferential operators have
x-independent symbols, hence act as simple multiplication operators in the Fourier transformed space
(this frees us from using the deeper composition rules needed for x-dependent symbols), and the
considered open subset Ω of Rn is simplest possible, namely Ω = Rn

+ = {x ∈ Rn | xn > 0}. We assume
n ≥ 2 and denote x = (x1, . . . , xn) = (x′, xn), x′ = (x1, . . . , xn−1). Recall the formulas for the Fourier
transform F and the operator P = Op(p(ξ)):

F u = û(ξ) =

∫
Rn

e−ix·ξu(x) dx, F −1v = (2π)−n
∫
Rn

eix·ξv(ξ) dξ,

Pu = Op(p(ξ))u = F −1(p(ξ)(F u)(ξ)).
(2.1)

We work in L2(Rn) and L2(Rn
+) and their derived L2-Sobolev spaces (the reader is urged to consult (5.1)

below for notation). On L2(Rn), the Plancherel theorem

‖u‖L2(Rn) = c‖û‖L2(Rn), c = (2π)−n/2, (2.2)

makes norm estimates of operators easy. (There is more on Fourier transforms and distribution theory
e.g., in [7].) The model case serves both as a simplified special case, and as a proof ingredient for more
general cases of domains with curved boundaries, and possibly x-dependent symbols.

The symbols p(ξ) we shall consider are scalar and homogeneous of degree m = 2a > 0 in ξ, i.e.,
p(tξ) = tm p(ξ) for t > 0, and are C1 for ξ , 0, defining operators P = Op(p).

A typical example is the squareroot Laplacian with drift:

L1 = (−∆)
1
2 + bbb · ∇, with symbol L1(ξ) = |ξ| + ibbb · ξ, (2.3)

where bbb = (b1, . . . , bn) is a real vector. Here m = 1, a = 1
2 . It satisfies the condition for strong ellipticity,

which is:
Re p(ξ) ≥ c0|ξ|

m with c0 > 0, all ξ ∈ Rn; (2.4)

this is important in regularity discussions. Some results are obtained without the ellipticity hypothesis;
as an example we can take the operator L2 with symbol

L2(ξ) = |ξ1 + · · · + ξn| + ibbb · ξ, (2.5)

whose real part is zero e.g., when ξ = (1,−1, 0, . . . , 0).
The operators are well-defined on the Sobolev spaces over Rn: When p is homogeneous of degree

m ≥ 0, there is an inequality

|p(ξ)| ≤ C|ξ|m ≤ C〈ξ〉m, 〈ξ〉 = (1 + |ξ|2)
1
2

(we say that p is of order m); then

‖Pu‖L2(Rn) = c‖p(ξ)û(ξ)‖L2(Rn) ≤ cC‖〈ξ〉mû‖L2(Rn) = C′‖u‖Hm(Rn), (2.6)

so P maps Hm(Rn) continuously into L2(Rn). Similarly, it maps H s+m(Rn) continuously into H s(Rn) for
all s ∈ R.
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But for these pseudodifferential operators it is not obvious how to define them relative to the subset
Rn

+, since they are not defined pointwise like differential operators, but by integrals (they are nonlocal).
The convention is here to let them act on suitable linear subsets of L2(Rn

+), where we identify L2(Rn
+)

with the set of u ∈ L2(Rn) that are zero on Rn
−, i.e., have their support supp u ⊂ R

n
+. (The support supp u

of a function or distribution u is the complement of the largest open set where u = 0. The operator that
extends functions on Rn

+ by zero on Rn
− is denoted e+.) Then we apply P and restrict to Rn

+ afterwards;
this is the operator r+P. (r+ stands for restriction from Rn to Rn

+.)
Aiming for the integration by parts formula mentioned in the start, we have to clarify for which

functions u, u′ the integrals make sense. It can be expected from earlier studies ( [5, 10, 20]) that
the integral will be meaningful for solutions of the so-called homogeneous Dirichlet problem on Rn

+,
namely the problem

r+Pu = f on Rn
+, u = 0 on Rn

− (2.7)

(where the latter condition can also be written supp u ⊂ R
n
+). This raises the question of where r+P

lands; which f can be prescribed? Or, if f is given in certain space, where should u lie in order to hit
the space where f lies?

Altogether, we address the following three questions on P:

(1) Forward mapping properties. From which spaces does r+P map into an H s-space for f ?
(2) Regularity properties. If u solves (2.7) with f in an H s-space for a high s, will u then belong to a

space with a similar high regularity?
(3) Integration by parts formula for functions in spaces where r+P is well-defined.

It turns out that the answers to all three points depend profoundly on the introduction of so-called
µ-transmission spaces. To explain their importance, we turn for a moment to the fractional Laplacian
which has a well-established treatment:

For the case of (−∆)a, 0 < a < 1, it was shown in [8] that the following space is relevant:

Ea(R
n
+) = e+xa

nC
∞(R

n
+). (2.8)

It has the property that (−∆)a maps it to C∞(R
n
+); more precisely,

r+(−∆)a maps Ea(R
n
+) ∩ E′(Rn) into C∞(R

n
+). (2.9)

Here E′(Rn) is the space of distributions with compact support, so the intersection with this space
means that we consider functions in Ea that are zero outside a compact set.

For Sobolev spaces, it was found in [8] that the good space for u is the so-called a-transmission
space Ha(t)(R

n
+); here

r+(−∆)a maps Ha(t)(R
n
+) ∩ E′(Rn) into H

t−2a
(Rn

+), (2.10)

for all t ≥ a (say). Ea(R
n
+) ∩ E′(Rn) is a dense subset of Ha(t)(R

n
+). The definition of the space Ha(t)(R

n
+)

is recalled below in (2.15) and in more detail in Section 5.3; let us for the moment just mention that it is
the sum of the space Ḣt(R

n
+) and a certain subspace of xa

nH
t−a

(Rn
+). This also holds when a is replaced

by a more general µ.
For (−∆)a, the a-transmission spaces provide the right answers to question (1), and they are likewise

right for question (2) (both facts established in [8]), and there are integration by parts formulas for
(−∆)a applied to elements of these spaces, [10, 11].
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The key to the proofs is the so-called a-transmission condition that (−∆)a satisfies; it is an infinite
list of equations for p(ξ) and its derivatives, linking the values on the interior normal to Rn

+ with the
values on the exterior normal. We formulate it below with a replaced by a general µ.

Definition 2.1. Let µ ∈ C, and let p(ξ) be homogeneous of degree m. Denote the interior resp. exterior
normal to the boundary of Rn

+ by (0,±1) = {(ξ′, ξn) | ξ′ = 0, ξn = ±1}.
1◦ p (and P = Op(p)) is said to satisfy the principal µ-transmission condition at Rn

+ if

p(0,−1) = eiπ(m−2µ) p(0, 1). (2.11)

2◦ p (and P = Op(p)) is said to satisfy the µ-transmission condition at Rn
+ if

∂αξ p(0,−1) = eiπ(m−2µ−|α|)∂αξ p(0, 1), for all α ∈ Nn
0. (2.12)

Note that µ is determined from p in (2.11) up to addition of an integer, when p(0, 1) , 0.
The operators considered on smooth domains Ω in [8] were assumed to satisfy (2.12) (for the top-

order term p0 in the symbol) at all boundary points x0 ∈ ∂Ω, with (0, 1) replaced by the interior normal
ν at x0, and (0,−1) replaced by −ν. The lower-order terms p j in the symbol, homogeneous of degree
m − j, should then satisfy analogous rules with m − j instead of m.

The principal µ-transmission condition (2.11) is of course much less demanding than the full µ-
transmission condition (2.12). What we show in the present paper is that when (2.11) holds, the
µ-transmission spaces are still relevant, and provide the appropriate answers to both questions (1) and
(2), however just for t (the regularity parameter) in a limited range. This range is large enough that
integration by parts formulas can be established, answering (3).

By simple geometric considerations one finds:

Proposition 2.2. 1◦ When p(ξ) is homogeneous of degree m, there is a µ ∈ C, uniquely determined
modulo Z if p(0, 1) , 0, such that (2.11) holds.

2◦ If moreover, p is strongly elliptic (2.4) and m = 2a > 0, µ can be chosen uniquely to satisfy
µ = a + δ with |Re δ| < 1

2 .

This is shown in Section 3. From here on we work under two slightly different assumptions. The
symbol p(ξ) is in both cases taken homogeneous of degree m = 2a > 0 and C1 for ξ , 0. We pose
Assumption 3.1 requiring that p is strongly elliptic and µ is chosen as in Proposition 2.2 2◦. We pose
Assumption 3.2 just requiring that µ is defined according to Proposition 2.2 1◦. In all cases we write
µ = a + δ, and define µ′ = a − δ = 2a − µ.

Example 2.3. Consider L1 = |ξ| + ibbb · ξ defined in (2.3). The order is 1 = m = 2a, so a = 1
2 . Here

L1(0, 1) = 1 + ibn and L1(0,−1) = 1 − ibn. The angle θ in C = R2 between the positive real axis and
1 + ibn is θ = Arctan bn. Set δ = θ/π, then

L1(0, 1) = eiπδ|L1(0, 1)| = eiπδ(1 + |bbb|2)
1
2 , similarly

L1(0,−1) = e−iπδ|L1(0,−1)| = e−iπδ(1 + |bbb|2)
1
2 .

Moreover,
L1(0,−1)/L1(0, 1) = e−2iπδ = eiπ(2a−2(a+δ)), when a = 1

2 ,
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so (2.11) holds with m = 2a = 1, µ = 1
2 + δ, where δ = 1

π
Arctan bn, and Assumption 3.1 is satisfied.

Note that δ ∈ ] − 1
2 ,

1
2 [ .

For L2 in (2.5), the values at (0, 1) and (0,−1) are the same as the values for L1, so (2.11) holds
with the same values, and Assumption 3.2 is satisfied. But not Assumption 3.1 since L2 is not strongly
elliptic.

When bn , 0, hence δ , 0, neither of these symbols satisfy the full µ-transmission condition
Definition 2.1 2◦, since second derivatives remove the (ibbb · ξ)-term so that the resulting symbol is even
(with µ = a + δ replaced by µ = a).

Our answer to (1) is now the following (achieved in Section 5.4):

Theorem 2.4. Let P satisfy Assumption 3.2. For Re µ − 1
2 < t < Re µ + 3

2 , r+P defines a continuous
linear mapping

r+P : Hµ(t)(R
n
+)→ H

t−2a
(Rn

+). (2.13)

It is important to note that r+P then also makes good sense on subsets of Hµ(t)(R
n
+). In particular,

since Eµ(R
n
+) ∩ E′(Rn) is a subset of Hµ(t)(R

n
+) for all t, the operator r+P is well-defined on Eµ(R

n
+) ∩

E′(Rn), mapping it into
⋂

t<Re µ+ 3
2

H
t−2a

(Rn
+) ⊂ H

Re δ+ 3
2−a−ε

(Rn
+), any ε > 0, by (2.13). When Re δ > −1

2

(always true under Assumption 3.1), this is assured to be contained in H
1−a

(Rn
+).

Our answer to (2) is (cf. Section 5.4):

Theorem 2.5. Let P satisfy Assumption 3.1. Then P = P̂ + P′, where P′ is of order 2a − 1, and r+P̂
is a bijection from Hµ(t)(R

n
+) to H

t−2a
(Rn

+) for Re µ − 1
2 < t < Re µ + 3

2 . In other words, there is unique
solvability of (2.7) with P replaced by P̂, in the mentioned spaces.

For r+P itself, there holds the regularity property: Let Re µ − 1
2 < t < Re µ + 3

2 , let f ∈ H
t−2a

(Rn
+),

and let u ∈ Ḣσ(R
n
+) (for some σ > Re µ − 1

2 ) solve the homogeneous Dirichlet problem (2.7). Then
u ∈ Hµ(t)(R

n
+).

The last statement shows a lifting of the regularity of u in the elliptic case, namely if it solves
(2.7) lying in a low-order space Ḣσ(R

n
+), then it is in the best possible µ-transmission space according

to Theorem 2.4, mapping into the given range space H
t−2a

(R
n
+). In other words, the domain of the

homogeneous Dirichlet problem with range in H
t−2a

(R
n
+) equals Hµ(t)(R

n
+).

The strategy for both theorems is, briefly expressed, as follows: The first step is to replace P =

Op(p(ξ)) by P̂ = Op( p̂(ξ)), where p̂(ξ) is better controlled at ξ′ = 0 and p′(ξ) = p(ξ)− p̂(ξ) is O(|ξ|2a−1)
for |ξ| → ∞. The second step is to reduce P̂ to order 0 by composition with ”plus/minus order-reducing
operators” Ξt

± = Op((〈ξ′〉 ± iξn)t) ((3.11), (5.2)) geared to the value µ (recall µ′ = 2a − µ):

Q̂ = Ξ
−µ′

− P̂Ξ
−µ
+ . (2.14)

Then the homogeneous symbol q associated with Q̂ satisfies the principal 0-transmission condition.
The third step is to decompose Q̂ into a sum (when Assumption 3.2 holds) or a product (when
Assumption 3.1 holds) of operators whose action relative to the usual Sobolev spaces Ḣ s(R

n
+) and

H
s
(Rn

+) can be well understood, so that we can show forward mapping properties and (in the strongly
elliptic case) bijectiveness properties for Q̂. The fourth step is to carry this over to forward mapping
properties and (in the strongly elliptic case) bijectiveness properties for P̂. The fifth and last step is to
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take P′ = P − P̂ back into the picture and deduce the forward mapping resp. regularity properties for
the original operator P.

It is the right-hand factor Ξ
−µ
+ in (2.14) that is the reason why the µ-transmission spaces, defined by

Hµ(t)(R
n
+) = Ξ

−µ
+ e+H

t−Re µ
(Rn

+), (2.15)

enter. Here e+H
t−Re µ

(Rn
+) has a jump at xn = 0 when t > Re µ + 1

2 , and then the coefficient xµn appears.

The analysis of Q̂ is based on a Wiener-Hopf technique (cf. Section 4) explained in Eskin’s book [6],
instead of the involvement of the extensive Boutet de Monvel calculus used in [8].

An interesting feature of the results is that the µ-transmission spaces have a universal role,
depending only on µ and not on the exact form of P.

Finally, we answer (3) by showing an integration by parts formula, based just on Assumption 3.2.

Theorem 2.6. Let P satisfy Assumption 3.2, and assume moreover that Re µ > −1, Re µ′ > −1. For
u ∈ Eµ(R

n
+) ∩ E′(Rn), u′ ∈ Eµ̄′(R

n
+) ∩ E′(Rn), there holds∫

Rn
+

Pu ∂nū′ dx +

∫
Rn

+

∂nu P∗u′ dx

= Γ(µ + 1)Γ(µ′ + 1)
∫
Rn−1

s0γ0(u/xµn) γ0(ū′/xµ
′

n ) dx′,
(2.16)

where s0 = e−iπδp(0, 1). The formula extends to u ∈ Hµ(t)(R
n
+), u′ ∈ Hµ̄′(t′)(R

n
+), for t > Re µ + 1

2 ,
t′ > Re µ′ + 1

2 .

The integrals over Rn
+ in (2.16) are interpreted as dualities when needed. The basic step in the proof

is the treatment of one order-reducing operator in Proposition 6.1, by an argument shown in detail
in [10, Th. 3.1, Rem. 3.2], and recalled in [13, Th. 4.1].

In the proof of (2.16) in Section 6, the formula is first shown for the nicer operator P̂, and thereafter
extended to P. (The formula (2.16) for (−∆)a in Ros-Oton and Serra [20, Th. 1.9] should have a minus
sign on the boundary contribution; this has been corrected by Ros-Oton in the survey [19, p. 350].)

The theory will be carried further, to include “large” solutions of a nonhomogeneous local Dirichlet
problem, and to show regularity results and a “halfways Green’s formula”, see Section 7, but we shall
leave those aspects out of this preview.

The example L1 in (2.3) is a special case of the operator L = Op(L(ξ)), where L(ξ) = A(ξ) + iB(ξ)
with A(ξ) real, even in ξ and positive, and B(ξ) real and odd in ξ. There are more details below
in (3.5)ff. (this stands for (3.5) and the near following text) and Examples 5.9, 6.5, 7.4. L was first
studied in [5] (under certain restrictions on a and µ), and our results apply to it. Theorem 2.6 gives an
alternative proof for the same integration by parts formula, established in [5, Prop. 1.4] by extensive
real function-theoretic methods.

The result on the integral over Rn
+ is combined in [5] with localization techniques to get an

interesting result for curved domains, and it is our hope that the present results for more general
strongly elliptic operators can be used in a similar way.
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3. The principal mu-transmission condition

3.1. Analysis of homogeneous symbols

Let p(ξ) be a complex function on Rn that is homogeneous of degree m in ξ, and let ν ∈ Rn be a unit
vector. For a complex number µ, we shall say that p satisfies the principal µ-transmission condition in
the direction ν, when

p(−ν) = eiπ(m−2µ) p(ν). (3.1)

When p(ν) , 0, we can rewrite (3.1) as

eiπ(m−2µ) =
p(−ν)
p(ν) , i.e., µ = m

2 −
1

2πi log p(−ν)
p(ν) ,

where log is a complex logaritm. This determines the possible µ up to addition of an integer.
The (full) µ-transmission property defined in [8] demands much more, namely that

∂αξ p(−ν) = eiπ(m−2µ−|α|)∂αξ p(ν), all α ∈ Nn
0. (3.2)

Besides assuming infinite differentiability, this is a stronger condition than (3.1) in particular because
of the requirements it puts on derivatives of p transversal to ν.

To analyse this we observe that when a (sufficiently smooth) function f (t) on R\{0} is homogeneous
of degree m ∈ R, then it has the form, for some c1, c2 ∈ C,

f (t) =

c1tm for t > 0,
c2(−t)m for t < 0,

and its derivative outside t = 0 is a function homogeneous of degree m − 1 satisfying

∂t f (t) =

c1mtm−1 for t > 0,
−c2m(−t)m−1 for t < 0.

In particular, if c1 , 0, m , 0,

f (−1)/ f (1) = c2/c1, ∂t f (−1)/∂t f (1) = −c2/c1.

In the case m = 0, f is constant for t > 0 and t < 0, and the derivative is zero there.
Thus, when p(ξ) is a (sufficiently smooth) function on Rn \{0} that is homogeneous of degree m , 0,

and we consider it on a two-sided ray {tν | t ∈ R} where ν is a unit vector and p(ν) , 0, then

p(−ν) = c0 p(ν) =⇒ ∂t p(tν)|t=−1 = −c0∂t p(tν)|t=1. (3.3)

So for example, when ν is the inward normal (0, 1) = {(ξ′, ξn) | ξ′ = 0, ξn = 1} to Rn
+,

p(0,−1) = c0 p(0, 1) =⇒ ∂ξn p(0,−1) = −c0∂ξn p(0, 1).

For p(ξ) satisfying (3.1), this means that when p(ν) , 0, it will also satisfy

∂t p(tν)|t=−1 = eiπ(m−2µ−1)∂t p(tν)|t=1,
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in view of (3.3). This argument can be repeated, showing that

∂k
t p(tν)|t=−1 = eiπ(m−2µ−k)∂k

t p(tν)|t=1, (3.4)

as long as the derivatives at t = 1 do not vanish. That can happen when m is a nonnegative integer
(namely from the (m + 1)’st step on); then (3.4) is trivially satisfied. On the other hand, we cannot
infer that derivatives of ∂αξ p for arbitrary α have the property (3.2); this will be illustrated in examples
below.

In general, µ takes different values for different ν. When Ω is a sufficiently smooth subset of Rn with
interior normal ν(x) at boundary points x ∈ ∂Ω, we say that p satisfies the principal µ-transmission
condition at Ω if µ(x) is a function on ∂Ω such that (3.1) holds with this µ(x) at boundary points x ∈ ∂Ω.
For Ω = Rn

+, the normal ν equals (0, 1) at all boundary points and µ is a constant; this is the situation
considered in the present paper.

In [13] we have studied a special class of symbols first considered by Dipierro, Ros-Oton, Serra and
Valdinoci in [5]:

L(ξ) = A(ξ) + iB(ξ), (3.5)

the functions being C∞ for ξ , 0 and homogeneous in ξ of degree 2a > 0 (a < 1), and where A(ξ)
is real and even in ξ (i.e., A(−ξ) = A(ξ)), B(ξ) is real and odd in ξ (i.e., B(−ξ) = −B(ξ)), and L is
strongly elliptic (i.e., A(ξ) > 0 for ξ , 0). As shown in [13, Sect. 2], L satisfies (3.1) on each unit
vector ν, for m = 2a and

µ(ν) = a + δ(ν), with δ(ν) = 1
π

Arctan b, b = B(ν)/A(ν); (3.6)

this follows straightforwardly (as in Example 2.3) from the observation thatL(−ν)/L(ν) = (1−ib)/(1+

ib), b = B(ν)/A(ν). It then also satisfies (3.4) with this µ.
But the full µ-transmission condition need not hold. For example, the symbol L1(ξ) = |ξ| + ibbb · ξ in

(2.3) (with bbb ∈ Rn) satisfies the principal µ-transmission condition for ν = (0, 1) with µ = 1
2 + δ, δ , 0

if bn , 0, whereas
∂2
ξ1
L1 = (ξ2

2 + · · · + ξ2
n)/|ξ|3

and its derivatives satisfy the conditions in (3.2) for ν = (0, 1) with µ replaced by 1
2 .

The statement in [13, Th. 3.1] that solutions of the homogeneous Dirichlet problem have a structure
with the factor xµn, was quoted from [8] based on the full µ-transmision condition, and therefore applies
to L = Op(L) when B = 0 (a case belonging to [8]), but not in general when B , 0. Likewise, the
integration by parts formulas for L derived in [13] using details from the Boutet de Monvel calculus
are justified when B = 0 or when other operators P satisfying the full µ-transmission condition are
inserted, but not in general when B , 0. Fortunately, there are cruder methods that do lead to such
results, on the basis of the principal µ-transmission condition alone, and that is what we show in this
paper.

The treatment of L will be incorporated in a treatment of general strongly elliptic homogeneous
symbols in the following. This requires that we allow complex values of µ.

Let P = Op(p(ξ)) be defined by (2.1) from a symbol p(ξ) that is C1 for ξ , 0, homogeneous of
order m = 2a > 0, and now also strongly elliptic (2.4). To fix the ideas, we shall consider the operator
relative to the set Rn

+, with interior normal ν = (0, 1). Denote p(ξ)|ξ|−2a = p1(ξ); it is homogeneous
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of degree 0. Both p and p1 take values in a closed subsector of {z ∈ C | Re ξn > 0} ∪ {0}. For any
ξ′ ∈ Rn−1, one has for +1 and −1 respectively,

lim
ξn→±∞

p1(ξ′, ξn) = lim
ξn→±∞

p1(ξ′/|ξn|,±1) = p1(0,±1) = p(0,±1).

With the logarithm log z defined to be positive for real z > 1, with a cut along the negative real axis,
denote log p(0,±1) = α±; here Reα± = log |p(0,±1)| and Imα± is the argument of p(0,±1). With this
notation,

p(0,−1)/p(0, 1) = eα−/eα+ = eα−−α+ ,

so (3.1) for m = 2a holds with ν = (0, 1) when α− − α+ = iπ(2a − 2µ), i.e.,

µ = a + δ with δ = (α+ − α−)/2πi; (3.7)

this µ is the factorization index. These calculations were given in [8, Sect. 3] (with m = 2a), and are
in principle consistent with the determination of the factorization index by Eskin in [6, Ex. 6.1] (which
has different plus/minus conventions because of a different definition of the Fourier transform).

Since p(ξ) takes values in {Re z > 0} for ξ , 0, both p(0, 1) and p(0,−1) lie there and the difference
between their arguments is less than π, so | Im(α+ − α−)/2π| < 1

2 ; in other words

|Re δ| < 1
2 . (3.8)

Note that δ is real in the case (3.5).
We collect the information on P in the following description:

Assumption 3.1. The operator P = Op(p(ξ)) is defined from a symbol p(ξ) that is C1 for ξ , 0,
homogeneous of order m = 2a > 0, and strongly elliptic (2.4). It satisfies the principal µ-transmission
condition in the direction (0, 1):

p(0,−1) = eiπ(m−2µ) p(0, 1),

with µ equal to the factorization index µ = a + δ derived around (3.7), and |Re δ| < 1
2 . Denote

µ′ = 2a − µ = a − δ.

In Eskin’s book [6], the case of constant-coefficient pseudodifferential operators considered on Rn
+ is

studied in §§4–17, and the calculations rely on the principal transmission condition up to and including
§9. From §10 on, additional conditions on transversal derivatives are required (the symbol class D(0)

α+iβ
seems to correspond to our full 0-transmission condition, giving operators preserving smoothness up
to the boundary). In the following, we draw on some of the points made in §§6–7 there.

For an operator A defined from a homogeneous symbol a(ξ), the behavior at zero can be problematic
to deal with. In [6, §7], there is introduced a technique that leads to a nicer operator, in the context
of operators relative to Rn

+: One eliminates the singularity at ξ′ = 0 by replacing the homogeneous
symbol a(ξ′, ξn) by

â(ξ′, ξn) = a(〈ξ′〉ξ′/|ξ′|, ξn), (3.9)

the corresponding operator denoted Â. (In comparison with [6] we have replaced the factor 1+ |ξ′| used
there by 〈ξ′〉 = (1 + |ξ′|2)

1
2 .) It is shown there that when a(ξ) is homogeneous of degree α + iβ, then

a′(ξ) = a(ξ) − â(ξ) is O(|ξ|α−1) for |ξ| ≥ 2, (3.10)
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hence is of lower order in a certain sense. Many results with Sobolev estimates are then shown
primarily for the “hatted” version Â = Op(̂a), and supplied afterwards with information on
A′ = Op(a′). Indeed, we shall see that the results we are after for our operators P = Op(p), can be
obtained in a manageable way for P̂ = Op( p̂), and then extended to P by a supplementing analysis of
P′. The important thing is that special properties with respect to ξn, such as holomorphic extendability
into C+ or C−, are not disturbed when a is replaced by â.

Some of the results that we shall show do not require ellipticity of P. We therefore introduce also a
weaker assumption:

Assumption 3.2. The operator P = Op(p(ξ)) is defined from a symbol p(ξ) that is C1 for ξ , 0,
homogeneous of order m = 2a > 0, and satisfies the principal µ-transmission condition in the direction
(0, 1) with µ = a + δ for some δ ∈ C. Denote a − δ = µ′.

For the symbols p considered in the rest of the paper, we assume at least that Assumption 3.2 holds.
As noted earlier, when P satisfies (3.1) for some µ, it also does so with µ replaced by µ + k, k ∈ Z.
The precision in Assumption 3.1, that µ should equal the factorization index, is needed for elliptic
solvability statements.

3.2. Reduction to symbols of order zero

Consider the symbols of “order-reducing” operators (more on them in Section 5):

χt
0,±(ξ) = (|ξ′| ± iξn)t; consequently
χ̂t

0,±(ξ) = (|〈ξ′〉ξ′/|ξ′|| ± iξn)t = (〈ξ′〉 ± iξn)t = χt
±(ξ);

(3.11)

the last entry is the usual notation. Together with our symbol p(ξ) of order 2a, we shall consider its
reduction to a symbol q of order 0 defined by:

q(ξ) = χ
−µ′

0,− p(ξ)χ−µ0,+, hereby p(ξ) = χ
µ′

0,−q(ξ)χµ0,+. (3.12)

The “hatted” version is:

q̂(ξ) = χ
−µ′

− p̂(ξ)χ−µ+ , hereby p̂(ξ) = χ
µ′

− q̂(ξ)χµ+. (3.13)

Here q is continuous and homogeneous of degree 0 for ξ , 0; it is C1 in ξn there, and C1 in ξ′ for ξ′ , 0
with bounded first derivatives on |ξ| = 1. Since i = eiπ/2,

q(0, 1) = (−i)µ−2a p(0, 1)i−µ = i2a−2µp(0, 1) = eiπ(a−µ) p(0, 1),
q(0,−1) = (+i)µ−2a p(0,−1)(−i)−µ = i2µ−2aeiπ(2a−2µ) p(0, 1)

= eiπ(a−µ) p(0, 1) = q(0, 1),

so q satisfies the principal 0-transmission condition in the direction ν = (0, 1):

q(0,−1) = q(0, 1). (3.14)

In view of (3.1)–(3.4), we have moreover when p(0, 1) , 0 that

∂ξnq(0,−1) = −∂ξnq(0, 1). (3.15)
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Note that since µ − a = δ, q(0, 1) = e−iπδp(0, 1). We shall denote

s0 = q(0, 1) = e−iπδp(0, 1). (3.16)

In the case p = L in (3.5)–(3.6), L(0, 1) = eiπδ|L(0, 1)| with δ real, so

s0 = e−iπδL(0, 1) = |L(0, 1)| = (A(0, 1)2 + B(0, 1)2)
1
2 then. (3.17)

4. The Wiener-Hopf decomposition

4.1. The sum decomposition

Since p(ξ) is only assumed to satisfy the principal µ-transmission condition, q(ξ) will in general
only satisfy the principal 0-transmission condition, not the full one, so the techniques of the Boutet de
Monvel calculus brought forward in [8] are not available. Instead we go back to a more elementary
application of the original Wiener-Hopf method [22].

When b(ξn) is a function on R, denote

b+(ξn + iτ) =
i

2π

∫
R

b(ηn)
ηn − ξn − iτ

dηn for τ < 0,

b−(ξn + iτ) =
−i
2π

∫
R

b(ηn)
ηn − ξn − iτ

dηn for τ > 0,
(4.1)

when the integrals have a sense. When b is suitably nice, b+ is holomorphic in ξn + iτ for τ < 0 and
extends to a continuous function on C− (also denoted b+), b− has these properties relative to C+, and
b(ξn) = b+(ξn)+b−(ξn) on R. With the notation of spaces H, H± introduced by Boutet de Monvel in [4],
denoted H , H± in our subsequent works, the decomposition holds for b ∈ H with b± ∈ H± on R.
Since we are presently dealing with functions with cruder properties, we shall instead apply a useful
lemma shown in [6, Lemma 6.1]:

Lemma 4.1. Suppose that b(ξ′, ξn) is homogeneous of degree 0 in ξ, is C1 for ξ′ , 0, and satisfies

|b(ξ′, ξn)| ≤ C|ξ′| |ξ|−1, |∂ jb(ξ′, ξn)| ≤ C|ξ|−1 for j ≤ n − 1. (4.2)

Then the function defined for τ < 0 by

b+(ξ′, ξn + iτ) =
i

2π

∫
R

b(ξ′, ηn)
ηn − ξn − iτ

dηn (4.3)

is holomorphic with respect to ξn + iτ in C−, is homogeneous of degree 0, extends by continuity with
respect to (ξ′, ξn + iτ) ∈ C− for |ξ| + |τ| > 0, τ ≤ 0, and satisfies the estimate

|b+(ξ′, ξn + iτ)| ≤ Cε|ξ
′|1−ε(|ξ| + |τ|)ε−1, any ε > 0. (4.4)

There is an analogous statement for b− with C− replaced by C+.

The symbol q derived from p by (3.12) satisfies

q(ξ) = s0 + f (ξ),
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where f is likewise homogeneous of degree 0, and has f (0, 1) = f (0,−1) = 0. We make two
applications of Lemma 4.1. One is, under Assumption 3.2, to apply it directly to f to get a sum
decomposition f = f+ + f− where the terms extend holomorphically to C− resp. C+ with respect to ξn;
this will be convenient in establishing the forward mapping properties and integration by parts
formula for the present operators. The other is, under Assumption 3.1, to apply the lemma to the
function b(ξ) = log q(ξ) to get a sum decomposition of b and hence a factorization of q; this is used to
show that P has appropriate solvability properties (the solutions exhibiting a singularity xµn at the
boundary).

We show that f has the properties required for Lemma 4.1 as follows: To see that (4.2) is verified
by f , note that the second inequality follows since ∂ j f is bounded on the unit sphere {|ξ| = 1} and
homogeneous of degree −1. For the first inequality we have, when ξn > |ξ

′| (hence |ξ′/ξn| < 1),

| f (ξ′, ξn)| =
∣∣∣∣q( ξ′
ξn
, 1

)
− q(0, 1)

∣∣∣∣ ≤∑
j<n

∣∣∣∣ξ j

ξn

∣∣∣∣ sup
|η′ |≤1
|∂ jq(η′, 1)| ≤ C

|ξ′|

|ξn|
≤ C′

|ξ′|

|ξ|
, (4.5)

using the mean value theorem and the fact that |ξn| ∼ |ξ| when |ξn| ≥ |ξ
′|. A similar estimate is found for

ξn < −|ξ
′|. For |ξn| ≤ |ξ

′|, we use that q is bounded, so that |q(ξ) − s0||ξ|/|ξ
′| ≤ c|q(ξ) − s0||ξ

′|/|ξ′| ≤ c′.
We have obtained:

Proposition 4.2. When p satisfies Assumption 3.2 and q is derived from p by (3.12), then there is a
sum decomposition of f = q − s0:

q(ξ) − s0 = f+(ξ) + f−(ξ),

where f+(ξ′, ξn) is holomorphic with respect to ξn+iτ in C−, and continuous with respect to (ξ′, ξn+iτ) ∈
C− for |ξ| + |τ| > 0, τ ≤ 0, and satisfies estimates

| f+(ξ′, ξn + iτ)| ≤ Cε|ξ
′|1−ε(|ξ| + |τ|)ε−1, any ε > 0, (4.6)

and f− has the analogous properties with C− replaced by C+.

For the corresponding hatted symbol, we then have q̂ = s0 + f̂+ + f̂−, with f̂± defined from f±. They
have similar holomorphy properties, and satisfy estimates as in (4.6) with |ξ′| replaced by 〈ξ′〉.

4.2. The product decomposition

In order to obtain a factorization for symbols satisfying Assumption 3.1, we shall study log q. By
the strong ellipticity, q(ξ) , 0 for ξ , 0. Moreover, p(ξ)|ξ|−2a = χ−a

0,−p(ξ)χ−a
0,+ takes values in a subsector

of {z ∈ C | Re z > 0} and the multiplication by χδ0,− and χ−δ0,+ gives the function q taking values in
the sector {z ∈ C | | arg z| ≤ π( 1

2 + |Re δ|)} disjoint from the negative real axis. So the logarithm is
well-defined with inverse exp.

Assume first that s0 = 1; this can simply be obtained by dividing out q(0, 1). The function
b(ξ) = log q(ξ) is homogeneous of degree 0 and has b(0, 1) = b(0,−1) = 0 and the appropriate
continuity properties, and bounds on first derivatives, so the same proof as for f applies to b to give
the decomposition b = b+ + b−. Then we define q± = exp(b±), they are homogeneous of degree 0. For
example,

q+ = 1 + g+, where g+ =
∑

k≥1
(b+)k.

Mathematics in Engineering Volume 4, Issue 4, 1–33.



14

Here |b+(ξ)| ≤ Cε|ξ
′|1−ε|ξ|−1+ε, and there is a constant C′ε such that Cε|ξ

′|1−ε|ξ|−1+ε ≤ 1
2 for |ξn| ≥ C′ε|ξ

′|.
On this set the series for g+ converges with |g+| ≤ |b+|, hence g+ satisfies an estimate of the form (4.4)
there. It likewise does so on the set |ξn| ≤ C′ε|ξ

′| since |ξ′| ∼ |ξ| there. There are similar results for
q− = exp(b−) = 1 + g− with C− replaced by C+. This shows:

Proposition 4.3. When p satisfies Assumption 3.1 and q is derived from p by (3.12) and satisfies s0 = 1,
then there is a factorization of q:

q(ξ) = q−(ξ)q+(ξ),

where q+(ξ′, ξn) is holomorphic with respect to ξn+iτ in C−, and continuous with respect to (ξ′, ξn+iτ) ∈
C− for |ξ| + |τ| > 0, τ ≤ 0. Moreover, g+ = q+ − 1 satisfies estimates

|g+(ξ′, ξn + iτ)| ≤ Cε|ξ
′|1−ε(|ξ| + |τ|)ε−1, all ε > 0, (4.7)

and q−, g− = q− − 1 have the analogous properties with C− replaced by C+. The symbols are
homogeneous of degree 0, and q+ and q− are elliptic.

For general s0, we apply the factorization to q0 = s−1
0 q, so that q0 = q−0 q+

0 ; then q = q−q+ with
q− = s0q−0 = s0(1 + g−) and q+ = q+

0 = 1 + g+.

The ellipticity follows from the construction as exp(b±), or one can observe that the product q+q− =

q is elliptic (i.e., nonzero for ξ , 0).
The notation with upper index ± is chosen here to avoid confusion with the lower + used later to

indicate truncation, P+ = r+Pe+.
Turning to the corresponding hatted symbols, we have obtained q̂ = q̂−q̂+, with q̂±, ĝ± defined from

q±, g±, respectively. They have similar holomorphy properties, the q̂± are elliptic, and the ĝ± satisfy
estimates as in (4.7) with |ξ′| replaced by 〈ξ′〉:

|̂g+(ξ′, ξn + iτ)| ≤ Cε〈ξ
′〉1−ε(〈ξ〉 + |τ|)ε−1, all ε > 0. (4.8)

5. Mapping properties and the homogeneous Dirichlet problem

5.1. Some function spaces

First recall some terminology: E′(Rn) is the space of distributions on Rn with compact support,
S(Rn) is the Schwartz space of C∞-functions f on Rn such that xβDα f is bounded for all α, β, and
S′(Rn) is its dual space of temperate distributions. 〈ξ〉 stands for (1+|ξ|2)

1
2 . We denote by r+ the operator

restricting distributions on Rn to distributions on Rn
+, and by e+ the operator extending functions on Rn

+

by zero on Rn \ Rn
+. Then r+S(Rn) is denoted S(R

n
+). The following notation for L2-Sobolev spaces

will be used, for s ∈ R:

H s(Rn) = {u ∈ S′(Rn) | 〈ξ〉sF u ∈ L2(Rn)},

H
s
(Rn

+) = r+H s(Rn), the restricted space,

Ḣ s(R
n
+) = {u ∈ H s(Rn) | supp u ⊂ R

n
+}, the supported space,

(5.1)

as in our earlier papers on fractional-order operators. An elaborate presentation of Lp-based spaces
was given in [8]. (The notation with dots and overlines stems from Hörmander [17, App. B.2] and is

Mathematics in Engineering Volume 4, Issue 4, 1–33.



15

practical in formulas where both types of spaces occur. There are other notations without the overline,
and where the dot is replaced by a ring or twiddle.)

Here H
s
(Rn

+) identifies with the dual space of Ḣ−s(R
n
+) for all s ∈ R (the duality extending the

L2(Rn
+) scalar product). When |s| < 1

2 , there is an identification of Ḣ s(R
n
+) with H

s
(Rn

+) (more precisely
with e+H

s
(Rn

+)). The trace operator γ0 : u 7→ limxn→0+ u(x′, xn) extends to a continuous mapping
γ0 : H

s
(Rn

+)→ H s− 1
2 (Rn−1) for s > 1

2 .
The order-reducing operators Ξt

± are defined for t ∈ C by Ξt
± = Op(χt

±), where χt
± = (〈ξ′〉 ± iξn)t, cf.

(3.11). These operators have the homeomorphism properties:

Ξt
+ : Ḣ s(R

n
+)

∼
→ Ḣ s−Re t(R

n
+), r+Ξt

−e
+ : H

s
(Rn

+)
∼
→ H

s−Re t
(Rn

+), all s ∈ R, t ∈ C; (5.2)

r+Ξt
−e

+ is often denoted Ξt
−,+ for short. For each t ∈ C, the operators Ξt

+ and Ξt
−,+ identify with each

other’s adjoints over R
n
+ (more comments on this in [8, Rem. 1.1]). Recall also the simple composition

rules (as noted e.g., in [15, Th. 1.2]):

Ξs
+Ξt

+ = Ξs+t
+ , Ξs

−,+Ξt
−,+ = Ξs+t

−,+ for s, t ∈ C.

We define
Eµ(R

n
+) = e+xµnC∞(R

n
+) when Re µ > −1, (5.3)

and Eµ(R
n
+) is defined successively as the linear hull of first-order derivatives of elements of Eµ+1(R

n
+)

when Re µ ≤ −1 (then distributions supported in the boundary can occur). The spaces were introduced
in Hörmander’s unpublished lecture notes [16] and are presented in [8] (and with a different notation
in [17, Sect. 18.2]), and they satisfy for all µ (cf. [8, Props. 1.7, 4.1]):

Eµ(R
n
+) ∩ E′(Rn) ⊂ Ξ

−µ
+ e+

⋂
s
H

s
(R

n
+). (5.4)

A sharper statement follows from [13, Lemma 6.1] (when Re µ > −1):

e+xµnS(R
n
+) = Ξ

−µ
+ e+S(R

n
+). (5.5)

5.2. Mapping properties of the zero-order operator in Sobolev spaces

Let P satisfy Assumption 3.1, and consider Q̂± = Op(̂q±), defined from the symbols q±(ξ)
introduced in Proposition 4.3. Since q̂± are bounded symbols with bounded inverses, and extend
holomorphically in ξn into C− resp. C+,

Q̂+ : Ḣ s(R
n
+)

∼
→ Ḣ s(R

n
+) and Q̂−+ = r+Q̂−e+ : H

s
(Rn

+)
∼
→ H

s
(Rn

+), for all s ∈ R; (5.6)

the latter follows since r+Q̂−e+ is the adjoint of Op(̂q−) over Rn
+, where Op(̂q−) defines

homeomorphisms in Ḣ s(R
n
+) (since q̂− has similar properties as q̂+). The inverses (Q̂±)−1 = Op((̂q±)−1)

have similar homeomorphism properties. Since H
s
(Rn

+) = Ḣ s(R
n
+) for |s| < 1

2 , it follows that we also
have for |s| < 1

2 :

Q̂+
+ = r+Q̂+e+ : H

s
(Rn

+)
∼
→ H

s
(Rn

+), Q̂−+Q̂+
+ : H

s
(Rn

+)
∼
→ H

s
(Rn

+).

If q satisfies the full 0-transmission condition, we are in the case studied in [8], and the bijectiveness
in H

s
(Rn

+) can be lifted to all higher s by use of elements of the Boutet de Monvel calculus, as accounted
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for in the proof of [8, Th. 4.4]. The symbol q presently considered is only known to satisfy the principal
0-transmission condition (and possibly a few more identities). We shall here show that a lifting is
possible in general up to s < 3

2 .

Proposition 5.1. Let P satisfy Assumption 3.1, and consider Q̂+ = Op(̂q+) derived from it in Section 4.
For any −1

2 < s < 3
2 , Q̂+

+ = r+Q̂+e+ is continuous

r+Q̂+e+ : H
s
(Rn

+)→ H
s
(Rn

+), (5.7)

and the same holds for the operator ((Q̂+)−1)+ defined from its inverse (Q̂+)−1.
In fact, (5.7) is a homeomorphism, and the inverse of Q̂+

+ is ((Q̂+)−1)+.

Proof. We already have the mapping property (5.7) for |s| < 1
2 , because q̂+ is a bounded symbol, and

e+H
s
(Rn

+) identifies with Ḣ s(R
n
+) then. Now let s = 3

2 − ε for a small ε > 0. Here we need to show

that when u ∈ H
3
2−ε(Rn

+), then r+∂ jQ̂+e+u ∈ H
1
2−ε(Rn

+) for j = 1, . . . , n. For j < n, this follows simply

because ∂ j can be commuted through r+, Q̂+ and e+ so that we can use that ∂ ju ∈ H
1
2−ε(Rn

+). For j = n,
we proceed as follows:

Since u ∈ H
3
2−ε(Rn

+), the extension by zero e+u has a jump at xn = 0, and a rule for distributions
applies:

∂ne+u = e+∂nu + (γ0u)(x′) ⊗ δ(xn), γ0u ∈ H1−ε(Rn−1). (5.8)

(The rule is obvious when u ∈ C∞(R
n
+), and extends by continuity to Sobolev spaces.) Therefore, since

Q̂+ = I + Ĝ+ where Ĝ+ = Op(̂g+(ξ)) from Proposition 4.3,

∂nQ̂+e+u = Q̂+∂ne+u = Q̂+e+∂nu + (I + Ĝ+)(γ0u ⊗ δ(xn)).

In the restriction to Rn
+, r+I(γ0u ⊗ δ(xn)) drops out, so we are left with

r+∂nQ̂+e+u = r+Q̂+∂ne+u = r+Q̂+e+∂nu + Kĝ+γ0u, Kĝ+ϕ = r+Ĝ+(ϕ(x′) ⊗ δ(xn)).

Here Kĝ+ is a potential operator (in the terminology of Eskin [6] and Rempel-Schulze [18], generalizing
the concept of Poisson operator of Boutet de Monvel [3, 4]), which acts as follows:

Kĝ+ϕ = r+F −1[̂g+(ξ)ϕ̂(ξ′)].

By (4.8),
|̂g+(ξ)| ≤ C〈ξ′〉1−ε/2〈ξ〉ε/2−1,

hence

‖Kĝ+ϕ‖2
H

1
2 −ε(Rn

+)
≤ ‖Ĝ+(ϕ ⊗ δ)‖2

H
1
2 −ε(Rn)

= c
∫
Rn
|̂g(ξ)|2|ϕ̂(ξ′)|2〈ξ〉1−2ε dξ

≤ C
∫
Rn
|ϕ̂(ξ′)|2〈ξ〉1−2ε−2+ε〈ξ′〉2−ε dξ = C

∫
Rn
|ϕ̂(ξ′)|2〈ξ〉−1−ε〈ξ′〉2−ε dξ

= C′
∫
Rn−1
|ϕ̂(ξ′)|2〈ξ′〉2−2ε dξ′ = C′′‖ϕ‖2H1−ε(Rn−1),
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since
∫
R
〈ξ〉−1−ε dξn = 〈ξ′〉−ε

∫
R
〈ηn〉

−1−ε dηn. Inserting ϕ = γ0u, we thus have

‖Kĝ+γ0u‖
H

1
2 −ε(Rn

+)
≤ C1‖γ0u‖H1−ε(Rn−1) ≤ C2‖u‖

H
3
2 −ε(Rn

+)
.

Thus
‖r+∂nQ̂+e+u‖

H
1
2 −ε
≤ ‖r+Q̂+e+∂nu‖

H
1
2 −ε

+ ‖Kĝ+γ0u‖
H

1
2 −ε
≤ C3‖u‖

H
3
2 −ε
.

Altogether, this shows the desired mapping property for s = 3
2 − ε, and the property for general

1
2 ≤ s < 3

2 follows by interpolation with the case s = 0.
The mapping property (5.7) holds for the inverse (Q̂+)−1, since its symbol (q+)−1 equals

1 +
∑

k≥1(−b+)k with essentially the same structure.
The identity ((Q̂+)−1)+Q̂+

+ = I = Q̂+
+((Q̂+)−1)+ valid on L2(Rn

+), holds a fortiori on H
s
(Rn

+) for 0 <

s < 3
2 , and extends by continuity to H

s
(Rn

+) for −1
2 < s < 0. �

When P merely satisfies Assumption 3.2, we can still show a useful forward mapping property of
Q̂, based on the decomposition in Proposition 4.2.

Proposition 5.2. Let P satisfy Assumption 3.2, and consider Q̂ and F̂± = Op( f̂±) derived from it in
Section 4.

The operator F̂+,+ = r+F̂+e+ is continuous

r+F̂+e+ : H
s
(Rn

+)→ H
s
(Rn

+) for any − 1
2 < s < 3

2 . (5.9)

The operator F̂−,+ = r+F̂−e+ is continuous from H
s
(Rn

+) to H
s
(Rn

+) for any s ∈ R.
The operator Q̂+ = r+Q̂e+ is continuous

r+Q̂e+ : H
s
(Rn

+)→ H
s
(Rn

+) for any − 1
2 < s < 3

2 . (5.10)

Proof. Since F̂+ has bounded symbol, it maps Ḣ s(R
n
+) into H s(Rn) for all s, so for |s| < 1

2 , (5.9) follows
since Ḣ s(R

n
+) = e+H

s
(Rn

+) then. For 1
2 < s < 3

2 , we proceed as in the proof of Proposition 5.1, using
that

r+∂nF̂+e+u = r+F̂+∂ne+u = r+F̂+e+∂nu + K f̂+
γ0u, K f̂+

ϕ = r+F̂+(ϕ(x′) ⊗ δ(xn)),

where K f̂+
satisfies similar estimates as Kĝ+ by Proposition 4.2.

For r+F̂−e+, the statement follows since it is on Rn
+ the adjoint of Op( f̂−), which preserves support

in R
n
+ and therefore maps Ḣ s(R

n
+) into itself for all s ∈ R. For Q̂, the statement now follows since it

equals s0 + F̂− + F̂+. �

This is as far as we get by applying Lemma 4.1 to f . To obtain the mapping property for higher s
would require a control over the potential operators

ϕ 7→ r+ Op(ξ j
n f̂+(ξ))(ϕ(x′) ⊗ δ(xn))

for j ≥ 1 as well. At any rate, the property shown in Proposition 5.2 will be sufficient for the integration
by parts formulas we are aiming for.

In the elliptic case, we conclude from Proposition 5.1 for the operator Q̂:
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Corollary 5.3. Let P satisfy Assumption 3.1, and consider the operators Q̂, Q̂+, Q̂− with symbols q̂, q̂+,
q̂− derived from it in Section 4. The operator Q̂+ ≡ r+Q̂e+ acts like r+Q̂−e+r+Q̂+e+ = Q̂−+Q̂+

+, mapping
continuously and bijectively

Q̂+ = r+Q̂e+ : H
s
(Rn

+)
∼
→ H

s
(Rn

+) for − 1
2 < s < 3

2 , (5.11)

and the inverse (continuous in the opposite direction) equals

(r+Q̂e+)−1 = r+(Q̂+)−1e+r+(Q̂−)−1e+. (5.12)

Proof. We have for u ∈ Ḣ s(R
n
+) ' H

s
(Rn

+), |s| < 1
2 , that

r+Q̂e+u = r+Q̂−Q̂+e+u = r+Q̂−(e+r+ + e−r−)Q̂+e+u = r+Q̂−e+r+Q̂+e+u,

since r−Q̂+e+u = 0; this identity is also valid on the subspaces H
s
(Rn

+) with s ≥ 1
2 . Combining

the homeomorphism property of r+Q̂+e+ shown in Proposition 5.1 with the known homeomorphism
property of r+Q̂−e+ on H

s
(Rn

+)-spaces (cf. (5.6)), we get (5.11). The inverse is pinned down by using
that r+Q̂−e+ has inverse r+(Q̂−)−1e+ on H

s
(Rn

+) for all s, and r+Q̂+e+ has inverse r+(Q̂+)−1e+ on H
s
(Rn

+)
for −1

2 < s < 3
2 in view of Proposition 5.1 . �

5.3. Mapping properties of the modified P, transmission spaces

Now turn the attention to P̂, which is related to Q̂ by

P̂ = Ξ
µ′

− Q̂ Ξ
µ
+, Q̂ = Ξ

−µ′

− P̂ Ξ
−µ
+ , (5.13)

cf. (3.12)–(3.13).
We shall describe the solutions of the homogeneous Dirichlet problem (in the strongly elliptic case)

r+P̂u = f , supp u ⊂ R
n
+, (5.14)

with f given in a space H
s
(Rn

+), and u assumed a priori to lie in a space Ḣσ(Ω) for low σ, e.g., with
σ = a.

First we observe for Ξ
−µ′

−,+ = r+Ξ
−µ′

− e+ that

Ξ
−µ′

−,+r+P̂ = r+Ξ
−µ′

− P̂, (5.15)

since, as accounted for in [8, Rem. 1.1, (1.13)], the action of r+Ξ
−µ′

− is independent of how r+P̂ is
extended into R

n
−. Thus, in view of the mapping properties (5.2) of Ξ

−µ′

−,+,

‖r+P̂u‖Hs
(Rn

+) ' ‖Ξ
−µ′

−,+r+P̂u‖
H

s+Re µ′
(Rn

+)
= ‖r+Ξ

−µ′

− P̂u‖
H

s+Re µ′
(Rn

+)
. (5.16)

Composing the equation in (5.14) with Ξ
−µ′

−,+ to the left, we can therefore write it as

r+Ξ
−µ′

− Pu = g, where g = Ξ
−µ′

−,+ f ∈ H
s+Re µ′

(Rn
+). (5.17)

Next, we shall also replace u. Because of the right-hand factor Ξ
−µ
+ in the expression for Q̂ in (5.13),

we need to introduce the µ-transmission spaces

Hµ(t)(R
n
+) ≡ Ξ

−µ
+ e+H

t−Re µ
(Rn

+) for t > Re µ − 1
2 , (5.18)

defined in [8]; they are Hilbert spaces. (For t ≤ Re µ − 1
2 , the convention is to take Hµ(t)(R

n
+) = Ḣt(R

n
+),

but this is rarely used.) The following properties were shown in [8]:
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Theorem 5.4. [8] Let t > Re µ − 1
2 .

1◦ The mapping r+Ξ
µ
+ is a homeomorphism of Hµ(t)(R

n
+) onto H

t−Re µ
(Rn

+) with inverse Ξ
−µ
+ e+.

2◦ For |t − Re µ| < 1
2 , Hµ(t)(R

n
+) = Ḣt(R

n
+).

3◦ Assume Re µ > −1 and t > Re µ + 1
2 . Then

Hµ(t)(R
n
+) ⊂ Ḣt(R

n
+) + xµne+H

t−Re µ
(Rn

+), (5.19)

where Ḣt(R
n
+) is replaced by Ḣt−ε(R

n
+) if t − Re µ − 1

2 ∈ N. Moreover, the trace of u/xµn is well-defined
on Hµ(t)(R

n
+) and satisfies

Γ(1 + µ)γ0(u/xµn) = γ0Ξ
µ
+u ∈ Ht−Re µ− 1

2 (Rn−1). (5.20)

Rule 1◦ is shown in [8, Prop. 1.7]. Rule 2◦, shown in [8, (1.26)], holds because of the mapping
property (5.2) for Ξ

−µ
+ and the identification of e+H

t−Re µ
(Rn

+) with Ḣt−Re µ(R
n
+) when t−Re µ ∈ ]− 1

2 ,
1
2 [ .

Rule 3◦ is shown in [8, Th. 5.1, Cor. 5.3, Th. 5.4]; it deals with a higher t, where e+H
t−Re µ

(Rn
+) has a

jump at xn = 0, and the coefficient xµn appears. Let us just mention the key formula

F −1
ξn→xn

[(〈ξ′〉 + iξn)−µ(〈ξ′〉 + iξn)−1] = 1
Γ(µ+1)e

+r+xµne−〈ξ
′〉xn ,

which indicates how Ξ
−µ
+ = Op((〈ξ′〉 + iξn)−µ) is connected with the factor xµn. Besides in [8, Sect. 5],

explicit calculations are carried out e.g., in [12, Lemma 3.3] (and [9, Appendix]).
We note in passing that in the definition (5.18), one can equivalently replace the order-reducing

operator family Ξt
+ = Op((〈ξ′〉 + iξn)t) by Op(([ξ′] + iξn)t), or by Λt

+, as defined in [8].
Now continue the discussion of (5.17): In view of Theorem 5.4 1◦, we can set v = r+Ξ

µ
+u, where

u = Ξ
−µ
+ e+v, and hereby

r+Ξ−µ
′

P̂u = r+Ξ−µ
′

P̂Ξ
−µ
+ e+v = r+Q̂e+v = Q̂+v.

Then the Eq (5.17) reduces to an equivalent equation

Q̂+v = g,

with g given in H
s+Re µ′

(Rn
+) and v a priori taken in Ḣσ−Re µ(R

n
+). We shall denote s = t − 2a, so

s + Re µ′ = t − 2a + 2a − Re µ = t − Re µ. The equation was solved in Corollary 5.3 and we find for
r+P̂:

Theorem 5.5. Let P satisfy Assumption 3.1. For Re µ− 1
2 < t < Re µ+ 3

2 , r+P̂ defines a homeomorphism
(continuous bijective operator with continuous inverse)

r+P̂ : Hµ(t)(R
n
+)

∼
→ H

t−2a
(Rn

+). (5.21)

Furthermore, if u is in Ḣσ(R
n
+) for some σ > Re µ − 1

2 (this includes the value σ = a) and solves

(5.14) with f ∈ H
t−2a

(Rn
+), then u ∈ Hµ(t)(R

n
+).

Here Re µ > −1
2 since a > 0 and |Re δ| < 1

2 , so the rules in Theorem 5.4 3◦ apply.
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Proof. In view of (5.15) and (5.16), and the mapping property of Q̂ established in Corollary 5.3, r+P̂
has the forward mapping property in (5.21).

To solve (5.14), let σ = Re µ− 1
2 + ε for a small ε, set g = Ξ

−µ′

−,+ f ∈ H
t−2a+Re µ′

(Rn
+) = H

t−Re µ
(Rn

+) and
v = r+Ξ

µ
+u ∈ Ḣ−

1
2 +ε(R

n
+). Then (5.14) reduces to solving

Q̂+v = g, (5.22)

with g given in H
t−Re µ

(Rn
+) and v a priori lying in Ḣ−

1
2 +ε(R

n
+). By Corollary 5.3, (5.22) has a unique

solution v ∈ H
t−Re µ

(Rn
+), so u must lie in Hµ(t)(R

n
+), and the mapping (5.21) is bijective. �

Remark 5.6. This theorem differs from the strategy pursued in [6], and gives a new insight. The
technique in [6, Th. 7.3] for showing solvability in a higher-order Sobolev space, say with 1

2 < t−Re µ <
3
2 , f given in H

t−2a
(Rn

+), is to supplement P̂ with a potential operator KP̂ constructed from P̂ such that
the solutions are of the form u = u+ + KP̂ϕ with u+ ∈ Ḣt(R

n
+), ϕ a generalized trace derived from f . Our

aim is to show that there is a universal description of the space of solutions u of (5.14) with right-hand
side in H

t−2a
(Rn

+), that depends only on µ, and applies to any P of the given type. The µ-transmission
spaces (5.18) serve this purpose. In [8], they are shown to have this role for arbitrarily high t when the
full µ-transmission condition holds.

One more important property of µ-transmision spaces is that the spaces with C∞-ingredients
Eµ(R

n
+) ∩ E′(Rn) and e+xµnS(R

n
+) are dense subsets of Hµ(t)(R

n
+) for all t > Re µ − 1

2 , Re µ > −1
(cf. [8, Prop. 4.1] and [13, Lemma 7.1]). Recall also (5.5), which makes the statement for e+xµnS(R

n
+)

rather evident, since S(R
n
+) is dense in H

s
(Rn

+) for all s ∈ R. Hence r+P̂ applies nicely to these spaces.
When P merely satisfies Assumption 3.2, we have at least the forward mapping part of (5.21):

Theorem 5.7. Let P satisfy Assumption 3.2. For Re µ − 1
2 < t < Re µ + 3

2 , r+P̂ maps continuously

r+P̂ : Hµ(t)(R
n
+)→ H

t−2a
(Rn

+). (5.23)

Proof. This follows as in the preceding proof, now using the mapping property of r+Q̂e+ established
in Proposition 5.2. �

5.4. Consequences for the given operator P

The following consequences can be drawn for the original operator P:

Theorem 5.8. 1◦ Let P satisfy Assumption 3.2. Then P = P̂ + P′, where P̂ is defined by (3.9) and P′ is
of order 2a − 1. For Re µ − 1

2 < t < Re µ + 3
2 , r+P maps continuously

r+P : Hµ(t)(R
n
+)→ H

t−2a
(Rn

+). (5.24)

2◦ Let P satisfy Assumption 3.1. Then in the decomposition P = P̂ + P′, r+P̂ is invertible, as
described in Theorem 5.5.

Let Re µ − 1
2 < t < Re µ + 3

2 , let f ∈ H
t−2a

(Rn
+), and let u ∈ Ḣσ(R

n
+) (for some σ > Re µ − 1

2 ) solve
the homogeneous Dirichlet problem

r+Pu = f on Rn
+, supp u ⊂ R

n
+. (5.25)

Then u ∈ Hµ(t)(R
n
+).
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Proof. The original operator P equals Op(p(ξ)) with p(ξ) homogeneous on Rn of degree 2a > 0; in
particular it is continuous at 0. It is decomposed into

p(ξ) = p̂(ξ) + p′(ξ). (5.26)

where p′(ξ) is O(〈ξ〉2a−1) for |ξ| ≥ 2 by (3.10) and continuous, hence

|p′(ξ)| ≤ C′〈ξ〉2a−1 for ξ ∈ Rn.

This implies that P′ = Op(p′) maps H s(Rn) continuously into H s−2a+1(Rn) for all s ∈ R, and hence

r+P′ : Ḣ s(R
n
+)→ H

s−2a+1
(Rn

+) for all s ∈ R. (5.27)

1◦. The forward mapping property (5.23) holds for r+P̂ by Theorem 5.7. To show that it holds for
r+P′, let Re µ − 1

2 < t < Re µ + 3
2 .

If t − Re µ < 1
2 , then Hµ(t)(R

n
+) = Ḣt(R

n
+), and r+P′Ḣt(R

n
+) ⊂ H

t−2a+1
(Rn

+) ⊂ H
t−2a

(Rn
+) by (5.27),

matching the mapping property of P̂.
If 1

2 ≤ t − Re µ < 3
2 , we use the definition of Hµ(t)(R

n
+) to see that for small ε > 0,

r+P′Hµ(t)(R
n
+) = r+P′Ξ−µ+ e+H

t−Re µ
(Rn

+) ⊂ r+P′Ξ−µ+ Ḣ
1
2−ε(R

n
+)

= r+P′Ḣ
1
2−ε+Re µ(R

n
+) ⊂ H

3
2−ε+Re µ−2a

(R
n
+) ⊂ H

t−2a
(Rn

+),

also matching the mapping property of P̂.
Now (5.24) follows by adding the statements for P′ and P̂. This shows 1◦.
2◦. The first statement registers what we already know about r+P̂. Proof of the regularity statement:

With u and f as defined there, denote σ = Re µ − 1
2 + ε; here ε > 0. Then

r+P̂u = r+Pu − r+P′u ∈ H
t−2a

(Rn
+) + H

Re µ+ 1
2 +ε−2a

(Rn
+).

If t ≤ Re µ + 1
2 + ε, r+P̂u ∈ H

t−2a
(Rn

+), and we conclude from Theorem 5.5 that u ∈ Hµ(t)(R
n
+).

If t > Re µ + 1
2 + ε, r+P̂u ∈ H

Re µ+ 1
2 +ε−2a

(Rn
+); here Theorem 5.5 applies to give the intermediate

information that u ∈ Hµ(Re µ+ 1
2 +ε)(R

n
+). From this follows that

u ∈ Ξ
−µ
+ e+H

1
2 +ε

(Rn
+) ⊂ Ξ

−µ
+ Ḣ

1
2−ε

′

(R
n
+) = ḢRe µ+ 1

2−ε
′

(R
n
+),

for any ε′ > 0. Then r+P′u ∈ H
Re µ+ 3

2−ε
′−2a

(Rn
+). Choosing ε′ so small that Re µ + 3

2 − ε
′ ≥ t, we have

that r+P′u ∈ H
t−2a

(R
n
+); hence r+P̂u ∈ H

t−2a
(R

n
+), so it follows from Theorem 5.5 that u ∈ Hµ(t)(R

n
+).

This ends the proof of 2◦. �

Example 5.9. Theorem 5.8 applies to the operator L = Op(L(ξ)) described in (3.5)ff., showing that
it maps Hµ(t)(R

n
+) to H

t−2a
(Rn

+) for −1
2 < t − µ < 3

2 , and that solutions of the homogeneous Dirichlet

problem with f ∈ H
t−2a

(Rn
+) are in Hµ(t)(R

n
+) for these t. The appearance of the factor xµn (cf. (5.19)) is

consistent with the regularity shown in terms of Hölder spaces in [5].
In particular, the result provides a valid basis for applying r+L to Eµ(R

n
+) ∩ E′(Rn) or e+xµnS(R

n
+),

mapping these spaces into
⋂

ε>0 H
3
2−a+δ−ε

(Rn
+).

Mathematics in Engineering Volume 4, Issue 4, 1–33.



22

Remark 5.10. The domain spaces Hµ(t)(R
n
+) entering in Theorem 5.8 can be precisely described: For

|t − Re µ| < 1
2 , we already know from Theorem 5.4 2◦ that Hµ(t)(R

n
+) = Ḣt(R

n
+). For 1

2 < t − Re µ < 3
2 ,

we have by [12, Lemma 3.3] that u ∈ Hµ(t)(R
n
+) if and only if

u = v + w, where w ∈ Ḣt(R
n
+) and v = e+xµnK0γ0(u/xµn);

here K0 is the Poisson operator K0 : ϕ 7→ z solving the Dirichlet problem for 1 − ∆,

(1 − ∆)z = 0 on Rn
+, γ0z = ϕ at xn = 0,

with ϕ ∈ Ht−Re µ− 1
2 (Rn−1). For t − Re µ = 1

2 , we have the information u ∈
⋂

ε>0 Ḣt−ε(R
n
+). As a concrete

example, the elements u of H
1
2 ( 3

2 )(R
n
+) are the functions u = v + w, where w ∈ Ḣ

3
2 (R

n
+) and v = x

1
2
n K0ϕ

for some ϕ ∈ H
1
2 (Rn−1); this ϕ equals γ0(u/x

1
2
n ).

6. The integration by parts formula

6.1. An integration by parts formula for the modified P

It will now be shown that the operators P satisfying merely the principal µ-transmission condition
(Assumption 3.2) have an integration by parts formula over Rn

+, involving traces γ0(u/xµn). The study
will cover the special operator L in Example 5.9 (regardless of whether a full µ-transmission condition
might hold, as assumed in [13]). It also covers more general strongly elliptic operators, and it covers
operators that are not necessarily elliptic.

The basic observation is:

Proposition 6.1. Let µ ∈ C. Let w ∈
⋂

s H
s
(Rn

+), and let u′ ∈ Eµ̄(R
n
+) ∩ E′(Rn). Denote w′ = r+Ξ

µ̄
+u′ ∈⋂

s H
s
(Rn

+); correspondingly u′ = Ξ
−µ̄
+ e+w′ in view of Theorem 5.4 1◦. Then

(I ≡)
∫
Rn

+

Ξ
µ
−e

+w ∂nū′ dx = (γ0w, γ0w′)L2(Rn−1) + (w, ∂nw′)L2(Rn
+). (6.1)

The left-hand side is interpreted as in (6.2) below when Re µ ≤ 0.

The formula extends to w ∈ H
1
2 +ε

(Rn
+) and u′ ∈ Hµ̄(t)(R

n
+) with t ≥ Re µ + 1

2 − ε (for small ε > 0),
using the representation (6.2).

Proof. This was proved in [10, Th. 3.1] for µ = a > 0 (see also Remark 3.2 there with the elementary
case a = 1), and in [13, Th. 4.1] for real µ > −1

2 , so the main task is to check that the larger range of
complex µ is allowed. We write u′ as ū′ for short.

Note that when Im µ , 0, Eµ(R
n
+) is different from ERe µ(R

n
+), e.g., since xµn/xRe µ

n = xi Im µ
n = ei Im µ log xn

has absolute value 1 and is C∞ for xn > 0, but oscillates when xn → 0.
By the mapping properties of Ξ

µ
−,+ (cf. (5.2)), r+Ξ

µ
−e+w ∈

⋂
s H

s
(Rn

+), hence is integrable. When
Re µ > 0, the function ∂nu′ is O(xRe µ−1

n ) and compactly supported, so the left-hand side of (6.1) makes
sense as an integral of an L1-function. When µ is general, we observe that for any small ε > 0,

∂nu′ ∈ Eµ̄−1(R
n
+) ∩ E′(Rn) ⊂ Ξ

1−µ̄
+ e+

⋂
s

H
s
(Rn

+) ⊂ Ξ
1−µ̄
+ Ḣ

1
2−ε(R

n
+) = Ḣ−

1
2 +Re µ−ε(R

n
+),
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so the integral I makes sense as the duality

I = 〈r+Ξ
µ
−e

+w, ∂nu′〉
H

1
2 −Re µ+ε

(Rn
+),Ḣ−

1
2 +Re µ−ε(R

n
+)
. (6.2)

Since the adjoint of r+Ξ
µ
−e+ equals Ξ

µ̄
+, I is by transposition turned into

I = 〈w,Ξµ̄
+∂nu′〉

H
1
2 +ε

,Ḣ−
1
2 −ε

= 〈w, ∂nΞ
µ̄
+Ξ
−µ̄
+ e+w′〉

H
1
2 +ε

,Ḣ−
1
2 −ε

= 〈w, ∂ne+w′〉
H

1
2 +ε

,Ḣ−
1
2 −ε
.

Note that ∂ne+w satisfies an equation like (5.8), which fits in here since the space Ḣ−
1
2−ε(R

n
+) contains

distributions of the form ϕ(x′) ⊗ δ(xn). The expression is analysed as in [10, Th. 3.1] (and [13, Th.
4.1]), leading to

I = (γ0w, γ0w′)L2(Rn−1) + (w, e+∂nw′)L2(Rn
+), (6.3)

which shows (6.1).

For the whole analysis, it suffices that w ∈ H
s
(Rn

+) with s = 1
2 + ε, since Ξ

µ
−,+w ∈ H

1
2−Re µ+ε

(Rn
+)

then. For u′, it then suffices that u′ ∈ Hµ̄(t)(R
n
+) = Ξ

−µ̄
+ e+H

t−Re µ
(Rn

+) with t ≥ Re µ + 1
2 − ε (assuming

0 < ε < 1), since

∂nu′ ∈ Ξ
1−µ̄
+ e+H

t−Re µ
(Rn

+) ⊂ Ξ
1−µ̄
+ Ḣ

1
2−ε(R

n
+) = Ḣ−

1
2 +Re µ−ε(R

n
+)

then, so that the duality in (6.2) is well-defined. �

We shall now show:

Theorem 6.2. Let P satisfy Assumption 3.2; it is of order 2a and satisfies the principal µ-transmission
condition in the direction (0, 1) for some µ = a + δ ∈ C, and we denote a − δ = µ′. Assume moreover
that Re µ > −1, Re µ′ > −1. Consider P̂ = Op( p̂(ξ)), as defined by (3.9). For u ∈ Eµ(R

n
+) ∩ E′(Rn),

u′ ∈ Eµ̄′(R
n
+) ∩ E′(Rn), there holds∫

Rn
+

P̂u ∂nū′ dx +

∫
Rn

+

∂nu P̂∗u′ dx

= Γ(µ + 1)Γ(µ′ + 1)
∫
Rn−1

s0γ0(u/xµn) γ0(ū′/xµ
′

n ) dx′,
(6.4)

where s0 = e−iπδp(0, 1). The formula extends to u ∈ Hµ(t)(R
n
+), u′ ∈ Hµ̄′(t′)(R

n
+), for t > Re µ + 1

2 ,
t′ > Re µ′ + 1

2 .
The integrals over Rn

+ are interpreted as dualities (as in Proposition 6.1) when Re µ or Re µ′ ≤ 0,
and when extended to general u, u′.

Proof. Since integration over Rn
+ in itself indicates that the functions behind the integration sign are

restricted to Rn
+, we can leave out the explicit mention of r+. Recall that

p̂ = χ
µ′

− q̂ χµ+, P̂ = Ξ
µ′

− Q̂ Ξ
µ
+,

cf. (3.13). The adjoint is P̂∗ = Ξ
µ̄
−Q̂ Ξ

µ̄′

+ . Recall from Proposition 4.2 that

q(ξ) = s0 + f+(ξ) + f−(ξ), hence Q̂ = s0 + F̂+ + F̂−,
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where f̂±(ξ) extend holomorphically in ξn + iτ into C− resp. C+, estimated as in (4.8).
Accordingly, P̂ splits up in three terms

P̂ = P̂1 + P̂2 + P̂3, where P̂1 = s0Ξ
µ′

−Ξ
µ
+, P̂2 = Ξ

µ′

− F̂+Ξ
µ
+, P̂3 = Ξ

µ′

− F̂−Ξ
µ
+. (6.5)

Consider the contribution from P̂1:∫
Rn

+

P̂1u ∂nū′ dx +

∫
Rn

+

∂nu P̂∗1u′ dx = s0

∫
Rn

+

Ξ
µ′

−Ξ
µ
+u ∂nū′ dx + s0

∫
Rn

+

∂nu Ξ
µ̄
−Ξ

µ̄′

+ u′ dx.

Recall that s0 = q(0, 1) = e−iπδp(0, 1) by (3.16); this constant is left out of the next calculations.
When u ∈ Eµ(R

n
+) ∩ E′(Rn), then w = r+Ξ

µ
+u ∈

⋂
s H

s
(Rn

+). Similarly as in (5.15), r+Ξ
µ′

−Ξ
µ
+u =

r+Ξ
µ′

− e+r+Ξ
µ
+u, which equals r+Ξ

µ′

− e+w, hence lies in
⋂

s H
s
(Rn

+) by (5.2). An application of Proposition
6.1 with µ replaced by µ′ gives:∫

Rn
+

Ξ
µ′

−Ξ
µ
+u ∂nū′ dx =

∫
Rn

+

r+Ξ
µ′

− e+w ∂nū′ dx = (γ0w, γ0w′)L2(Rn−1) + (w, ∂nw′)L2(Rn
+),

where w′ = r+Ξ
µ̄′

+ u′.
We can apply the analogous argument to show that the conjugate of

∫
Rn

+

∂nu Ξ
µ̄
−Ξ

µ̄′

+ u′ dx satisfies∫
Rn

+

Ξ
µ̄
−Ξ

µ̄′

+ u′ ∂nū dx = (γ0w′, γ0w)L2(Rn−1) + (w′, ∂nw)L2(Rn
+);

here w′ = r+Ξ
µ̄′

+ u′ and w = r+Ξ
µ
+u are the same as the functions defined in the treatment of the first

integral.
It follows by addition that∫

Rn
+

Ξ
µ′

−Ξ
µ
+u ∂nū′ dx +

∫
Rn

+

∂nu Ξ
µ̄
−Ξ

µ̄′

+ u′ dx

= 2(γ0w, γ0w′)L2(Rn−1) + (w, ∂nw′)L2(Rn
+) + (∂nw,w′)L2(Rn

+) = (γ0w, γ0w′)L2(Rn−1);

in the last step we used that
∫
Rn

+

(w∂nw̄′ + ∂nww̄′) dx = −
∫
Rn−1 γ0wγ0w̄′ dx′. Insertion of γ0w = γ0Ξ

µ
+u =

Γ(1 + µ)γ0(u/xµn) (cf. (5.20)), and similarly γ0w′ = γ0Ξ
µ̄′

+ u′ = Γ(1 + µ̄′)γ0(u′/xµ̄
′

n ), gives (6.4) with P̂
replaced by P̂1 (using also that Γ(1 + µ̄′) = Γ(1 + µ′)).

As for extension of the formula to larger spaces, we note that by Proposition 6.1, the calculations

for the first integral allow w ∈ H
1
2 +ε

(Rn
+), corresponding to u ∈ Hµ(t)(R

n
+) with t = Re µ + 1

2 + ε, and
u′ ∈ Hµ̄′(t′)(R

n
+) with t′ ≥ Re µ′+ 1

2 −ε. With the analogous conditions for the calculations of the second
integral, we find altogether that t > Re µ + 1

2 , t′ > Re µ′ + 1
2 , is allowed.

The contributions from P̂2 and P̂3 will be treated by variants of this proof, where we show that their
boundary integrals give zero.

Consider P̂2. As in (5.15), we have:

r+P̂2u = r+Ξ
µ′

− F̂+Ξ
µ
+u = r+Ξ

µ′

− e+r+(F̂+Ξ
µ
+u),

r+P̂∗2u′ = r+Ξ
µ̄
−F̂∗+Ξ

µ̄′

+ u′ = r+(Ξµ̄
−F̂∗+)e+r+Ξ

µ̄′

+ u′,
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where F̂∗+ = Op( f̂+). Set

w = r+Ξ
µ
+u, w1 = r+F̂+Ξ

µ
+u, w′ = r+Ξ

µ̄′

+ u′. (6.6)

Here when u ∈ Hµ(t)(R
n
+), w ∈ H

t−Re µ
(Rn

+), and when u′ ∈ Hµ̄′(t′)(R
n
+), w′ ∈ H

t′−Re µ′
(Rn

+). For w1 we
have since u = Ξ

−µ
+ e+w (by Theorem 5.4 1◦), that

w1 = r+F̂+Ξ
µ
+u = r+F̂+Ξ

µ
+Ξ
−µ
+ e+w = r+F̂+e+w ∈ H

t−Re µ
(Rn

+),

when −1
2 < t − Re µ < 3

2 , by the mapping property for F̂+ established in Proposition 5.2.
We can then apply Proposition 6.1 to the first integral for P̂2, with µ replaced by µ′, giving when

t − Re µ > 1
2 : ∫

Rn
+

P̂2u∂nū′ dx =

∫
Rn

+

Ξ
µ′

− F̂+Ξ
µ
+u∂nū′ dx =

∫
Rn

+

Ξ
µ′

− e+w1∂nū′ dx

= (γ0w1, γ0w′)L2(Rn−1) + (w1, ∂nw′)L2(Rn
+).

(6.7)

There is a general formula for the trace, entering in Vishik and Eskin’s calculus as well as that of Boutet
de Monvel,

γ0v = (2π)−n
∫
Rn−1

eix′·ξ′
∫
R

F (e+v) dξndξ′,

where the integral over R is read either as an ordinary integral or, if necessary, as the integral
∫ +

defined
e.g., in [7, (10.85)] (also recalled in [11, (A.1), (A.15)]). Applying this to w1, we find:

γ0w1 = γ0(F̂+,+w) = (2π)−n
∫
Rn−1

eix′·ξ′
∫
R

f̂+(ξ′, ξn)F (e+w) dξndξ′. (6.8)

This integral gives 0 for the following reason: It suffices to take w in the dense subspace of H
t−Re µ

(Rn
+)

of compactly supported functions in C∞(R
n
+). Both f̂+ and F (e+w) are holomorphic in C− as functions

of ξn, f+ being O(〈ξn〉
−1+ε) and F (e+w) being O(〈ξn〉

−1) on C−, whereby the integrand is O(〈ξn〉
−2+ε)

there (and is in L1 on R); then the integral over R can be transformed to a closed contour in C− and
gives 0.

We can then conclude:∫
Rn

+

P̂2u∂nū′ dx =

∫
Rn

+

Ξ
µ′

− F̂+Ξ
µ
+u∂nū′ dx = (w1, ∂nw′)L2(Rn

+). (6.9)

The other contribution from P̂2 is, in conjugated form,∫
Rn

+

P̂∗2u′∂nū dx =

∫
Rn

+

Ξ
µ̄
−F̂∗+e+r+Ξ

µ̄′

+ u′ ∂nū dx

= 〈r+Ξ
µ̄
−F̂∗+e+r+Ξ

µ̄′

+ u′, ∂nu〉
H

1
2 −Re µ+ε

,Ḣ−
1
2 +Re µ−ε

= 〈r+Ξ
µ̄′

+ u′, F̂+Ξ
µ
+∂nu〉

H
1
2 +ε

,Ḣ−
1
2 −ε

= 〈r+Ξ
µ̄′

+ u′, ∂nF̂+Ξ
µ
+u〉

H
1
2 +ε

,Ḣ−
1
2 −ε

= 〈r+Ξ
µ̄′

+ u′, ∂nF̂+e+w〉
H

1
2 +ε

,Ḣ−
1
2 −ε

= 〈w′, ∂ne+w1〉
H

1
2 +ε

,Ḣ−
1
2 −ε

= (γ0w′, γ0w1)L2(Rn−1) + (w′, ∂nw1)L2(Rn
+) = (w′, ∂nw1)L2(Rn

+),
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where we used Proposition 6.1 in a similar way, and at the end used that γ0w1 = 0, cf. (6.8)ff. Finally,
taking the contributions from P̂2 together, we get∫

Rn
+

P̂2u ∂nū′ dx +

∫
Rn

+

∂nu P̂∗2u′ dx = (w1, ∂nw′)L2(Rn
+) + (∂nw1,w′)L2(Rn

+)

= −(γ0w1, γ0w′)L2(Rn−1) = 0,

using again that γ0w1 = 0.
It is found in a similar way, using that F̂∗− is of plus-type, that P̂3 contributes with zero. �

6.2. An integration by parts formula for the original P

To extend the formula to the original operator P, we shall show that P′ = P − P̂ (cf. Theorem 5.8
1◦) gives a zero boundary contribution.

Lemma 6.3. Let a > 0 and let S = Op(s(ξ)), where s(ξ) is O(〈ξ〉2a−1). Then∫
Rn

+

S u ∂nū′ dx +

∫
Rn

+

∂nu S ∗u′ dx = 0, (6.10)

for any u, u′ ∈ Ḣa(R
n
+).

Proof. Since u ∈ Ḣa(R
n
+), r+S u ∈ H

1−a
(Rn

+); moreover ∂nu′ ∈ Ḣa−1(R
n
+), so we can write the first

integral as
〈r+S u, ∂nu′〉

H
1−a

(Rn
+),Ḣa−1(R

n
+)
.

Approximate u′ in Ḣa(R
n
+) by a sequence of functions ϕk ∈ C∞0 (Rn

+), k ∈ N; then

〈r+S u, ∂nϕk〉H
1−a

,Ḣa−1 = −〈r+∂nS u, ϕk〉H
−a
,Ḣa → −〈r+∂nS u, u′〉H−a

,Ḣa .

With a similar argument for the second integral, we have

〈r+S u, ∂nu〉
H

1−a
,Ḣa−1 + 〈∂nu, r+S ∗u′〉

Ḣa−1,H
1−a

= −〈r+∂nS u, u′〉H−a
,Ḣa − 〈u, r+∂nS ∗u〉Ḣa,H

−a

= −〈r+∂nS u, u′〉H−a
,Ḣa + 〈u, r+(∂nS )∗u〉Ḣa,H

−a = 0,

since ∂nS ∗ = S ∗∂n = −(∂nS )∗, and it is well-known that the operator S 1 = ∂nS of order 2a satisfies
〈r+S 1u, u′〉 = 〈u, r+S ∗1u′〉 for u, u′ ∈ Ḣa(R

n
+). �

We can then conclude:

Theorem 6.4. Let P, µ, µ′ be as in Theorem 6.2. For u ∈ Eµ(R
n
+)∩E′(Rn), u′ ∈ Eµ̄′(R

n
+)∩E′(Rn), there

holds ∫
Rn

+

Pu ∂nū′ dx +

∫
Rn

+

∂nu P∗u′ dx

= Γ(µ + 1)Γ(µ′ + 1)
∫
Rn−1

s0γ0(u/xµn) γ0(ū′/xµ
′

n ) dx′,
(6.11)
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where s0 = e−iπδp(0, 1). The formula extends to u ∈ Hµ(t)(R
n
+), u′ ∈ Hµ̄′(t′)(R

n
+), for t > Re µ + 1

2 ,
t′ > Re µ′ + 1

2 , with t, t′ ≥ a.
The integrals over Rn

+ are interpreted as dualities (as in Proposition 6.1 and Lemma 6.3) when Re µ
or Re µ′ ≤ 0, and when extended to general u, u′.

Proof. Recall that P = P̂ + P′, where P′ = Op(p′), |p′(ξ)| ≤ C〈ξ〉2a−1 (cf. Theorem 5.8 1◦). We
have the identities (6.10) with S = P′ and (6.4) for u ∈ Hµ(t)(R

n
+), u′ ∈ Hµ̄′(t′)(R

n
+) with t, t′ ≥ a,

t > Re µ + 1
2 , t′ > Re µ′ + 1

2 . Adding the identities for P̂ and P′ we obtain (6.11). It holds a fortiori for
u ∈ Eµ(R

n
+) ∩ E′(Rn), u′ ∈ Eµ̄′(R

n
+) ∩ E′(Rn). �

Example 6.5. The theorem applies in particular to L = Op(L(ξ)) studied in (3.5)–(3.6) and Example
5.9, showing that∫

Rn
+

Lu ∂nū′ dx +

∫
Rn

+

∂nu L∗u′ dx

= Γ(µ + 1)Γ(µ′ + 1)
∫
Rn−1
|L(0, 1)|γ0(u/xµn) γ0(ū′/xµ

′

n ) dx′,
(6.12)

The value s0 = |L(0, 1)| = (A(0, 1)2 + B(0, 1)2)
1
2 is found in (3.17).

This result was proved in [5, Prop. 1.4] by completely different, real methods, for µ ∈

]0, 2a[∩ ]2a − 1, 1[ .
The result is one of the key ingredients in the proof of integration by parts formulas for operators

L on bounded domains Ω ⊂ Rn in [5], where µ(ν) varies as the normal ν varies along the boundary.
It would be interesting to extend this knowledge to general strongly elliptic operators P on bounded
domains by similar applications of Theorem 6.4.

Example 6.6. Here is an example of an application to a nonelliptic operator satisfying Assumption
3.2. Let

P = |∂1 + ∂2|
m + |∂3|

m−1∂3, with symbol p(ξ) = |ξ1 + ξ2|
m + i sign ξ3|ξ3|

m

on R3, for some 1 < m < 2. For R3
+ = {x3 > 0} we have the normal ν = (0, 0, 1), where

p(0, 0, 1) = i, p(0, 0,−1) = −i, so (3.1) holds with m − 2µ = 1,

i.e., µ = (m − 1)/2, µ′ = (m + 1)/2. Then by Theorem 6.4,∫
x3>0

(Pu v̄ − u P∗v) dx = Γ(m
2 + 1

2 )Γ(m
2 + 3

2 )
∫

x3=0
γ0

( u
x(m−1)/2

3

)
γ0

( v̄
x(m+1)/2

3

)
dx′,

for functions u ∈ x(m−1)/2
3 S(R

3
+), v ∈ x(m+1)/2

3 S(R
3
+).

The halfspace {x2 > 0} has the normal ν′ = (0, 1, 0) and

p(ν′) = 1, p(−ν′) = 1, so (3.1) holds with m − 2µ = 0,

i.e., µ = m/2, µ′ = m/2. Here by Theorem 6.4,∫
x2>0

(Pu v̄ − u P∗v) dx = Γ(m
2 + 1)2

∫
x2=0

γ0
( u

xm/2
2

)
γ0

( v̄
xm/2

2

)
dx1dx3,

for functions with a factor xm/2
2 .
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7. Large solutions and a halfways Green’s formula

7.1. Large solutions, a nonhomogeneous Dirichlet problem

Let P satisfy Assumption 3.1, and assume Re µ > 0. Along with the homogeneous Dirichlet
problem (5.25), one can consider a nonhomogeneous local Dirichlet problem if the scope is expanded
to allow so-called “large solutions”, behaving like xµ−1

n near the boundary of Rn
+; such solutions blow

up at the boundary when Re µ < 1. Namely, one can pose the nonhomogeneous Dirichlet problem

r+Pu = f on Rn
+, γ0(u/xµ−1

n ) = ϕ on Rn−1, supp u ⊂ R
n
+. (7.1)

Problem (7.1) was studied earlier for operators satisfying the a-transmission property in [8, 9]
(including the fractional Laplacian (−∆)a), and a halfways Green’s formula was shown in [11, Cor.
4.5]. The problem (7.1) for the fractional Laplacian, and the halfways Green’s formula — with
applications to solution formulas — were also studied in Abatangelo [1] (independently of [8]); the
boundary condition there is given in a less explicit way except when Ω is a ball. There have been
further studies of such problems, see e.g., Abatangelo, Gomez-Castro and Vazquez [2] and its
references.

Note that the boundary condition in (7.1) is local. There is a different problem which is also regarded
as a nonhomogeneous Dirichlet problem, namely to prescribe nonzero values of u in the exterior of Ω;
it has somewhat different solution spaces (a link between this and the homogeneous Dirichlet problem
is described in [9]).

For the general operators P considered here, we shall now show that problem (7.1) has a good sense
for u ∈ H(µ−1)(t)(R

n
+) with suitable t.

More precisely, since P also satisfies the principal (µ−1)-transmission condition (as remarked after
Definition 2.1), Theorem 5.8 1◦ can be applied with µ replaced by µ − 1, implying that r+P maps

r+P : H(µ−1)(t)(R
n
+)→ H

t−2a
(Rn

+) for Re µ − 3
2 < t < Re µ + 1

2 . (7.2)

This is also valid in the case where P is only assumed to satisfy Assumption 3.2.
From Theorem 5.4 we have (note that Re µ − 1 > −1)

H(µ−1)(t)(R
n
+)

= Ḣt(R
n
+) when − 3

2 < t − Re µ < −1
2 ,

⊂ Ḣt(R
n
+) + xµ−1

n e+H
t−Re µ+1

(Rn
+) when − 1

2 < t − Re µ < 1
2 .

(7.3)

When t − Re µ > −1
2 , the weighted boundary value is well-defined, cf. (5.20):

γ
µ−1
0 u ≡ Γ(µ)γ0(u/xµ−1

n ) = γ0(Ξµ−1
+ u) ∈ Ht−Re µ+ 1

2 (Rn−1). (7.4)

The following regularity result holds for the nonhomogeneous Dirichlet problem:

Theorem 7.1. Let P satisfy Assumption 3.1 with Re µ > 0, and let −1
2 < t − Re µ < 1

2 . When f ∈

H
t−2a

(Rn
+) and ϕ ∈ Ht−Re µ+ 1

2 (Rn−1) are given, and u solves the nonhomogeneous Dirichlet problem
(7.1) with u ∈ H(µ−1)(σ)(R

n
+) for some −1

2 < σ − Re µ < 1
2 , then in fact u ∈ H(µ−1)(t)(R

n
+).
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Proof. It is known from [8, Th. 6.1] that Hµ(σ)(R
n
+) is a closed subspace of H(µ−1)(σ)(R

n
+), equal to the

set of v ∈ H(µ−1)(σ)(R
n
+) for which γ0(v/xµ−1

n ) = 0. From the given ϕ we define

w = Γ(µ)Ξ−µ+1
+ e+K0ϕ ∈ H(µ−1)(t)(R

n
+),

where K0 is the standard Poisson operator ϕ 7→ K0ϕ = F −1
ξ′→x′[ϕ̂(ξ′)e−〈ξ

′〉xn], xn > 0. Then in view of
(7.4),

γ0(w/xµ−1
n ) = Γ(µ)−1γ0(Ξµ−1

+ w) = γ0(Ξµ−1
+ Ξ

1−µ
+ e+K0ϕ) = γ0K0ϕ = ϕ,

so that v = u − w solves (7.1) with f replaced by f − r+Pw ∈ H
t−2a

(Rn
+), ϕ replaced by 0. This is

a homogeneous Dirichlet problem as in (5.25). Since v ∈ H(µ−1)(σ)(R
n
+) with γ0(v/xµ−1

n ) = 0, it is in
Hµ(σ)(R

n
+). It then follows from Theorem 5.8 that v ∈ Hµ(t)(R

n
+), and hence u = v+w ∈ H(µ−1)(t)(R

n
+). �

For the hatted version P̂ there is even an existence and uniqueness result in these spaces.

Theorem 7.2. Let P satisfy Assumption 3.1 with Re µ > 0, and let −1
2 < t − Re µ < 1

2 . Then r+P̂
together with γµ−1

0 defines a homeomorphism:

{r+P̂, γµ−1
0 } : H(µ−1)(t)(R

n
+)

∼
→ H

t−2a
(Rn

+) × Ht−Re µ+ 1
2 (Rn−1). (7.5)

Proof. The forward mapping properties are accounted for above. The existence of a unique solution
u ∈ H(µ−1)(t)(R

n
+) of

r+P̂u = f on Rn
+, γ

µ−1
0 u = ϕ on Rn−1, supp u ⊂ R

n
+, (7.6)

for given f ∈ H
t−2a

(Rn
+), ϕ ∈ Ht−Re µ+ 1

2 (Rn−1), is shown as in Theorem 7.1, now referring to Theorem
5.5 instead of Theorem 5.8. �

These theorems show that H(µ−1)(t)(R
n
+) is the correct domain space for the nonhomogeneous

Dirichlet problem, at least in the small range −1
2 < t − Re µ < 1

2 . Recall that Eµ−1(R
n
+) ∩ E′(Rn) and

e+xµ−1
n S(R

n
+) are dense subsets of H(µ−1)(t)(R

n
+) for all t > Re µ − 3

2 .

7.2. An integration by parts formula involving the nontrivial Dirichlet trace

We now show a “halfways Green’s formula”, where one factor u is in the domain of the
nonhomogeneous Dirichlet problem for P and the other factor v is in the domain of the homogeneous
Dirichlet problem for P∗:

Theorem 7.3. Let P satisfy Assumption 3.2, and assume moreover that 0 < Re µ < a + 1
2 , Re µ′ > 0.

For u ∈ Eµ−1(R
n
+) ∩ E′(Rn) and v ∈ Eµ̄′(R

n
+) ∩ E′(Rn), there holds∫

Rn
+

Pu v̄ dx −
∫
Rn

+

u P∗v dx = −Γ(µ)Γ(µ′ + 1)
∫
Rn−1

s0γ0(u/xµ−1
n ) γ0(v̄/xµ

′

n ) dx′, (7.7)

where s0 = e−iπδp(0, 1). The formula extends to u ∈ H(µ−1)(t)(R
n
+) with t > Re µ − 1

2 , v ∈ Hµ̄′(t′)(R
n
+) with

t′ > Re µ′ + 1
2 .

The left-hand side is interpreted as follows, for small ε > 0:

〈r+Pu, v〉
H
−Re µ′− 1

2 +ε
(Rn

+),ḢRe µ′+ 1
2 −ε(R

n
+)
− 〈u, P∗v〉

ḢRe µ− 1
2 −ε(R

n
+),H

−Re µ+ 1
2 +ε

(Rn
+)
. (7.8)
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Proof. We shall show how the result can be derived from Theorem 6.4. Let u ∈ Eµ−1(R
n
+) ∩ E′(Rn) and

v ∈ Eµ̄′(R
n
+) ∩ E′(Rn). As shown in [8, p. 494], there exist functions U and u1 in Eµ(R

n
+) ∩ E′(Rn) such

that u = ∂nU + u1.
In terms of the Hilbert spaces: When u ∈ H(µ−1)(t)(R

n
+) with |t − Re µ| < 1

2 , let z = r+Ξ
µ−1
+ u ∈

H
t−Re µ+1

(Rn
+), then (denoting Op(〈ξ′〉) = 〈D′〉)

u = Ξ
−µ+1
+ e+z = (〈D′〉 + ∂n)Ξ−µ+ e+z = u1 + ∂nU, with

u1 = 〈D′〉Ξ−µ+ e+z ∈ 〈D′〉Hµ(t+1)(R
n
+) ⊂ Hµ(t)(R

n
+),

U = Ξ
−µ
+ e+z ∈ Hµ(t+1)(R

n
+), ∂nU ∈ Hµ(t)(R

n
+).

(7.9)

Here Hµ(t)(R
n
+) = Ḣt(R

n
+) since |t − Re µ| < 1

2 . Moreover, when t = Re µ − 1
2 + ε for a small ε > 0, then

r+Pu = r+Pu1 + r+P∂nU = r+Pu1 + ∂nr+PU (7.10)

where both terms are in H
t−2a

(Rn
+) = H

Re µ− 1
2 +ε−2a

(Rn
+) = H

−Re µ′− 1
2 +ε

(Rn
+); we here use Theorem 5.8 1◦.

For v, we note that when v ∈ Hµ̄′(t′)(R
n
+) with t′ = Re µ′ + 1

2 + ε, then

v ∈ Hµ̄′(t′)(R
n
+) = Ξ

−µ̄′

+ e+H
t′−Re µ′

(Rn
+) ⊂ Ξ

−µ̄′

+ Ḣ
1
2−ε(R

n
+) = ḢRe µ′+ 1

2−ε(R
n
+),

r+P∗v ∈ H
t′−2a

(Rn
+) = H

Re µ′+ 1
2 +ε−2a

(Rn
+) = H

−Re µ+ 1
2 +ε

(Rn
+).

Then the dualities in (7.8) are well-defined and serve as an interpretation of the left-hand side in (7.7).
The formula (7.7) will first be proved for u ∈ Eµ−1(R

n
+) ∩ E′(Rn) and v ∈ Eµ̄′(R

n
+) ∩ E′(Rn), and

afterwards be extended by continuity to general u, v. We use the decomposition (7.9), that leads to
elements of Eµ(R

n
+) for t → ∞. When u is supported in a ball {|ξ| ≤ R}, we can cut u1 and U down to

have support in {|ξ| ≤ 2R}.
Consider the contribution from u1. Here there holds

〈r+Pu1, v〉H−a
,Ḣa − 〈u1, r+P∗v〉Ḣa,H

−a = 0, (7.11)

when u1 and v are in Ḣa(R
n
+), since P is of order 2a. This gives the contribution 0 to (7.7) since t = a is

allowed in the definition of u1 (recall that a > Re µ − 1
2 by hypothesis), and t′ ≥ a holds for the values

of t′ allowed in the definition of v (where t′ > Re µ′ + 1
2 = 2a − Re µ + 1

2 > 2a − a = a). Thus u1

contributes to the boundary integral with 0.
For the contribution from ∂nU, we note that, writing U = xµnw for xn > 0, w ∈ C∞(R

n
+),

∂nU = ∂n(xµnw) = µxµ−1
n w + xµn∂nw for xn > 0,

so the weighted boundary value for xn → 0+ satisfies (since xµn∂nw/xµ−1
n = xn∂nw→ 0)

γ0(∂nU/xµ−1
n ) = µγ0w = µγ0(U/xµn). (7.12)

Moreover, by a simple integration by parts,

〈r+P∂nU, v〉 = 〈r+∂nPU, v〉 = −〈r+PU, ∂nv〉,
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since γ0v = 0 because of Re µ′ > 0. Thus, by use of Theorem 6.4 and (7.12),

〈r+P∂nU, v〉 − 〈∂nU, r+P∗v〉 = −〈r+PU, ∂nv〉 − 〈∂nU, r+P∗v〉

= −Γ(µ + 1)Γ(µ′ + 1)s0

∫
Rn−1

γ0(U/xµn)γ0(v̄/xµ
′

n ) dx′

= −Γ(µ)Γ(µ′ + 1)s0

∫
Rn−1

γ0(∂nU/xµ−1
n )γ0(v̄/xµ

′

n ) dx′.

Since u1 ∈ Eµ(R
n
+), γ0(u1/xµ−1

n ) = 0, so u1 can be added to ∂nU in the last integral. Adding also (7.11)
to the left-hand side, we find (7.7).

Since the expressions depend continuously on u, v in the presented norms, the formula extends to
the indicated spaces. �

Example 7.4. Theorems 7.1 and 7.2 apply in particular to the operator L considered in (3.5)–(3.6) and
Examples 5.9 and 6.5, when µ > 0 (this holds automatically if a ≥ 1

2 , since |δ| < 1
2 ). Theorem 7.3

applies to L when µ and µ′ > 0 (again automatically satisfied when a ≥ 1
2 ).

Remark 7.5. The transmission spaces can also be defined in terms of other scales of function spaces.
The case of Bessel-potential spaces H s

p, 1 < p < ∞, is a main subject in our preceding papers. There
is also the Hölder-Zygmund scale C s

∗(R
n), coinciding with the Hölder scale C s(Rn) when s ∈ R+ \ N,

with spaces over Rn
+ defined as in (5.1). Here since C s+ε

∗ (Rn) ⊂ H s(Rn), also Cµ(s+ε)
∗ (R

n
+) ⊂ Hµ(s)(R

n
+)

for ε > 0. (More details on such spaces in our earlier papers, e.g., in [12].) So the results dealing with
forward mapping properties of r+P have useful consequences involving these spaces as well. Namely,
Theorem 5.8 1◦ implies that r+P maps

r+P : Cµ(t+ε)
∗ (R

n
+)→ H

t−2a
(Rn

+) for Re µ − 1
2 < t < Re µ + 3

2 ,

and the integration by parts formulas in Sections 6 and 7 hold for functions in Cµ(t)
∗ -type spaces, for the

same t.
In the opposite direction, an inclusion of an H s-space in a Hölder spaces loses n/2 in the regularity

parameter, hence does not give very good results. For better regularity results, it would be interesting to
extend the above theory to H s

p-spaces with general 1 < p < ∞, possibly under further hypotheses; this
remains to be done. More smoothness than C1 is needed for a symbol q(ξ) to be a Fourier multiplier
in Lp (some well-known conditions are recalled in [15, Sect. 1.3]). There is an extension of Vishik and
Eskin’s work to Lp-based spaces by Shargorodsky [21], which should be useful. It is there pointed out
that [6, Lemma 17.1] shows how smoothness properties carry over to the factors in the Wiener-Hopf
factorization.
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