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Abstract: We consider normal velocity of smooth sets evolving by the s—fractional diffusion. We
prove that for small time, the normal velocity of such sets is nearly proportional to the mean curvature
of the boundary of the initial set for s € [3,1) while, for s € (0,3), it is nearly proportional to
the fractional mean curvature of the initial set. Our results show that the motion by (fractional)
mean curvature flow can be approximated by fractional heat diffusion and by a diffusion by means
of harmonic extension of smooth sets.

Keywords: motion by fractional mean curvature flow; fractional heat equation; fractional mean
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1. Introduction

For N > 2, we let Q, be a bounded open set of RV with boundary I'y. Consider the heat equation
with initial data the indicator function of the set Q:

E—AM:O inRNX(O,tl]

(1.1)
u(x,0) = Lg,(x) on RV,
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for some time #; > 0. In 1992, Bence-Merriman-Osher [5] provided a computational algorithm for
tracking the evolution in time of the set 2y whose boundary I'y moves with normal velocity proportional
to its classical mean curvature. At time #; > 0, they considered

Q ={xeRY: uxt)=>1/2).

Bence-Merriman-Osher [5] applied iteratively this procedure to generate a sequence of sets (Q j)j>0 and
conjectured in [5] that their boundaries I'; evolved by mean curvature flow. Later Evans [16] pro_Vided
a rigorous proof for the Bence-Merriman-Osher algorithm by means of the level-set approach to mean
curvature flow developed by Osher-Sethian [32], Evans-Spruck [17-20] and Chen-Giga-Goto [10]. For
related works in this direction, we refer the reader to [4,25,28,29,31, 34, 36] and references therein.

Recently Caffarelli and Souganadis considered in [9] nonlocal diffusion of open sets E ¢ R given
by

Oou s N o
E+(—A) u=0 in RY x (0, c0) (1.2)
u(x,0) = t(x) inRY x {t =0},

where
TE()C) = I]_E(.X) - ]]-RN\E(X)'

We consider the fractional heat kernel K with Fourier transform given by K (&, 1) = e ™ 1t satisfies

0K, ) .
Ht‘ +(-A'K;=0 in RY x (0, o)
K, =6 on RN x {t = 0}.

It follows that the unique bounded solution to (1.2) is given by

u(x, 1) = Ki(-, 1) * 7e(x) = f K(x =y, )te(y)dy. (1.3)
RN

By solving a finite number of times (1.2) for a small fixed time step o4(h), the authors in [9] find a

discrete family of sets

Ey=E,  Ep=(xeR': K(oM)xtm  (x)>0)

for a suitable scaling function o to be defined below. It is proved in [9] that as nh — t, 6Ef1‘h converges,
in a suitable sense, to I',. Here, the family of hypersurface {I';},¢, with Iy = JE, evolves under
generalized mean curvature flow for s € [%, 1) and under generalized fractional mean curvature flow
for s € (0, %). We refer the reader to [9, 16,27] for the notion generalized (nonlocal) mean curvature
flow which considers the level sets of viscosity solutions to quasilinear parabolic integro-differential
equations.

In the present paper, we are interested in the normal velocity of the sets

E = {x eRY : K,(-,04(0) * TE(x) > 0} (1.4)
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as they depart from a sufficiently smooth initial set £y := E. We consider here and in the following
K(x, 1) = £ Ps(t_%x), for some radially symmetric function Py € C LRM). (1.5

We make the following assumptions:

CI_VIS CN s C,N K
— < P,(y) L ————, VP,(y)| < ————. 1.6
1+ |y|N+2s - (y) 1+ |y|N+2s | @)l 1+ |y|N+2s+1 ( )
and
. -1 CN,s . . N
lim ¢t K(y, 1) = locally uniformly in R™ \ {0}, (1.7)
1—0 |y|N+2s

for some constants Cy 5, Cys > 0. In the Section 1.1 below, we provide examples of valuable kernels
K, satisfying the above properties.

Now, as we shall see below (Lemma 2.1), for ¢ > 0 small, V,u(x, o(¢)) # 0 for all x € B(y, O'S(t)i) and
y € 0E. Hence OE, is a C' hypersurface, for small t > 0. For t > 0 and y € dE, we let v = v(¢,y) be
such that

y +viv(y) € OE, N B(y, o4(H) %), (1.8)

where v(y) is the unit exterior normal of E at y. In the spirit of the work of Evans [16] on diffusion
of smooth sets, we provide in this paper an expansion of v(z,y) as ¢t — 0. It turns out that v(0, y) is
proportional to the fractional mean curvature of JF at y for s € (0, 1/2) and v(0, y) is proportional to
the classical mean curvature of OF at y for s € [1/2, 1).

We notice that it is not a priori clear from (1.8), that v remains finite as ¢ — 0. This is where the
(unique) appropriate choice of o (¢) enters during our estimates. Here and in the following, we define

= for s € (0, 1/2),
o) =19 . (1.9)
t for s € (1/2,1)
and for s = 1/2, o(?) is the unique positive solution to
t = a1 (0l log(a p(D). (1.10)

Before stating our main result, we recall that for s € (0, %) and OE is of class C' for some 8 > 2s, the
fractional mean curvature of JE is defined for x € JF as

H =Py [ —E9 4 lim f _10)
R

v ay.
ry o — yV o=0 Jpv\g, o X — YN

On the other hand, if OF is of class C? then the normalized mean curvature of OF is given, for x € OE,
by

N - 1
N+ 1 &0 SlBg(x)l Be(x)

see also (2.4) and [21]. Having fixed the above definitions, we now state our main result.

Te(y) dy,
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Theorem 1.1. We let s € (0,1) and E ¢ RN, N > 2. We assume, for s € (0,1/2), that 0E is of class
C'® for some B > 2s and that OE is of class C°, for s € [1/2,1). Then, ast — 0, the expansion of
v(t,V), defined in (1.8), is given, locally uniformly in y € OE, by

ansHy(y) + 0,(1) for s €(0,1/2)
v(t,y) = {bv(HQ) + O (575 fors=1/2
e Hy) +0(£7) fors e (1/2,1),

where H, and H are respectively the fractional and the classical mean curvatures of OF and the positive
constants ay s, by2 and cy s are given by

|y’|2P1/2(y’, 0)dy’ s ) )
o f G
.

C s o o7l
ans = i , by = - ,
2|10g(0;(l))|f lPl/z(y',())dy' Zf IPs(y',O)dY'
RN- RN-

2 f P,(y',0)dy’
RN—I
and Py(y) := K(y, 1).

Some remarks are in order. The assumption of E being of class C* in Theorem 1.1 is motivated
by the result of Evans in [16], where in the case s = 1 and %], the heat kernel, he obtained v =
(N-1DH(QO) + O(ﬁ). We notice that from our argument below, we cannot improve the error term o,(1)
in the case s € (0,1/2) even if E is of class C*. This is due to the definition of the fractional mean
curvature H; as a principal value integral. Using polar coordinates and the estimates in (1.6), it easy
follows that

CNs =

ISM2ICy, sh2|C
N,1/2 Slinole(t)S | ICn.1/2 '
’ 7 = ’ 7
Zf Pl/z(y,())dy 2f Pl/z(y,O)dy
RN-1 RN-1
This then justify the choice of the scaling when s = % In the particular case, that

K1 2(y, ) = Cy—L=51, we have that

2+ 2

by(t) =

N-2 1
— +0(lo( <r)))'
4 ’/ 0-
2 f P12(, O)dy S
RN_]

For the general case, we get the following

1.1. Some applications of Theorem 1.1
We next put emphasis on two valuable examples where Theorem 1.1 applies.

1) Fractional heat diffusion of smooth sets. We recall, see e.g., [6,35], that the fractional heat kernel
K satisfies (1.5), (1.6) and (1.7) with

52 sin(sm)I” (% + s) I'(s)

(1.11)

CN,s =S

I

7!
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We recall that K is known explicitly only in the case s = 1/2, where K ,»(y,?) = Cy,; 2T
B+ 2
In this case Theorem 1.1 provides an approximation of the (fractional) mean curvature motion by

fractional heat diffusion of smooths sets, thereby extending, in the fractional setting, Evan’s result
in [16] on heat diffusion of smooth sets.

2) Diffusion of smooth sets by Harmonic extension. We consider the Poisson kernel on the half space
RY*1:= RV x (0, o), given by

PN,s

Ky(x,0):=t"Py(x/1),  Pyx) = ——=1=, (1.12)
(1 + x>
where py; = —— L Thanks to the result of Caffarelli and Silvestre in [8], the function
Fn ™72 dy
_ s T )
W(.x, t) = Ks('a t) * TE(X) = l’N,St2 f E(y N+2s dy
RY (2 4]y —a?) 2

solves

div(t'=>Vw) = 0 in RY x (0, o)

w=Tg on RY x {t = 0}.

It is clear that K,(x,7) = K,(x, t%) satisfies (1.5), (1.6) and (1.7) with Cy, = py,. Hence,
Theorem 1.1 provides an expansion of the normal velocities of the boundary of the sets

E = {x eRN . fs(',()'s(l‘)%) * Tp(x) > 0} ,

where o,(f) is given by (1.9) and (1.10). Therefore this Harmonic extension yields an
approximation of (fractional) mean curvature motion of smooth sets.

We conclude Section 1 by noting that the notion of nonlocal curvature appeared for the first time
in [9]. Later on, the study of geometric problems involving fractional mean curvature has attracted a
lot of interest, see [1, 7], the survey paper [21] and the references therein. While the mean curvature
flow is well studied, see e.g., [2, 3, 15,24, 26], its fractional counterpart appeared only recently in the
literature, see e.g., [11-14,27,30,33].

We finally remark that the changes of normal velocity of the nonlocal diffused sets as s varies in
(0,1/2) and [1/2,1), appeared analogously in phases transition problems, see e.g., [22,23,33].

2. Preliminary results and notations

Unless otherwise stated, we assume for the following that E is an open set of class C'#, with 0 € E
and the unit normal of OE at 0 coincides with ey. We denote by Q, = BY~! X (—r, r) the cylinder of RY
centred at the origin with BY~! the ball of R¥~! centred at the origin with radius r > 0. Decreasing r, if
necessary, we may assume that

ENQ, ={(/,yv) € B XR 1 yx >y}, 2.1)

with y € C'#(BY™1) satisfying
Y0 = 0(y1'). 2.2)

Mathematics in Engineering Volume 4, Issue 2, 1-22.



In the following, for f, g : R — R, we write g(¢) := O(f(¢)) if

lg(O] < Clf (D).
We also write g(¢) = o(f(?)) if g(t) = O(f(¢)) and moreover when f(¢) # 0, we have

18]
Lz
0 1)

We denote by o,(1) any function that tends to zero when ¢t — 0. If in addition, E is of class C?, then
fory’ € BY"!, we have
/7 1 ’ 7 ’
) = 50O ¥+ 0 (y'F) 2.3)
and the normalized mean curvature of F at 0 is given by

MO _N-1. 1
N-1 N+1e0&Q (0 Jo, 0

H(Q0) = Te(y) dy. (2.4)

Recall that the unit exterior normal v(y") := v(y’, y(y")) of E and the volume element do(y") on 0E N Q,

are given by Ty 1)
— fy s
v(y) = ————— and do(y’) = 1+ |Vy(y)Pdy'. (2.5)
V1 +IVyON)P

We finally note, in view of (1.5) and (1.6), that we have

0<K,(y,t)<C for all y € RV \ {0}, 7 > 0, (2.6)

|y|N+23

for some positive constant C = C(, s). We start with the following result.

Lemma 2.1. Let s € (0, 1) and E be a set of class C'* satisfying (2.1). Define

w(z, 1) = f Ks(z =y, )Te(y)dy.
RN

Then there exist ty, C > 0, only depending on N, s, 3 and E, such that for all t € (0, ty) and z € Bt

1
25 )

0 ,
W an>cr, 2.7
(9ZN
As a consequence, for all t € (0, ty), the set
{zeRY : w(z,t) =0} N Bt% is of class c'. (2.8)
Proof. We fix t > 0 small so that 1% < gandletz € Bti' We write

0K
RN aZN

0 (97(5 67(5
%(z, 1= (z=y, Dte(y)dy = f — =y, DTe(y)dy+ fR —(z=y, )te(y)dy. (2.9)

B Oyn By () Oyn
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By a change of variable, (1.5) and (1.6), we have

0K OP, _1
f -y 0)dy =% f 1 (52— y)dy
RM\B(2) Oyn RN\ %5 By (2) oyn
=0|r> f sz Bay | = 0. (2.10)
RN\fﬂBg(z)

Integrating by parts, we have

P oK. oK,
f I, (2 =y, ey = f O 2 =y, ey - f IR 2=y,
B%(z) (9)’1\/ B%(z)ﬂE 5yN B%(z)ﬂE” 3)’1\/

K(z—y,Den - VB, O Te)do’ (y).

0B, ()

= 2f Ki(z—y,Den - ve(y)do(y) +
B%(Z)ﬂaE
By a change of variable, (1.5), (1.6) and the fact that Q,/s C B4 C B;(z) C Q,, we have

f Kz =y, en - viAe ) = C [ K =y zx = yO'), DY’
B% (2)NOE

N-1
Br/S

=Crx f . P57 =y, gy — £ 5y(t5y))dy
-

> Cr = = 2.11
> Ct? fBN_l BT (2.11)

provided g > t%s. Next, using (2.6) and recalling that z € B,z%’ we then have

< K(z—y,t)do'(y) < tC f ;do"(y) = 0(1).

Kz =y, en - v, (»)do’ () o
2 9B (2) 9B; () Iyl

OB 4 ()

From this and (2.11), we deduce that

f T - v Ot()dy = Cr 1%,
B(2) ayN

Combining this with (2.9) and (2.10), we get

ow
—(z,1) > Cr /%,
ZN

Therefore (2.7) follows. Finally (2.8) follows from the inverse function theorem and the fact that w is
of class C! on RY x (0, o). i

In the sequel, we will need the following lemmas to estimate some error terms.
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Lemma 2.2. For s € (0,1), we let E C RY be a set of class C'*, for some B > 2s, as in Section 2. For
r > 0, we set

Ch,s
J (@)= | K.0tedy — and L) = f (f_lq(s(y, - D’VV% Te(y)dy.
Or RV\Q,

Then we have
|70 < Ctr’™>  and lim 1,(r) = 0,
11—
where C is a positive constant depending only on N, 3, s and E.

Proof. Since g = 1g — lgn g, We get

Ju(1) = Ki(y, Ndy — Ki(y, Ddy

ONE O/NE°

r y(O')
. f f K yw)s Dlywdy’ — f f Ky, Dy’
51 o) g Jor

r

YO")
K((Y'syw), Ddyy — f Ws((y',yzv),t)dyzv)dy’

r -y(') (')
KO, yn), )dyy — KO, yn), )dyy — (s yn), t)dyN)dy’

0" -r -y0")

fB:i‘”( Y0)
_ fB (

r (') (')
= f ( K (O, yn), )dyy + K, =yn), Hdyn — (s yn), t)dyN)dy’-
B!

Y0) r -y(0")
Since the map y — K(y, ?) is radial, we have K;(y', yn, 1) = K(y', —yn, 1) so that

r (')
K (O, yn), )dyy + KO, —yn), Hdyn = 0.

yO") r
Therefore

() ()
J(1) = - f K (', yn), dyydy = =2 f f KO, yn), Hdyndy'.
BN-! BV Jo

-y()
y(Y') 1
—  _dyyady
ffo 7y OV

where C is a positive constant depending on N, 8 and s and which may change from a line to another.
Next, using (2.6), (1.7) and the dominate convergence theorem, we obtain

Then, by (2.6),

|J(1)] < 2C st < Ct*™>.

lim 7,(t) = 0.
t—0
This then ends the proof. O
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Lemma 2.3. Let s € (0, 1) and let x = vtey € 0E, N B(T e with E, given by (1.4). Then

vt = 0((03(0)%) ast — 0.

Proof. Since x = vtey € 0E,, we have that u(x, o(t)) = 0. By the fundamental theorem of calculus, we
have

1
0
u(x, o4(t)) = u(0, o4 (1)) + vtf —u(évteN, o(1)d6 =0
0 Oxy
so that
U ou
vtf —(Ovtey, o4(1))dO = —u(0, o4(1)). (2.12)
0 Oxy
We write

u(0,0,(1) = fR KO os)re()dy = . K (v, o (D) Te(y)dy + o Ky, o5(D))7E(y)dy.

Then by Lemma 2.2 and (2.6), we have

. Ky, o(O)Te(y)dy

< Coy(t) and Ky, o) e()dy = O(0 (1)) (2.13)
0

for some constant C depending on r. Furthermore by (2.7), we have
ou ~1/2s
—(Ovtey, oy(t)) = C(oy(1)) . (2.14)
5xN

Therefore, by (2.12), (2.13) and (2.14), we obtain

v = u(0, () <7D _ o)

| 2 Ovien, o (0)d]  (oi(D)F

This then ends the proof. O

Lemma 2.4. Under the assumptions of Lemma 2.3, we have

YO )-vt
f f f )’N—()’ Oyn, o 5(1))dydd = O (o (1)) ast — 0.
BN 1

Proof. Let 8 € [0, 1]. By (1.5), (1.6) and a change of variable, we have

y(O')-vi
f f 67( os(1)dy
BN 1
Y )—vt
= (o (1) f f

Mathematics in Engineering Volume 4, Issue 2, 1-22.
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()2 (Y (o501 /25y")—vr)
<C YN

——d
- N-1 0 1+ |y1|N+2s+1 Y

BV(U'S(f))_]/ZS

2
< Cloi) 1 (r(o @)y - )
= (O-S() No1 1+ |y/|N+25+1

B
r(os(r)~1/2s

= 0(0,(1) + O (VP (o, () ) + O ().

dy

Applying Lemma 2.3, we get

(')—vt oK,
f NG =y, Oyn, o (1))dydf = O (o (1)),
0 YN

as t — 0. This then ends the proof. O
3. Proof of Theorem 1.1 in the case s € (0, 1)

In this section, we start by the following preliminary result.

Lemma 3.1. Let s € (0,1/2). We assume that E is of class C'? for some B > 2s satisfying (2.1). Then,
forall 6 € [0, 1], we have

6(](? ’ - s ’ ’ 25-1
fR “( yw = vt o () Te()dy = 2o (0) f Py, 0)dy + O (o) ). (3.1)

N é‘yN RN-1

Proof. We have

07(y , 67(8‘ ’
f - (y » YN — V[Q, O-S(t))TE(.Y)dy = f _(y » YN — th, O-S(t))TE(y)dy
rv OyN B, OYN

oK,
. f O ',y = Vit 7 D)y
B: OYN

where B, is the ball of R" centered at the origin and of radius r > 0. By integration by parts, we have

oK ,
3 O yn —vtb, o (D)) TE(Y)dy = 2 K, yn — vib, o (1))vn(y)do(y)
B, OYN OENB,

+ ) K, yn = vib, o (t)ey - ve, () TE()do (y).
B,

Therefore

6(](5 / ’ ’ ’
f O,y —vib, o (D) Te(y)dy = 2 K (', yn = vib, o 5(0) vy (y)do(y')
R

v Oyn HENB,

a(](s ’ ’ /
O yv —vib, o (TeWdy + | KO, yv — vib), O-x(t)))%TE(y)do_ ). (3.2)

+
B Oyn 4B,
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Then by a change of variable and (2.5), we have

KOsy = v, o (0)vn()dor(y) = f KO, y() = vib, o (1))’
BY!

0ENB,

By the Fundamental Theorem of calculus, we can write

’ ’ ’ ’ ! 67(5
K (', y () =i, o(1)) = K (', 0,05(0) + (y(') — vi6) f

o,(1))dd’. (3.3)
0o Oyn

In the following, we let
e(y") :=vy(y') — vib. (3.4)

Then we have

KO, yv = vib, o (D)) (y)do(y) = f KO e, os)dy’

JENB, BN
! 0K,
= f KO, 0, 04(1)dy’ + f f e(y)7—0"0e(y), o(t)dy'dd’. (3.5)
BY-! 0 JaY-! Ooyn
Therefore By a change of variable, (1.5) and (1.6), we have
f KO0, 041)dy = f (0(0)F P,y (a5(0) >, 0)dy’
BN B!

:wmwmf KM®W+memf Py, 0)dy
RN-1 R

N-1 BN 1
\ Hos()~1/2s

=memLMﬂM®W+NmeWmm%) (3.6)

By a change of variable, (1.6) and (3.4), we have

07(8' ’ / ’ ’
| 507520 e rondy
BN YN

BN—I
Hos)~1/2s

= (o)™ f ey’ (Gs(t))m’) (y 0/ (o ()2 (oy(1) )y’

We use (2.2), (3.4) and Lemma 2.3 to get

wmﬂ%wme%:dmwwmﬁ)wﬂmmws
= 01" )T )+ O ()T ) inBY! ..

Then by (1.6), we have

fBﬁ’

= 0[(05(0)23:l f y ly I”ﬁ (y 0/ (o (0)” ey (1) *)dy’

Brosorires
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2s—1 8Ps —-1/2s ’ N /
0 [<ffs(r)>zzsl () ey (0,(1) 12y
Blr\ir_rlm)*l/?f IN
_ 25-1 L+ ) 251
= 0( 5 fRN_] Wﬂ')’ = 0((0's(1)) » )

Hence
f fB y y 0's(y), o (O)dy'd6 = O ()T ) ast— 0. (3.7)
It follows from (3.5), (3.6) and (3.7) that

K yn = v, o (D) »)do(y) = (o) f P(y.0)dy + O (@)% ) ast—0.
RN—]
(3.8)

0ENB,

By a change of variable and the fact that |7z(y)| < 1, we have

0K,

B; Oyn

YN

— v, o)) TE()dy = O {(as(t))‘” > —vi(ors(1)”Y 2“'G)dy]

B¢
ros(r)~1/2s

1
=0 {(O'S(l))_l/zs Wdy] = O(Uv(t)) (39)

B
ros@)1/2s

We use (1.7) to get, as t — 0,

Ky, y — vi, oy(1) y;v Ky, yn — vi6, o4(£)do (3)

OB,

OB,
CNA
< oy(1) do’(y) = O(o4(1)).
o5, 107 — v 27

Therefore, the expansion (3.1) follows immediately from (3.2), (3.8), (3.9) and the above estimate.
This ends the proof. O

The following result completes the proof of Theorem 1.1 in the case s € (0, 1/2).
Proposition 3.2. Under the assumptions of Lemma 3.1, we have
v = ayH0) + o, (1) ast— 0, (3.10)
where H(0) is the fractional mean curvature of OF at the point 0 and the positive constant ay is given

by
CN,S

2 f P, (y',0)dy’
RN_]

Mathematics in Engineering Volume 4, Issue 2, 1-22.
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Proof. We put with x = vtey and we recall that
ko) = [ K= x Oy =0
RN
By the fundamental theorem of calculus, we have

Ky — x,041) = Ky, o(2)) — vt f —(y yn — i, o (1))do.
Then

1
u(x, (1)) = J(t) + o (DI() + 0 (£)Cs f lTEN(fz)sdy—vr f f 0
N\, [V v Jo Oy

—vtl, o (1)) TE(y)dody,

(3.11)

where j;(t) = J.(o,(1)), z(t) = I,(o (1)), while I,(¢) and J,(¢) are given by Lemma 2.2. Moreover, by
Lemma 3.1, we have

f = v, o (D)TE)dy = 20 s(1) " f P,y 0)dy + O (1) 5 ).

a)’N RN-1

Therefore

f f — 10, o () TE()dydo = 2(o,(1)) " f Py, 0)dy + O (1) F) ast — 0.
(9)’1\1 RN-1

(3.12)
Putting (3.12) in (3.11), we obtain that

u(x, (1) = J (1) + o, (DI (1) + O'S(f)CN,sf TE(y) 4
RN\

N+2
Ve

- vt (2(@(0)‘”% fR P00y +0 ((m(t))z%?l))
Te(y)

|y|N+25

= 0|0 70+ To + C, f

RM\Q,

dy — 2vi(o(1) > f P,(y',0)dy” + O (o5(1)) |-

RN-1

Recalling that o4(¢) = ¢ and using the fact that u(x, o5(¢)) = 0, we have

0 = 7% J,(1) + I,(1) + Cu,s f gy

=N\0, |y|N+2s

dy —2v f P.(y,0)dy + O(T5)  ast— 0.
RN-1
As a consequence,

Te(y)
|N+25

dy| + 175 T, (0] + 1 (1) + 075,

Cy.sH,(0) — 2vf P,(y',0)dy’| <
RN—I

CN,SHS(O) - CN,sf
=M, I

Therefore by Lemma 2.2, taking the limsups as t — 0 and as r — 0 respectively, we obtain

limsup [Cy  H(0) — 2v f P,(y',0)dy'| =
1—0 RN-1
Hence CruHA(0)
y = Ny +o(l)  ast— 0.
2 f P,(y',0)dy’
RN—]
This then ends the proof. O
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4. Proof of Theorem 1.1 in the case s € (1, 1)

We have the following result.

Proposition 4.1. We consider E a set of class C* satisfying the condition in Section 2. For s € (1/2,1),
we have
25-1
v=cnHO) +0(t7), ast — 0. (4.1)

where H(0) is the normalized mean curvature of OE at O and the positive constant cy s is given by

f PP, )y’
R—l

CNs =

2 f P(y',0)dy’
RN-1

Proof. We let x = vtey € OE, and we expand

u(x, O—s(t)) = LN 7(s(y - X O-v(t))TE(y)dy = 7(s(y - X O—v(t))TE(y)dy + (}(v(y - X O_S(l))TE(y)dy’

o o (4.2)
By (2.6) and Lemma 2.3, we have
” Ks(y = x, os(0))re(y)dy = O(o (1)) ast — 0.
Therefore
u(x, o4(1) = f K(y = x, o(0))Te(y)dy + O(o(1)). (4.3)

By a change of variable, the fact that 7z = 1g(x) — Lgv z(x) and x = viey, we have

Ky — x, 05O)Te(y)dy = K(y — x, 05(0))dy - Ki(y — x, o5(0)dy

Or ENQ, EnQ,

(") "
= f 7<s(y - X, O-S(t))dy - f f 7<‘s(y - X, O-S(t))dy
BY-1 J—r BNt Jy)
y(y')—vt r—vt
[ woewaw- [ [ Koo
BYN-1 J—r—vt BY=1 Jy(y")-vt

y(y')—vt 0 r—vt
={f\f mmmmij" mmmmm~f‘jﬁqumm@
BN-1 Jo BN-1 J—r—vt BN-1 Jo

y(y')—vt —r+vt
:2f f mmmmMWf‘ Koy, ().
BN Jo BY!

—r—vt
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The last line is due to the fact that the map yy — K(y, o4(¢)) is even so that

TVt —r+vt
[ woooan=- [ Koo,
0 0
Therefore we have
y(y')—vt —r+vt
Ko -xowrody=2 [ [T Koo [ [ Koo,
O Bt Jo BN=1 J —r—vt
By (2.6) and the fact that v¢ = 0,(1), we have
—r+vt
f Ky, o5(D)dy = O(o(1)).
BNV J—r—vt
By a change of variable, the Fundamental Theorem of Calculus, (1.5) and (2.3), we have
yO')-vi
[ [ oo
BN-1 Jo
y()-vt YOt el age
_ f f K, 0, 05(1))dy + f f f By By, o (0)dyd6
BY-! BY-1 Jo 0 Oyn
= Ks(', 0, as(t))( Yy, Oy + Oy [P) — vt) ay’
BN-1
YO )-vt
f f f yN—(y Oyn, o 5(1))dydo
BN 1
_ A’)/(O) f 72 ’ ’ f ’ ’
= S o IO Oy = vt | 0,00y
y(y')-vt
f f f yN—(y Oy, o (1))dyd + 0( f Y IPK(, 0, (fs(t))dy’)-
BN 1 Bﬁ\/—l
Therefore, recalling (2.4),
ron H(O) 712 ’ ’ ’ ’
f f Ky, o4(t)dy =—— |y [“K(',0,04))dy — vt K(Y',0,04)dy
B Jo 2 BN~ BY-!
y(y')-vt
f 1 f f YN—()’ Oyn, o s(1))dydo
BN
+ 0( f Y PK(G, 0, m(f))dy')-
BY-!
By a change of variable and (1.5), we have
f PR, 0, 00y = (o (D)% f PP, 00y
BN~ BN~ .

Hos(0) 28

4.4)

4.5)

(4.6)

4.7)
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and
K0, ()Y = (o (1)) F f POy,
BN-1 BY1
Hos() 28
Moreover by (1.6), we get
(0,(1) f VPP, 0)dy + (o) T f Py, 0)dy’ = O(c (1))
RN—I\BN—I . RN—I\BN—I .
Hos() 2s o) 2s
and
f ; Y PK(, 0, 04(0)dy = O(o (1))
BN-1
By Lemma 2.4, we get

YO )-vt el oK,
f f f INT— ', Oyn, o ()dydd = O (o7(1)) .
BY-1 Jo 0 Oyn

Combining (4.4), (4.6), (4.7), (4.8), (4.9) and (4.11), we obtain

1 H(O
, 0= 5 OOy =) © B

PPy, 0)dy’

iy () F f P, 0)dY + O (oy(1)).
RN*I

By (4.3) and (4.12), we obtain

(4.8)

ast— 0

4.9)

(4.10)

(4.11)

(4.12)

u(x, o7y(1)) = (o75(1) "> H(0) Y PP, 0)dy = 2vi(or (1))~ f P(y',0)dy’ + O (074(1))

RN-1 RN-1

= @O () HO) f PP 0)dy 2wt f PO/, 00y + 0 (o) ) |
RN-1 RN-1

Since x = vtv € J0E,, we have u(x, o4(t)) = 0. Now, from the definition of o(¢) = #*, we deduce that

HO) | VPP, 0)dy —2v f

RN- RN=

P,(y.0)dy +0(T) = 0.
1
Thus
v = cnsHO) + O™,

where

f WP, 0)dy
RN—I

CNs =

2 f P(y',0)dy’
RN-1

This then ends the proof.

O
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5. Proof of Theorem 1.1 in the case s = 1

As usual, we consider the function
u(x, 1) = Kip, 1) * te(x)

and recall that
E :={xeRY : u(x,o()=0)}.

To alleviate the notations, for the following of this section, we write o 2(f) := o (2).

Proposition 5.1. For s = 1/2, we have

v=>by(t)H(0) + 0( ast — 0, 5.1

1
log(o1/2(1)) )
where H(0) is the mean curvature of OF at 0.

Proof. Recall that x = vtv — 0 as t — 0, thanks to Lemma 2.3. We write

u(x, o (1) = f Kip(y—x,00))te(y)dy = Kip(y—x,00)te(y)dy + Kipn(y —x,0(D))te(y)dy,
RN

o o 52)
where O, = B¥"! x (=r,r). By (2.6), we have

. Kip(y - x,c®)re()dy = O(c(®)  ast—0.
Then, we have r

u(x, o) = | Kiply—x,o@®)te@)dy + Oc@). (5.3)

O

By a change of variable and (2.3), we have

Kipy—x,0)te(y)dy = Ky —x,00)dy - f Kipy = x,0(0)dy
o, ENQ, ENQ,
Y(O") r
= f Kip(y = x,0(t)dy - f Ky = x,0(0))dy
B Jor BN Jy()

y(y')—vt r—vt
= f f Koy, o(0)dy — f Kipp(y, o(0))dy
BN

—r—vt Blr\”l y(')-vt

y(y')—vt 0 r—vt
2 f f Kijp(y,o@)dy + f K2y, o(t))dy — f f Ky, o(t)dy
BYN-1 Jo BN J—r—wt BY-1 Jo

y(y')—vt —r+vt
> f f Ko (s (0)dy + f K 2y, (D).
a1 Jo By

—r—vt

The last line is due to the fact that the map yy — K ,2(y, o(?)) is even so that

—r+vt

r—vt
[ Hinoo@in == [ Kintnownn.
0 0
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Therefore we have

y(y')—vt —r+vt
K=oy =2 [ [T Koo+ | Koy, o)y, (54)
O BN-1Jo BNV J—r-wt
Using (2.6), we find that
—r+vt
f Kip2(y, o()dy = O(o(2)). (5.5)
BN J =t

By a change of variable, the fundamental theorem of calculus, (1.5) and (2.3), we have

y(y')—vt
f f Ko, (0))dy
BN-1 Jo
y(y')—vt y(y')—vt 1/2
f f K20/ 0, )y + f f f 7 2 Gy )y
BN 1 B -1

’ 1 ’ ’
Kip(y',0,0(0) (EYYin(O)yiyj +O(y'P) - Vt) dy

BN-1
YO )-vt 1 oK
+ f f f YN—L2(y, Oyn» o (1))dyd
BY-1 Jo 0 Oyn
Avy(0
= 5 70 W PKG (0 0, 1)y — vt f Ko, 0, (1)’
N=1 Jy e

Yy )—vt 1 af](l/z , 3 ) )
+ f f f W yn. o(1)dydf + O f ' PK 207, 0,0(1)dy' ).
BN Jo 0 dyn B!

Therefore

Y )-vi H(0) ) ) )
f f KinlnoOdy === | 1yPHKip(,0,00)dy
Bivil 0 BL\FI

YO )-vt 1 57(1/2
—vt f %Ki 20,0, (1)dy’ + f f f W (Y, Oyn. 0 (£)dydf + O (). (5.6)
BN-1 BY-1 Jo 0 Oyn

By (1.5), (1.6) and a change of variable, we have

y()-vt 1/2
f - f (y Oyn, o(1))dy
B)

_ 0[ fw(n Ly o)) In . dy] 0[ f o (t) (y(y’a(t)N)ﬂ— vt)2 oy
w1 Jo (1+107, 6P = B A+ P>

ro(t)~ 1

r(r(t)_l
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t 21/ 12 _ ¢ 2
=0|o71) f (G() il NV) dy | = O (o) + O(vt) + 0(v2z2(a(r))‘2).
B (1+ )=

r(r(t)’1

Now Lemma 2.3 yields vt = O(c(£)?) and thus

Y (' )-vt 1 oK,
f f f I (o Oyn, o ()dydd = O (1)) . (5.7)
BN-1 Jo 0

dyn
We get from (5.3), (5.4), (5.5), (5.6) and (5.7) that

u(x, o (1)) = o(t)H(0) fN |y'|2P1/2(y', 0)dy" — 2vtf Pip(y,0)dy + O(o(t)) ast— 0.

rrr(l)’l m—(,)fl

Thanks to (1.6), we have

f - Pip(y,00dy = O(o(1?) and f VPP, 0)dy = 0(1)  ast— 0.
RN—I\BNf N

-1 N-1
ro(r)”] Bu'(t)_l \Br(r(t)_]

This implies that

u(x,o(t) = a(r)H(O)f Y [FP12(y, 0)dy — 2vt(o(£) ™ f Py, 0)dy + O(o(2)). (5.8)
BN—l RN-1

o1
Using polar coordinates and (1.6), we then have

mN

1o (t)
f VPP, 0)dy =< CN,I/ZU)N—Zf ———dm, (5.9)
BNl 0 (1+m?)=2

a1

where wy_, := |SV~2|. By the change of variable p = %, we have

1/0(t) N +00
m 1
f 2 N+1 dm = f N+1 dp
0 (1 +m?»)™ o(t) p(1+p2) 2

1 1 +00 1
=f —deJff —dp
o0 p(L+p?) 2 1op(l+p?)2

1

1

= f —Mdp + O(1) = —log(o (1)) + O(1).
o0 p(1+p?) 2

- |y’|2P1/2()”,0)dy/

Letting by(¢) := o] , by (5.8), (5.9) and the above estimate, we obtain, as
_210g(a'(t))f Pl/z(y/,())dy/
RN—I

t—0,

u(x, o(1)) = o (H(0) f Y PP12(, 0)dy — 2vi(or(t)™ f P1p(y',0)dy’ + O(a (1))
BN*I RN-1
a1
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G OROL) f PPyl 0)dy’ — 2vt f Py, Oy’ + 01|
BN71 RN—]
a1

Since x = vtv € OE,, we have u(x, (1)) = 0. Recalling that = o(¢)| log(c(¢))|, we finally get

|y,|2P1/2(y/, 0)dy’

Bl S 1
0 = o(¢)log(o(2)) | H(0) Tog(@ @) -2v ‘[RN_I Py, 0)dy” + O(M) .
Hence |
V= bN(t)H(O) + O(M) ast — 0.
The proof is then ended. O
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