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Abstract: We study the behaviour of the solutions to the quasilinear heat equation with a reaction
restricted to a half-line

ut = (um)xx + a(x)up,

m, p > 0 and a(x) = 1 for x > 0, a(x) = 0 for x < 0. We first characterize the global existence exponent
p0 = 1 and the Fujita exponent pc = m + 2. Then we pass to study the grow-up rate in the case p ≤ 1
and the blow-up rate for p > 1. In particular we show that the grow-up rate is different as for global
reaction if p > m or p = 1 , m.
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In memoriam of our friend Ireneo Peral. Master of Mathematics.

1. Introduction

We consider the following Cauchy problem{
ut = (um)xx + a(x)up, x ∈ R, t > 0,
u(x, 0) = u0(x).

(1.1)

We take exponents m, p > 0 and the coefficient is the characteristic function of a half-line, a(x) =

1(0,∞)(x). The initial value u0 ∈ L1(R) ∩ L∞(R) is assumed to be continuous and nonnegative, so
that nonnegative solutions u ≥ 0 are considered. We are interested in characterizing and describing
the phenomena of blow-up and grow-up for the solutions to (1.1) in terms of the parameters of the
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problem, the exponents m and p and the initial datum u0. By a solution u having blow-up we mean that
there exists a finite time T such that u is well defined and finite for t < T and

lim
t→T−
‖u(·, t)‖∞ = ∞.

When T = ∞ we say that u has grow-up.
The problem with global reaction a(x) = 1 has been deeply studied in the last years mainly

concerning blow-up and p > 1, see for instance the survey book [14], but also in relation to grow-up,
and thus p ≤ 1, see [1, 12]. In fact there can exist blow-up solutions only if p > 1, and in that range
small initial data produce global solutions if and only if p > m + 2. The global solutions are
unbounded if p ≤ 1, i.e., they have grow-up, while they are globally bounded if p > m + 2. The
exponents p0 = 1 and pc = m + 2 are called, respectively, global existence exponent and Fujita
exponent. For the related case in which the reaction coefficient is a(x) = 1(−L,L)(x), 0 < L < ∞, the
exponents are p0 = max{1, m+1

2 } and pc = m + 1, see [2, 4, 13].
The first result in the paper establishes precisely for which exponents and data we have such

phenomena of blow-up or grow-up. We prove that the exponents are the same as for the case a(x) = 1.

Theorem 1.1.

1). If 0 < p ≤ p0 = 1 all the solutions to problem (1.1) are globally defined and unbounded.
2). If 1 < p ≤ pc = m + 2 all the solutions blow up in finite time.
3). If p > m + 2 solutions may blow up in finite time or not depending on the initial data. Global

solutions are bounded.

The second question to deal with is the speed at which the unbounded solutions tend to infinity,
both in the grow-up and in the blow-up cases. For global solutions we show that these rates are not the
natural ones given by the corresponding no diffusion ODE (2.1). This in fact gives an upper estimate
of the grow-up rate by comparison,

u(x, t) ≤
{

ct
1

1−p , p < 1,
cet, p = 1.

(1.2)

We remark that when p < 1 the reaction function is not Lipschitz, and uniqueness does not
necessarily hold, neither comparison, see [1, 12]. In that case we can use for comparison a maximal
solution or a minimal solution, [12].

In the case of global reaction a(x) = 1, it is proved in [1, 11] that the above is indeed the grow-up
rate when 0 < p < 1, that is

u(x, t) ∼ t
1

1−p

uniformly in compact sets. By f ∼ g we mean 0 < c1 ≤ f /g ≤ c2 < ∞.
However, for p = 1 it is well known, through and easy change of variables that eliminates the

reaction, that u(x, t) ∼ t−1/2et if m = 1 and

u(x, t) ∼ eγt, γ = min{1,
2

m + 1
},

when m , 1, for t large uniformly in compact sets of R, see [15] .
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On the other hand, when a(x) = 1(−L,L) it is proved in [3] that estimate (1.2) is far from being sharp
in most of the cases. In particular

u(x, t) ∼


t

1
m+1−2p , if p ≤ 1 < m,

t
1

1−p , if m ≤ p < 1,
et, if m < p = 1,

uniformly in compact sets in the first case, only for |x| < L in the last two cases. For |x| > L the rate is
different in the case p > m, namely

u(x, t) ∼ t
1

1−m .

In the limit case of linear diffusion and linear reaction, m = p = 1, it holds

lim
t→∞

log u(x, t)
t

= ω,

where ω = ω(L) ∈ (0, 1), limL→∞ ω(L) = 1.
For our problem (1.1) we show that the rate is the same as for global reaction only if p ≤ m with

p < 1 or p = m = 1; it is the same as for a(x) = 1(−L,L) if p > m, and strictly in between of those
two problems if p = 1 < m. Again the rate is different for p > m inside or outside the support of the
reaction coefficient a(x).

Theorem 1.2. Let u be a solution to problem (1.1) with p = 1.

1). If m > 1 then u(x, t) ∼ eαt uniformly in compact sets of R, where α ∈ (1/m, 2/(m + 1)) depends on
the behaviour of u0 at infinity.

2). If m = 1 then u(x, t) ∼ et uniformly in compact sets of R.
3). If m < 1 then u(x, t) ∼ et uniformly in compact sets of R+ and u(x, t) ∼ t

1
1−m uniformly in compact

sets of R−, provided u0(x) ∼ |x|
−2

1−m
(
log |x|

) 1
1−m for x ∼ −∞.

Theorem 1.3. Let u be a solution to problem (1.1) with p < 1.

1). If m ≥ p then u(x, t) ∼ t
1

1−p uniformly in compact sets of R.
2). If m < p then u(x, t) ∼ t

1
1−p uniformly in compact sets of R+ and u(x, t) ∼ t

1
1−m uniformly in compact

sets of R−, provided u0(x) ∼ |x|
−2

1−m for x ∼ −∞.

We show in Table 1 the different grow-up rates. The exponents are

a =
1

1 − p
, b =

1
1 − m

, c =
2

m + 1
, d =

1
m + 1 − 2p

,

ω < 1 depends on L,
α ≤ α∗(m) < c depends on the behaviour of u0 at infinity.

In the case p > m we have two different rates, inside or outside the support of a(x).
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Table 1. Comparison of the problems with different reaction coefficients: global reaction
a(x) = 1, localized reaction a(x) = 1(−L,L), and reaction confined to the half-line a(x) = 1(0,∞).

p = 1 p < 1
m > 1 m = 1 m < 1 m > p m = p m < p

R ect et et ta ta ta

(−L, L) ta eωt et / tb td td ta / tb

(0,∞) eαt et et / tb ta ta ta / tb

As for blow-up, the rate at which the solutions approach infinity in a finite time has been studied for
the case of global reaction under different conditions on the initial datum and exponents, with special
care in the multidimensional case, see [14] and the references therein. For dimension one, as is our
situation, any solution with blow-up at time t = T satisfies, for t close to T ,

‖u(·, t)‖∞ ∼ (T − t)−
1

p−1 .

For localized reaction a(x) = 1(−L,L) the rates have been established in [2, 4], giving a different rate
depending on p being bigger or smaller than m,

‖u(·, t)‖∞ ∼ (T − t)−γ, γ = max{
1

p − 1
,

1
2p − m − 1

}.

In addition the property ∂tu ≥ 0 is required in the proof of this result.
We prove here for problem (1.1) that the rate is the same as for global reaction, assuming again

monotonicity in time ut ≥ 0, but this is required only above the Fujita exponent, i.e., for p > m + 2.

Theorem 1.4. Let u be a solution to problem (1.1) with p > 1 such that becomes infinity for t → T−,
and assume further that ut ≥ 0 if p > m + 2. Then

‖u(·, t)‖∞ ∼ (T − t)−
1

p−1 . (1.3)

We end the description of solutions of problem (1.1) by studying the set where the solution tends to
infinity, the blow-up set

B(u) = {x ∈ R : ∃ x j → x, t j → T, u(x j, t j)→ ∞}.

In the global reaction case it has been proved the three possibilities according to the reaction exponent:
single point blow-up, B(u) is a discrete set, if p > m; regional blow-up, B(u) is a compact set of positive
measure, if p = m; and global blow-up, B(u) = R, if p < m. See again [14]. The same happens for
localized reaction a(x) = 1(−L,L), at least for m > 1 and symmetric nondecreasing initial values, see [4].
In our case we prove that the same happens, and we additionally show where this blow-up set can lie
in the case where the blow-up is not the whole line. To do that we assume in the case p ≥ m that there
exists some point x0 for which the blow-up rate (1.3) holds, i.e.,

u(x0, t) ≥ c(T − t)−
1

p−1 . (1.4)
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Theorem 1.5. Let u be a blow-up solution to problem (1.1), with compactly supported initial datum.
Assume also (1.4). We have for the blow-up set B(u):

1). if p > m then B(u) ⊂ R+. Moreover if m > 1 it is bounded;
2). if p = m then B(u) is bounded with nontrivial measure;
3). if p < m then B(u) = R.

We remark that due to the lack of symmetry in the problem it is not clear the existence of the point
assumed in the statement. In general we can prove that B(u) = [x1,∞) for some −∞ ≤ x1 < ∞ if
p < m, and B(u) is bounded if p = m.

Organization of the paper: We characterize the critical exponents, Theorem 1.1, in Sections 2 and 3.
The grow-up rates, Theorems 1.2 and 1.3 are proved in Section 4, while the blow-up rates, Theorem 1.4
is proved in Section 5. Finally we devote Section 6 to describe the blow-up sets, Theorem 1.5.

2. Blow-up versus global existence

We prove in this section that the global existence exponent is p0 = 1. First it is obvious that if
0 < p ≤ 1 every solution to problem (1.1) is global. Just use comparison with the flat supersolution

U′ = U p, U(0) = ‖u0‖∞. (2.1)

Remark 2.1. Though in the case p < 1 there is in general no uniqueness, and therefore no comparison
(the reaction is not Lipschitz), we always can compare with a supersolution which is a maximal solution
of the equation, like the function U in (2.1) is, see [12].

In order to complete the proof of the first item in Theorem 1.1 we observe that all the solutions have
grow-up if p ≤ 1.

Lemma 2.1. Let u be a solution of (1.1). If p ≤ 1 then

u(x, t)→ ∞

uniformly in compact sets.

Proof. We only note that this occurs for the solutions to the problem if the reaction is localized in a
bounded interval, a(x) = 1(−L,L), see [3], and any solution to that problem (translated) is a subsolution
to our problem. �

We now show that for p > 1 there exist solutions that blow up in finite time provided the initial
value is large in some sense.

Lemma 2.2. If p > max{m, 1} problem (1.1) has blow-up solutions.

Proof. We observe that u is a supersolution to the Dirichlet problem
wt = (wm)xx + wp, x ∈ (A, B), t > 0
w(A, t) = w(B, t) = 0,
w(x, 0) = w0(x),

for any interval (A, B) ⊂ (0,∞). Use then the results in [14]. �
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Lemma 2.3. If 1 < p ≤ m there exist blow-up solutions.

Proof. We construct a self-similar subsolution

u(x, t) = (T − t)−α f (ξ) ξ = x(T − t)−β,

satisfying u(0, t) = 0. The self-similar exponents are given by

α =
1

p − 1
, β =

p − m
2

α,

and the self-similar profile satisfies

( f m)′′ − βξ f ′ + f p − α f = 0, f (0) = 0.

Using ( f m)′(0) = µ as shooting parameter we claim that there exists some µ0 > 0 such that the
corresponding profile f0 satisfies

f0(ξ) > 0 in (0, ξ0) and f0(ξ0) = 0,

for some ξ0 > 0. This gives the desired blow-up subsolution with profile

f (ξ) =

{
f0(ξ), ξ ∈ (0, ξ0),
0, otherwise.

Then, if u0(x) > u(x, 0) the solution of (1.1) blows up.
In order to prove the claim we argue by contradiction, assuming that for every large µ the

corresponding profiles fµ are positive in (0,∞). Given any of such profiles with µ > 1 we take
k = µ

p+m
2 and consider the function

gk(ξ) =
1
km f m(k

m−p
2 ξ).

It satisfies the initial value problem
g′′k + gp/m

k − k1−p
(
βξ(g1/m

k )′ − αg1/m
k

)
= 0, ξ > 0,

gk(0) = 0,
g′k(0) = 1.

We define the energy of the system at a point ξ as

E(ξ) =
1
2

(g′k)
2 + V(gk), V(s) =

m
p + m

s
p+m

m −
αm

1 + m
k1−ps

m+1
m .

Multiplying the equation by g′k we get that

E′(ξ) =
β

m
k1−pξg

1−m
m

k (g′k)
2 ≤ 0,

since β ≤ 0. Thus,

E(ξ) ≤ E(0) =
1
2
.

Mathematics in Engineering Volume 4, Issue 3, 1–24.



7

Also, calculating the minimum of the potential V we have

E(ξ) ≥ −ck−(p+m) ≥ −c.

Since p > 1 this implies that there exists two constants C1,C2 depending on m and p such that

0 ≤ gk ≤ C1, |g′k| ≤ C2.

Hence, letting k → ∞ we have that gk converges uniformly in compact sets to a non negative function
G. It is clear that G satisfies 

G′′ + Gp/m = 0, ξ > 0,
G(0) = 0,
G′(0) = 1.

However the solution of the above problem crosses the axis at some finite point with non-zero slope.
This is a contradiction and the claim is proved. �

3. Fujita exponent

In this section we prove that the Fujita exponent is pc = m + 2, that is, all solutions blow up if
1 < p ≤ m + 2, and if p > m + 2 not all solutions do so. In this last range p > m + 2, it is easy
to see that small initial data produce global solutions, by comparison with the global supersolutions
corresponding to the case a(x) = 1, see for instance the book [14]. In fact they tend to zero for t → ∞.

We divide the proof of blow-up below pc in three cases, 1 < p ≤ m, m < p < m + 2 and p = m + 2,
the most difficult case being the last one.

Lemma 3.1. If 1 < p ≤ m then all solutions blow up in finite time.

Proof. We only have to check that the self-similar subsolution constructed in Lemma 2.3 can be put
below any solution if we let pass enough time.

1). It is clear when p < m that we can do it since u(x, 0) is small taking T large, as well as its support
is small, due to the fact that β < 0.

2). For p = m we note that u(x, 0) is still small if T is large but it has a fixed support [0, ξ0] since β = 0.
Nevertheless, using the penetration property of the solutions of the porous medium equation we
obtain that there exists t0 > 0 such that the support of u(·, t0) contains any interval.

�

Lemma 3.2. If m < p < m + 2 then all solutions blow up in finite time.

Proof. The proof is the same as for the global reaction and is an easy consequence of the energy
argument of [10], also called concavity argument. In fact, defining the energy of a function v as

Ev(t) =
1
2

∫ ∞

−∞

|(vm)x|
2 −

m
p + m

∫ ∞

0
vp+m, (3.1)

we have that if for a solution u to (1.1) there exists some t0 such that Eu(t0) < 0 then u blows up in
finite time. Now we consider the Barenblatt function

B(x, t; D) = t−
1

m+1
(
D − kx2t−

2
m+1

) 1
m−1

+
, (3.2)
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where k = m−1
2m(m+1) , D > 0. It is a subsolution to our equation and it satisfies, for some constants c1, c2

depending only on m, p and D,
EB(t) = c1t−

2m+1
m+1 − c2t−

p+m−1
m+1 ,

which is negative for t large provided p < m + 2. The final step is a standard comparison argument:
we make B(x, 1; D) small by taking D small, so that it can be put below u0; this implies u(x, t) ≥
B(x, t + 1; D) for t > 0; let t1 be such that EB(t1) < 0; let v be the solution corresponding to the initial
value B(·, t1; D), which by the above energy argument blows up in finite time; since u ≥ v so does u. In
the case m < 1 we need the behaviour at infinity of every solution, see [9], since the function (3.2) is
positive, while for m = 1 a Gaussian is used instead of a Barenblatt function. �

We observe that the fact that the integral in the reaction term is performed only in (0,∞) does not
affect the original argument. In [4] we used the fact that the integral in (0, L) produces a different time
power term if L is finite, and so the Fujita exponent is different in that case.

Lemma 3.3. If p = m + 2 then all solutions blow up in finite time.

Proof. We use the method introduced in [7] to prove blow-up for the critical exponent in the case
a(x) = 1, but here the nonsymmetry of the problem makes things more involved. The argument goes
like this: assuming by contradiction that the solution is global, we rescale and pass to the limit in time,
thus obtaining a solution to some problem for which we prove nonexistence.

Let u be a global solution, and let t0 ≥ 1 and D be such that u(x, t0) ≥ B(x, t0; D), where B is given
by (3.2) (if m , 1, for m = 1 we use instead a Gaussian like in the proof of Lemma 3.2). We define the
rescaled function

v(ξ, τ) = tαu(x, t), ξ = xt−α, τ = log t, α =
1

m + 1
.

We have that v is a solution, for τ > τ0 = log t0, of the equation

vτ = (vm)ξξ + α(ξv)ξ + a(ξ)vm+2. (3.3)

If g is the solution to Eq (3.3) with g(ξ, τ0) = B(ξ, 1; D), by comparison we have that v ≥ g for every
τ > τ0, and in particular g is globally defined in τ. For the special form of the initial value, it is easy to
see that g is nondecreasing in τ, and therefore there exists the limit

lim
τ→∞

g(ξ, τ) = f (ξ) ∈ [0,∞].

We claim the following alternative:
a) f is locally bounded. Thus we can pass to the limit in (3.3), by means of a Lyapunov functional,

to get that f is a positive solution of

( f m)′′ + α(ξ f )′ + ρ(ξ) f m+2 = 0 ξ ∈ R, (3.4)

see [7]. Now we observe that the function

E(ξ) = ( f m)′ + αξ f
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satisfies E′(ξ) = −ρ(ξ) f m+2(ξ), so it is constant for ξ < 0 and decreasing for ξ > 0. Then, if we assume
E(0) = E0 > 0, we have that

( f m)′(ξ) ≥ E(ξ) ≥ E0, ξ < 0.

This implies that there exists a point ξ1 < 0 such that f (ξ1) = 0 and ( f m)′(ξ1) , 0. Therefore E(0) ≤ 0,
and there exists some ξ2 > 0 such that E(ξ2) = E2 < 0. Exactly as before

( f m)′(ξ) ≤ E(ξ) ≤ E2, ξ > ξ2,

so there exists a point ξ3 > ξ2 such that f (ξ3) = 0, ( f m)′(ξ3) , 0. This gives a contradiction and f
cannot exist.

b) There exists ξ0 such that f (ξ0) = ∞. Then g is large in a nontrivial interval and this would imply
that it blows up in a finite time. This is again a contradiction, and the theorem would be proved.

We have that f satisfies Eq (3.4) in any interval in which it is bounded. It is clear that f cannot have
any minima since at such a point we would have from the equation ( f m)′′ < 0. This implies

lim
ξ→ξ−0

f (ξ) = lim sup
ξ→ξ−0

( f m)′(ξ) = ∞. (3.5)

Assume ξ0 > 0. If f is bounded in some interval (ξ0 − δ, ξ0), δ ≤ ξ0, then f is increasing in that
interval with

( f m)′(ξ) ≤ E(ξ0 − δ/2), ξ0 − δ/2 < ξ < ξ0.

This is a contradiction and thus f (ξ) = ∞ for every 0 ≤ ξ ≤ ξ0. Moreover, if f is bounded in ξ < 0, we
have

( f m)′(ξ) + αξ f (ξ) = c < 0,

by the above. Thus by (3.5), there is a sequence ξ j → 0− such that |ξ j| f (ξ j)→ ∞. The same argument
works from the left to the right, assuming ξ0 < 0. In conclusion f is large in some interval |ξ| ≤ ξ∗, that
could be small, but it satisfies that ξ∗ f (ξ∗) is large.

Let us now show that in this situation the function g blows up in finite time. By the monotonicity
of g in time we have that for any large constant A∗ > 0 there exists M > 0, ξM > 0 and τM such
that MξM ≥ A3/2

∗ and g(ξ, τ) ≥ M for every |ξ| ≤ ξM, τ ≥ τM. Now we argue as in [4]. Let z(x, t) =

e−ατg(ξ, τ) be the function g in the original variables, and define h(x, t + eτM ) the solution of (1.1) with
initial datum

W(x) = λ−1(A − λ−2x2)+

where
A = (ξM M)2/3, λ = eατM (ξ2

M/M)1/3.

It is clear that W(x) ≤ z(x, eτM ), since

z(x, eτM ) = e−ατM g(ξ, τM) ≥ e−ατM M for |x| ≤ e−ατMξM,

W(x) ≤ W(0) = λ−1A = e−ατM M,

supp(W) = {|x| ≤ λA1/2} = {|x| ≤ e−ατMξM}.

Moreover,
Eh(0) = λ−(2m+1)A2m+1/2

(
c1 − c2A2

)
,

for some c1, c2 depending only on m. This is negative for A > A∗ = A∗(m). Thus h blows up in finite
time, and by comparison z, or which is the same g, also blows up. This ends the proof. �
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4. Grow-up rates

The aim of this section is to study the speed at which the global unbounded (grow-up) solutions to
problem (1.1) tend to infinity. We therefore consider the range p ≤ 1. In order to avoid nonuniqueness
issues when p < 1 we assume in that case that the initial value is positive for x > 0, that is where the
non-Lipschitz reaction applies.

As we have said in the Introduction, the upper estimate of the grow-up rate is given by comparison
with the function in (2.1). In the case of global reaction a(x) = 1 this is sharp if p < 1 or m < 1. In fact
we have for t large

u(x, t) ∼


t

1
1−p , p < 1,

et m < 1 = p,
t−

1
2 et, m = 1 = p,

e
2

m+1 t, m > 1 = p,

(4.1)

see [1, 11, 15].
On the other hand, when a(x) = 1(−L,L) the rates are proved in [3]. Though in that situation the

global existence exponent is different, p0 = max{1, m+1
2 }, we quote the results proved in [3] in our

range p ≤ 1:
i) if p ≤ 1 < m then

u(x, t) ∼ t
1

m+1−2p ,

in compact sets.
ii) if m < p < 1 then

u(x, t) ∼

 t
1

1−p , for |x| < L,
t

1
1−m , for |x| > L,

provided that the initial datum satisfies

|x|2u1−m
0 (x) ∼ 1. (4.2)

iii) if m < p = 1 then

u(x, t) ∼
{

et, for |x| < L,
t

1
1−m , for |x| > L,

provided that the initial datum satisfies

|x|2u1−m
0 (x) ∼ log(x).

iv) if p = m = 1 then

lim
t→∞

log u(x, t)
t

= ω(L) ∈ (0, 1).

We prove in this paper that for problem (1.1) the rate can be that corresponding to global reaction
or to reaction localized in a bounded interval, or none of them, depending on the sign of p − m. We
can also have a different rate inside or outside the region where the reaction applies when p > m, like
in the case a(x) = 1(−L,L).
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4.1. Case p = 1

Though the reaction is linear this is the more involved case. We consider separately the three cases
according to m being larger, equal or smaller than 1.

The proof of the grow-up rate follows by comparison with special selfsimilar subsolutions and
supersolutions. We construct such functions in the form

w(x, t) = eαt f (xe−βt), (4.3)

where necessarily

β =
m − 1

2
α.

Also, by (4.1) we consider only α ≤ 2/(m + 1).
The profile f will be given by matching two functions,

f (ξ) =

{
ψ(ξ), ξ ≥ 0,
φ(−ξ), ξ ≤ 0,

(4.4)

where ψ and φ are the truncation by zero of the solutions of the initial value problems, for some λ ∈ R,
(ψm)′′ + βξψ′ + (1 − α)ψ = 0, ξ > 0,
ψ(0) = 1,
ψ′(0) = λ,

(4.5)


(φm)′′ + βξφ′ − αφ = 0, ξ > 0,
φ(0) = 1,
φ′(0) = −λ.

(4.6)

We start with m > 1 = p.

4.1.1. Slow diffusion, m > 1

The existence of solutions with compact support for equations of the above type has been studied
in [8]. Let us consider, as in that paper, the problem for some ξ0 > 0 given,{

(gm)′′ + βξg′ − qg = 0, ξ < ξ0,

g(ξ0) = (gm)′(ξ0) = 0.
(4.7)

It is proved in [8],

Theorem 4.1. Let β > 0. There exists a continuous solution g to problem (4.7) such that g(0) > 0 for
2β + q > 0; g(0) = 0 for 2β + q = 0; and if 2β + q < 0 there exists a point ξ1 ∈ (0, ξ0) with g(ξ1) = 0.
Moreover, in the first case, g′(0) < 0 if β + q > 0; g′(0) = 0 if β + q = 0; and g′(0) > 0 if β + q > 0.
Finally

g(ξ) ∼ (ξ0 − ξ)
1

m−1 for ξ → ξ−0 . (4.8)

Translating this result to our problems (4.5) and (4.6), where q takes the values, respectively, q =

α − 1 < 0 and q = α > 0, we obtain the following results.
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Corollary 4.2. 1). For each α > 0 there exists a unique λ−(α) > 0 such that problem (4.6) with
λ = λ−(α) has a decreasing solution with compact support.

2). Problem (4.5) has solutions with compact support for some λ if and only if α > 1/m, the solution
being unique for each α given, and thus λ = λ+(α). Moreover, λ+(α) > 0 if α < 2/(m + 1); and
λ+(2/(m + 1)) = 0.

If we find some α ∈ (1/m, 2/(m + 1)) such that λ−(α) = λ+(α), we will obtain a solution w with
frofile f defined in R which has compact support. But we are also interested in subsolutions, and these
are obtained constructing profiles with compact support [−a, b] with a bad behaviour at the interfaces
( f m)′(−a) > 0, ( f m)′(b) < 0. On the other hand, positive profiles will serve as supersolutions.

Thus, in order to study in more detail the solutions to the equation in (4.7) we introduce the variables

X =
ξg′

g
, Y =

1
m
ξ2g1−m, η = log ξ. (4.9)

We also fix the value g(0) = 1 and consider the different values of g′(0). We obtain the differential
system, {

Ẋ = X(1 − mX) + Y(q − βX),
Ẏ = Y(2 − (m − 1)X),

defined in the half-plane Y ≥ 0, where Ẋ = dX/dη. As we have said only the values q = α and q = α−1
are of interest, with α ∈ (1/m, 2/(m + 1)). We have two finite critical points

P1 = (0, 0), P2 = (1/m, 0)

(if q = α−1 there exists a third critical point but it lies in the lower half-plane), and three critical points
at infinity

Λ1 = (−∞,∞), Λ2 = (−
q
β
,∞), Λ3 = (∞,∞).

The point P1 is an unstable node: we have a trajectory Γ0 escaping this point from η = −∞ along
the vector (q, 1), and a family of trajectories Γκ, κ , 0, behaving near the origin like

X ∼ κ
√

Y .

The first one produces a profile g with g′(0) = 0. The profile corresponding to each Γκ satisfies
g′(0) = κ/

√
m. The point P2 is a saddle and plays no role at this stage.

Now fix q = α − 1 < 0. We first observe that defining the energy associated to the problem

Eg(ξ) =
1
2

((gm)′)2 +
1 − α
1 + m

g1+m,

it satisfies
E′g(ξ) = −βmξgm−1(g)′2 ≤ 0.

Therefore g is bounded, and all the trajectories starting at P1 must go to one of the points at infinity Λ1

or Λ2. In fact Λ3 is unstable.
The profiles satisfying (4.8) correspond to trajectories entering the point Λ1 linearly, since they

satisfy

lim
ξ→ξ0

X(ξ) = −∞, lim
ξ→ξ0

Y(ξ) = ∞, lim
ξ→ξ0

Y(ξ)
X(ξ)

= −D < 0.
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Using the equation
dY
dX

=
Y(2 − (m − 1)X)

X(1 − mX) + Y(q − βX)
,

we get that the only possible behaviours near Λ1 are

Y ∼ −X, Y ∼ |X|
m−1

m .

Thus from Corollary 4.2 we get that the trajectory Γκ+ with κ+ = λ+(α)
√

m joins P1 with Λ1

satisfying Y ∼ −DX near Λ1, and it is the unique trajectory with that behaviour at infinity. All the
other trajectories joining these two points enter Λ1 below Γκ+ , and above this trajectory near the
origin. See Figure 1.

Figure 1. Trajectories in the phase-plane for q = α−1 (with a zoom at the origin). The black
line enters Λ1 linearly; the blue lines go to Λ1 like Y ∼ |X|

m−1
m ; the red lines go to Λ2.

This implies that the corresponding profiles have slopes at the origin g′(0) < λ+(α). Observe that
this implies that g vanishes at some point b < ∞ with g(ξ) ∼ (b − ξ)

1
m , so (gm)′(b) < 0.

On the other hand, the trajectories with κ > κ+ must go to Λ2. The corresponding profiles are
positive with

g(ξ) ∼ ξ−
1−α
β

for ξ large.
In summary we have proved the following result.

Lemma 4.3. Let ψ be a solution of (4.5) with some α ∈ (1/m, 2/(m + 1)). There exists some λ+ =

λ+(α) > 0 such that

1). If λ < λ+ there exists ξ0 < ∞ such that ψ(ξ0) = 0 > (ψm)′(ξ0).
2). If λ = λ+ there exists ξ0 < ∞ such that ψ(ξ0) = (ψm)′(ξ0) = 0.
3). If λ > λ+ the solution ψ is positive and ψ ∼ ξ−

1−α
β for ξ large.

We comment by passing what is the behaviour in the case α = 1/m. If we trace back the unique
trajectory entering Λ1 linearly, we see that it goes to P2. In fact integrating the equation between ξ and
a we get

−(gm)′(ξ) = βξg(ξ) − β
∫ a

ξ

g(s)ds.
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A second integration gives

gm(ξ) = βξ

∫ a

ξ

g(s)ds.

Then limξ→0 Y(ξ) = 0 trivially, while

lim
ξ→0

X(ξ) = lim
ξ→0

ξ(gm)′(ξ)
mgm(ξ)

=
1
m

lim
ξ→0

ξ
(
−βξg(ξ) + β

∫ a

ξ
g(s)ds

)
βξ

∫ a

ξ
g(s)ds

=
1
m
.

Therefore all the trajectories starting at P1 must go to Λ1 like Y ∼ |X|
m−1

m . We obtain profiles with a bad
interface behaviour for every value of λ.

The phase-space (4.9) is studied in the same way in the case q = α > 0. Following the same
argument for problem (4.6) we obtain:

Lemma 4.4. Let φ be a solution of (4.6) with some α ∈ (0, 2/(m + 1)). There exist λ− = λ−(α) > 0
such that:

1). If λ > λ− there exists ξ1 < ∞ such that φ(ξ1) = 0 > (φm)′(ξ1).
2). If λ = λ− there exists ξ1 < ∞ such that φ(ξ1) = (φm)′(ξ1) = 0.
3). If λ < λ− the solution φ is positive and unbounded.

Moreover λ−(α) = K/
√
α.

We now study the matching.

Lemma 4.5. There exists a unique value α∗ ∈ (1/m, 2/(m + 1)) such that λ−(α∗) = λ+(α∗).

Proof. Define the continuous function h(α) = λ+(α) − λ−(α). It is clear that h(2/(m + 1)) < 0. On the
other hand, taking λ = λ−(1/m) in (4.6) and (4.5) we obtain a profile which crosses the axis at some
positive point with bad interface behaviour. Therefore by continuous dependence of the profile with
respect to the parameter α we have the same behaviour for α = ε + 1/m. This implies h(ε + 1/m) > 0.
Then there exists α∗ ∈ (1/m, 2/(m+1)) with h(α∗) = 0. The uniqueness follows by comparison. Indeed,
if we assume that h(α1) = 0 = h(α2) with α1 < α2 we have that the solutions w1 with profile f1, f2

given in (4.4) with α = α1, α2 satisfy

w1(x, 0) = f1(x) > e−α2t f2(xeβ2t) = w2(x,−t1)

for some t1 > 0. This implies w1(x, t) ≥ w2(x, t − t1) for any t > 0. In particular at x = 0 this means
f1(0)eα1t ≥ f2(0)eα2(t−t1), which is impossible if t is large. �

Theorem 4.6. Let u be the solution to problem (1.1) with p = 1 < m. Let α∗ be given in Lemma 4.5
and define γ∗ =

2(1−α∗)
(m−1)α∗

.

1). If there exists some 1 < γ < γ∗ such that u0(x) ∼ x−γ as x→ ∞, then

C1eα(γ)t ≤ u(x, t) ≤ C2eα(γ)t,

where
α(γ) =

2
2 + γ(m − 1)

.
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2). If lim supx→∞ x−γ∗u0(x) < ∞, then for all ε > 0

C1eα∗t ≤ u(x, t) ≤ C(ε)e(α∗+ε)t.

3). If u0 has support bounded from the right then

C1eα∗t ≤ u(x, t) ≤ C2eα∗t.

The above estimates are uniform in compact subsets of R for t large.

Proof. The proof follows by comparison with the self-similar functions constructed before. We define:
• w∗ the self-similar function given in (4.3) with α = α∗. It is a solution to (1.1) with compact

support
supp(w(·, t)) = [−K−eβt,K+eβt].

• For α ∈ (α∗, 2/(m + 1)), which implies λ+(α) < λ−(α), we consider w− the self-similar function
given in (4.3) with λ = λ−(α). It is a solution to (1.1) with support bounded from the left

supp(w(·, t)) = [−K1eβt,∞), lim
x→∞

x
2(1−α)
(m−1)α w(x, t) = K2et.

In this case, we also consider wλ the self-similar function given in (4.3) with λ+(α) < λ < λ−(α). It
is a positive solution to (1.1) such that

lim
x→∞

x
2(1−α)
(m−1)α wλ(x, t) = K2et, lim

x→−∞
wλ(x, t) = ∞.

We now consider the different cases in the statement of the theorem.

1). u0(x) ∼ x−γ with 1 < γ < γ∗. Taking α = α(γ) ∈ (α∗, 2/(m + 1)) we have λ+(α) < λ−(α), and
the functions u0, w− and wλ have the same behaviour at infinity. Then there exists t1 large enough
such that

w−(x,−t1) ≤ u0(x) ≤ wλ(x, t1),

and by comparison
w−(x, t − t1) ≤ u(x, t) ≤ wλ(x, t + t1).

The grow-up rate follows.
2). u0(x) ≤ x−γ∗ . The lower bound follows by comparison with w∗(x, t − t1). For the upper bound we

compare with wλ(x, t + t1) with α = α∗ + δ, δ > 0 small.
3). u0 with compact support. We compare from below as in the previous case, and from above with

w∗(x, t + t1).

�

We observe that for any initial value u0 the grow-up rate is always exponential, like for global
reaction a(x) = 1, but with an exponent strictly smaller α ≤ α∗ < 2/(m + 1). In the case of a localized
reaction, a(x) = 1(−L,L), the grow-up was polynomial.

The second case to consider when p = 1 is m = 1, where things are more or less explicit.
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4.1.2. Linear diffusion m = 1

Lemma 4.7. Let u be the solution to (1.1) with p = m = 1. Then,

Cεe(1−ε)t ≤ u(x, t) ≤ C2et,

uniformly in compact subsets of R.

Proof. The upper estimate is given by comparison with the function in (2.1). For the lower bound we
use again comparison, this time with an exponential selfsimilar function, see (4.5), (4.6). Since here
β = 0, we look for a function in separated variables

w(x, t) = eαt f (x), 0 < α < 1,

where the profile f satisfies 
f ′′ + (1 − α) f = 0, x > 0,
f ′′ − α f = 0, x < 0,
f (0) = 1.

This gives

f (x) =

{
C1e

√
αx + C2e−

√
αx, x < 0,

C3 sin(
√

1 − α x) + cos(
√

1 − α x), x > 0.

The matching condition at x = 0 means

C1 + C2 = 1, C3 =

√
α

1 − α
(C1 −C2).

Notice that for any x− < 0 given we can take

C2 =
e
√
αx−

e
√
αx− − e−

√
αx−
,

so that f (x−) = 0. Moreover, for

x+ =
1

√
1 − α

arctan
(
−1
C3

)
∈

(
π

2
√

1 − α
,

π
√

1 − α

)
,

we have f (x) > 0 in (0, x+) and f (x+) = 0. This profile gives us a subsolution by the procedure of
truncation by zero. We denote by fx− this truncated profile.

Let now u be a solution of (1.1). Since the heat equation has infinite speed of propagation, we can
assume without loss of generality that u0(x) > 0. Then there exists t1 > 0 such that

u0(x) ≥ e−αt1 fx−(x).

By comparison we deduce u(x, t) ≥ wx−(x, t−t1). We obtain the lower grow-up rate for compact subsets
of (−∞, π

2
√

1−α
) and for every α < 1.

Finally we observe that for A > 0 the function wx−(x − A, t − t1) is also a subsolution to (1.1), so we
obtain the lower grow-up rate for any compact subset of R. �

We end by considering the case m < 1 = p.
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4.1.3. Fast diffusion m < 1

Here the rate is different for x > 0 and for x < 0, as in the case of a localized reaction, a(x) = 1(−L,L).
We first show that the grow-up rate given in (4.1) is sharp for compact subsets of R+ by proving the

lower bound. To do that we compare with a subsolution in separated variables with compact support
in R+,

u(x, t) = f (x)g(t).

Notice that since u has global grow-up, see Lemma 2.1, we have that u(x, t0) ≥ u(x, 0) for t0 large
enough, so then the comparison of the initial data is granted by a time shift.

Lemma 4.8. Let u be a solution of (1.1) with m < 1 = p. Then,

u(x, t) ≥ cet

uniformly in compact subsets of R+.

Proof. Let φ be the solution to the problem
(φm)′′ + φ = 0, ξ > 0,
φ(0) = 0,
φ′(0) = 1.

Since φm is concave φ must vanish at some point ξ0 < ∞. Now we consider the rescaled function

f (x) = Aφ(A
1−m

2 x),

which satisfies the same equation and vanishes at x = ξ0A−
1−m

2 . This is the spatial part of our
subsolution. The time part g is defined as the solution to{

g′ = g − gm, t > 0,
g(0) > 1.

We have u(x, t + t0) ≥ f (x)g(t) for any x > 0 and t > 0. Since g′ ∼ g as t → ∞, the comparison gives
the desired lower bound. �

In order to obtain the grow-up rate for R−, we note that by (4.1) u is a subsolution of the problem
wt = (wm)xx, x < 0, t > 0,
w(0, t) = C1et, t > 0,
w(x, 0) = w0(x), x < 0.

It is proved in [3] that there exists a unique self-similar solution of exponencial type

W(x, t) = et f (xe
1−m

2 t),

which is increasing in both variables x and t. Moreover, for |ξ| large

f (ξ) ∼ |ξ|
−2

1−m
(
log |ξ|

) 1
1−m .
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Then, if the initial datum satisfies

u0(x) ∼ |x|
−2

1−m
(
log |x|

) 1
1−m , x ∼ −∞, (4.10)

we can take as a supersolution w(x, t) = AW(x, t). Notice that from the property Wt ≥ 0 we have

wt − wxx = (A − Am)wt ≥ 0,

provided A > 1. Moreover, taking A large enough we get w(x, 0) ≥ u0(x).
On the other hand, by Lemma 4.8 we have that u is a supersolution to the problem

wt = (wm)xx, x < 1, t > 0,
w(1, t) = C2et, t > 0,
w(x, 0) = w0(x), x < 1.

and w(x, t) = AW(x, t) with A small enough to have w(x, 0) ≤ u0(x) is a subsolution.
As a conclusion we get the following result.

Lemma 4.9. Let u be a solution of (1.1) with m < 1 = p, such that the initial datum u0 satisfies the
condition (4.10). Then, for x < 0

u(x, t) ∼ t
1

1−m .

4.2. Case p < 1

Here we distinguish between m < p and m ≥ p.

4.2.1. Case m < p

Lemma 4.10. Let m < p < 1. If u0 satisfies (4.2) for x ∼ −∞, then

u(x, t) ∼

 t
1

1−p , x > 0,
t

1
1−m , x < 0,

uniformly in compact sets.

Proof. The proof follows in the same way as in the case p = 1, using here the selfsimilar profile

W(x, t) = t
1

1−p f (xt
p−m

2(1−p) )

constructed in [3], which is again increasing in both variables x and t, and that satisfies, for |ξ| large,

f (ξ) ∼ |ξ|
−2

1−m .

�
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4.2.2. Case m ≥ p

Lemma 4.11. Let p < 1 ≤ m. then
u(x, t) ≥ ct

1
1−p

uniformly in compact sets of R.

Proof. We consider a subsolution in selfsimilar form

w(x, t) = tα f (ξ), ξ = xtβ,

where
α =

1
1 − p

, β = −
m − p

2
α,

and the selfsimilar profile satisfies

L( f ) := ( f m)′′ − βξ f ′ + a(ξ) f p − α f ≥ 0.

We construct the profile gluing four functions. Let A > 0 be a constant to be fixed and put ξ0 =

−
√

2/αA
m−1
2m .

1). For ξ ≤ ξ0 we put f1(ξ) = 0.
2). For ξ0 ≤ ξ ≤ 0 we define

f m
2 (ξ) = A +

√
2αA

1+m
2m ξ + αA1/m ξ

2

2
.

Notice that f m
2 (ξ0) = ( f m

2 )′(ξ0) = 0. Moreover since β ≤ 0 and f2 is non-decreasing

L( f2) ≥ ( f m
2 )′′ − α f2 ≥ αA

1
m − α f2(0) = 0.

3). For 0 ≤ ξ ≤ ξ1 =
√

2αA
1+m−2p

2m we define

f m
3 (ξ) = A +

√
2αA

1+m
2m ξ − (Ap/m − αA1/m)

ξ2

2
.

We have f m
3 (0) = f m

2 (0) = A, ( f m
3 )′(0) = ( f m

2 )′(0), so this function f3 matches well with f2. Also
f3 is increasing in 0 < ξ < ξ1, with

f3(ξ1) = A
1
m

1 + α
A

1−p
m

1 − αA
1−p
m


1
m

, f ′3(ξ1) = 0.

Since p < 1 we get that for A small enough, both ξ1 and f3(ξ1) are small. Hence, the function
f p
3 (ξ) − α f3(ξ) is increasing. Then

L( f3) ≥ ( f m
3 )′′ + f p

3 − α f3 ≥ ( f m
3 )′′ + f p

3 (0) − α f3(0) = 0.

4). For ξ > ξ1 we consider f4 = g+, where g is the solution to the initial value problem
(gm)′′ − βξg′ + gp − αg = 0, ξ > ξ1,

g(ξ1) = f3(ξ1),
g′(ξ1) = 0.

It is clear that if f3(ξ1) < (1/α)α then g is nonincresing and positive for ξ1 ≤ ξ < ξ2 ≤ ∞.

The final function putting together fi, i = 1, · · · , 4 is a subsolution to our problem with zero initial
value. This gives the desired lower bound of the grow-up rate. �
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5. Blow-up rates

Proof of Theorem 1.4. The lower blow-up rate is obtained easily by (strict) comparison with the
supersolution

U(t) = Cp(T − t)−
1

p−1 .

Indeed, if we assume that there exists t0 ∈ (0,T ) such that

‖u(·, t0)‖∞ < U(t0),

it also holds
‖u(·, t0)‖∞ < U(t0 − ε)

for some ε > 0, which is a contradiction with the fact that u blows up at time T .
In order to prove the upper blow-up rate we use a rescaling technique inspired in the work [6].
Let us define

M(t) = max
R×[0,t]

u(x, τ),

and consider, for any fixed t0 ∈ (0,T ), the increasing sequence of times

t j+1 = sup{t ∈ (t j,T ) : M(t) = 2M(t j)}.

Observe that for this sequence we have ‖u(·, t j)‖∞ = M(t j). We also observe that since the reaction
only takes place for x > 0, we get that near the blow-up time the maximum of u is achieved in R+.
Therefore we can take x j ≥ 0 such that

u(x j, t j) = M(t j).

We consider the sequence
z j = (t j+1 − t j)Mp−1(t j).

Let us observe that if z j is bounded, we get that

t j+1 − t j ≤ cM1−p(t j) = c2 j(1−p)M1−p(t0).

Performing the sum,

T − t0 ≤ cM1−p(t0)
∞∑
j=0

2 j(1−p) = c′M1−p(t0) ≤ c′‖u(·, t0)‖1−p
∞ ,

that is, the desired upper blow-up rate. Therefore, in order to arrive at a contradiction, we assume that
there exists a subsequence of times, still denoted t j, such that

lim
j→∞

z j = ∞. (5.1)

Now we define the functions

ϕ j(y, s) =
1

M j
u(M

m−p
2

j y + x j,M
1−p
j s + t j),
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for
y ∈ R, s ∈ I j = (−t jM

p−1
j , (T − t j)Mp−1

j ),

where M j = M(t j). Notice that I j → R as j→ ∞ and ϕ j is a solution to the equation

(ϕ j)s = (ϕm
j )xx + a(y − x jM

p−m
2

j )ϕp
j , (y, s) ∈ R × I j.

It also satisfies
ϕ j(0, 0) = 1 and ϕ j(y, s) ≤ 2 in R × I j.

The uniform bounds for ϕ j impliy that ϕ j is Hölder continuous with uniform coefficient. Since
ϕ j(0, 0) = 1 we have a uniform nontrivial lower bound for every ϕ j, that is,

ϕ j(y, 0) ≥ g(y) ≥ 0,

for some nontrivial function g.
We claim that, under the assumption of Theorem 1.4, each function ϕ j blows up at a finite time S j

which is uniformly bounded, that is S j < S . This is a contradiction with the fact that ϕ j(y, s) ≤ 2 for
s ∈ (0, z j). Indeed, since z j → ∞ we can take j large such that z j > S . Therefore (5.1) can not be true
and the blow-up rate follows.

In order to prove the claim we first observe that since x j ≥ 0, we have that ϕ j is a supersolution of
the equation

hs = (hm)yy + a(y)hp, (y, s) ∈ R × (0, z j). (5.2)

Therefore, for p ≤ m + 2, we can apply Theorem 1.1 to get that the solution of the above equation
with initial datum h(y, 0) = g(y) blows up at some time S . Then, by comparison, ϕ j blows up at time
S j < S .

For the case p > m + 2 we need the extra hypothesis ut ≥ 0, which implies (ϕ j)s ≥ 0. Therefore ϕ j

is a supersolution of the problem
ws = (wm)yy, (y, s) ∈ R+ × (0, z j),
w(0, s) = 1,
w(y, 0) = 0.

(5.3)

Since w ≤ 1 we can pass to the limit, by means of a Lyapunov functional, to get that w(x, s) → 1 as
s→ ∞ uniformly in compact sets of R+. Actually in the linear case m = 1 the solution to problem (5.3)
is explicit, while if m , 1 the solution is the so-called Polubarinova-Kochina solution. Notice that this
behaviour is also true if we consider the problem in R−. Therefore, by comparison ϕ j(y, s) ≥ 1/2 in
|y| < K and s > sK , and then

ϕ j(y, sK) ≥ h0(y) =
1
2

(1 − x2/K2)1/m
+ .

Observe that the energy of h0 given in (3.1) satisfies

Eh0 =
1
2

∫ ∞

−∞

|(hm
0 )x|

2 −
m

p + m

∫ ∞

0
hp+m

0 = C1K−1 −C2K < 0

for K large. Then, applying the concavity argument the solution of (5.2) with initial datum h0 blows
up at finite time S and by comparison ϕ j also blows up at a time S j < S . �
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6. Blow-up sets

We prove here Theorem 1.5. We first consider the case p ≥ m.

Lemma 6.1. Let u be a blow-up solution to (1.1) with compactly supported initial datum. Then B(u)
is bounded from the left. In fact,

1). B(u) ⊂ R+ if p > m;
2). B(u) ⊂ [−K,∞) if p = m.

Proof. Notice that by the upper blow-up rate, u is a subsolution to the problem on the left half-line
wt = (wm)xx, x < 0, 0 < t < T,
w(0, t) = C(T − t)−1/(p−1),

w(x, 0) = w0(x),

provided that C is large. For m = 1 we have and explicit formula for w, and it is easy to see that w is
bounded for x < 0, see for instance [14]. For m , 1 we use comparison with a selfsimilar solution in
the form

W(x, t) = (T − t)−αF(x(T − t)−β), α =
1

p − 1
, β =

p − m
2

α,

where the profile F satisfies the equation

(Fm)′′ − βξF − αF = 0.

Observe that for p = m, i.e., β = 0, this equation is the same as for problem (4.6), so by Lemma
4.4 there exists a profile F1 with compact support and satisfying F1(0) = 1. By scaling F(ξ) =

CF(C
1−m

2 ξ) is also a solution, with large support if C is large. We then take C large so as to have
that the corresponding solution W satisfies W(x, 0) ≥ u0(x) and by comparison we obtain the bound of
B(u).

For the case p > m (β > 0), we introduce as in Seccion 4.1.1 the variables (4.9),

X =
|ξ|g′

g
, Y =

1
m
ξ2g1−m, η = log |ξ|,

to obtain the differential system, {
Ẋ = X(1 − mX) + Y(α + βX),
Ẏ = Y(2 − (m − 1)X).

It is easy to see that all the orbits in the second quadrant start at the origin and have three posible
behaviours: they cross the vertical axis; or the horizontal variable goes to −∞; or (X,Y)→ (−α/β,∞).
The existence of a unique orbit joining the origin with (−α/β,∞) is given in [5] for m < 1, but the
argument works as well for m > 1. From this orbit we obtain a positive, increasing profile F1 such that
F1(0) = 1 and F1(ξ) ∼ |ξ|−α/β for ξ ∼ −∞. Notice that, for x < 0 and t near T , we have

W1(x, t) = (T − t)−αF1(x(T − t)−β) ∼ |x|−α/β,

that is W is bounded. Rescaling and comparison as before implies the same property for our solution,
u is bounded for x < 0. �
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Remark 6.1. Notice that for p < m we have again an equation like (4.6) for the profile. This gives us
a family of selfsimilar solutions

WC(x, t) = C(T − t)−
1

p−1 F1(C
1−m

2 x(T − t)
m−p

2(p−1) )

with global blow-up.

Lemma 6.2. Let u be a blow-up solution to (1.1) with compactly supported initial datum. Then B(u)
is bounded from the right provided p ≥ m > 1.

Proof. We only have to notice that the support of the blow-up solutions to the equation with global
reaction, a(x) = 1, are bounded if p ≥ m > 1, see [14]. The proof of this result uses the intersection
comparison technique with self-similar profiles in a neighborhood of the free boundary. Then the same
result holds for our equation near the right-hand free boundary. �

Lemma 6.3. Let u be a blow-up solution to (1.1) with p < m and a compactly supported initial datum.
Assume also that there exists x0 ∈ R satisfying (1.4). Then B(u) = R.

Proof. Thanks to the hypothesis at x0 we have that u is a supersolution to the problem defined on the
left of x0, 

wt = (wm)xx, x < x0, 0 < t < T,
w(x0, t) = C1(T − t)−1/(p−1),

w(x, 0) = w0(x),

as well as to the problem on the right, x > x0. Moreover, the self-similar solution given in Remark 6.1 is
a subsolution if we choose C small enough such that WC(x, 0) < u0(x). Comparison ends the proof. �

The same argument allows to prove that if p = m the blow-up set contains some nontrivial interval,
thus concluding the proof of Theorem 1.5.

To finish this section we remark that, in the range p < m, but without the hypothesis of the existence
of x0, it is easy to see that B(u) is unbounded at least from the right. In fact if we assume that at some
point u(x1, t) < M, then u is a subsolution to

zt = (zm)xx + a(x)zp, x < x1, t > 0,
z(x1, t) = M,
z(x, 0) = z0(x).

On the other hand, the stationary solution of the equation with z(0) = K and z′(0) = 0, is a supersolution
of the problem if K is large enough. Then by comparison u must be bounded in (−∞, x1). Therefore if
u is bounded in some interval (x1,∞) then it cannot blow up.
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