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1. Introduction

The study of symmetry in overdetermined boundary value problems has become an important field
of research in the theory of PDEs. The pioneering symmetry result obtained by Serrin [20] are now
classical but still influential. The main technique to tackle such problems are the celebrated method
of moving planes developed by Alexandrov [2, 3] and Serrin [20] as well as Weinberger’s approach
[25] which is based on maximum principle for so-called P-function and Rellich-Pohozaev’s integral
identity.

There are plenty of considerations for different kinds of overdetermined boundary value problems.
For our purpose, we recall a result of Reichel [17], who considered an overdetermined problem for
capacity in an exterior domain. The capacity of a smooth bounded domain 2 C R"(n > 2) is defined as

Cap(Q) = inf{ f

R}‘l

IVvlzdx‘v eC’R"),v=>1 on Q}.
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The minimizer for Cap(€2) is characterized by the capacitary potential u satisfying

Au =0 in R"\ Q
u=1 on 0Q (1.1

u —0 as |x| — oo,
Reichel [17] considered the overdetermined problem, (1.1) with an extra boundary condition
[Vu| = ¢ on 09, (1.2)

and proved that (1.1) and (1.2) admits a solution if and only if Q is a ball. Reichel’s proof is again based
on the method of moving planes and he also extended in [18] such result to more general quasilinear
equations including p-Laplacian equations in exterior domains. Garofalo-Sartori [10] and Poggesi [14]
reproved Reichel’s result for p-capacity by using Weinberger type approach, which was first used by
Payne-Philippin [16] for the exterior problem.

The anisotropic PDE problems involving the anisotropic Laplacian attract lots of attention in
recent decades. Regarding the overdetermined problem, Cianchi-Salani [6] and Wang-Xia [22]
independently extends Serrin’s classical result in the anisotropic setting. Due to the anisotropy, the
method of moving planes does not work but Weinberger type approach works in general. The
correponding overdetermined problem for anisotropic p-capacity in an exterior domain considered by
Reichel [17, 18] has been extended by Bianchini-Ciraolo [4] and Bianchini-Ciraolo-Salani [S]. They
proved the symmetric result when the domain is assumed to be convex, by using a totally integral
method. In this paper, we remove the convexity assumption in Bianchini-Ciraolo-Salani’s result by
using Weinberger type approach.

In order to state our result, we introduce the anisotropic p-capacity. Let F € C*(R" \ {0}) be a
Minkowski norm in R”, see Section 2.1 for the definition. For p € (1, n), the anisotropic p-capacity of
Q is defined as

Capy.,(Q) = inf] f Fr(Vwdx|ve CX®", v= 1 on Q). (1.3)

R’l
The associated anisotropic p-capacitary potential is namely the unique weak solution u to the following
problem

Appu =0 in R"\ Q
u=1 on 0Q (1.4)
u(x) -0 as |x| — oo,

where Ap, is the anisotropic (Finsler-)p-Laplacian,
Arpu = div(FP~ (Vu)F(Vu)), when Vu # 0.
A function u € Wllo’f (R™\ Q) is called a weak solution of Appu=0in R"\ Qif
f (FP"Y(Vu)F«(Vu), Vi)dv = 0.
RM\Q

for any ¢ € CX(R" \ Q). It is not hard to see that

Capp ,(Q) = f FP’(Vu)dx = f FPY(Vu)F(vydor,
RN\Q o0
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where v = —ﬁ is a unit normal of AQ pointing towards R" \ Q.

We will study the problem (1.4) with the overdetermined condition
F(Vu) = c on 0Q, (1.5)
for some constant ¢ > 0. The first main result in this paper is the following

Theorem 1.1. Let 1 < p < nand Q C R" be a bounded domain with boundary of class C*>®. Then
(1.4) and (1.5) admits a weak solution if and only if Q is a Wulff ball.

In the theorem, a Wulff ball means a translation and rescaling of Wy = {x € R" : F°(x) < 1}, where
F? is the dual norm of F given by (2.1).

Next, we prove a similar result corresponding to Theorem 1.1 in the special case p = n. Let
u € WH(R" \ Q) be a weak solution to

Apu =0, in R"\ Q,
u=1 on 0Q, (1.6)
u(x) ~ =In F°(x) as |x|] = oo,

where ~ means that
u(x)
—In Fo(x) ~
for some positive constant cy, c;. For this case, we prove the following result with analogous tools.
Theorem 1.2. Let Q C R”" be a bounded domain with boundary of class C*>®. Then (1.6) and (1.5)
admit a weak solution if and only if Q is a Wulff ball.

<cp as |x] — oo, (1.7)

We adapt the arguments in Garofalo-Sartori [10] and Poggesi [14] to prove Theorems 1.1 and 1.2.
The main ingredients are a strong maximum principle on a well-behaved P-function and a Rellich-
Pohozaev-type identity.

In the second part of this paper, we consider a similar overdetermined problem for the anisotropic
p-Laplacian in a bounded punctured domain. More precisely, we are concerned with the following
equation in Q \ {0}, where 0 is contained in Q: for p € (1, n],

Appu =0 in Q\ {0},

u=1 on 0Q, (1.8)
limu = +o0.
[x|—0
under Serrin’s overdetermined condition
F(Vu) = ¢ on 0Q. (1.9)

We say a function u € Wllo’f(Q \ {0}) is a weak solution of Ag,u = 01in Q \ {0} if

f (FP"'(Vu)F(Vu), V)dx = 0
Q\{0}
for any ¢ € C°(Q\ {0}). lim}y— u(x) = +co means u has a non-removable singularity at 0. A classical

result of Serrin [19] says that for p € (1,n], when u has a non-removable singularity at 0, then T 1S
bounded near 0, where ', is the fundamental solution to the anisotropic p-Laplacian given in (3. 1)
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Theorem 1.3. Let 1 < p < nand Q C R" be a bounded domain with boundary of class C*®. Then
(1.8) and (1.9) admits a weak solution if and only if Q is a Wulff ball centered at 0.

When F is the Euclidean norm, such symmetric result has been proved by Alessandrini-Rosset
[1], and Enciso-Peralta-Salas [9] via the method of moving planes and Weinberger type approach,
respectively. We shall adapt Enciso-Peralta-Salas’s method [9] which is based on the P-function to
prove Theorem 1.3.

Throughout this paper, we assume that F' € C*(R" \ {0}) is a Minkowski norm on R”, and Q is a
bounded domain with boundary of class C>®. We will always use Einstein summation convention.

2. Preliminaries

2.1. Minkowski norm, Wulff shape, anisotropic area

Let F € C*(R" \ {0}) be a Minkowski norm on R”, in the sense that

(i) Fisanormin R", i.e., F is a convex, 1-homogeneous function satisfying F(x) > 0 when x # 0
and F(0) = 0;
(i1) F satisfies a uniformly elliptic condition: Vz(%F 2) is positive definite in R" \ {0}.

The dual norm F°: R" — [0, +oo[ of F is defined as

(&, x)
F°(x) = su ) 2.1
(=T —
F? is also a Minkowski norm on R”. Furthermore,
(&, x)
F(¢) =su .
)=S0 For)

We remark that, throughout this paper, we use conventionally & as the variable for F and x as the
variable for F°.

Denote
Wr={xeR": F'(x) < 1}

For the simplicity of notations, we will denote by W = W. We call ‘W the unit Wulff ball centered
at the origin, and 0'W the Wulff shape.
More generally, we denote

W, (x0) = rW + x,

and call it the Wulff ball of radius r centered at xy. We simply denote ‘W, = W,(0).
The following properties of F' and F“ hold true and will be frequently used in this paper (see
e.g., [7,24]).

Proposition 2.1. Let F : R" — [0, 00) be a Minkowski norm. Then for any x,& € R"\ {0}, the following
hold:

1). {Fe(8),8) = F(§), (F(x),x) = F°(x).
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2). XiFee (O =0foranyi=1,...,n
3). F(F(x)) = F(Fg(&)) = 1.

4). FP0)F(Fo(x) = x,  FEOF(Fe(é)) = &,

Let Q c R” be a bounded open set with smooth boundary Q2 and v be its unit outward normal of
0Q). The anisotropic area |0Q|F of € is defined by

|8Q|F:f F(vdo. 2.2)
o0

The well-known Wulff theorem (see e.g., Theorem 20.8 in [15]) says that Wulff balls are the only
minimizers for the anisotropic isoperimetric problem. Equivalently, the Wulff inequality holds true:

10Q1r > nfWe|rQ|' 7. 2.3)

Equality in (2.3) holds if and only if Q is a Wulff ball.
Note that when Q = W, the unit Wulff ball, one can check by the divergence theorem that

1
|OW|r = f —do = f div(x)dx = n|W|. 2.4)
ow [VF| w

For notation simplicity, we denote
Kn—1 = |0W|r = n|W|.

2.2. Anisotropic p-Laplacian

Let u be twice continuous differentiable at x € R". We denote by F, F;j, ... the partial derivatives
of F' and by u;, u;j, ... the partial derivatives of u,

OF 0*F ou 0’u
Fi=——, Fij= ———, W= ——, Wj=——.
8-5,‘ 85,(9@ ax,- Bx,-axj

For x such that Vu(x) # 0, denote

7 1
a;j(Vu)(x) ::65-65(51:2)(%()()) = (FiF; + FF;))(Vu(x)),
106
(2.5)
’ 1
ip(V = —FP)(V = F'(a; — 2)F;F )(Vu(x)).
aijp(Vu)(x) 8§i6§j(p )(Vu(x)) (aij + (p = DF,F )(Vu(x))
The anisotropic Laplacian and p-Laplacian of u is given by
Aru :=a;j(Vu)u;;, 2.6)

Appt :=a;;,(Vu)u;; = FP2(Apu + (p — 2)F;F ju;)).
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2.3. Anisotropic curvature for level sets

We recall the concept of anisotropic curvature for a hypersurface in R". See e.g., [22,26].
Let M be a smooth embedded hypersurface in R” and v be one unit normal of M. The corresponding
anisotropic normal of M is defined by
Vi = Fe(v).

The anisotropic principal curvatures kr = (ki,...,«k" ) € R"" are defined as the eigenvalues of the
map
dVF: TXM - TVF(x)W-

The mean curvature (with respect to v) is defined to be
HF = Z KlF.
i

In this paper we are interested in the case when M is given by a regular level set of a smooth function

u, that is M = {u = t} for some regular value ¢. For our purpose, we choose the unit normal v = — Y%

[Vl
and
VF = —Ff(Vu), HF = —le(Ff(Vu))

In this case, we have that
HF = —le(Ff(VM)) = —F,-ju,-j, (27)

Here div is the Euclidean divergence. See e.g., [8].
Next we give the formula for the anisotropic mean curvature of regular level sets.

Proposition 2.2 ( [27]). Let u satisfy Ar,u = 0. Then the anisotropic mean curvature of regular level
set of u is given by
Hr =(p- 1)F‘1F,-Fju,~j in {x: Vu(x) # 0}. (2.8)

Finally, we will give the anisotropic Heintze-Karcher inequality for later use.

Proposition 2.3 ( [12,28]). Let Q C R" be an open bounded domain with C* boundary 0Q satisfying

Hyr > 0. Then,
“1(F
1 f W) o > 1. (2.9)
oQ H

n F

and equality holds if and only if Q is a Wulff ball.
3. Overdetermined problem in an exterior domain

3.1. Regularity and asymptotic behavior

Let u be a weak solution to (1.4) (case 1 < p < n) or (1.5) (case p = n). The following regularity
result is nowadays standard by the regularity theory for degenerate elliptic PDEs [21] and Schauder
theory for uniformly elliptic PDEs [11].
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Proposition 3.1 (Regularity). Let 1 < p < n and u be a weak solution to (1.4). Then u € C'¥(R" \ Q)
for some B < 1. Moreover, u € C*((R"\ Q) \ Crit(u)) N C>*((R"\ Q) \ Crit(«)), where Crit(u) = {x € R"\
Q| Vu(x) = 0}. Moreover, |Vu| # 0 in some neighborhood N (6Q) of 0Q and u is C*(N(02) N (R™\ Q)).

For1 < p <n,let
1
p=L (LL\PT po(x)imt
P () = n_p_(fl) Fo(x)rt, 1<p<n, a1

-k, "' In F°(x), p =n.

One can check that
AF’er,p(X) = 50 in Rn,

where 0 is the Dirac Delta function about the origin. We call I',, the fundamental solution to Ag ,u = 0
in R”. See [23].
Proposition 3.2 (Asymptotic behavior, 1 < p < n [27]).

Let 1 < p < nand u is a weak solution to Apyu = 0inR" \ Q. Then

1). lim % = Cap, (Q)7,

Ix|—+o00 TFp()
2). Vu(x) = CapF’p(Q)Tl]VFF’,,(x) + 0(|x|_1%). where Capp. () is the anisotropic p-capacity of Q
given in (1.3).

Proposition 3.3 (Asymptotic behavior, p = n).
Let p = n and u be a weak solution to (1.6) and (1.5). Then

1
1). lim 2L = oQfiT,

|x|—+o0 Crn(x) -
1
2). Vu(x) = cl0Ql}; VI g, (x) + o(IxI™h).

Proof. If u is solution of (1.6), it is a standard argument by using comparison theorem to show that
there exists two positive constants ¢y, ¢, such that

C]Fp,n <uc< CQFF,n!‘£

Following the argument of [13], Theorem 1.1 and Remark 1.5, (see [23], Theorem 4.1 and Remark 4.1
for anisotropic case), we conclude that there exists y € R such that

u(x)

im =, 3.2
ld—-+eo I'p,, () 7 G:2)
| |1im F°(x)(Vu—yVTg,) =0. (3.3)
x| —>+00
By integration by parts for (1.5), we have
f F"\(Vu)F(v)do = — lim f F" N (Vu)(Fs(Vu), v, do, (3.4)
oQ OWr
where v = —lg—zl and vgy, is outward normal vector of ‘Wx. From (3.2), we have

|
F(Vu) = yF(VIg,) + o(x™") = Yo ) T o(Ix™)
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On 6(WR,
VFO 1 1 VM
- — = = n_ﬁ_F”—_F 1
VoW = g o] (Kn-1)™Ty VE] o(1)
Hence
n— w1 L (FO()' .
F' N (Vu)(Fe(Vu), vaw,) = —Y IKH_IW+0(|X|1 ).

Combining the fact that

f FE
|VF0| n—1»
oWpg

we deduce that

lim f F" N (Vu)(Fs(Vu),v)do = —y"".
IWg

It follows from (1.5) and (3.4) that
" oQlr =y

The assertion follows.
Proposition 3.4 ( [27]). Let 1 < p < n and u be a weak solution to (1.4). Then
Capy, ,(Q) = f FP(Vu)dx = f FP\(Vu)F (v)do.
RM\Q 00
3.2. Rellich-Pohozaev-type identity

Firstly, we prove the following Rellich-Pohozaev-type identity.

Proposition 3.5. Let 1 < p < n and u be a weak solution to (1.4). Then

(n—p) FP(Vu)dx = (p — l)f FP(Vu){x, v)do,
o0

RN\Q

Yu

where v = -

is a unit normal of 0Q pointing towards R" \ Q.

Mathematics in Engineering
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Proof. By directing computations, we get, for R large,
f FP(Vu){x, v)do = — f div(xF?(Vu))dx + f FP(Vu){x, vow, )do
o0 Wr\Q IWr

0
=— f nF? — x;}—(F"(Vu))dx + f FP(x, vow,)do
WD Ox; Wi

= f nF?(Vu)dx — pf xiaxj(Fp_leui)
(WR\Q WR\Q

+ pf x,-u,-@xl.(Fp_]Fj)dx +f FP(Vu){x, vow,ydo
Wr\Q ' IWr

FP
:—f an(Vu)dx—pf Xillj—— d0'+pf FPdx
Wi\Q [Vul Wi\Q

+ f FP{x, vow,)do — p f x;u; FP! (Fe(Vu), vaw, ydo.
OWr dWr '

Then, by taking the limit for R — +o0 and noting that the integrals on 3"Wy converge to zero due to
the asymptotic behavior of u at infinity given by Proposition 3.2. Thus, we obtain the assertion. O

Proposition 3.6. Let p = n and u be a weak solution to (1.6). Then we have
f (X, vdo = hm (X Vow,)do, (3.7)

where X is the vector field given by
X = n{x, Vu)F”_l(Vu)Vé:F(Vu) — F"(Vu)x. (3.8)

Proof. The proof is the same as that of Proposition 3.5 by letting p = n. We omit it here. O

3.3. Casel <p<n

First we can compute the value ¢ of F(Vu) on 0Q with the overdetermined condition (1.5).

Proposition 3.7. Let 1 < p < n and u be a weak solution to (1.4) and (1.5). The constant ¢ appearing
in (1.5) equals

- ploQ
_n-p | |F. (3.9)
p—1nQ
Moreover, the following explicit expression of the anisotropic p-capacity of Q holds:
_n—py-1 10917
Capy,,(Q) = (p —) pTOTER (3.10)
Proof. By using (3.5) and (3.6), we obtain that
-1
Capy,(@) = 100 and Capy (@) = "L~ Derjoy
) b n — p
which implies (3.9) and (3.10). O
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Next, we introduce the P-function
_pn=1)
P=u »» FP(Vu). 3.11)

We show that P satisfies a strong maximum principle.
Proposition 3.8. Let 1 < p < nand u be a weak solution to (1.4). Then, at {Vu # 0},
ajjpPij + LiP; > 0,
where
aijp = FP_Z(FFij +(p— DFF))

and L;P; is lower order term of P;.
Moreover, P cannot attain a local maximum at an interior point of R" \ Q, unless P is a constant.

Proof. Set Crit(u) = {x € R"\ Q| Vu = 0}. The following calculations are all taken in (R" \ Q) \ Crit(u).
First we calculate the first and second derivatives of the P-function.
The first and the second derivatives of P are

n i -Du
P = u % FP(Vu)(p Futy_ pln )”—), (3.12)
F n-p u
FiFuuy. p
Pl] =u " FP(VM)(P(P - 1)—] FkaMmjuki
2(” - 1) Fkuklu] Fkuk]ul P
+ + = Fru; .
n—p uF ulF ) F itk (3.13)
-1 -1 Uil ; — 1w
L P )(p(n ), Ml p(n )_j)_
n—-p n-p u n—p u
It follows from (3.12) and Proposition 2.1 (1) that
n — 1 Fu;
Futg = p-lu'v7 plorp, ¢ L2271 (3.14)
n—p u
~1 pn=1) 1- n— 1 F2
F,-Fkuki:p urr F pPl'Fi+ —. (315)
n—pu
The first equation of (1.4) implies that
(a,-‘,- + (p — 2)F,‘Fj)l/t,'j =0. (316)
(3.15) and (3.16) give us
n - 1 F2
FFyu; = ~(p— D|p™'u"7 F'PPF + 2], (3.17)
n—pu
By taking derivative of (3.16), we obtain
0= F,-jFluijulk + FF,'ﬂI/tlkuij + 2(p - 1)F,'1Fjl/tlkuij + F2_pa,~j,pu,~jk (318)
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From Proposition 2.1 (2), we have
Fiju; =0, fori=1,...,n
Taking derivative of (3.19) w.r.t. x; and summing, we obtain
Fijuij + Fijuu; = 0.
From Proposition 2.1, (3.12)—(3.20) and (2.5), we have the following computation

_ pn—-1)

al]pPlj =u "r FP(V“)(P(P - 1)

FiFujuqgaj, Pp . .
kmWmjUkitijp

F? F
2(n—1) (p — DFuF,;
o= D = DBl ppoz y Py,
n—p u F
n—-1) pn—1) _FP
(- D22 ),
n-p n-p u

in particular,

FiFayupai;,  FiFaug(FFi;+ (p - 1)FiFj)Fp )
F? B F? ’

%kaumjukiaij,p :%kaumjuki(FFij +(p— DFF)F2,

and, by using (3.20)

14 14
FFkukijaij,p =- FFk(FijFluijulk + FFijugu;; +2(p — I)Fileulkuij)

P i ‘p2;ff_]) 1-p n—1F2p
—ﬁ(P—l)[P u " F PiFi+n p7]
n 1 Fu
— pFiy(p~'u” ”(‘”l)Fl pPl"" p7l)”lj

2(p-1
_ MFHF pay

—-1F? —-1F?
Zp- D= ) -Lip- 1)(;’_1)7)2
_2@—1m

FyF jFrugu;; + term of P;

20—y

F Fi]FijLtlkI/t,'j + term of P;.

From Proposition 2.3 in [27], we have

1
FijFugu — m(Fij”ij)z > 0.

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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Substituting (3.22)—(3.24) into (3.21), we obtain

Z(FiFjuij)z

_pn=h)
aypPij =u "7 FP2(Vu)(p(p = 1) =

n—-1 — D) Fuy F;
— 2p (m )((p )iy ) + term of P;
n—p u

(n-1) pn—1) F?
+(p-DEE— o)
n—p n—p u
_pn=1) _ np(p - 1)2 (FlI;']Ml])2
— =p F2p 2 \vj
u ( l/l)( n— 1 F2

2
p(n—1) (p— DFuF; 1
-2 ( R 4 FijFyuguj — —(F;ju;)°
n—p u n—1

p(n—1) pn—1) F2)

+ pFijFiqujuy

(3.25)

+ term of P;

R e e

This combing with (3.15) yields to

np(p — 1)2(11 - 1)2
n—-1 "n—-p
pn—-1)*p-1)
-2 3.26
(n - p)? (5:20)

+(p— 1)p(n — 1)(p(n ) + 1)) + term of P;

n—-p n-p
Let —L;P; denote the term with P; in (3.26). We have

_pnh 5o
aijpPij 2u” 7 FP(Vu)(

aij,pPij + L;P; > 0. (327)

If P attains a local maximum at some interior point xy, € R" \ Q, then xy € (R" \ Q) \ Crit(x), or P = 0
which is impossible. By using the strong maximum principle for (3.27) on a neighborhood N of xj in
which Vu # 0, one sees P must be a constant on N. It follows that the set where P is a constant is both
open and closed. Thus P is a constant in R” \ Q. O

Proof of Theorem 1.1. By using Proposition 3.2 we can check that

) n— p\a=? Ky 2
I

B

=

This combining with (3.10) yields to

. n = pyr ket (IQN) 25
lim P(x) = . 3.28
lim P = (=3) (g, ) (:28)
On the other hand, by using the boundary conditions (1.4), (1.5) and (3.9) we get
n— p\p/|0Q|p\r
Py = . 3.29
o0 (p_1)(n|g|) (3.29)
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According to the Wulff inequality (2.3), by using (3.28) and (3.29), we check that

lim P()C) < P|3Q.

[x] >0

From Proposition 3.8 we see that either P is a constant or P attains its maximum on 0Q. In both cases,
we have

(VP,vp) < 0. (3.30)
We remark that here vi = Fe(v) withv = —Ig—zl which points towards R” \ Q. By direct computation we
see
(VP vp) =— pFP‘lu_pgl—_pl)(FiFjuij - (n-1) F(Vu))
r F n—-p u (3.31)
P p-1 -prh (p— D —-1)F(Vu) '

=— F? = (Hp — )
p—1 . ( F n—p u )

In the last equality we have used (2.8). By using fact that u = 1 on 9Q, (1.5) and (3.9), it follows from
(3.30) and (3.31) that

- Dn-1 0Q
Hp > P DO )09 (3.32)
n—p n|Q|
It follows from (3.32) that H is positive and
F
S PI (3.33)
oo Hr n—1

Combining (3.33) with Proposition 2.3, we conclude Q is a Wulff ball. This completes the proof of
Theorem 1.1.

34. Casep=n

Proof of Theorem 1.2. We look at the identity (3.7). For the left side of (3.7), by using (1.5), we deduce
that

f (X, vYdo = (n— 1)c"n|Q)|.
oQ
For the right side of (3.7), by the asymptotic behavior in Proposition 3.3, we can easy compute that

0% 1
Fw =) P

+o(x™),

. ) VF°(x)
lim (X, Vaw,ydo = lim (X,
R—e0 Jaqp, N Roe Jow,  [VFO(X)]

= (n = D"(Kkye1) 7TIOQYET

Ydo

It follows that
__1 L
n|Qf = (Kp—1) =T|0Q".

That means the equality in the Wulff inequality (2.3) holds. Thus € is a Wulff ball. This completes the
proof of Theorem 1.2.
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4. Overdertermined problem in a punctured domain

In this section, we consider the overdetermined problem (1.8) and (1.9) in a bounded punctured
domain.

Since 0 is non-removable singular point, by using a result of Serrin [19], we can see that u/I'y, is
bounded in some neighborhood of 0. Moreover we can see that if Ag,u = 0in Q \ {0}, then u satisfies
(see [13] or Theorem 4.1 in [23])

— Appu = Koy, in Q, 4.1)

where ¢ is the Dirac measure in the origin and K is some non-zero constant.

Proposition 4.1 (Regularity and asymptotic behavior). Let 1 < p < n and u be a weak solution to (1.8)
and (1.9). Then

1). u € C'YP(Q\{0}) for some 8 < 1. Moreover, u € C*(Q\ ({0} U Crit(u))) N C>*(Q\ ({0} U Crit(w))),
where Crit(u) = {x € Q| Vu(x) = 0}. Moreover, |Vu| # 0 in some neighborhood N (0Q) of dQ and
uis CAN(0Q) N Q).

2). The constant K that appears in (4.1) satisfies K = c?~'|0Q|.

3). Asymptotic behavior of the solution u of (1.8) near the origin is given by

(a) lim 222 = ]QfiT,

[x]—+00 lﬂF,p(/\f)
T _n=l
(b) Vu(x) = c|oQ|; VI'g,(x) + o(|x|”»T).

Proof. We prove (2). Let U and V be tubular neighborhoods of dQ2 such that Vu # 0 in U N Q and
V cc U. Hence u € C*(U N Q), and

Appu = 01n classical sense in U N Q. 4.2)
We choose a function ¢, with ¢, = 1 on Q \ U and supp¢, C Q\ V, and define ¢_ := 1 — ¢,. From
(4.2), (1.9) and (4.1), we have
0= f FP Y (Vu)(Fg(Vu), V1)dx
Q
= f FP=!(Vu)(Fe(Vu), V(. + ¢_) )dx
Q

=K - f F'r'F(vydo = K — ¢ |0Qp.
o0
For (3), the proof is similar with that of that of Propositions 3.2 and 3.3. We omit it here. O

Proof of Theorem 1.3: 1 < p < n. Firstly, note that the actual value of the function F(Vu) on the
boundary is irrelevant, because for any arbitrary constant ¢y # ¢, there exists another solution it =
C(—?(u — 1) + 1 satisfying & = 1 Ag,it = 0 and F(Vit) = ¢o. Hence, without loss of generality one can set

ci= 1= p(m'F)_ﬁ. (4.3)

p—1
By (4.3) and Proposition 4.1 (3), the maximum principle for the anisotropic p-Laplacian yields that
u>0in Q\ {0}.

Kn-1
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Next, we define the P-function exactly as in the exterior case, that is,
_pn=l)
P :=u »» FP(Vu).
Then we get as in Proposition 3.8 that
al‘j’pP,'j + L;P; >0 at {Vu * 0}

Hence, P cannot attain a local maximum at an interior point of Q \ {0}, unless P is a constant. On the
other hand, by Proposition 4.1 (3), we obtain

lim P(x) = (

1\-p/0QlF\-i5
) G

Moreover, from (4.3) and the boundary condition, one can check that
P|59 = 111’13 P()C)

It follows that
sup P = lim P(x).
Q x—0

Now, we shall show that P is actually a constant. It follows from (4.1) that
pr‘l(VuXF‘f(Vu), Vé)dx = Ké(0) 4.4)
Q

for ¢ € CL(Q). Let ¢ = gu® for ¢ € C>(Q) and some « < 0 to be fixed. From the asymptotic behavior
of u near 0 and u € C'(Q \ {0}), we see ¢ € C(Q). Using ¢ in (4.4) and let @ = —n%, we see

1
f (Fp (Vu)(Fo(Vu), Voyu " b — PV B | dx = 4.5)
Q n-—p
Also, near 092, we have Ag,u = 0 which yields to
(L v P Vi Fe(Vw) = (1= Du” 5 . (4.6)
p —

in the classical sense. By using the same ¢, and ¢_ stated in the proof of Proposition 4.1, we have

- f (222w 5y PP (Fe(Vu), V1)dx
o' p-1

_ f (2L 5 o R (Vu), Vi, + )y
Q p—1

_ P P (VU F(v)dor

- fnu_p'(lnpl)Fp(Vu)dx +
Q P~

Furthermore, by using (1.8), (1.9) and (4.3), we obtain

[ pax= [ s

5 FP(Vu)dx =— f n—p u—"i PP (Vu)F(v)do
6Q 2

|aQ|n 1 (4.7)

sup P >|Q| sup P,
”K;:—ll
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where the last inequality follows directly from the Wulff inequality (2.3). One sees that the equality
holds in (4.7) which implies that Q is Wulff ball by the equality characterization in the Wulff inequality.

Proof of Theorem 1.3: p = n. In this case, we use similar method as the proof of Theorem 1.2. We also
have a similar integral equality as (3.7),

f (X, vido = hm (X Vow,)do, (4.8)

where v = —ﬁ is the unit outward normal of ) and X is given by (3.8).

For the left hand side of (4.8), by using (1.9), we have
(X, v)do = (n - 1)c”f (x, vYdo = (n — Dn|Q|c"
oQ oQ
For the right side of (4.8), by Proposition 4.1 (3), we can compute that
lim (X, vow,ydo = (n — 1)c”(/<,,_1)‘ﬁ|8£2|;%‘.
r—0 oW,

It follows that
__1 L
n|Qf = (K1) =T|0Q-",

which is the equality in the Wulff inequality (2.3). It follows that Q is a Wulff ball. This completes the
proof of Theorem 1.3.
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