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Abstract: We study the behaviour of the solutions to the quasilinear heat equation with a reaction
restricted to a half-line
U = (um)xx + a(-x)up,

m, p > 0and a(x) = 1 for x > 0, a(x) = 0 for x < 0. We first characterize the global existence exponent
po = 1 and the Fujita exponent p. = m + 2. Then we pass to study the grow-up rate in the case p < 1
and the blow-up rate for p > 1. In particular we show that the grow-up rate is different as for global
reactionif p >mor p=1# m.
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In memoriam of our friend Ireneo Peral. Master of Mathematics.
1. Introduction

We consider the following Cauchy problem

U = (um)xx + a(-x)up, XxXeER, t> 0,
{ u(x,0) = up(x). (1.1)

We take exponents m, p > 0 and the coefficient is the characteristic function of a half-line, a(x) =
1(0.00)(x). The initial value u, € L'(R) N L™(R) is assumed to be continuous and nonnegative, so
that nonnegative solutions # > 0 are considered. We are interested in characterizing and describing
the phenomena of blow-up and grow-up for the solutions to (1.1) in terms of the parameters of the
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problem, the exponents m and p and the initial datum u,. By a solution # having blow-up we mean that
there exists a finite time 7" such that u is well defined and finite for # < 7" and

lim |lu(-, Dl = 0.
t—T~

When T = oo we say that u has grow-up.

The problem with global reaction a(x) = 1 has been deeply studied in the last years mainly
concerning blow-up and p > 1, see for instance the survey book [14], but also in relation to grow-up,
and thus p < 1, see [1,12]. In fact there can exist blow-up solutions only if p > 1, and in that range
small initial data produce global solutions if and only if p > m + 2. The global solutions are
unbounded if p < 1, i.e., they have grow-up, while they are globally bounded if p > m + 2. The
exponents po = 1 and p. = m + 2 are called, respectively, global existence exponent and Fujita
exponent. For the related case in which the reaction coefficient is a(x) = 1. )(x), 0 < L < oo, the
exponents are py = max{l, mT“} and p. =m+ 1, see [2,4,13].

The first result in the paper establishes precisely for which exponents and data we have such
phenomena of blow-up or grow-up. We prove that the exponents are the same as for the case a(x) = 1.

Theorem 1.1.

1). If0 < p < po = 1 all the solutions to problem (1.1) are globally defined and unbounded.

2). If 1 < p < p. = m+ 2 all the solutions blow up in finite time.

3). If p > m + 2 solutions may blow up in finite time or not depending on the initial data. Global
solutions are bounded.

The second question to deal with is the speed at which the unbounded solutions tend to infinity,
both in the grow-up and in the blow-up cases. For global solutions we show that these rates are not the
natural ones given by the corresponding no diffusion ODE (2.1). This in fact gives an upper estimate
of the grow-up rate by comparison,

ctt-r, p<l,
13

(1.2)
ce', p=1

u(x, 1) < {
We remark that when p < 1 the reaction function is not Lipschitz, and uniqueness does not
necessarily hold, neither comparison, see [1, 12]. In that case we can use for comparison a maximal
solution or a minimal solution, [12].
In the case of global reaction a(x) = 1, it is proved in [1, 11] that the above is indeed the grow-up
rate when 0 < p < 1, that is 1
u(x,t) ~ tr

uniformly in compact sets. By f ~ gwemean 0 < ¢; < f/g < ¢ < o0.
However, for p = 1 it is well known, through and easy change of variables that eliminates the
reaction, that u(x, 1) ~ t~/%¢’ if m = 1 and

at ~ 71’ = i 1’—7
u(x,t) ~e ¥ = min{ m+1}

when m # 1, for ¢ large uniformly in compact sets of R, see [15] .
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On the other hand, when a(x) = 1_, ) it is proved in [3] that estimate (1.2) is far from being sharp
in most of the cases. In particular

1 .
l‘m+172p’ lfp S 1 < m,

1 .
u(x,t) ~3 ifm<p<l,
e, ifm<p=1,

uniformly in compact sets in the first case, only for |x| < L in the last two cases. For |x| > L the rate is

different in the case p > m, namely
1

u(x,t) ~ ttn,

In the limit case of linear diffusion and linear reaction, m = p = 1, it holds

1
lim 284D _

t—0o0

2

where w = w(L) € (0, 1), lim; _,., w(L) = 1.

For our problem (1.1) we show that the rate is the same as for global reaction only if p < m with
p < lorp=m=1;itis the same as for a(x) = 1_. ) if p > m, and strictly in between of those
two problems if p = 1 < m. Again the rate is different for p > m inside or outside the support of the
reaction coefficient a(x).

Theorem 1.2. Let u be a solution to problem (1.1) with p = 1.

1). If m > 1 then u(x, t) ~ e uniformly in compact sets of R, where a € (1/m,2/(m + 1)) depends on
the behaviour of uy at infinity.

2). If m = 1 then u(x,t) ~ €' uniformly in compact sets of R.

3). If m < 1 then u(x,t) ~ €' uniformly in compact sets of R* and u(x,t) ~ {T uniformly in compact
sets of R™, provided uy(x) ~ |x| = (log |x|)ﬁ for x ~ —co.

Theorem 1.3. Let u be a solution to problem (1.1) with p < 1.

1). If m > p then u(x,t) ~ tll%p uniformly in compact sets of R.
2). If m < p then u(x,t) ~ t™r uniformly in compact sets of R* and u(x, t) ~ = uniformly in compact
sets of R™, provided uy(x) ~ IXII%I for x ~ —oo.

We show in Table 1 the different grow-up rates. The exponents are

1 1 2 1
a=—— — = =—,
m+1-2p

zl—p’ 1w m+1’
w <1 dependson L,
a < a*(m) < ¢ depends on the behaviour of u, at infinity.

In the case p > m we have two different rates, inside or outside the support of a(x).
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Table 1. Comparison of the problems with different reaction coefficients: global reaction
a(x) = 1, localized reaction a(x) = 1_. 1), and reaction confined to the half-line a(x) = 19 ).

p=1 p<l1
m>1 m=1 m<1 m>p m=p m<p
R e! e e I I t“
(-L,L) t* e e/ 14 ]t
(0,00) € e e/t 1 1 )

As for blow-up, the rate at which the solutions approach infinity in a finite time has been studied for
the case of global reaction under different conditions on the initial datum and exponents, with special
care in the multidimensional case, see [14] and the references therein. For dimension one, as is our
situation, any solution with blow-up at time # = T satisfies, for ¢ close to 7',

(-, Dllew ~ (T — 1),

For localized reaction a(x) = 1.1, the rates have been established in [2,4], giving a different rate
depending on p being bigger or smaller than m,

1 1
p—1"2p-—m-1

||M(', t)”oo ~ (T - t)_ya )/ = maX{ }
In addition the property 0,u > 0 is required in the proof of this result.

We prove here for problem (1.1) that the rate is the same as for global reaction, assuming again
monotonicity in time u, > 0, but this is required only above the Fujita exponent, i.e., for p > m + 2.

Theorem 1.4. Let u be a solution to problem (1.1) with p > 1 such that becomes infinity fort — T-,
and assume further that u, > 0 if p > m + 2. Then

-, Dlleo ~ (T — 1777, (1.3)

We end the description of solutions of problem (1.1) by studying the set where the solution tends to
infinity, the blow-up set

Bu)={xeR : dx; - x, t; > T, u(xj,t;) > oo}.

In the global reaction case it has been proved the three possibilities according to the reaction exponent:
single point blow-up, B(u) is a discrete set, if p > m; regional blow-up, B(u) is a compact set of positive
measure, if p = m; and global blow-up, B(#) = R, if p < m. See again [14]. The same happens for
localized reaction a(x) = 1_ ), at least for m > 1 and symmetric nondecreasing initial values, see [4].
In our case we prove that the same happens, and we additionally show where this blow-up set can lie
in the case where the blow-up is not the whole line. To do that we assume in the case p > m that there
exists some point x, for which the blow-up rate (1.3) holds, i.e.,

u(xo, ) = (T — 1) 71, (1.4)
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Theorem 1.5. Let u be a blow-up solution to problem (1.1), with compactly supported initial datum.
Assume also (1.4). We have for the blow-up set B(u):

1). if p > mthen B(u) C R*. Moreover if m > 1 it is bounded;
2). if p = m then B(u) is bounded with nontrivial measure;
3). if p < m then B(u) = R.

We remark that due to the lack of symmetry in the problem it is not clear the existence of the point
assumed in the statement. In general we can prove that B(u) = [x;,0) for some —co < x; < oo if
p < m, and B(u) is bounded if p = m.

Organization of the paper: We characterize the critical exponents, Theorem 1.1, in Sections 2 and 3.
The grow-up rates, Theorems 1.2 and 1.3 are proved in Section 4, while the blow-up rates, Theorem 1.4
is proved in Section 5. Finally we devote Section 6 to describe the blow-up sets, Theorem 1.5.

2. Blow-up versus global existence

We prove in this section that the global existence exponent is py = 1. First it is obvious that if
0 < p < 1 every solution to problem (1.1) is global. Just use comparison with the flat supersolution

U =u’, U(0) = lluolleo- 2.1

Remark 2.1. Though in the case p < 1 there is in general no uniqueness, and therefore no comparison
(the reaction is not Lipschitz), we always can compare with a supersolution which is a maximal solution
of the equation, like the function U in (2.1) is, see [12].

In order to complete the proof of the first item in Theorem 1.1 we observe that all the solutions have
grow-up if p < 1.

Lemma 2.1. Let u be a solution of (1.1). If p < 1 then
u(x,t) — oo

uniformly in compact sets.

Proof. We only note that this occurs for the solutions to the problem if the reaction is localized in a
bounded interval, a(x) = 1. 1), see [3], and any solution to that problem (translated) is a subsolution
to our problem. O

We now show that for p > 1 there exist solutions that blow up in finite time provided the initial
value is large in some sense.

Lemma 2.2. If p > max{m, 1} problem (1.1) has blow-up solutions.

Proof. We observe that u is a supersolution to the Dirichlet problem

w, = (W) + WP, x€A,B),t>0
w(A,t) = w(B,1) =0,
w(x, 0) = wo(x),

for any interval (A, B) C (0, c0). Use then the results in [14]. O
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Lemma 2.3. If 1 < p < m there exist blow-up solutions.

Proof. We construct a self-similar subsolution

ux,n) =T -07f&  E=x(T-n7,
satisfying u(0, r) = 0. The self-similar exponents are given by

1 p—m
v T

a,

and the self-similar profile satisfies

("Y' =BEf + [P —af =0, f(0)=0.

Using (f™)’(0) = u as shooting parameter we claim that there exists some yy > 0 such that the
corresponding profile f; satisfies

fo@) >0 in(0,&) and  fo(&o) =0,

for some &, > 0. This gives the desired blow-up subsolution with profile

_ fo(é:)a é‘: € (0’ 60)7
J& = { 0, otherwise.

Then, if uy(x) > u(x, 0) the solution of (1.1) blows up.

In order to prove the claim we argue by contradiction, assuming that for every large u the
corresponding profiles f, are positive in (0, 0). Given any of such profiles with 4 > 1 we take
k = ,uWTm and consider the function

1 mp
8(&) = k—mf’"(k 2 §).
It satisfies the initial value problem
g+l — kT (Beg"y —ag") = 0, £>0,

gx(0) =0,
8.(0) = 1.

We define the energy of the system at a point & as

1
E@ = 560 +Vg). V()= p’f

Multiplying the equation by g; we get that
B

1-m
E'¢) = Zkl"’fgk'" (g,)* <0,

since 8 < 0. Thus,
1
E() < E0) = 5
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Also, calculating the minimum of the potential V we have
E() > —ck™"™ > —¢.
Since p > 1 this implies that there exists two constants C;, C, depending on m and p such that
0<g<Cy, lgil < Ca.

Hence, letting k — oo we have that g, converges uniformly in compact sets to a non negative function

G. It is clear that G satisfies
G” +GPIm =0, &E>0,

G(0) =0,

G'(0)=1.
However the solution of the above problem crosses the axis at some finite point with non-zero slope.
This is a contradiction and the claim is proved. O

3. Fujita exponent

In this section we prove that the Fujita exponent is p. = m + 2, that is, all solutions blow up if
1 < p<m+2, and if p > m + 2 not all solutions do so. In this last range p > m + 2, it is easy
to see that small initial data produce global solutions, by comparison with the global supersolutions
corresponding to the case a(x) = 1, see for instance the book [14]. In fact they tend to zero for  — oo.

We divide the proof of blow-up below p. in three cases, | < p<m,m<p<m+2andp =m+2,
the most difficult case being the last one.

Lemma 3.1. If1 < p < m then all solutions blow up in finite time.

Proof. We only have to check that the self-similar subsolution constructed in Lemma 2.3 can be put
below any solution if we let pass enough time.

1). Itis clear when p < m that we can do it since u(x, 0) is small taking 7 large, as well as its support
is small, due to the fact that 8 < 0.

2). For p = m we note that u(x, 0) is still small if 7 is large but it has a fixed support [0, &y] since 5 = 0.
Nevertheless, using the penetration property of the solutions of the porous medium equation we
obtain that there exists #, > 0 such that the support of u(-, #y) contains any interval.

Lemma 3.2. If m < p < m + 2 then all solutions blow up in finite time.

Proof. The proof is the same as for the global reaction and is an easy consequence of the energy
argument of [10], also called concavity argument. In fact, defining the energy of a function v as

| m «
E - _ my 12 _ p+m 1
W(1) 2Im|(v )xl p+mf0 v, (3.1

we have that if for a solution u to (1.1) there exists some #, such that E,(z)) < O then u blows up in
finite time. Now we consider the Barenblatt function

1 2 L
B(x,t; D) = {1 (D - kaz—m)j*' , (3.2)
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m—1

where k = TG D > 0. It is a subsolution to our equation and it satisfies, for some constants cy, ¢,
depending only on m, p and D,

2m+1 p+m—1

EB(t) = C]t_ m+l — Czt_ mel

which is negative for ¢ large provided p < m + 2. The final step is a standard comparison argument:
we make B(x, 1; D) small by taking D small, so that it can be put below ug; this implies u(x,t) >
B(x,t + 1; D) for t > 0; let t; be such that Ep(#;) < 0; let v be the solution corresponding to the initial
value B(-, t;; D), which by the above energy argument blows up in finite time; since u > v so does u. In
the case m < 1 we need the behaviour at infinity of every solution, see [9], since the function (3.2) is
positive, while for m = 1 a Gaussian is used instead of a Barenblatt function. O

We observe that the fact that the integral in the reaction term is performed only in (0, co) does not
affect the original argument. In [4] we used the fact that the integral in (0, L) produces a different time
power term if L is finite, and so the Fujita exponent is different in that case.

Lemma 3.3. If p = m + 2 then all solutions blow up in finite time.

Proof. We use the method introduced in [7] to prove blow-up for the critical exponent in the case
a(x) = 1, but here the nonsymmetry of the problem makes things more involved. The argument goes
like this: assuming by contradiction that the solution is global, we rescale and pass to the limit in time,
thus obtaining a solution to some problem for which we prove nonexistence.

Let u be a global solution, and let #y > 1 and D be such that u(x, t)) > B(x, ty; D), where B is given
by (3.2) (if m # 1, for m = 1 we use instead a Gaussian like in the proof of Lemma 3.2). We define the
rescaled function

1
v(&, 1) = t"u(x, 1), E=xt7" t=logt, a= .
m+1
We have that v is a solution, for 7 > 7y = log #;, of the equation
Ve = (Vg + a(éV)g + a(E)v™. (3.3)

If g is the solution to Eq (3.3) with g(¢&, 79) = B(&, 1; D), by comparison we have that v > g for every
T > T, and in particular g is globally defined in 7. For the special form of the initial value, it is easy to
see that g is nondecreasing in 7, and therefore there exists the limit

lim g(&,7) = f(£) € [0, e].

We claim the following alternative:
a) f is locally bounded. Thus we can pass to the limit in (3.3), by means of a Lyapunov functional,
to get that f is a positive solution of

(™Y +aEf) +p@f™* =0  £€R, (3.4)

see [7]. Now we observe that the function
&) = (f") +aéf
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satisfies &'(£) = —p(&) f"2(£), so it is constant for & < 0 and decreasing for & > 0. Then, if we assume
&) = &y > 0, we have that
(f") (&) 2 &&) = &, £<0.

This implies that there exists a point &; < 0 such that (&) = 0 and (/™)' (£1) # 0. Therefore E(0) < 0,
and there exists some & > 0 such that &(&) = &, < 0. Exactly as before

Y@ <8 <&, >4,

so there exists a point & > &, such that (&) = 0, (f™)'(&3) # 0. This gives a contradiction and f
cannot exist.
b) There exists &) such that f(&;) = co. Then g is large in a nontrivial interval and this would imply
that it blows up in a finite time. This is again a contradiction, and the theorem would be proved.
We have that f satisfies Eq (3.4) in any interval in which it is bounded. It is clear that f cannot have
any minima since at such a point we would have from the equation (f™)” < 0. This implies
lim f(£) = limsup(f™)'(&) = . (3.5)
£2% )
Assume &, > 0. If f is bounded in some interval (&) — 6,&), 0 < &, then f is increasing in that
interval with

(f")(€) < & = 6/2), §o—0/2 <& < ¢&o.
This is a contradiction and thus f(£) = oo for every 0 < & < &,. Moreover, if f is bounded in € < 0, we
have

(") (&) + agf(§) = c <0,
by the above. Thus by (3.5), there is a sequence £; — 0~ such that £ f(£;) — oco. The same argument
works from the left to the right, assuming &, < 0. In conclusion f is large in some interval || < &,, that
could be small, but it satisfies that &, f(£,) is large.

Let us now show that in this situation the function g blows up in finite time. By the monotonicity
of g in time we have that for any large constant A, > 0 there exists M > 0, &, > 0 and 7 such
that M&y > AY? and g(&,7) > M for every |¢| < &y, T > Ty Now we argue as in [4]. Let z(x,1) =
e " g(&, 1) be the function g in the original variables, and define A(x, t + ¢™) the solution of (1.1) with
initial datum

W(x) =114 - 2725,
where
A=EM)P, A= @M.
It is clear that W(x) < z(x, e™), since
2(x,e™) = e “™Mg(&E,Ty) = e MM for x| < e™ ™My,
W(x) < W) =A"1A =ev™M,
supp(W) = {Ix] < AA'2} = {|x] < e ™))

Moreover,
Eh(O) — /l_(2m+l)A2m+1/2(C1 _ C2A2),

for some ¢, c; depending only on m. This is negative for A > A, = A.(m). Thus & blows up in finite
time, and by comparison z, or which is the same g, also blows up. This ends the proof. O
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4. Grow-up rates

The aim of this section is to study the speed at which the global unbounded (grow-up) solutions to
problem (1.1) tend to infinity. We therefore consider the range p < 1. In order to avoid nonuniqueness
issues when p < 1 we assume in that case that the initial value is positive for x > 0, that is where the
non-Lipschitz reaction applies.

As we have said in the Introduction, the upper estimate of the grow-up rate is given by comparison
with the function in (2.1). In the case of global reaction a(x) = 1 this is sharp if p < 1 orm < 1. In fact

we have for ¢ large
1

177, p<l,
e m<1=p,
uey~y =§ @.1)
) b o
gm+1t’ m>1= D,

see [1,11,15].

On the other hand, when a(x) = 1., the rates are proved in [3]. Though in that situation the
global existence exponent is different, py = max{l, ’"T“}, we quote the results proved in [3] in our
range p < I:

i)if p <1 < mthen

u(x,t) ~ tﬁ-zl),

in compact sets.

ii)if m < p < 1 then
1

T-p
u(x,t)~{ 17, for x| < L,

=

= for |x| > L,

provided that the initial datum satisfies
X[y ™™ (x) ~ 1. (4.2)

iii)if m < p = 1 then
e, for x| < L,
tﬁ, for |x| > L,

u(x,t) ~ {
provided that the initial datum satisfies
P~ (x) ~ Tog(x).

iv)if p =m =1 then
. logu(x,1)
lim ——— =

t—00 t

w(L) € (0,1).

We prove in this paper that for problem (1.1) the rate can be that corresponding to global reaction
or to reaction localized in a bounded interval, or none of them, depending on the sign of p — m. We
can also have a different rate inside or outside the region where the reaction applies when p > m, like
in the case a(x) = 1(_pz).
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4.1. Casep =1

Though the reaction is linear this is the more involved case. We consider separately the three cases
according to m being larger, equal or smaller than 1.

The proof of the grow-up rate follows by comparison with special selfsimilar subsolutions and
supersolutions. We construct such functions in the form

w(x, 1) = e f(xe™), 4.3)

where necessarily
: m—1
= —a.
2
Also, by (4.1) we consider only @ < 2/(m + 1).

The profile f will be given by matching two functions,

W(&), &0,

o6, <O, 4

&) = {
where i and ¢ are the truncation by zero of the solutions of the initial value problems, for some 1 € R,

W' +pgy +(1—a)y =0,  £>0,

¥(0) =1, (4.5)
¥'(0) = 4,
(@) +BEY —ap =0,  £>0,
¢0) =1, (4.6)
¢'(0) = —A.

We start withm > 1 = p.

4.1.1. Slow diffusion, m > 1

The existence of solutions with compact support for equations of the above type has been studied
in [8]. Let us consider, as in that paper, the problem for some &, > 0 given,

(&™) +pég’ —qg =0, <&,
{ g(&o) = (") (&) = 0. 4.7

It is proved in [8],

Theorem 4.1. Let 8 > 0. There exists a continuous solution g to problem (4.7) such that g(0) > 0 for
28+ q > 0;g0)=0for2B8+q =0, and if 28 + g < 0 there exists a point &, € (0, &) with g(&,) = 0.
Moreover, in the first case, g'(0) < 0iff+q >0, g(0) =0if+q=0;,and g'(0) >0if+q > 0.
Finally

8E) ~ E—&m1  for £ 4. (4.8)

Translating this result to our problems (4.5) and (4.6), where ¢ takes the values, respectively, g =
a—1<0andg = a >0, we obtain the following results.
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Corollary 4.2. 1). For each a > 0 there exists a unique A_(a) > 0 such that problem (4.6) with
A = A_(@) has a decreasing solution with compact support.
2). Problem (4.5) has solutions with compact support for some A if and only if « > 1/m, the solution
being unique for each a given, and thus A = A,(a). Moreover, A.(a) > 0ifa < 2/(m + 1), and
A,2/(m+ 1)) =0.

If we find some @ € (1/m,2/(m + 1)) such that A_(@) = A,(a), we will obtain a solution w with
frofile f defined in R which has compact support. But we are also interested in subsolutions, and these
are obtained constructing profiles with compact support [—a, b] with a bad behaviour at the interfaces
(f™)'(=a) > 0, (f™)(b) < 0. On the other hand, positive profiles will serve as supersolutions.

Thus, in order to study in more detail the solutions to the equation in (4.7) we introduce the variables

&g’ Lo iom
X=2, Y = =gt n = logé. (4.9)
g m
We also fix the value g(0) = 1 and consider the different values of g’(0). We obtain the differential
system,

X = X(1 —mX) + Y(q - BX),
Y=YQ2-(m- DX),

defined in the half-plane Y > 0, where X = dX/dn. As we have said only the values ¢ = @ and g = a—1
are of interest, with @ € (1/m,2/(m + 1)). We have two finite critical points

P, =(0,0), P, = (1/m,0)

(if ¢ = a— 1 there exists a third critical point but it lies in the lower half-plane), and three critical points
at infinity

Ar=(~00,00),  Ay= (—g,, ®), Ay =(c0,00).

The point P; is an unstable node: we have a trajectory I'y escaping this point from 7 = —oo along
the vector (g, 1), and a family of trajectories I'y, k # 0, behaving near the origin like

X~K\/1_/.

The first one produces a profile g with g’(0) = 0. The profile corresponding to each I', satisfies
2’(0) = k/ \/m. The point P, is a saddle and plays no role at this stage.
Now fix ¢ = @ — 1 < 0. We first observe that defining the energy associated to the problem

EAO) = 5@ + g™,
it satisfies
E,(&) = ~pmég" ()% < 0,
Therefore g is bounded, and all the trajectories starting at P; must go to one of the points at infinity A,
or A,. In fact A5 is unstable.

The profiles satisfying (4.8) correspond to trajectories entering the point A; linearly, since they

satisfy

. i o 1 YO _
X =-oo, mYE)=co lmye = PO
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Using the equation
dY Y2 -(m-1)X)

dX ~ X(1—mX) + Y(q-BX)’

we get that the only possible behaviours near A, are
Y~-X, Y~[X|'".

Thus from Corollary 4.2 we get that the trajectory I',+ with k¥ = A,(a) vVm joins P, with A,
satisfying ¥ ~ —DX near A, and it is the unique trajectory with that behaviour at infinity. All the
other trajectories joining these two points enter A; below I'y+, and above this trajectory near the
origin. See Figure 1.

X

Figure 1. Trajectories in the phase-plane for ¢ = @ — 1 (with a zoom at the origin). The black
line enters A linearly; the blue lines go to A; like Y ~ |X "+ ; the red lines go to A,.

This implies that the corresponding profiles have slopes at the origin g’(0) < A,(a). Observe that
this implies that g vanishes at some point b < co with g(¢) ~ (b — f)»l?, so (g")'(b) < 0.

On the other hand, the trajectories with k > «* must go to A,. The corresponding profiles are
positive with

g ~ &7

for £ large.
In summary we have proved the following result.

Lemma 4.3. Let  be a solution of (4.5) with some a € (1/m,2/(m + 1)). There exists some A, =
Ao (@) > 0 such that

1). If A < A, there exists & < oo such that y(&y) = 0 > ™) (&)
2). If A = A there exists & < oo such that y(&p) = W) (&) = 0.
3). If A > A, the solution s is positive and  ~ f_% for & large.

We comment by passing what is the behaviour in the case @ = 1/m. If we trace back the unique
trajectory entering A; linearly, we see that it goes to P,. In fact integrating the equation between & and
a we get

~(&"Y(©) = Beg(e) — B j: o(s)ds.
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A second integration gives
§"(&) = pg f g(s)ds.
&

Then lim_, Y (&) = O trivially, while

by 1, E(PEO B[ e0ds)
TN 1m —

lim X(¢) = 1i o m
gl—{% (€3] 51_1}(} mg"(£) m €0 ﬁé‘f;g(s)ds m

Therefore all the trajectories starting at P; must go to A; like Y ~ |X |+ . We obtain profiles with a bad
interface behaviour for every value of A.

The phase-space (4.9) is studied in the same way in the case ¢ = @ > 0. Following the same
argument for problem (4.6) we obtain:

Lemma 4.4. Let ¢ be a solution of (4.6) with some a € (0,2/(m + 1)). There exist A = A_(a) > 0
such that:

1). If A > A_ there exists &, < oo such that ¢(&1) = 0 > (™) (&)).
2). If A = A_ there exists &, < oo such that ¢(&1) = (¢™)' (&1) = 0.
3). If A < A_ the solution ¢ is positive and unbounded.

Moreover A_(a) = K/ +a.
We now study the matching.
Lemma 4.5. There exists a unique value a, € (1/m,2/(m + 1)) such that 1_(a.) = A, (a.,).

Proof. Define the continuous function h(a@) = A, (@) — A_(a). It is clear that A/(2/(m + 1)) < 0. On the
other hand, taking 4 = A_(1/m) in (4.6) and (4.5) we obtain a profile which crosses the axis at some
positive point with bad interface behaviour. Therefore by continuous dependence of the profile with
respect to the parameter @ we have the same behaviour for @ = € + 1/m. This implies h(e + 1/m) > 0.
Then there exists a. € (1/m,2/(m+1)) with h(a.) = 0. The uniqueness follows by comparison. Indeed,
if we assume that h(a;) = 0 = h(a,) with @; < @, we have that the solutions w; with profile fi, f>
given in (4.4) with @ = a, a, satisfy

wi(x,0) = fi(x) > e ™ fo(xe”") = walx, —11)

for some #; > 0. This implies w(x,t) > wy(x,t — t;) for any ¢ > 0. In particular at x = O this means
f1(0)e™" > £,(0)e2"""), which is impossible if ¢ is large. O

Theorem 4.6. Let u be the solution to problem (1.1) with p = 1 < m. Let a. be given in Lemma 4.5
and define y, = 212

(m—Da.”

1). If there exists some 1 <y <. such that uy(x) ~ x™ as x — oo, then
C1e“" < u(x, 1) < Cre®,
where
a(y) = Tt ym=1)
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2). If limsup,_,  x "up(x) < oo, then for all € > 0
Cie™' < u(x, 1) < C(g)e' ™).
3). If ug has support bounded from the right then
Cie™ < u(x,t) < Cre™.

The above estimates are uniform in compact subsets of R for t large.

Proof. The proof follows by comparison with the self-similar functions constructed before. We define:
e w, the self-similar function given in (4.3) with @ = «.. It is a solution to (1.1) with compact
support
supp(w(-, 1)) = [-K_é”, K.é”].

e For a € (a.,2/(m + 1)), which implies 1,(@) < A_(a), we consider w_ the self-similar function
given in (4.3) with A = A_(«). It is a solution to (1.1) with support bounded from the left

supp(w(-, 1) = [-Kié,00),  lim xiiw(x, 1) = Kye'.
In this case, we also consider w, the self-similar function given in (4.3) with 4, (@) < 1 < A_(a). It

is a positive solution to (1.1) such that

. 2(1-a) .
lim xmDew,(x, 1) = Kye', lim wy(x, 1) = oo.
X——00

X—00

We now consider the different cases in the statement of the theorem.

). up(x) ~ x7 with 1 <y < v,. Taking @ = a(y) € (a.,2/(m + 1)) we have A,(a) < A_(@), and
the functions g, w_ and w, have the same behaviour at infinity. Then there exists ¢, large enough
such that

w_(x, —11) < up(x) < wi(x, ),

and by comparison
w_(x, t—1) <u(x,t) <wi(x,t+1).

The grow-up rate follows.

2). up(x) < x77. The lower bound follows by comparison with w,(x, t — ¢;). For the upper bound we
compare with w,(x, ¢+ t;) with @ = @, + 6, 6 > 0 small.

3). up with compact support. We compare from below as in the previous case, and from above with
w.(x,t+ 1).

O

We observe that for any initial value u, the grow-up rate is always exponential, like for global
reaction a(x) = 1, but with an exponent strictly smaller @ < @, < 2/(m + 1). In the case of a localized
reaction, a(x) = 1. 1), the grow-up was polynomial.

The second case to consider when p = 1 is m = 1, where things are more or less explicit.
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4.1.2. Linear diffusion m = 1

Lemma 4.7. Let u be the solution to (1.1) with p = m = 1. Then,
C.e''"™" < u(x,t) < Cye',

uniformly in compact subsets of R.

Proof. The upper estimate is given by comparison with the function in (2.1). For the lower bound we
use again comparison, this time with an exponential selfsimilar function, see (4.5), (4.6). Since here
B =0, we look for a function in separated variables

w(x, 1) = " f(x), O<a<l,
where the profile f satisfies

ff+d-a)f =0, x>0,

f=af =0, x <0,

f0)=1.

This gives
Fx) = Cle\/ax + Cge‘\/ax, x <0,
T Gysin(VI—ax)+cos(Vi—ax), x>0.

The matching condition at x = 0 means

a

Ci+C =1, Gy = |—(C1 = Cy).
l-a
Notice that for any x_ < 0 given we can take
e ax_
C2 - e\/&x— _e—\/(;x_’
so that f(x_) = 0. Moreover, for
! arctan(_l)e( X T )
Xy = -~ ) s
T VI-a C) \2vi—a Vi-a

we have f(x) > 0in (0,x;) and f(x,) = 0. This profile gives us a subsolution by the procedure of
truncation by zero. We denote by f, this truncated profile.

Let now u be a solution of (1.1). Since the heat equation has infinite speed of propagation, we can
assume without loss of generality that uy(x) > 0. Then there exists #; > 0 such that

uo(x) = e fi ().

By comparison we deduce u(x, t) > w,_(x, t—t;). We obtain the lower grow-up rate for compact subsets
of (—oo, 2\/%) and for every a < 1.
Finally we observe that for A > 0 the function w,_(x — A, t — #;) is also a subsolution to (1.1), so we

obtain the lower grow-up rate for any compact subset of R. O

We end by considering the case m < 1 = p.
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4.1.3. Fast diffusion m < 1

Here the rate is different for x > 0 and for x < 0, as in the case of a localized reaction, a(x) = 1_. ).
We first show that the grow-up rate given in (4.1) is sharp for compact subsets of R* by proving the
lower bound. To do that we compare with a subsolution in separated variables with compact support
in R*,
u(x, 1) = f(x)g(0).

Notice that since u has global grow-up, see Lemma 2.1, we have that u(x, 1)) > u(x,0) for £y large
enough, so then the comparison of the initial data is granted by a time shift.

Lemma 4.8. Let u be a solution of (1.1) withm < 1 = p. Then,
u(x, 1) > ce'

uniformly in compact subsets of R*.

Proof. Let ¢ be the solution to the problem

@) +¢=0, &>0,
¢(0) =0,
¢'(0) = 1.

Since ¢ is concave ¢ must vanish at some point & < co. Now we consider the rescaled function
1-m
f(x) = A¢(A 2 x),

which satisfies the same equation and vanishes at x = foA‘l_Tm. This is the spatial part of our
subsolution. The time part g is defined as the solution to

g=g-g" t>0,
g(0) > 1.

We have u(x,t + ty) > f(x)g(¢) for any x > 0 and ¢ > 0. Since g’ ~ g as t — oo, the comparison gives
the desired lower bound. O

In order to obtain the grow-up rate for R™, we note that by (4.1) u is a subsolution of the problem

W = (Wm)xx’ x < 0, t> 0,
w(0,1) = C,é, t>0,
w(x,0) = wo(x), x<0.

It is proved in [3] that there exists a unique self-similar solution of exponencial type
W(x,0) = € flxe 3,
which is increasing in both variables x and ¢. Moreover, for |£| large
£(&) ~ I (log lE) ™ .
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Then, if the initial datum satisfies
uo(x) ~ x| (log|x) ™, x ~ oo, (4.10)
we can take as a supersolution w(x, ) = AW(x, t). Notice that from the property W, > 0 we have
W =Wy =(A—A"w, >0,

provided A > 1. Moreover, taking A large enough we get w(x, 0) > uy(x).
On the other hand, by Lemma 4.8 we have that u is a supersolution to the problem

W, = (Wm)x)C9 X < l5t > 05
w(l, 1) = Cyé, t>0,
w(x,0) = wo(x), x<1.

and w(x, 1) = AW(x, r) with A small enough to have w(x, 0) < uy(x) is a subsolution.
As a conclusion we get the following result.

Lemma 4.9. Let u be a solution of (1.1) with m < 1 = p, such that the initial datum u, satisfies the

condition (4.10). Then, for x <0

1

u(x,t) ~ tmn,

4.2. Casep <1

Here we distinguish between m < p and m > p.

42.1. Casem < p

Lemma 4.10. Let m < p < 1. If uy satisfies (4.2) for x ~ —oo, then

1

tr, x>0,
u(x,t) ~ {
=

1
tTm, x <0,

uniformly in compact sets.

Proof. The proof follows in the same way as in the case p = 1, using here the selfsimilar profile
W(x, 1) = 17 f(xtn)
constructed in [3], which is again increasing in both variables x and ¢, and that satisfies, for |£| large,
£© ~ ke,
O
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422. Casem>p

Lemma 4.11. Let p < 1 < m. then
1
u(x,t) > ct™r

uniformly in compact sets of R.
Proof. We consider a subsolution in selfsimilar form
w(x, ) =t f(&),  &=xt,

where

and the selfsimilar profile satisfies

L) =" = BES +a@f —af 2 0.
We construct the profile gluing four functions. Let A > 0 be a constant to be fixed and put & =
—V2/aA% .

1). For & < & we put f1(€) = 0.
2). For & < ¢ < 0 we define
2
&) =A+ V2aASE+ aAl/m%.

Notice that f)"(&) = (f5")'(£&o) = 0. Moreover since 8 < 0 and f, is non-decreasing
L) 2 (Y —af 2 aAn - afy(0) = 0.
3). For0 < £ <& = V2aA 5" we define
€ = A+ V2aA & — (AP - aA”’”)%z.
We have f3"(0) = f7"(0) = A, (") (0) = (f3")'(0), so this function f3 matches well with f;. Also
f3isincreasing in 0 < & < &, with

ﬁ@o=Amp+a———77), i) = 0.

— aA m

Since p < 1 we get that for A small enough, both &, and f;(&;) are small. Hence, the function
17 - afs(f) is increasing. Then

LB 2B + f5 —afs = (N + £0) - afs0) = 0.

4). For & > &, we consider f;, = g,, where g is the solution to the initial value problem

(&) —p&g’ + 8" —ag =0, &> &,
g(&1) = f3(&),
g')=0.
It is clear that if f3(£1) < (1/@)” then g is nonincresing and positive for & < &€ < & < oo.
The final function putting together f;, i = 1,---,4 is a subsolution to our problem with zero initial
value. This gives the desired lower bound of the grow-up rate. O
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S. Blow-up rates

Proof of Theorem 1.4. The lower blow-up rate is obtained easily by (strict) comparison with the
supersolution
1
U@)=C,(T —1) .

Indeed, if we assume that there exists ¢, € (0, T') such that

(-, 20)lleo < U(to),
it also holds
(-, to)lle < Uty — €)

for some & > 0, which is a contradiction with the fact that  blows up at time 7'.
In order to prove the upper blow-up rate we use a rescaling technique inspired in the work [6].
Let us define
M(t) = max u(x, 1),
Rx[0,1]

and consider, for any fixed ¢y, € (0, T), the increasing sequence of times
tii =sup{t € (¢;,T) : M(tr) = 2M(t))}.

Observe that for this sequence we have [|u(-,?;)llo = M(t;). We also observe that since the reaction
only takes place for x > 0, we get that near the blow-up time the maximum of u is achieved in R*.
Therefore we can take x; > 0 such that

M(Xj, lj) = M(tj)
We consider the sequence
zj = (tj — t)MP'(2)).

Let us observe that if z; is bounded, we get that

ti —t; < cM'P(t) = 2P M (1y).

Performing the sum,

T —tg < cM' (1) ) 27077 = ¢! M'(tg) < ¢/ luC-, 1)l
j=0

that is, the desired upper blow-up rate. Therefore, in order to arrive at a contradiction, we assume that
there exists a subsequence of times, still denoted #;, such that

lim z; = oo. (5.1)

j—oo

Now we define the functions

1w _
00, 8) = TrulM;* y + X, M;"s + 1)),
J
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for
YER,  selj=(-t;M (T —t)M’™),
where M; = M(t;). Notice that /; — R as j — oo and ¢; is a solution to the equation
P

(‘pj)s = (‘;Dgn)xx + a(y - ijjz )‘Pf, (y, S) eR X Ij.

It also satisfies
9i(0,00=1 and ¢;(y,s)<2 inRxI,.

The uniform bounds for ¢; impliy that ¢; is Holder continuous with uniform coefficient. Since
©;(0,0) = 1 we have a uniform nontrivial lower bound for every ¢;, that is,

@j(».0) 2 g(y) 2 0,

for some nontrivial function g.

We claim that, under the assumption of Theorem 1.4, each function ¢; blows up at a finite time S ;
which is uniformly bounded, that is §; < §. This is a contradiction with the fact that ¢;(y, s) < 2 for
s € (0,z;). Indeed, since z; — oo we can take j large such that z; > §. Therefore (5.1) can not be true
and the blow-up rate follows.

In order to prove the claim we first observe that since x; > 0, we have that ¢; is a supersolution of
the equation

hs = (h")yy + a(y)h?, (O, 5) € Rx(0,z)). (5.2)

Therefore, for p < m + 2, we can apply Theorem 1.1 to get that the solution of the above equation
with initial datum A(y,0) = g(y) blows up at some time S. Then, by comparison, ¢; blows up at time
S;<S.

For the case p > m + 2 we need the extra hypothesis u, > 0, which implies (¢;); > 0. Therefore ¢;
is a supersolution of the problem

wy = (W")yy, (v, s) € R" x (0, z)),
w(0,s) =1, (5.3)
w(y,0) = 0.

Since w < 1 we can pass to the limit, by means of a Lyapunov functional, to get that w(x, s) — 1 as
s — oo uniformly in compact sets of R*. Actually in the linear case m = 1 the solution to problem (5.3)
is explicit, while if m # 1 the solution is the so-called Polubarinova-Kochina solution. Notice that this
behaviour is also true if we consider the problem in R™. Therefore, by comparison ¢;(y, s) > 1/2 in
ly| < K and s > sk, and then

1 m
iy, sg) = ho(y) = 5(1 — X2 /KA.

Observe that the energy of &, given in (3.1) satisfies

| m o em _
E%:EJ‘M@f—;TZJ‘%+:QK‘—QK<0
- 0

(%)

for K large. Then, applying the concavity argument the solution of (5.2) with initial datum A, blows
up at finite time § and by comparison ¢; also blows up ata time §; < S. O
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6. Blow-up sets

We prove here Theorem 1.5. We first consider the case p > m.

Lemma 6.1. Let u be a blow-up solution to (1.1) with compactly supported initial datum. Then B(u)
is bounded from the left. In fact,

1). Bu) CR* if p>m;
2). B(u) C [-K, ) if p = m.

Proof. Notice that by the upper blow-up rate, u is a subsolution to the problem on the left half-line

wr = (W), x<0,0<t<T,
w(0,1) = C(T — 1) 1/r=1),
w(x, 0) = wy(x),

provided that C is large. For m = 1 we have and explicit formula for w, and it is easy to see that w is
bounded for x < 0, see for instance [14]. For m # 1 we use comparison with a selfsimilar solution in
the form

W(x,t) = (T — ) F(x(T - 1)), a=——7, = a,

where the profile F satisfies the equation
(F™Y" —BEF — aF = 0.

Observe that for p = m, i.e., B = 0, this equation is the same as for problem (4.6), so by Lemma
4.4 there exists a profile F; with compact support and satisfying F;(0) = 1. By scaling F(§) =
CF (C%f) is also a solution, with large support if C is large. We then take C large so as to have
that the corresponding solution W satisfies W(x, 0) > uy(x) and by comparison we obtain the bound of
B(u).
For the case p > m (8 > 0), we introduce as in Seccion 4.1.1 the variables (4.9),
€lg’ 1

X = ) Y = _é;Zgl—m’ n= log |§|’
g m

to obtain the differential system,

X = X(1 —=mX) + Y(a + BX),
Y=YQ2-(m-DX).

It is easy to see that all the orbits in the second quadrant start at the origin and have three posible
behaviours: they cross the vertical axis; or the horizontal variable goes to —oo; or (X, Y) — (—a/f, ).
The existence of a unique orbit joining the origin with (—a/f, ) is given in [5] for m < 1, but the
argument works as well for m > 1. From this orbit we obtain a positive, increasing profile F; such that
F1(0) = 1 and F (&) ~ |£7%/ for ¢ ~ —co. Notice that, for x < 0 and ¢ near T, we have

Wi(x, 1) = (T = " Fi(x(T = 7F) ~ |x["",

that is W is bounded. Rescaling and comparison as before implies the same property for our solution,
u is bounded for x < 0. O
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Remark 6.1. Notice that for p < m we have again an equation like (4.6) for the profile. This gives us
a family of selfsimilar solutions

We(x,1) = C(T = 1y 71 F(C'F (T = 1))

with global blow-up.

Lemma 6.2. Let u be a blow-up solution to (1.1) with compactly supported initial datum. Then B(u)
is bounded from the right provided p > m > 1.

Proof. We only have to notice that the support of the blow-up solutions to the equation with global
reaction, a(x) = 1, are bounded if p > m > 1, see [14]. The proof of this result uses the intersection
comparison technique with self-similar profiles in a neighborhood of the free boundary. Then the same
result holds for our equation near the right-hand free boundary. O

Lemma 6.3. Let u be a blow-up solution to (1.1) with p < m and a compactly supported initial datum.
Assume also that there exists xo € R satisfying (1.4). Then B(u) = R.

Proof. Thanks to the hypothesis at x, we have that u is a supersolution to the problem defined on the
left of x,

wy = (W), X<x,0<t<T,

w(xo, 7) = C((T = 1)~1/@=D,

w(x, 0) = wo(x),

as well as to the problem on the right, x > xy. Moreover, the self-similar solution given in Remark 6.1 is
a subsolution if we choose C small enough such that W¢(x, 0) < uy(x). Comparison ends the proof. O

The same argument allows to prove that if p = m the blow-up set contains some nontrivial interval,
thus concluding the proof of Theorem 1.5.

To finish this section we remark that, in the range p < m, but without the hypothesis of the existence
of xp, it is easy to see that B(u) is unbounded at least from the right. In fact if we assume that at some
point u(x,t) < M, then u is a subsolution to

7= (@) tax)z, x<x, >0,
Z(xb l) = M’
72(x,0) = zp(x).

On the other hand, the stationary solution of the equation with z(0) = K and z'(0) = 0, is a supersolution
of the problem if K is large enough. Then by comparison # must be bounded in (—oo, x;). Therefore if
u is bounded in some interval (x;, co) then it cannot blow up.
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