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1. Introduction

The study of symmetry in overdetermined boundary value problems has become an important field
of research in the theory of PDEs. The pioneering symmetry result obtained by Serrin [20] are now
classical but still influential. The main technique to tackle such problems are the celebrated method
of moving planes developed by Alexandrov [2, 3] and Serrin [20] as well as Weinberger’s approach
[25] which is based on maximum principle for so-called P-function and Rellich-Pohozaev’s integral
identity.

There are plenty of considerations for different kinds of overdetermined boundary value problems.
For our purpose, we recall a result of Reichel [17], who considered an overdetermined problem for
capacity in an exterior domain. The capacity of a smooth bounded domain Ω ⊂ Rn(n ≥ 2) is defined as

Cap(Ω) = inf
{ ∫
Rn
|∇v|2dx

∣∣∣∣ v ∈ C∞c (Rn), v ≥ 1 on Ω
}
.
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The minimizer for Cap(Ω) is characterized by the capacitary potential u satisfying
∆u =0 in Rn \ Ω̄

u =1 on ∂Ω

u→0 as |x| → ∞,
(1.1)

Reichel [17] considered the overdetermined problem, (1.1) with an extra boundary condition

|∇u| = c on ∂Ω, (1.2)

and proved that (1.1) and (1.2) admits a solution if and only if Ω is a ball. Reichel’s proof is again based
on the method of moving planes and he also extended in [18] such result to more general quasilinear
equations including p-Laplacian equations in exterior domains. Garofalo-Sartori [10] and Poggesi [14]
reproved Reichel’s result for p-capacity by using Weinberger type approach, which was first used by
Payne-Philippin [16] for the exterior problem.

The anisotropic PDE problems involving the anisotropic Laplacian attract lots of attention in
recent decades. Regarding the overdetermined problem, Cianchi-Salani [6] and Wang-Xia [22]
independently extends Serrin’s classical result in the anisotropic setting. Due to the anisotropy, the
method of moving planes does not work but Weinberger type approach works in general. The
correponding overdetermined problem for anisotropic p-capacity in an exterior domain considered by
Reichel [17, 18] has been extended by Bianchini-Ciraolo [4] and Bianchini-Ciraolo-Salani [5]. They
proved the symmetric result when the domain is assumed to be convex, by using a totally integral
method. In this paper, we remove the convexity assumption in Bianchini-Ciraolo-Salani’s result by
using Weinberger type approach.

In order to state our result, we introduce the anisotropic p-capacity. Let F ∈ C∞(Rn \ {0}) be a
Minkowski norm in Rn, see Section 2.1 for the definition. For p ∈ (1, n), the anisotropic p-capacity of
Ω is defined as

CapF,p(Ω) = inf
{ ∫
Rn

F p(∇v)dx
∣∣∣∣ v ∈ C∞c (Rn), v ≥ 1 on Ω

}
. (1.3)

The associated anisotropic p-capacitary potential is namely the unique weak solution u to the following
problem 

∆F,pu =0 in Rn \ Ω̄

u =1 on ∂Ω

u(x)→0 as |x| → ∞,
(1.4)

where ∆F,p is the anisotropic (Finsler-)p-Laplacian,

∆F,pu = div(F p−1(∇u)Fξ(∇u)), when ∇u , 0.

A function u ∈ W1,p
loc (Rn \ Ω̄) is called a weak solution of ∆F,pu = 0 in Rn \ Ω̄ if∫

Rn\Ω̄

〈F p−1(∇u)Fξ(∇u),∇ψ〉dv = 0.

for any ψ ∈ C∞c (Rn \ Ω̄). It is not hard to see that

CapF,p(Ω) =

∫
Rn\Ω̄

F p(∇u)dx =

∫
∂Ω

F p−1(∇u)F(ν)dσ,
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where ν = − ∇u
|∇u| is a unit normal of ∂Ω pointing towards Rn \ Ω̄.

We will study the problem (1.4) with the overdetermined condition

F(∇u) = c on ∂Ω, (1.5)

for some constant c > 0. The first main result in this paper is the following

Theorem 1.1. Let 1 < p < n and Ω ⊂ Rn be a bounded domain with boundary of class C2,α. Then
(1.4) and (1.5) admits a weak solution if and only if Ω is a Wulff ball.

In the theorem, a Wulff ball means a translation and rescaling ofWF = {x ∈ Rn : Fo(x) < 1}, where
Fo is the dual norm of F given by (2.1).

Next, we prove a similar result corresponding to Theorem 1.1 in the special case p = n. Let
u ∈ W1,n(Rn \ Ω̄) be a weak solution to

∆F,nu = 0, in Rn \ Ω̄,

u = 1 on ∂Ω,

u(x) ∼ −ln Fo(x) as |x| → ∞,
(1.6)

where ∼ means that
c1 ≤

u(x)
− ln Fo(x)

≤ c2 as |x| → ∞, (1.7)

for some positive constant c1, c2. For this case, we prove the following result with analogous tools.

Theorem 1.2. Let Ω ⊂ Rn be a bounded domain with boundary of class C2,α. Then (1.6) and (1.5)
admit a weak solution if and only if Ω is a Wulff ball.

We adapt the arguments in Garofalo-Sartori [10] and Poggesi [14] to prove Theorems 1.1 and 1.2.
The main ingredients are a strong maximum principle on a well-behaved P-function and a Rellich-
Pohozaev-type identity.

In the second part of this paper, we consider a similar overdetermined problem for the anisotropic
p-Laplacian in a bounded punctured domain. More precisely, we are concerned with the following
equation in Ω \ {0}, where 0 is contained in Ω: for p ∈ (1, n],

∆F,pu = 0 in Ω \ {0},
u = 1 on ∂Ω,

lim
|x|→0

u = +∞.

(1.8)

under Serrin’s overdetermined condition

F(∇u) = c on ∂Ω. (1.9)

We say a function u ∈ W1,p
loc (Ω \ {0}) is a weak solution of ∆F,pu = 0 in Ω \ {0} if∫

Ω\{0}
〈F p−1(∇u)Fξ(∇u),∇ψ〉dx = 0.

for any ψ ∈ C∞c (Ω \ {0}). lim|x|→0 u(x) = +∞ means u has a non-removable singularity at 0. A classical
result of Serrin [19] says that for p ∈ (1, n], when u has a non-removable singularity at 0, then u

ΓF,p
is

bounded near 0, where ΓF,p is the fundamental solution to the anisotropic p-Laplacian given in (3.1).
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Theorem 1.3. Let 1 < p ≤ n and Ω ⊂ Rn be a bounded domain with boundary of class C2,α. Then
(1.8) and (1.9) admits a weak solution if and only if Ω is a Wulff ball centered at 0.

When F is the Euclidean norm, such symmetric result has been proved by Alessandrini-Rosset
[1], and Enciso-Peralta-Salas [9] via the method of moving planes and Weinberger type approach,
respectively. We shall adapt Enciso-Peralta-Salas’s method [9] which is based on the P-function to
prove Theorem 1.3.

Throughout this paper, we assume that F ∈ C∞(Rn \ {0}) is a Minkowski norm on Rn, and Ω is a
bounded domain with boundary of class C2,α. We will always use Einstein summation convention.

2. Preliminaries

2.1. Minkowski norm, Wulff shape, anisotropic area

Let F ∈ C∞(Rn \ {0}) be a Minkowski norm on Rn, in the sense that

(i) F is a norm in Rn, i.e., F is a convex, 1-homogeneous function satisfying F(x) > 0 when x , 0
and F(0) = 0;

(ii) F satisfies a uniformly elliptic condition: ∇2(1
2 F2) is positive definite in Rn \ {0}.

The dual norm Fo : Rn → [0,+∞[ of F is defined as

Fo(x) = sup
ξ,0

〈ξ, x〉
F(ξ)

. (2.1)

Fo is also a Minkowski norm on Rn. Furthermore,

F(ξ) = sup
x,0

〈ξ, x〉
Fo(x)

.

We remark that, throughout this paper, we use conventionally ξ as the variable for F and x as the
variable for Fo.

Denote
WF = {x ∈ Rn : Fo(x) < 1}.

For the simplicity of notations, we will denote byWF = W. We callW the unit Wulff ball centered
at the origin, and ∂W the Wulff shape.

More generally, we denote
Wr(x0) = rW + x0,

and call it the Wulff ball of radius r centered at x0. We simply denoteWr =Wr(0).
The following properties of F and Fo hold true and will be frequently used in this paper (see

e.g., [7, 24]).

Proposition 2.1. Let F : Rn → [0,∞) be a Minkowski norm. Then for any x, ξ ∈ Rn \ {0}, the following
hold:

1). 〈Fξ(ξ), ξ〉 = F(ξ), 〈Fo
x(x), x〉 = Fo(x).

Mathematics in Engineering Volume 4, Issue 2, 1–18.



5

2).
∑

j Fξiξ j(ξ)ξ j = 0 for any i = 1, . . . , n.
3). F(Fo

x(x)) = Fo(Fξ(ξ)) = 1.
4). Fo(x)Fξ(Fo

x(x)) = x, F(ξ)Fo
x

(
Fξ(ξ)

)
= ξ.

Let Ω ⊂ Rn be a bounded open set with smooth boundary ∂Ω and ν be its unit outward normal of
∂Ω. The anisotropic area |∂Ω|F of Ω is defined by

|∂Ω|F =

∫
∂Ω

F(ν)dσ. (2.2)

The well-known Wulff theorem (see e.g., Theorem 20.8 in [15]) says that Wulff balls are the only
minimizers for the anisotropic isoperimetric problem. Equivalently, the Wulff inequality holds true:

|∂Ω|F ≥ n|WF |
1
n |Ω|1−

1
n . (2.3)

Equality in (2.3) holds if and only if Ω is a Wulff ball.
Note that when Ω =W, the unit Wulff ball, one can check by the divergence theorem that

|∂W|F =

∫
∂W

1
|∇Fo|

dσ =

∫
W

div(x)dx = n|W|. (2.4)

For notation simplicity, we denote

κn−1 = |∂W|F = n|W|.

2.2. Anisotropic p-Laplacian

Let u be twice continuous differentiable at x ∈ Rn. We denote by Fi, Fi j, . . . the partial derivatives
of F and by ui, ui j, . . . the partial derivatives of u,

Fi =
∂F
∂ξi

, Fi j =
∂2F
∂ξi∂ξ j

, ui =
∂u
∂xi

, ui j =
∂2u
∂xi∂x j

.

For x such that ∇u(x) , 0, denote

ai j(∇u)(x) :=
∂2

∂ξi∂ξ j
(
1
2

F2)(∇u(x)) = (FiF j + FFi j)(∇u(x)),

ai j,p(∇u)(x) :=
∂2

∂ξi∂ξ j
(
1
p

F p)(∇u(x)) = F p−2(ai j + (p − 2)FiF j)(∇u(x)).
(2.5)

The anisotropic Laplacian and p-Laplacian of u is given by

∆Fu :=ai j(∇u)ui j,

∆F,pu :=ai j,p(∇u)ui j = F p−2(∆Fu + (p − 2)FiF jui j).
(2.6)
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2.3. Anisotropic curvature for level sets

We recall the concept of anisotropic curvature for a hypersurface in Rn. See e.g., [22, 26].
Let M be a smooth embedded hypersurface in Rn and ν be one unit normal of M. The corresponding

anisotropic normal of M is defined by
νF = Fξ(ν).

The anisotropic principal curvatures κF = (κF
1 , . . . , κ

F
n−1) ∈ Rn−1 are defined as the eigenvalues of the

map
dνF : TxM → TνF (x)W.

The mean curvature (with respect to ν) is defined to be

HF =
∑

i

κF
i .

In this paper we are interested in the case when M is given by a regular level set of a smooth function
u, that is M = {u = t} for some regular value t. For our purpose, we choose the unit normal ν = − ∇u

|∇u|
and

νF = −Fξ(∇u), HF = −div(Fξ(∇u)).

In this case, we have that
HF = −div(Fξ(∇u)) = −Fi jui j, (2.7)

Here div is the Euclidean divergence. See e.g., [8].
Next we give the formula for the anisotropic mean curvature of regular level sets.

Proposition 2.2 ( [27]). Let u satisfy ∆F,pu = 0. Then the anisotropic mean curvature of regular level
set of u is given by

HF = (p − 1)F−1FiF jui j in {x : ∇u(x) , 0}. (2.8)

Finally, we will give the anisotropic Heintze-Karcher inequality for later use.

Proposition 2.3 ( [12, 28]). Let Ω ⊂ Rn be an open bounded domain with C2 boundary ∂Ω satisfying
HF > 0. Then,

n − 1
n

∫
∂Ω

F(ν)
HF

dσ ≥ |Ω|. (2.9)

and equality holds if and only if Ω is a Wulff ball.

3. Overdetermined problem in an exterior domain

3.1. Regularity and asymptotic behavior

Let u be a weak solution to (1.4) (case 1 < p < n) or (1.5) (case p = n). The following regularity
result is nowadays standard by the regularity theory for degenerate elliptic PDEs [21] and Schauder
theory for uniformly elliptic PDEs [11].
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Proposition 3.1 (Regularity). Let 1 < p ≤ n and u be a weak solution to (1.4). Then u ∈ C1,β(Rn \ Ω)
for some β < 1. Moreover, u ∈ C∞

(
(Rn \Ω̄)\Crit(u)

)
∩C2,α((Rn \Ω)\Crit(u)

)
, where Crit(u) =

{
x ∈ Rn \

Ω | ∇u(x) = 0
}
. Moreover, |∇u| , 0 in some neighborhoodN(∂Ω) of ∂Ω and u is C2(N(∂Ω)∩ (Rn \Ω)).

For 1 < p ≤ n, let

ΓF,p(x) =


p−1
n−p

(
1
κn−1

) 1
p−1 Fo(x)

p−n
p−1 , 1 < p < n,

−κ
− 1

n−1
n−1 ln Fo(x), p = n.

(3.1)

One can check that
∆F,pΓF,p(x) = δ0 in Rn,

where δ0 is the Dirac Delta function about the origin. We call ΓF,p the fundamental solution to ∆F,pu = 0
in Rn. See [23].

Proposition 3.2 (Asymptotic behavior, 1 < p < n [27]).
Let 1 < p < n and u is a weak solution to ∆F,pu = 0 in Rn \ Ω̄. Then

1). lim
|x|→+∞

u(x)
ΓF,p(x) = CapF,p(Ω)

1
p−1 ,

2). ∇u(x) = CapF,p(Ω)
1

p−1∇ΓF,p(x) + o(|x|−
n−1
p−1 ). where CapF,p(Ω) is the anisotropic p-capacity of Ω

given in (1.3).

Proposition 3.3 (Asymptotic behavior, p = n).
Let p = n and u be a weak solution to (1.6) and (1.5). Then

1). lim
|x|→+∞

u(x)
ΓF,n(x) = c|∂Ω|

1
n−1
F ,

2). ∇u(x) = c|∂Ω|
1

n−1
F ∇ΓF,n(x) + o(|x|−1).

Proof. If u is solution of (1.6), it is a standard argument by using comparison theorem to show that
there exists two positive constants c1, c2 such that

c1ΓF,n ≤ u ≤ c2ΓF,n!‘£

Following the argument of [13], Theorem 1.1 and Remark 1.5, (see [23], Theorem 4.1 and Remark 4.1
for anisotropic case), we conclude that there exists γ ∈ R such that

lim
|x|→+∞

u(x)
ΓF,n(x)

= γ, (3.2)

lim
|x|→+∞

Fo(x)
(
∇u − γ∇ΓF,n

)
= 0. (3.3)

By integration by parts for (1.5), we have∫
∂Ω

Fn−1(∇u)F(ν)dσ = − lim
R→∞

∫
∂WR

Fn−1(∇u)〈Fξ(∇u), ν∂WR〉dσ, (3.4)

where ν = − ∇u
|∇u| and ν∂WR is outward normal vector ofWR. From (3.2), we have

F(∇u) = γF(∇ΓF,n) + o(|x|−1) = γ(κn−1)−
1

n−1
1

Fo + o(|x|−1)
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On ∂WR,

ν∂WR =
∇Fo

|∇Fo|
= −(κn−1)

1
n−1γ−1Fo ∇u

|∇Fo|
+ o(1).

Hence

Fn−1(∇u)〈Fξ(∇u), ν∂WR〉 = −γn−1 1
κn−1

(Fo(x))1−n

|∇Fo|
+ o(|x|1−n).

Combining the fact that ∫
∂WR

(Fo(x))1−n

|∇Fo|
dσ = κn−1,

we deduce that

lim
R→∞

∫
∂WR

Fn−1(∇u)〈Fξ(∇u), ν〉dσ = −γn−1.

It follows from (1.5) and (3.4) that

cn−1|∂Ω|F = γn−1.

The assertion follows. �

Proposition 3.4 ( [27]). Let 1 < p < n and u be a weak solution to (1.4). Then

CapF,p(Ω) =

∫
Rn\Ω̄

F p(∇u)dx =

∫
∂Ω

F p−1(∇u)F(ν)dσ. (3.5)

3.2. Rellich-Pohozaev-type identity

Firstly, we prove the following Rellich-Pohozaev-type identity.

Proposition 3.5. Let 1 < p < n and u be a weak solution to (1.4). Then

(n − p)
∫
Rn\Ω̄

F p(∇u)dx = (p − 1)
∫
∂Ω

F p(∇u)〈x, ν〉dσ, (3.6)

where ν = − ∇u
|∇u| is a unit normal of ∂Ω pointing towards Rn \ Ω̄.
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Proof. By directing computations, we get, for R large,∫
∂Ω

F p(∇u)〈x, ν〉dσ = −

∫
WR\Ω̄

div
(
xF p(∇u)

)
dx +

∫
∂WR

F p(∇u)〈x, ν∂WR〉dσ

= −

∫
WR\Ω̄

nF p − xi
∂

∂xi
(F p(∇u))dx +

∫
∂WR

F p〈x, ν∂WR〉dσ

= −

∫
WR\Ω̄

nF p(∇u)dx − p
∫
WR\Ω̄

xi∂x j(F
p−1F jui)

+ p
∫
WR\Ω̄

xiui∂x j(F
p−1F j)dx +

∫
∂WR

F p(∇u)〈x, ν∂WR〉dσ

= −

∫
WR\Ω̄

nF p(∇u)dx − p
∫
∂Ω

xiui
F p

|∇u|
dσ + p

∫
WR\Ω̄

F pdx

+

∫
∂WR

F p〈x, ν∂WR〉dσ − p
∫
∂WR

xiuiF p−1〈Fξ(∇u), ν∂WR〉dσ.

Then, by taking the limit for R → +∞ and noting that the integrals on ∂WR converge to zero due to
the asymptotic behavior of u at infinity given by Proposition 3.2. Thus, we obtain the assertion. �

Proposition 3.6. Let p = n and u be a weak solution to (1.6). Then we have∫
∂Ω

〈X, ν〉dσ = lim
R→∞

∫
∂WR

〈X, ν∂WR〉dσ, (3.7)

where X is the vector field given by

X = n〈x,∇u〉Fn−1(∇u)∇ξF(∇u) − Fn(∇u)x. (3.8)

Proof. The proof is the same as that of Proposition 3.5 by letting p = n. We omit it here. �

3.3. Case 1 < p < n

First we can compute the value c of F(∇u) on ∂Ω with the overdetermined condition (1.5).

Proposition 3.7. Let 1 < p < n and u be a weak solution to (1.4) and (1.5). The constant c appearing
in (1.5) equals

c =
n − p
p − 1

|∂Ω|F

n|Ω|
. (3.9)

Moreover, the following explicit expression of the anisotropic p-capacity of Ω holds:

CapF,p(Ω) =
(n − p

p − 1

)p−1 |∂Ω|
p
F

n|Ω|p−1 . (3.10)

Proof. By using (3.5) and (3.6), we obtain that

CapF,p(Ω) = cp−1|∂Ω|F and CapF,p(Ω) =
n(p − 1)

n − p
cp|Ω|,

which implies (3.9) and (3.10). �
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Next, we introduce the P-function

P = u−
p(n−1)

n−p F p(∇u). (3.11)

We show that P satisfies a strong maximum principle.

Proposition 3.8. Let 1 < p < n and u be a weak solution to (1.4). Then, at {∇u , 0},

ai j,pPi j + LiPi ≥ 0,

where
ai j,p = F p−2(FFi j + (p − 1)FiF j)

and LiPi is lower order term of Pi.
Moreover, P cannot attain a local maximum at an interior point of Rn \ Ω̄, unless P is a constant.

Proof. Set Crit(u) = {x ∈ Rn \ Ω̄ | ∇u = 0}. The following calculations are all taken in
(
Rn \ Ω̄

)
\Crit(u).

First we calculate the first and second derivatives of the P-function.
The first and the second derivatives of P are

Pi = u−
p(n−1)

n−p F p(∇u)
(
p

Fkuik

F
−

p(n − 1)
n − p

ui

u

)
, (3.12)

Pi j =u−
p(n−1)

n−p F p(∇u)
(
p(p − 1)

FlFkul juik

F2 +
p
F

Fkmum juki

−
p2(n − 1)

n − p
(
Fkukiu j

uF
+

Fkuk jui

uF
) +

p
F

Fkuki j

+
p(n − 1)

n − p
(

p(n − 1)
n − p

+ 1)
uiu j

u2 −
p(n − 1)

n − p
ui j

u

)
.

(3.13)

It follows from (3.12) and Proposition 2.1 (1) that

Fkuki = p−1u
p(n−1)

n−p F1−pPi +
n − 1
n − p

Fui

u
, (3.14)

FiFkuki = p−1u
p(n−1)

n−p F1−pPiFi +
n − 1
n − p

F2

u
. (3.15)

The first equation of (1.4) implies that

(ai j + (p − 2)FiF j)ui j = 0. (3.16)

(3.15) and (3.16) give us

FFi jui j = −(p − 1)
[
p−1u

p(n−1)
n−p F1−pPiFi +

n − 1
n − p

F2

u

]
. (3.17)

By taking derivative of (3.16), we obtain

0 = Fi jFlui julk + FFi jlulkui j + 2(p − 1)FilF julkui j + F2−pai j,pui jk (3.18)
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From Proposition 2.1 (2), we have

Fi ju j = 0, for i = 1, . . . , n. (3.19)

Taking derivative of (3.19) w.r.t. xi and summing, we obtain

Fi jui j + Fi jluliu j = 0. (3.20)

From Proposition 2.1, (3.12)–(3.20) and (2.5), we have the following computation

ai j,pPi j =u−
p(n−1)

n−p F p(∇u)
(
p(p − 1)

FlFkul juikai j,p

F2 +
p
F

Fkmum jukiai j,p

− 2
p2(n − 1)

n − p
(
(p − 1)FkukiFi

u
)F p−2 +

p
F

Fkuki jai j,p

+ (p − 1)
p(n − 1)

n − p
(

p(n − 1)
n − p

+ 1)
F p

u2

)
,

(3.21)

in particular,
FlFkul juikai j,p

F2 =
FlFkul juik(FFi j + (p − 1)FiF j)

F2 F p−2, (3.22)

p
F

Fkmum jukiai j,p =
p
F

Fkmum juki(FFi j + (p − 1)FiF j)F p−2, (3.23)

and, by using (3.20)

p
F

Fkuki jai j,p = −
p
F

Fk

(
Fi jFlui julk + FFi jlulkui j + 2(p − 1)FilF julkui j

)
=

p
F2 (p − 1)

[
p−1u−

p2(n−1)
n−p F1−pPiFi +

n − 1
n − p

F2

u

]2

− pFi jl(p−1u−
p2(n−1)

n−p F1−pPl +
n − 1
n − p

Ful

u
)ui j

−
2(p − 1)p

F
FilF jFkulkui j

=
p

F2 (p − 1)
(n − 1
n − p

F2

u

)2
−

p
F2 (p − 1)

(n − 1
n − p

F2

u

)2

−
2(p − 1)p

F
FilF jFkulkui j + term of Pi

= −
2(p − 1)p

F
FilF jFkulkui j + term of Pi.

(3.24)

From Proposition 2.3 in [27], we have

Fi jFkluiku jl −
1

n − 1
(Fi jui j)2 ≥ 0.
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Substituting (3.22)–(3.24) into (3.21), we obtain

ai j,pPi j =u−
p(n−1)

n−p F2p−2(∇u)
(
p(p − 1)2 (FiF jui j)2

F2 + pFi jFklul juki

− 2
p2(n − 1)

n − p
(
(p − 1)FkukiFi

u
) + term of Pi

+ (p − 1)
p(n − 1)

n − p
(

p(n − 1)
n − p

+ 1)
F2

u2

)
=u−

p(n−1)
n−p F2p−2(∇u)

(np(p − 1)2

n − 1
(FiF jui j)2

F2 + term of Pi

− 2
p2(n − 1)

n − p
(
(p − 1)FkukiFi

u
) + Fi jFkluiku jl −

1
n − 1

(Fi jui j)2

+ (p − 1)
p(n − 1)

n − p
(

p(n − 1)
n − p

+ 1)
F2

u2

)

(3.25)

This combing with (3.15) yields to

ai j,pPi j ≥u−
p(n−1)

n−p −2F2p(∇u)
(np(p − 1)2

n − 1
(
n − 1
n − p

)2

− 2
p2(n − 1)2(p − 1)

(n − p)2

+ (p − 1)
p(n − 1)

n − p
(

p(n − 1)
n − p

+ 1)
)

+ term of Pi

(3.26)

Let −LiPi denote the term with Pi in (3.26). We have

ai j,pPi j + LiPi ≥ 0. (3.27)

If P attains a local maximum at some interior point x0 ∈ R
n \ Ω̄, then x0 ∈ (Rn \ Ω̄) \ Crit(u), or P ≡ 0

which is impossible. By using the strong maximum principle for (3.27) on a neighborhood N of x0 in
which ∇u , 0, one sees P must be a constant onN . It follows that the set where P is a constant is both
open and closed. Thus P is a constant in Rn \Ω. �

Proof of Theorem 1.1. By using Proposition 3.2 we can check that

lim
|x|→∞

P(x) =
(n − p

p − 1

) p(n−1)
n−p

( κn−1

CapF,p(Ω)

) p
n−p
.

This combining with (3.10) yields to

lim
|x|→∞

P(x) =
(n − p

p − 1

)p(κn−1
(
n|Ω|

)p−1

|∂Ω|F

) p
n−p
. (3.28)

On the other hand, by using the boundary conditions (1.4), (1.5) and (3.9) we get

P|∂Ω =
(n − p

p − 1

)p( |∂Ω|F

n|Ω|

)p
. (3.29)
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According to the Wulff inequality (2.3), by using (3.28) and (3.29), we check that

lim
|x|→∞

P(x) ≤ P|∂Ω.

From Proposition 3.8 we see that either P is a constant or P attains its maximum on ∂Ω. In both cases,
we have

〈∇P, νF〉 ≤ 0. (3.30)

We remark that here νF = Fξ(ν) with ν = − ∇u
|∇u| which points towards Rn \ Ω̄. By direct computation we

see
〈∇P, νF〉 = − pF p−1u−

p(n−1)
n−p

(FiF jui j

F
−

(n − 1)
n − p

F(∇u)
u

)
= −

p
p − 1

F p−1u−
p(n−1)

n−p
(
HF −

(p − 1)(n − 1)
n − p

F(∇u)
u

)
.

(3.31)

In the last equality we have used (2.8). By using fact that u = 1 on ∂Ω, (1.5) and (3.9), it follows from
(3.30) and (3.31) that

HF ≥
(p − 1)(n − 1)

n − p
c = (n − 1)

|∂Ω|F

n|Ω|
. (3.32)

It follows from (3.32) that HF is positive and∫
∂Ω

F(ν)
HF
≤

n
n − 1

|Ω|. (3.33)

Combining (3.33) with Proposition 2.3, we conclude Ω is a Wulff ball. This completes the proof of
Theorem 1.1.

3.4. Case p = n

Proof of Theorem 1.2. We look at the identity (3.7). For the left side of (3.7), by using (1.5), we deduce
that ∫

∂Ω

〈X, ν〉dσ = (n − 1)cnn|Ω|.

For the right side of (3.7), by the asymptotic behavior in Proposition 3.3, we can easy compute that

F(∇u) = c
1

n−1 (
|∂Ω|F

κn−1
)

1
n−1

1
Fo(x)

+ o(|x|−1),

lim
R→∞

∫
∂WR

〈X, ν∂WR〉dσ = lim
R→∞

∫
∂WR

〈X,
∇Fo(x)
|∇Fo(x)|

〉dσ

= (n − 1)cn(κn−1)−
1

n−1 |∂Ω|
n

n−1
F .

It follows that
n|Ω| = (κn−1)−

1
n−1 |∂Ω|

n
n−1
F .

That means the equality in the Wulff inequality (2.3) holds. Thus Ω is a Wulff ball. This completes the
proof of Theorem 1.2.
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4. Overdertermined problem in a punctured domain

In this section, we consider the overdetermined problem (1.8) and (1.9) in a bounded punctured
domain.

Since 0 is non-removable singular point, by using a result of Serrin [19], we can see that u/ΓF,p is
bounded in some neighborhood of 0. Moreover we can see that if ∆F,pu = 0 in Ω \ {0}, then u satisfies
(see [13] or Theorem 4.1 in [23])

− ∆F,pu = Kδ0, in Ω, (4.1)

where δ0 is the Dirac measure in the origin and K is some non-zero constant.

Proposition 4.1 (Regularity and asymptotic behavior). Let 1 < p ≤ n and u be a weak solution to (1.8)
and (1.9). Then

1). u ∈ C1,β(Ω̄ \ {0}) for some β < 1. Moreover, u ∈ C∞
(
Ω \ ({0} ∪Crit(u)

)
)∩C2,α(Ω̄ \ ({0} ∪Crit(u)

)
),

where Crit(u) =
{
x ∈ Ω̄ | ∇u(x) = 0

}
. Moreover, |∇u| , 0 in some neighborhoodN(∂Ω) of ∂Ω and

u is C2(N(∂Ω) ∩ Ω̄).
2). The constant K that appears in (4.1) satisfies K = cp−1|∂Ω|F .
3). Asymptotic behavior of the solution u of (1.8) near the origin is given by

(a) lim
|x|→+∞

u(x)
ΓF,p(x) = c|∂Ω|

1
n−1
F ,

(b) ∇u(x) = c|∂Ω|
1

p−1

F ∇ΓF,p(x) + o(|x|−
n−1
p−1 ).

Proof. We prove (2). Let U and V be tubular neighborhoods of ∂Ω such that ∇u , 0 in U ∩ Ω and
V ⊂⊂ U. Hence u ∈ C2(U ∩Ω), and

∆F,pu = 0 in classical sense in U ∩Ω. (4.2)

We choose a function φ+ with φ+ = 1 on Ω \ U and supp φ+ ⊂ Ω \ V̄ , and define φ− := 1 − φ+. From
(4.2), (1.9) and (4.1), we have

0 =

∫
Ω

F p−1(∇u)〈Fξ(∇u),∇1〉dx

=

∫
Ω

F p−1(∇u)
〈
Fξ(∇u),∇(φ+ + φ−)

〉
dx

=K −
∫
∂Ω

F p−1F(ν)dσ = K − cp−1|∂Ω|F .

For (3), the proof is similar with that of that of Propositions 3.2 and 3.3. We omit it here. �

Proof of Theorem 1.3: 1 < p < n. Firstly, note that the actual value of the function F(∇u) on the
boundary is irrelevant, because for any arbitrary constant c0 , c, there exists another solution ũ =
c0
c (u − 1) + 1 satisfying ũ = 1 ∆F,pũ = 0 and F(∇ũ) = c0. Hence, without loss of generality one can set

c :=
n − p
p − 1

( |∂Ω|F

κn−1

)− 1
n−1
. (4.3)

By (4.3) and Proposition 4.1 (3), the maximum principle for the anisotropic p-Laplacian yields that
u > 0 in Ω \ {0}.
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Next, we define the P-function exactly as in the exterior case, that is,

P := u−
p(n−1)

n−p F p(∇u).

Then we get as in Proposition 3.8 that

ai j,pPi j + LiPi ≥ 0 at {∇u , 0}.

Hence, P cannot attain a local maximum at an interior point of Ω \ {0}, unless P is a constant. On the
other hand, by Proposition 4.1 (3), we obtain

lim
x→0

P(x) =
( p − 1
n − p

)−p( |∂Ω|F

κn−1

)− p
n−1
.

Moreover, from (4.3) and the boundary condition, one can check that

P|∂Ω = lim
x→0

P(x).

It follows that
sup

Ω

P = lim
x→0

P(x).

Now, we shall show that P is actually a constant. It follows from (4.1) that∫
Ω

F p−1(∇u)〈Fξ(∇u),∇φ̃〉dx = Kφ̃(0) (4.4)

for φ̃ ∈ C1
c (Ω). Let φ̃ = φuα for φ ∈ C∞c (Ω) and some α < 0 to be fixed. From the asymptotic behavior

of u near 0 and u ∈ C1(Ω̄ \ {0}), we see φ̃ ∈ C1
c (Ω). Using φ̃ in (4.4) and let α = −n p−1

n−p , we see∫
Ω

(
F p−1(∇u)〈Fξ(∇u),∇φ〉u−n p−1

n−p − n
p − 1
n − p

F p(∇u)u−
p(n−1)

n−p φ

)
dx = 0. (4.5)

Also, near ∂Ω, we have ∆F,pu = 0 which yields to

(−
n − p
p − 1

u−
p−1
n−p )div

(
u−

(p−1)(n−1)
n−p F p−1(∇u)Fξ(∇u)

)
= (n − 1)u−

p(n−1)
n−p F p. (4.6)

in the classical sense. By using the same φ+ and φ− stated in the proof of Proposition 4.1, we have

0 =

∫
Ω

(
(−

n − p
p − 1

u−
p−1
n−p )u−

(p−1)(n−1)
n−p F p−1〈Fξ(∇u),∇1〉dx

=

∫
Ω

(
(−

n − p
p − 1

u−
p−1
n−p )u−

(p−1)(n−1)
n−p F p−1〈Fξ(∇u),∇(φ+ + φ−)〉dx

= −

∫
Ω

nu−
p(n−1)

n−p F p(∇u)dx +

∫
∂Ω

n − p
p − 1

u−
n(p−1)

n−p F p−1(∇u)F(ν)dσ.

Furthermore, by using (1.8), (1.9) and (4.3), we obtain∫
Ω

Pdx =

∫
Ω

u−
p(n−1)

n−p F p(∇u)dx =
1
n

∫
∂Ω

n − p
p − 1

u−
n(p−1)

n−p F p−1(∇u)F(ν)dσ

=
|∂Ω|

n
n−1
F

nκ
1

n−1
n−1

sup
Ω

P ≥ |Ω| sup
Ω

P,
(4.7)
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where the last inequality follows directly from the Wulff inequality (2.3). One sees that the equality
holds in (4.7) which implies that Ω is Wulff ball by the equality characterization in the Wulff inequality.

Proof of Theorem 1.3: p = n. In this case, we use similar method as the proof of Theorem 1.2. We also
have a similar integral equality as (3.7),∫

∂Ω

〈X, ν〉dσ = lim
r→0

∫
∂Wr

〈X, ν∂Wr〉dσ, (4.8)

where ν = − ∇u
|∇u| is the unit outward normal of Ω and X is given by (3.8).

For the left hand side of (4.8), by using (1.9), we have∫
∂Ω

〈X, ν〉dσ = (n − 1)cn
∫
∂Ω

〈x, ν〉dσ = (n − 1)n|Ω|cn

For the right side of (4.8), by Proposition 4.1 (3), we can compute that

lim
r→0

∫
∂Wr

〈X, ν∂Wr〉dσ = (n − 1)cn(κn−1)−
1

n−1 |∂Ω|
n

n−1
F .

It follows that
n|Ω| = (κn−1)−

1
n−1 |∂Ω|

n
n−1
F ,

which is the equality in the Wulff inequality (2.3). It follows that Ω is a Wulff ball. This completes the
proof of Theorem 1.3.
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