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Abstract: This paper addresses saddle-shaped solutions to the semilinear equation LKu = f (u) in
R2m, where LK is a linear elliptic integro-differential operator with a radially symmetric kernel K, and
f is of Allen-Cahn type. Saddle-shaped solutions are doubly radial, odd with respect to the Simons
cone {(x′, x′′) ∈ Rm × Rm : |x′| = |x′′|}, and vanish only in this set. We establish the uniqueness and
the asymptotic behavior of the saddle-shaped solution. For this, we prove a Liouville type result, the
one-dimensional symmetry of positive solutions to semilinear problems in a half-space, and maximum
principles in “narrow” sets. The existence of the solution was already proved in part I of this work.
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1. Introduction

In this paper we study saddle-shaped solutions to the semilinear equation

LKu = f (u) in R2m, (1.1)

where LK is a linear integro-differential operator of the form (1.2) and f is of Allen-Cahn type. These
solutions (see Definition 1.1 below) are particularly interesting in relation to the nonlocal version of a
conjecture by De Giorgi, with the aim of finding a counterexample in high dimensions. Moreover, this
problem is related to the regularity theory of nonlocal minimal surfaces (see Subsection 1.3).

Previous to this article and its first part [29], there are only three works devoted to saddle-shaped
solutions to the equation (1.1) with LK being the fractional Laplacian. In [16, 17], Cinti proved the
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existence of a saddle-shaped solution as well as some qualitative properties, such as asymptotic
behavior, monotonicity properties, and instability in even dimensions 2m ≤ 6. In a previous paper by
the authors [28], further properties of these solutions were proved, the main ones being uniqueness
and, when 2m ≥ 14, stability. The possible stability in dimensions 8, 10, and 12 is still an open
problem, as well as the possible minimality of this solution in dimensions 2m ≥ 8. Concerning
saddle-shaped solutions to the classical Allen-Cahn equation −∆u = f (u), the same results are
established; see [10] and the references therein. The stability of the saddle-shaped solution to
−∆u = u − u3 in dimensions 2m = 8, 10, and 12 has been recently announced [35].

The present paper together with its first part [29] are the first ones in the literature studying
saddle-shaped solutions for general integro-differential equations of the form (1.1). In the three
previous papers [16, 17, 28], the extension problem for the fractional Laplacian was a key tool. Since
this technique cannot be carried out for general integro-differential operators, some purely nonlocal
techniques were developed in [29] and we exploit them in this article.

In part I, we established an appropriate setting to study solutions to (1.1) that are doubly radial
and odd with respect to the Simons cone, a property that is satisfied by saddle-shaped solutions (see
Subsection 1.1). We found an alternative and useful expression for the operator LK when acting on
doubly radial odd functions —see (1.5). This was used to establish maximum principles for odd
functions under a convexity assumption on the kernel K of the operator LK —see (1.8). Moreover,
we proved an energy estimate for doubly radial and odd minimizers of the energy associated to the
equation, as well as the existence of saddle-shaped solutions to (1.1).

In the current paper, we further study saddle-shaped solutions to (1.1), by proving their uniqueness
and asymptotic behavior. To establish the uniqueness (Theorem 1.2) we use a maximum principle for
the linearized operator LK − f ′(u) (Proposition 1.4). To prove the asymptotic behavior (Theorem 1.3),
we use two ingredients: a Liouville type theorem (Theorem 1.5) and a one-dimensional symmetry
result (Theorem 1.6), both for semilinear equations of the form (1.1) under some hypotheses on f .
The first of these results is obtained by adapting the ideas of Berestycki, Hamel, and Nadirashvili [6]
to the nonlocal framework, and requires a Harnack inequality and a parabolic maximum principle.
The second one requires the sliding method and the moving planes argument, extended to a general
integro-differential setting.

In addition to the previous results, in this paper we establish further properties of the so-called layer
solution u0 (see Section 5). We also include an alternative proof of the existence of the saddle-shaped
solution using the monotone iteration method (as an alternative to the proof in [29] where we used
variational techniques).

Equation (1.1) is driven by a linear integro-differential operator LK of the form

LKw(x) =

ˆ
Rn

(
w(x) − w(y)

)
K(x − y) dy. (1.2)

The most canonical example of such operators is the fractional Laplacian, which corresponds to the
kernel K(z) = cn,γ|z|−n−2γ, where γ ∈ (0, 1) and cn,γ is a normalizing positive constant —see (5.2). Note
that some of the results in this paper are new even for the fractional Laplacian (namely Proposition 1.4
and the statement on odd solutions of Theorem 1.6), while others are only proved in the literature using
the extension problem (in contrast with our proofs).
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Throughout the paper, we assume that K is symmetric, i.e.,

K(z) = K(−z), (1.3)

and that LK is uniformly elliptic, that is,

λ
cn,γ

|z|n+2γ ≤ K(z) ≤ Λ
cn,γ

|z|n+2γ , (1.4)

where λ and Λ are two positive constants. Conditions (1.3) and (1.4) are frequently adopted since they
yield Hölder regularity of solutions (see [37, 42]). The family of linear operators satisfying these two
conditions is the so-called L0(n, γ, λ,Λ) ellipticity class. For short we will usually write L0 and we
will make explicit the parameters only when needed.

When dealing with doubly radial functions we will assume that the operator LK is rotation invariant,
that is, K is radially symmetric. This extra assumption allows us to rewrite the operator in a suitable
form when acting on doubly radial odd functions, as explained next.

1.1. Integro-differential setting for odd functions with respect to the Simons cone

In this subsection we present the basic definitions and terminology used along the paper. We also
recall the setting established in part I [29] to study the saddle-shaped solution (we refer to that article
for more details).

First, we present the Simons cone, a central object along this paper. It is defined in R2m by

C :=
{
x = (x′, x′′) ∈ Rm × Rm = R2m : |x′| = |x′′|

}
.

This cone is of importance in the theory of (local and nonlocal) minimal surfaces (see Subsection 1.3).
We will use the letters O and I to denote each of the parts in which R2m is divided by the cone C :

O :=
{
x = (x′, x′′) ∈ R2m : |x′| > |x′′|

}
and I :=

{
x = (x′, x′′) ∈ R2m : |x′| < |x′′|

}
.

Both O and I belong to a family of sets in R2m which are called of double revolution. These are sets
that are invariant under orthogonal transformations in the first m variables, as well as under orthogonal
transformations in the last m variables. Related to this concept, we say that a function w : R2m → R is
doubly radial if it depends only on the modulus of the first m variables and on the modulus of the last
m ones, i.e., w(x) = w(|x′|, |x′′|).

We recall now the definition of (·)?, an isometry that played a significant role in part I. It is defined
by

(·)? : R2m = Rm × Rm → R2m = Rm × Rm

x = (x′, x′′) 7→ x? = (x′′, x′) .

Note that this isometry is actually an involution that maps O into I (and vice versa) and leaves the cone
C invariant —although not all points in C are fixed points of (·)?, for instance, x = (1, 0, . . . , 0, 1).
Taking into account this transformation, we say that a doubly radial function w is odd with respect to
the Simons cone if w(x) = −w(x?).

Now we can define saddle-shaped solutions.
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Definition 1.1. We say that a bounded solution u to (1.1) is a saddle-shaped solution (or simply saddle
solution) if

1). u is doubly radial.

2). u is odd with respect to the Simons cone.

3). u > 0 in O = {|x′| > |x′′|}.

Note that these solutions are even with respect to the coordinate axes and that their zero level set is
the Simons cone C = {|x′| = |x′′|}.

In part I, we developed a purely nonlocal theory regarding the integro-differential operator LK when
acting on odd solutions with respect to the Simons cone. First, recall that if K is a radially symmetric
kernel we can rewrite the operator acting on a doubly radial function w as

LKw(x) =

ˆ
R2m

(
w(x) − w(y)

)
K(x, y) dy ,

where K is doubly radial in both variables and is defined by

K(x, y) :=
 

O(m)2
K(|Rx − y|) dR .

Here, dR denotes integration with respect to the Haar measure on O(m)2, where O(m) is the orthogonal
group of Rm. It is important to notice that, in contrast with K = K(x − y), the kernel K is no longer
translation invariant (i.e., it is a function of x and y but not of the difference x − y).

If we consider doubly radial functions that are, in addition, odd with respect to the Simons cone, we
can use the involution (·)? to find that

LKw(x) =

ˆ
O

(
w(x) − w(y)

)(
K(x, y) − K(x, y?)

)
dy + 2w(x)

ˆ
O

K(x, y?) dy . (1.5)

Furthermore,
1
C

dist(x,C )−2γ ≤

ˆ
O

K(x, y?) dy ≤ C dist(x,C )−2γ, (1.6)

with C > 0 depending only on m, γ, λ, and Λ.
Note that the expression (1.5) has an integro-differential part plus a term of order zero with a positive

coefficient. Thus, the most natural assumption to make in order to have an elliptic operator (when acting
on doubly radial odd functions) is that the kernel of the integro-differential term is positive. That is,

K(x, y) − K(x, y?) > 0 for every x, y ∈ O . (1.7)

One of the main results in part I established a necessary and sufficient condition on the original kernel
K for LK to have a positive kernel when acting on doubly radial odd functions. It turns to be

K(
√
τ) is a strictly convex function of τ . (1.8)

The positivity of the kernel of LK when acting on doubly-radial odd functions was crucial in order to
obtain the existence of the saddle-shaped solution. As we will see, it is essential as well to establish
the uniqueness. Therefore, (1.8) will be a key assumption in some of our results.
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1.2. Main results

Through all the paper we will assume that f , the nonlinearity in (1.1), is a C1 function satisfying

f is odd, f (±1) = 0, and f is strictly concave in (0, 1). (1.9)

It is easy to see that these properties yield f > 0 in (0, 1), f ′(0) > 0 and f ′(±1) < 0.
In some statements in this article, we will denote by L1

γ(R
n) the space of measurable functions w

satisfying ˆ
Rn

|w(x)|
1 + |x|n+2γ dx < +∞ .

This regularity will be required on a function w (in addition to Cα Hölder continuity, with α > 2γ) to
ensure that LKw is well-defined.

The first main result of this paper concerns uniqueness of saddle-shaped solution.

Theorem 1.2. Let f satisfy (1.9). Let K be a radially symmetric kernel satisfying the convexity
assumption (1.8) and such that LK ∈ L0(2m, γ, λ,Λ).

Then, for every even dimension 2m ≥ 2, there exists a unique saddle-shaped solution u to (1.1). In
addition, u satisfies |u| < 1 in R2m.

To establish the uniqueness of the saddle-shaped solution we will need two ingredients: the
asymptotic behavior of saddle-shaped solutions and a maximum principle for the linearized operator
in O. Both results will be described below. The existence of saddle-shaped solutions was already
proved in part I [29] using variational techniques. Here, we show that it can also be established using,
instead, the monotone iteration procedure. Let us remark that, in both methods, having the convexity
assumption (1.8) is crucial.

The second main result of this paper is Theorem 1.3 below, on the asymptotic behavior of a saddle-
shaped solution at infinity. To state it, let us introduce an important type of solutions in the study of the
integro-differential Allen-Cahn equation: the layer solutions.

We say that a solution v to LKv = f (v) in Rn is a layer solution if v is increasing in one direction,
say e ∈ Sn−1, and v(x) → ±1 as x · e → ±∞ (not necessarily uniform). When n = 1, a result of Cozzi
and Passalacqua (Theorem 1 in [21]) establishes the existence and uniqueness (up to translations) of a
layer solution. In addition, this solution is odd with respect to some point. They assume the kernel to
be in the ellipticity classL0(1, γ, λ,Λ) and the nonlinearity satisfying (1.9). In the case of the fractional
Laplacian this result was proved in [11, 12] using the extension problem.

Given K a translation invariant kernel in Rn, we define a new kernel K1 in R as

K1(τ) :=
ˆ
Rn−1

K (θ, τ) dθ = |τ|n−1
ˆ
Rn−1

K (τσ, τ) dσ.

Then, we denote by u0 the (unique) layer solution in R associated to LK1 that vanishes at the origin.
That is, 

LK1u0 = f (u0) in R ,
u̇0 > 0 in R ,

u0(x) = −u0(−x) in R ,
lim

x→±∞
u0(x) = ±1.

(1.10)
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This solution will play an important role to establish the asymptotic behavior of saddle-shaped
solutions. Indeed, its importance lies in that the associated function

U(x) := u0

(
|x′| − |x′′|
√

2

)
(1.11)

will describe the asymptotic behavior of saddle solutions at infinity. Note that (|x′| − |x′′|)/
√

2 is the
signed distance to the Simons cone (see Lemma 4.2 in [13]). Therefore, the function U consists of
“copies” of the layer solution u0 centered at each point of the Simons cone and oriented in the normal
direction to the cone.

The precise statement on the asymptotic behavior of saddle-shaped solutions at infinity is the
following.

Theorem 1.3. Let f ∈ C2(R) satisfy (1.9). Let K be a radially symmetric kernel satisfying the convexity
assumption (1.8) and such that LK ∈ L0(2m, γ, λ,Λ). Let u be a saddle-shaped solution to (1.1) and
let U be the function defined by (1.11).

Then,
‖u − U‖L∞(Rn\BR) + ‖∇u − ∇U‖L∞(Rn\BR) +

∥∥∥D2u − D2U
∥∥∥

L∞(Rn\BR)
→ 0

as R→ +∞.

Let us now describe some of the main ingredients that are used to prove Theorems 1.2 and 1.3.
Concerning the uniqueness of the saddle-shaped solution, besides the asymptotic behavior described in
Theorem 1.3 we also need the following maximum principle in O for the linearized operator LK− f ′(u).

Proposition 1.4. Let Ω ⊂ O be an open set (not necessarily bounded) and let K be a radially
symmetric kernel satisfying the convexity assumption (1.8) and such that LK ∈ L0(2m, γ, λ,Λ). Let u
be a saddle-shaped solution to (1.1), and let v ∈ L1

γ(R
2m) be a doubly radial function which is Cα in Ω

and continuous up to the boundary, for some α > 2γ. Assume that v satisfies
LKv − f ′(u)v − c(x)v ≤ 0 in Ω ,

v ≤ 0 in O \Ω ,

−v(x?) = v(x) in R2m,

lim sup
x∈Ω, |x|→∞

v(x) ≤ 0 ,

with c ≤ 0 in Ω.
Then, v ≤ 0 in Ω.

To establish it, the key tool is to use a maximum principle in “narrow” sets, also proved in Section 6.
Our proof of this result is much simpler than that of the analogue maximum principle for the classical
Laplacian. This is an example of how the nonlocality of the operator can make some arguments easier
and less technical (informally speaking, the reason would be that LK “sees more”, or “further”, than
the Laplacian). It is also interesting to notice that the proof of Proposition 1.4 is by far simpler than the
one using the extension problem in the case of the fractional Laplacian (Proposition 1.4 in [28]). In the
proof, the positivity condition (1.7) —guaranteed by the convexity of the kernel— is crucial, together
with the bounds (1.6).
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Regarding the proof of Theorem 1.3, to establish the asymptotic behavior of saddle-shaped solutions
we use a compactness argument as in [13, 16, 17], together with two important results presented next
and established in Section 4. The first one, Theorem 1.5, is a Liouville type principle for nonnegative
solutions to a semilinear equation in the whole space. This result, in contrast with the previous ones,
does not require the kernel K to be radially symmetric, but only to satisfy (1.3) and (1.4).

Theorem 1.5. Let LK ∈ L0(n, γ, λ,Λ) and let v be a bounded solution to{
LKv = f (v) in Rn ,

v ≥ 0 in Rn ,
(1.12)

with a nonlinearity f ∈ C1 satisfying

• f (0) = f (1) = 0,

• f ′(0) > 0,

• f > 0 in (0, 1), and f < 0 in (1,+∞).

Then, v ≡ 0 or v ≡ 1.

Similar classification results have been proved for the fractional Laplacian in [15, 34] (either using
the extension problem or not) with the method of moving spheres, which uses crucially the scale
invariance of the operator (−∆)γ. To the best of our knowledge, there is no similar result available in the
literature for general kernels in the ellipticity classL0 (which are not necessarily scale invariant). Thus,
we present here a proof based on the techniques introduced by Berestycki, Hamel, and Nadirashvili [6]
for the local equation with the classical Laplacian. It relies on a maximum principle for a nonlinear
heat equation, the translation invariance of the operator, a Harnack inequality, and a stability argument.

The second ingredient needed to prove the asymptotic behavior of saddle-shaped solutions is a
symmetry result for equations in a half-space, stated next. Here and in the rest of the paper we use the
notation Rn

+ = {(xH, xn) ∈ Rn−1 × R : xn > 0}.

Theorem 1.6. Let LK ∈ L0(n, γ, λ,Λ) and let v be a bounded solution to one of the following two
problems: either to 

LKv = f (v) in Rn
+,

v > 0 in Rn
+,

v(xH, xn) = −v(xH,−xn) in Rn,

(P1)

or to 
LKv = f (v) in Rn

+,

v > 0 in Rn
+,

v = 0 in Rn \ Rn
+.

(P2)

Assume that, in Rn
+, the kernel K of the operator LK is decreasing in the direction of xn, i.e., it

satisfies
K(xH − yH, xn − yn) ≥ K(xH − yH, xn + yn) for all x, y ∈ Rn

+.

Suppose that f ∈ C1 and

• f (0) = f (1) = 0,
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• f ′(0) > 0, and f ′(τ) ≤ 0 for all τ ∈ [1 − δ, 1] for some δ > 0,

• f > 0 in (0, 1), and

• f is odd in the case of (P1).

Then, v depends only on xn and it is increasing in this direction.

The result for (P2) has been proved for the fractional Laplacian under some assumptions on f
(weaker than the ones in Theorem 1.6) in [2, 3, 24, 26, 36]. Instead, no result was available for general
integro-differential operators. To the best of our knowledge, problem (P1) on odd solutions with respect
to a hyperplane has not been treated even for the fractional Laplacian. In our case, the fact that f is of
Allen-Cahn type allows us to use rather simple arguments that work for both problems (P1) and (P2)
—moving planes and sliding methods, similarly as done in [24]. Moreover, the fact that the kernel of
the operator is | · |−n−2γ or a general K satisfying uniform ellipticity bounds does not affect significantly
the proof. Although (P2) will not be used in this paper, we include it here for future reference since the
proof for this problem is analogous to the one for (P1).

1.3. Saddle-shaped solutions in the context of a conjecture by De Giorgi and the theory of nonlocal
minimal surfaces

To conclude this introduction, let us make some comments on the importance of problem (1.1) and
its relation with the theory of (classical and nonlocal) minimal surfaces and a famous conjecture raised
by De Giorgi.

A main open problem (even in the local case) is to determine whether the saddle-shaped solution is
a minimizer of the energy functional associated to the equation, depending on the dimension 2m. This
question is deeply related to the regularity theory of local and nonlocal minimal surfaces, as explained
next.

It is well-known that, for powers γ ∈ [1/2, 1], the rescaled energy functionals associated to the
equation (−∆)γu = f (u) Γ-converge to the classical perimeter functional (see [1, 31]), while in the
case γ ∈ (0, 1/2), they Γ-converge to the fractional perimeter functional (see [40]). Thus, a blow-
down sequence of minimizers of the Allen-Cahn energy converges to the characteristic function of a
set whose classical or fractional perimeter (depending on the power γ) is minimal.

In the recent years there has been an increasing interest in developing a regularity theory for nonlocal
minimal surfaces, although very few results are known for the moment. It is beyond the scope of this
article to describe all of them in detail, and we refer the interested reader to [7, 20] and the references
therein. Let us just make some comments on the scarce available results concerning the possible
minimality of the Simons cone as a nonlocal minimal surface, since this is connected to our work on
saddle-shaped solutions. Note first that, due to all its symmetries, it is easy to check that the Simons
cone C is stationary for the fractional perimeter. If 2m = 2, a purely geometric argument shows
that it cannot be a minimizer (see [44]). Note indeed that in [41] Savin and Valdinoci proved that
all minimizing nonlocal minimal cones in R2 are flat, and that dimension 2 is the only one where a
complete classification of minimizing nonlocal minimal cones is available. In higher dimensions, the
only available results regarding the possible minimality of C appear in [22] and in our paper [28], but
they concern stability, a weaker property than minimality.

Mathematics in Engineering Volume 3, Issue 5, 1–36.



9

In [22], Dávila, del Pino, and Wei found a very interesting characterization of the stability of the
Simons cone. It consists of an inequality involving two hypergeometric constants which depend only
on γ and the dimension. This inequality is checked numerically in [22], finding that, in dimensions
2m ≤ 6 and for γ close to zero, the Simons cone is not stable. Numerics also show that the Simons
cone should be stable in dimension 8 if γ is close to zero. These two facts for small γ fit with the
general belief that, in the fractional setting, the Simons cone should be stable (and even a minimizer)
in dimensions 2m ≥ 8 (as in the local case), probably for all γ ∈ (0, 1/2), though this is still an open
problem.

In contrast with the numeric computations in [22], our arguments in [28] establishing the stability
of C in dimensions 2m ≥ 14 are the first analytical proof of a stability result for the Simons cone in any
dimension (in the nonlocal setting). Our approach, which is completely different from theirs, relies on
establishing the stability of the saddle-shaped solution and using that this property is preserved along
a blow-down limit. This shows that the saddle-shaped solution does not only have its interest in the
context of the Allen-Cahn equation, but it can also provide strategies to prove stability and minimality
results in the theory of nonlocal minimal surfaces.

In addition to all this, saddle-shaped solutions are natural objects to build a counterexample to a
famous conjecture raised by De Giorgi, asking whether bounded monotone solutions to −∆u = u − u3

in Rn are one-dimensional if n ≤ 8. This conjecture is still nowadays not completely closed (see [27]
and references therein), but a counterexample in dimensions n ≥ 9 was given in [23] by using the gluing
method. An alternative approach to the one of [23] to construct a counterexample to the conjecture was
given by Jerison and Monneau in [33]. They showed that a counterexample in Rn+1 can be constructed
with a rather natural procedure if there exists a global minimizer of −∆u = f (u) in Rn which is bounded
and even with respect to each coordinate but is not one-dimensional. The saddle-shaped solution is of
special interest in search of this counterexample, since it is even with respect to all the coordinate axis
and it is canonically associated to the Simons cone, which in turn is the simplest nonplanar minimizing
minimal surface. Therefore, by proving that the saddle solution to the classical Allen-Cahn equation is
a minimizer in some dimension 2m, one would obtain automatically a counterexample to the conjecture
in R2m+1.

For a more complete account on the available results concerning the conjecture by De Giorgi in
the nonlocal setting, as well as to related conjectures on minimizers and stable solutions (in which the
saddle-shaped solution is expected to have a role as a counterexample), we refer the interested reader
to [39] and the references therein.

1.4. Plan of the article

The paper is organized as follows. In Section 2 we present some preliminary results that will be used
in the rest of the article. Section 3 contains the proof of the uniqueness of a saddle-shaped solution,
as well as the alternative proof of existence —via the monotone iteration method. In Section 4 we
establish the Liouville type and symmetry results, Theorems 1.5 and 1.6. Section 5 is devoted to
the layer solution u0 of problem (1.1), and to the proof of the asymptotic behavior of saddle-shaped
solutions, Theorem 1.3. Finally, Section 6 concerns the proof of a maximum principle in O for the
linearized operator LK − f ′(u) (Proposition 1.4).
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2. Preliminaries

In this section we collect some preliminary results that will be used in the rest of this paper. First,
we summarize the regularity results needed in the forthcoming sections. Then, we state a remark on
stability that will be used later in this paper, and finally we recall the basic maximum principles for
doubly radial odd functions proved in [29].

2.1. Regularity theory for nonlocal operators in the class L0

In this subsection we present the regularity results that will be used in the paper. For further details,
see [21, 37, 42] and the references therein.

We first give a result on the interior regularity for linear equations.

Proposition 2.1 ( [37, 42]). Let LK ∈ L0(n, γ, λ,Λ) and let w ∈ L∞(Rn) be a weak solution to LKw = h
in B1. Then,

‖w‖C2γ(B1/2) ≤ C
(
‖h‖L∞(B1) + ‖w‖L∞(Rn)

)
. (2.1)

Moreover, let α > 0 and assume additionally that w ∈ Cα(Rn). Then, if α + 2γ is not an integer,

‖w‖Cα+2γ(B1/2) ≤ C
(
‖h‖Cα(B1) + ‖w‖Cα(Rn)

)
, (2.2)

where C is a constant that depends only on n, γ, λ, and Λ.

Throughout the paper we consider u to be a saddle solution to (1.1) that satisfies |u| ≤ 1 in Rn.
Hence, by applying (2.1) we find that for any x0 ∈ R

n,

‖u‖C2γ(B1/2(x0)) ≤ C
(
‖ f (u)‖L∞(B1(x0)) + ‖u‖L∞(Rn)

)
≤ C

(
1 + ‖ f ‖L∞([−1,1])

)
.

Note that the estimate is independent of the point x0, and thus since the equation is satisfied in the
whole Rn,

‖u‖C2γ(Rn) ≤ C
(
1 + ‖ f ‖L∞([−1,1])

)
.

Then, we use estimate (2.2) repeatedly and the same kind of arguments yield that, if f ∈ Ck([−1, 1]),
then u ∈ Cα(Rn) for all α < k + 2γ. Moreover, the following estimate holds:

‖u‖Cα(Rn) ≤ C ,

for some constant C depending only on n, γ, λ, Λ, k, and ‖ f ‖Ck([−1,1]).
Let us now state a result on the boundary regularity of solutions to a Dirichlet problem for an

operator LK ∈ L0.

Proposition 2.2 ( [21, 37]). Let LK ∈ L0(n, γ, λ,Λ) and let w ∈ L∞(Rn) be a weak solution to{
LKw = h in Ω ,

w = ϕ in Rn \Ω ,

with h ∈ L∞(Ω) and ϕ ∈ C2γ+η(Rn \ Ω) for some η ∈ (0, 2 − 2γ). Assume that Ω is a bounded C1,1

domain.
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Then, there exists an α0 ∈ (0, γ), depending only on n, γ, λ, Λ, and η, such that

‖w‖Cα0 (Ω) ≤ C
(
‖h‖L∞(Ω) + ‖ϕ‖C2γ+η(Rn\Ω)

)
,

where C is a constant that depends only on n, γ, λ, Λ, η, and Ω.

Note that this result can be combined with the interior estimate (2.2) to prove that weak solutions
are indeed classical solutions.

2.2. A remark on stability

Recall that we say that a bounded solution w to LKw = f (w) in Ω ⊂ Rn is stable in Ω if the second
variation of the energy at w is nonnegative. That is, if

1
2

ˆ
Rn

ˆ
Rn
|ξ(x) − ξ(y)|2K(x − y) dx dy −

ˆ
Ω

f ′(w)ξ2 dx ≥ 0

for every ξ ∈ C∞c (Ω).
The following fact regarding stability will be used in Sections 4 and 5. Let w ≤ 1 be a positive

solution to LKw = f (w) in a set Ω ⊂ Rn, with f satisfying (1.9). Then w is stable in Ω.
The proof of this fact is standard and rather simple, and it is a consequence of the fact that w is a

positive supersolution of the linearized operator LK − f ′(w). We present it here for completeness (a
more detailed discussion can be found in [32]). On the one hand, since f is strictly concave in (0, 1)
and f (0) = 0, then f ′(w)w < f (w) in Ω (recall that w is positive there). On the other hand, it is easy to
check that the following pointwise inequality holds for all functions ϕ and ξ, with ϕ > 0:

(
ϕ(x) − ϕ(y)

) (ξ2(x)
ϕ(x)

−
ξ2(y)
ϕ(y)

)
≤ |ξ(x) − ξ(y)|2 . (2.3)

Using these two facts and the symmetry of K, for every ξ ∈ C∞c (Ω) we have

ˆ
Ω

f ′(w)ξ2 dx ≤
ˆ

Ω

ξ2

w
f (w) dx =

ˆ
Ω

ξ2

w
LKw dx

=
1
2

ˆ
R2m

ˆ
R2m

(
w(x) − w(y)

) (ξ2(x)
w(x)

−
ξ2(y)
w(y)

)
K(x − y) dx dy

≤
1
2

ˆ
R2m

ˆ
R2m
|ξ(x) − ξ(y)|2K(x − y) dx dy .

Thus, w is stable in Ω.

2.3. Maximum principles for doubly radial odd functions

In this last subsection, we state the basic maximum principles for doubly radial odd functions. Note
that in the following result we only need assumptions on the functions at one side of the Simons cone
thanks to their symmetry. This was proved in part I and follows readily from the expression (1.5) by
using the key inequality (1.7) for the kernel K.
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Proposition 2.3 (Maximum principle for odd functions with respect to C [29]). Let Ω ⊂ O be an open
set and let LK be an integro-differential operator with a radially symmetric kernel K satisfying the
positivity condition (1.7) and such that LK ∈ L0(2m, γ, λ,Λ). Let w ∈ Cα(Ω) ∩ C(Ω) ∩ L∞(R2m), with
α > 2γ, be a doubly radial function which is odd with respect to the Simons cone.

(i) (Weak maximum principle) Assume that{
LKw + c(x)w ≥ 0 in Ω ,

w ≥ 0 in O \Ω ,

with c ≥ 0, and that either

Ω is bounded or lim inf
x∈O, |x|→+∞

w(x) ≥ 0 .

Then, w ≥ 0 in Ω.

(ii) (Strong maximum principle) Assume that LKw + c(x)w ≥ 0 in Ω, with c any continuous function,
and that w ≥ 0 in O. Then, either w ≡ 0 in O or w > 0 in Ω.

Remark 2.4. Following the proof of this result in part I, it is easy to see that the interior regularity
assumptions on w in the previous statement can be weakened. Indeed, we are assuming that w ∈ Cα(Ω)
with α > 2γ in order to guarantee that LKw is finite everywhere in Ω. Instead of this, we can simply
assume that w is Hölder continuous in Ω (with Hölder exponent arbitrarily small), as long as LKw = +∞

at the points of Ω where w is not regular enough for LKw to be finite. In such case, LKw + c(x)w ≥ 0
holds as well and we can proceed with the argument as done in part I.

Proposition 2.3 with these weaker assumptions on w will used later in the proof of Theorem 1.2 (see
Remark 3.3 below): We will apply it to a function w being no more regular than Cα0 at some points in
the interior of Ω, where α0 is given by Proposition 2.2.

3. Existence and uniqueness of the saddle-shaped solution: monotone iteration method

In this section we prove the existence and uniqueness result of Theorem 1.2. The proof of the
existence is based on the maximum principle and the first ingredient that we need is a version of the
monotone iteration procedure for doubly radial functions which are odd with respect to the Simons
cone C . In order to prove the uniqueness we will use the asymptotic behavior result of Theorem 1.3
together with the maximum principle for the linearized operator LK − f ′(u), given in Proposition 1.4;
both results will be proved in the subsequent sections.

We next present the monotone iteration method for doubly radial odd functions. In this result and
along the section, we will call odd sub/supersolutions to problem (3.2) the functions that are doubly
radial, odd with respect to the Simons cone, and satisfy the corresponding problem in (3.1).

Proposition 3.1. Let γ ∈ (0, 1) and let K be a radially symmetric kernel satisfying the convexity
assumption (1.8) and such that LK ∈ L0. Assume that v ≤ v are two bounded functions which are
doubly radial, odd with respect to the Simons cone, and belonging to C2γ+ε(BR) for some ε > 0.
Furthermore, assume that v ∈ Cε(BR) and that v and v satisfy respectively{

LKv ≤ f (v) in BR ∩ O ,

v ≤ ϕ in O \ BR ,
and

{
LKv ≥ f (v) in BR ∩ O ,

v ≥ ϕ in O \ BR ,
(3.1)
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with f a C1 odd function and ϕ ∈ C2γ+ε(Rn) a bounded doubly radial odd function.
Then, there exists a classical solution v to the problem{

LKv = f (v) in BR ,

v = ϕ in R2m \ BR ,
(3.2)

such that v ∈ C2γ+ε̃(BR) ∩ Cε̃(BR) for some ε̃ > 0, it is doubly radial, odd with respect to the Simons
cone, and v ≤ v ≤ v in O.

In the previous statement we required C2γ+ε regularity on v and v in order to LK be finite when
applied to them. In view of Remark 2.4, we can relax this assumption, since we do not need the
operator to be finite in the whole set BR when applied to a subsolution (respectively supersolution),
it can take the value −∞ (respectively +∞) at some points. Note, however, that we cannot drop the
assumption v ∈ Cε(BR) if we want v to have the desired regularity.

Proof of Proposition 3.1. The proof follows the classical monotone iteration method for elliptic
equations (see for instance [25]). We just give here a sketch of the proof. First, let M ≥ 0 be such that
−M ≤ v ≤ v ≤ M and set

b := max
{
0,− min

[−M,M]
f ′
}
≥ 0 .

Then one defines
L̃Kw := LKw + bw and g(τ) := f (τ) + bτ .

Therefore, our problem is equivalent to find a solution to{
L̃Kv = g(v) in BR ,

v = ϕ in R2m \ BR ,

such that v is doubly radial, odd with respect to the Simons cone and v ≤ v ≤ v in O. Here the main
point is that g is also odd but satisfies g′(τ) ≥ 0 for τ ∈ [−M,M]. Moreover, since b ≥ 0, L̃K satisfies
the maximum principle for odd functions in O (as in Proposition 2.3).

We define v0 = v and, for k ≥ 1, let vk be the solution to the linear problem{
L̃Kvk = g(vk−1) in BR ,

vk = ϕ in R2m \ BR .

It is easy to see by induction and the regularity results from Proposition 2.1 that
vk ∈ L∞(Rn) ∩ C2γ+2ε̃(BR) ∩ C2ε̃(BR) for some ε̃ > 0. Moreover, given Ω ⊂ BR a compact set, then
‖vk‖C2γ+2ε̃(Ω) is uniformly bounded in k.

Then, using the maximum principle it is not difficult to show by induction that

v = v0 ≤ v1 ≤ . . . ≤ vk ≤ vk+1 ≤ . . . v in O ,

and that each function vk is doubly radial and odd with respect to C . Finally, by the Arzelà-Ascoli
theorem and the compact embedding of Hölder spaces we see that, up to a subsequence, vk converges
to the desired solution v ∈ C2γ+ε̃(BR) ∩Cε̃(BR). �
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In order to construct a positive subsolution to (3.2) with zero exterior data, we also need a
characterization and some properties of the first odd eigenfunction and eigenvalue for the operator LK ,
which are presented next. This eigenfunction is obtained though a minimization of the Rayleigh
quotient in the appropriate space, defined next.

Given a set Ω ⊂ R2m and a translation invariant and positive kernel K, we define the space

HK
0 (Ω) :=

{
w ∈ L2(Ω) : w = 0 a.e. in R2m \Ω and [w]2

HK (R2m) < +∞
}
,

where
[w]2
HK (R2m) :=

1
2

ˆ
R2m

ˆ
R2m
|w(x) − w(y)|2K(x − y) dx dy . (3.3)

Recall also that when K satisfies the ellipticity assumption (1.4), then HK
0 (Ω) = Hγ0(Ω), which is the

space associated to the kernel of the fractional Laplacian, K(y) = cn,γ|y|−n−2γ. We also define, for Ω

doubly radial and symmetric with respect to C , the space

H̃K
0, odd(Ω) :=

{
w ∈ HK

0 (Ω) : w is doubly radial a.e. and odd with respect to C
}
.

Recall that when K is radially symmetric and w is doubly radial, we can replace the kernel K(x − y) in
the definition (3.3) by the kernel K(x, y). This is readily deduced after a change of variables and taking
the mean among all R ∈ O(m)2 (see the details in Section 3 of [29]).

Lemma 3.2. Let Ω ⊂ R2m be a bounded set of double revolution and let K be a radially symmetric
kernel satisfying the positivity condition (1.7) and such that LK ∈ L0(2m, γ, λ,Λ). Let us define

λ1, odd(Ω, LK) := inf
w∈H̃K

0, odd(Ω)

1
2

ˆ
R2m

ˆ
R2m
|w(x) − w(y)|2K(x, y) dx dy
ˆ

Ω

w(x)2 dx
.

Then, such infimum is attained at a function φ1 ∈ H̃
K
0, odd(Ω) ∩ L∞(Ω) which solves{

LKφ1 = λ1, odd(Ω, LK)φ1 in Ω ,

φ1 = 0 in R2m \Ω ,

and satisfies that φ1 > 0 in Ω ∩ O. We call this function φ1 the first odd eigenfunction of LK in Ω, and
λ1, odd(Ω, LK), the first odd eigenvalue.

Moreover, in the case Ω = BR, there exists a constant C depending only on n, γ, and Λ, such that

λ1, odd(BR, LK) ≤ CR−2γ .

Proof. The first two statements are deduced exactly as in Proposition 9 of [43], using the same
arguments as in Lemma 3.4 of [29] to guarantee that φ1 is nonnegative in O. The fact that φ1 > 0 in
Ω ∩ O follows from the strong maximum principle (see Proposition 2.3).

We show the third statement. Let w̃(x) := w(Rx) for every w ∈ H̃K
0, odd(BR). Then, if we use the

ellipticity properties of the operator we obtain

λ1, odd(BR, LK) ≤ min
w̃∈H̃K

0, odd(B1)

cn,γΛ

2

ˆ
R2m

ˆ
R2m
|w̃(x/R) − w̃(y/R)|2|x − y|−n−2γ dx dy
ˆ

BR

w̃(x/R)2 dx
.
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Finally, using a simple change of variables we conclude

λ1, odd(BR, LK) ≤ R−2γ min
w̃∈H̃s

0, odd(B1)

cn,γΛ

2

ˆ
R2m

ˆ
R2m
|w̃(x) − w̃(y)|2|x − y|−n−2γ dx dy
ˆ

B1

w̃(x)2 dx

= λ1, odd(B1, (−∆)γ)ΛR−2γ .

�

Remark 3.3. Note that, by the regularity results for LK stated in Section 2, we have that φ1 ∈ Cα0(Ω) ∩
Cα0+2γ(Ω) for some 0 < α0 < γ, and the regularity up to the boundary is optimal. Due to this and the
fact that φ1 > 0 in Ω∩O while φ1 = 0 in R2m \Ω, it is easy to check by using (1.5) that −∞ < LKφ1 < 0
in O \Ω and that LKφ1 = −∞ on ∂Ω ∩ O.

With these ingredients, we can proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. We divide it into two parts.
i) Existence: The strategy is to build a suitable solution uR of{

LKuR = f (uR) in BR ,

uR = 0 in R2m \ BR ,
(3.4)

and then let R→ +∞ to get a saddle-shaped solution.
Let φR0

1 be the first odd eigenfunction of LK in BR0 ⊂ R
2m, given by Lemma 3.2, and let λR0

1 :=
λ1, odd(BR0 , LK). We claim that for R0 big enough and ε > 0 small enough, uR := εφR0

1 is an odd
subsolution of (3.4) for every R ≥ R0. To see this, note first that, without loss of generality, we can
assume that

∥∥∥φR0
1

∥∥∥
L∞(BR)

= 1. Now, since f is strictly concave in (0, 1) and f (0) = 0, we have that
f ′(τ)τ < f (τ) for all τ > 0. Thus, using that εφR0

1 > 0 in BR0 ∩ O, it follows that for every x ∈ BR0 ∩ O,

f (εφR0
1 (x))

εφR0
1 (x)

> f ′(εφR0
1 (x)) ≥ f ′(0)/2

if ε is small enough, independently of x (recall that we assumed |φ1| ≤ 1). Therefore, since f ′(0) >
0, taking R0 big enough so that λR0

1 < f ′(0)/2 (this can be achieved thanks to the last statement of
Lemma 3.2), we have that for every x ∈ BR0 ∩ O, f (εφR0

1 (x)) > λR0
1 εφ

R0
1 (x). Thus,

LKuR = λR0
1 εφ

R0
1 < f (εφR0

1 ) = f (uR) in BR0 ∩ O .

In addition, if x ∈ (BR \ BR0) ∩ O, by Remark 3.3 we have that

LKuR < 0 = f (0) = f (uR) in (BR \ BR0) ∩ O .

Note that in ∂BR0 we have LKuR = −∞. Hence, the claim is proved.
Now, if we define uR := χO∩BR−χI∩BR , a simple computation shows that it is an odd supersolution to

(3.4). Therefore, using the monotone iteration procedure given in Proposition 3.1 (taking into account
Remarks 2.4 and 3.3 when using the maximum principle), we obtain a solution uR to (3.4) such that it
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is doubly radial, odd with respect to the Simons cone, and εφR0
1 = uR ≤ uR ≤ uR in O. Note that, since

uR > 0 in O ∩ BR0 , the same holds for uR.
Using a standard compactness argument, we let R → +∞ to obtain a sequence uR j converging on

compacts in C2γ+η(R2m) norm, for some η > 0, to a solution u ∈ C2γ+η(R2m) of LKu = f (u) in R2m.
Note that u is doubly radial, odd with respect to the Simons cone and 0 ≤ u ≤ 1 in O. Let us show
that 0 < u < 1 in O, which will yield that u is a saddle-shaped solution. By the usual strong maximum
principle it follows readily that u < 1 in O. Moreover, since uR ≥ εφR0

1 > 0 in O ∩ BR0 for R > R0,
this holds also the limit, that is, u ≥ εφR0

1 > 0 in O ∩ BR0 . Therefore, by applying the strong maximum
principle for odd functions (see Proposition 2.3) we obtain that 0 < u < 1 in O.

ii) Uniqueness: Let u1 and u2 be two saddle-shaped solutions. Define v := u1 − u2, which is a
doubly radial function that is odd with respect to C . Then,

LKv = f (u1) − f (u2) ≤ f ′(u2)(u1 − u2) = f ′(u2)v in O ,

since f is concave in (0, 1). Moreover, by the asymptotic result (see Theorem 1.3), we have

lim sup
x∈O, |x|→∞

v(x) = 0 .

Then, by the maximum principle in O for the linearized operator LK − f ′(u2) (see Proposition 1.4), it
follows that v ≤ 0 in O, which means u1 ≤ u2 in O. Repeating the argument with −v = u2 − u1 we
deduce u1 ≥ u2 in O. Therefore, u1 = u2 in R2m. �

Remark 3.4. Since the saddle-shaped solution u is positive in O, it follows that u is stable in this set, as
explained in Section 2. This fact will be used in Section 5.

4. Symmetry and Liouville type results

This section is devoted to prove the Liouville type result of Theorem 1.5 and the one-dimensional
symmetry result of Theorem 1.6. Both of them will be needed in the following section to establish the
asymptotic behavior of the saddle-shaped solution.

4.1. A Liouville type result for positive solutions in the whole space

In the proof of Theorem 1.5 we will need two main ingredients, that we present next. The first one
is a Harnack inequality for solutions to the semilinear problem (1.12). This inequality follows readily
from the results of Cozzi in [18], although the precise result that we need is not stated there. For the
reader’s convenience and for future reference, we present the result here and indicate how to deduce it
from the results in [18].

Proposition 4.1. Let LK ∈ L0(n, γ, λ,Λ) and let w be a solution to (1.12) with f a Lipschitz nonlinearity
such that f (0) = 0. Then, for every x0 ∈ R

n and every R > 0, it holds

sup
BR(x0)

w ≤ C inf
BR(x0)

w,

with C > 0 depending only on n, γ, λ,Λ, and R.
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Proof. Following the notation of [18], since f is Lipschitz and f (0) = 0, we have

| f (u)| ≤ d1 + d2|u|q−1 in Rn ,

with d1 = 0, d2 = ‖ f ‖Lip and q = 2. With this choice of the parameters, we only need to repeat the proof
of Proposition 8.5 in [18] (with p = 2 and Ω = Rn) in order to obtain that u belongs to the fractional
De Giorgi class DGγ,2(Rn, 0,H,−∞, 2γ/n, 2γ,+∞) for some constant H > 0 (see [18] for the precise
definition of these classes). Therefore, the Harnack inequality follows from Theorem 6.9 in [18]. �

The second ingredient that we need in the proof of Theorem 1.5 is the following parabolic maximum
principle in the unbounded set Rn × (0,+∞).

Proposition 4.2. Let LK ∈ L0(n, γ, λ,Λ) and let v be a bounded function, Cα with α > 2γ in space and
C1 in time, such that {

∂tv + LKv + c(x) v ≤ 0 in Rn × (0,+∞) ,
v(x, 0) ≤ 0 in Rn ,

with c(x) a continuous and bounded function. Then,

v(x, t) ≤ 0 in Rn × [0,+∞).

This result can be deduced from the usual parabolic maximum principle in a bounded (in space and
time) set with a rather simple argument. Since we have not found a specific reference where such result
is stated, let us present its proof with full detail for the sake of clarity. First of all, we present the usual
parabolic maximum principle in a bounded set in Rn× (0,+∞). The proof for cylindrical sets Ω× (0,T )
can be found for instance in [4]. Although the argument for general bounded sets is essentially the
same, we include here a short proof for the sake of completeness.

Lemma 4.3. Let Ω ⊂ BR × (0,T ) ⊂ Rn × (0,+∞) be a bounded open set. Let LK be an integro-
differential operator of the form (1.2) with a symmetric kernel satisfying (1.4), and let v be a bounded
function, Cα with α > 2γ in space and C1 in time, satisfying

∂tv + LKv ≤ 0 in Ω ⊂ BR × (0,T ) ,
v(x, 0) ≤ 0 in Ω ∩ {t = 0} ⊂ BR ,

v ≤ 0 in (Rn × (0,T )) \Ω .

Then, v ≤ 0 in Rn × [0,T ].

Proof. By contradiction, for every small ε > 0 assume that

M := sup
Rn×(0,T−ε)

v > 0.

By the sign of the initial condition and since v ≤ 0 in (Rn × (0,T )) \ Ω, v attains this positive value M
at a point (x0, t0) ∈ Ω with t0 ≤ T − ε. If t0 ∈ (0,T − ε), then (x0, t0) is an interior global maximum (in
Rn × (0,T − ε)) and it must satisfy vt(x0, t0) = 0 and LKv(x0, t0) > 0, which contradicts the equation. If
t0 = T −ε, then vt(x0, t0) ≥ 0 and LKv(x0, t0) > 0, which is also a contradiction with the equation. Thus,
v ≤ 0 in Rn × [0,T − ε) and since this holds for ε > 0 arbitrarily small, we deduce v ≤ 0 in Rn × [0,T ),
and by continuity, in Rn × [0,T ]. �
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To establish Proposition 4.2 from Lemma 4.3, we need to introduce an auxiliary function enjoying
certain properties (see Lemma 4.5 below). Before presenting it, we need the following result.

Lemma 4.4. There is no bounded solution to LKv = 1 in Rn for any LK ∈ L0.

Proof. Assume by contradiction that such solution exists. Then, by interior regularity (see Section 2)
v ∈ C1(Rn) and |∇v| ≤ C in Rn. For every i = 1, . . . , n, we differentiate the equation with respect to xi

to obtain {
LKvxi = 0 in Rn ,

|vxi | ≤ C in Rn .

By the Liouville theorem for the operator LK (it is proved exactly as in [38], see also [42]), vxi is
constant. Hence, ∇v is constant, and thus v is affine. But since v is bounded, v must be constant, and
we arrive at a contradiction with LKv = 1. �

With this result we can introduce the auxiliary function that we will use to prove the parabolic
maximum principle of Proposition 4.2.

Lemma 4.5. Let LK ∈ L0(n, γ, λ,Λ). Then, for every R > 0 there exists a constant MR > 0 and a
continuous function ψR ≥ 0 solution to{

LKψR = −1/MR in BR ,

ψR = 1 in Rn \ BR ,
(4.1)

satisfying
ψR → 0 pointwise and MR → +∞ as R→ +∞ .

Proof. First, consider φR the solution to{
LKφR = 1 in BR ,

φR = 0 in Rn \ BR .

Note that the existence of a weak solution to the previous problem is given by the Riesz representation
theorem. Moreover, by standard regularity results (see Section 2.1), φR is in fact a classical solution
and by the maximum principle, φR > 0 in BR.

Define MR := supBR
φR. Since MR is increasing (to check this, use the maximum principle to

compare φR and φR′ with R > R′), it must have a limit M ∈ R ∪ {+∞}. Assume by contradiction that
M < +∞ and consider the new function ϕR := φR/MR, which satisfies

LKϕR = 1/MR in BR ,

ϕR = 0 in Rn \ BR ,

ϕR ≤ 1 .
(4.2)

By a standard compactness argument, we deduce that as R→ +∞, ϕR converges (up to a subsequence)
to a function ϕ that solves LKϕ = 1/M in Rn and satisfies |ϕ| ≤ 1. This contradicts Lemma 4.4 and
therefore, MR → +∞ as R→ +∞.

Define now ψR := 1 − φR/MR = 1 − ϕR, which solves trivially (4.1). Thus, it only remains to show
that ψR → 0 as R → +∞. We will see that ϕR → 1 as R → +∞. Recall that ϕR solves problem
(4.2), and by the previous arguments, by letting R→ +∞ we have that a subsequence of ϕR converges
uniformly in compact sets to a bounded function ϕ ≥ 0 that solves LKϕ = 0 in Rn. By the Liouville
theorem, ϕ must be constant, and since its L∞ norm is 1 and ϕ ≥ 0, we conclude ϕ ≡ 1. �
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With these ingredients, we establish now the parabolic maximum principle in Rn × (0,+∞).

Proof of Proposition 4.2. First of all, note that with the change of function ṽ(x, t) = e−α tv(x, t) we can
reduce the initial problem in the statement of Proposition 4.2 to

∂tṽ + LK ṽ ≤ 0 in Ω ⊂ Rn × (0,+∞) ,
ṽ ≤ 0 in (Rn × (0,+∞)) \Ω ,

ṽ(x, 0) ≤ 0 in Rn ,

if we take α > ‖c‖L∞ and Ω := {(x, t) ∈ Rn × (0,+∞) : v(x, t) > 0}.
Now, consider the function

wR(x, t) := ‖ṽ‖L∞(Rn×(0,+∞))

(
ψR +

t
MR

)
,

where ψR and MR are defined in Lemma 4.5. Then, it is easy to check that wR satisfies
∂twR + LKwR = 0 in BR × (0,T ) ,

wR(x, 0) ≥ 0 in BR ,

wR(x, t) ≥ ‖ṽ‖L∞(Rn×(0,+∞)) in (Rn \ BR) × (0,T ) ,

for every T > 0 and R > 0. Since wR ≥ 0 ≥ ṽ in (Rn × (0,+∞)) \ Ω, by the maximum principle in
(BR × (0,T )) ∩Ω (see Lemma 4.3) we can easily deduce that wR ≥ ṽ in BR × (0,T ).

Finally, given an arbitrary point (x0, t0) ∈ Ω, take R0 > 0 and T > 0 such that (x0, t0) ∈ BR0 × (0,T ).
Thus,

ṽ(x0, t0) ≤ wR(x0, t0) = ‖ṽ‖L∞(Rn×(0,+∞))

(
ψR(x0) +

t0

MR

)
, for every R ≥ R0.

Letting R→ +∞ and using that ψR(x0)→ 0 and MR → +∞ (see Lemma 4.5), we conclude ṽ(x0, t0) ≤ 0,
and therefore v(x0, t0) = eα t0 ṽ(x0, t0) ≤ 0. �

By using the Harnack inequality and the parabolic maximum principle we can now establish
Theorem 1.5. The proof follows the ideas of Berestycki, Hamel, and Nadirashvili from Theorem 2.2
in [6] but adapted to the whole space and with an integro-differential operator.

Proof of Theorem 1.5. Assume v . 0. Then, by the strong maximum principle v > 0. Our goal is to
show that v ≡ 1, and this will be accomplished in two steps.

Step 1: We show that m := infRn v > 0.
By contradiction, we assume m = 0. Then, there exists a sequence {xk}k∈N such that v(xk) → 0 as

k → +∞.
On the one hand, by the Harnack inequality of Proposition 4.1, given any R > 0 we have

sup
BR(xk)

v ≤ CR inf
BR(xk)

v ≤ CR v(xk)→ 0 as k → +∞. (4.3)

Moreover, since f (0) = 0 and f ′(0) > 0, it is easy to show that f (t) ≥ f ′(0)t/2 if t is small enough.
Therefore, from this and (4.3) we deduce that there exists M(R) ∈ N such that

LKv −
f ′(0)

2
v ≥ 0 in BR(xM(R)) . (4.4)
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On the other hand, let us define

λx0
R = inf

ϕ∈C1
c (BR(x0))
ϕ.0

1
2

ˆ
Rn

ˆ
Rn
|ϕ(x) − ϕ(y)|2 K(x − y) dx dy

ˆ
Rn
ϕ(x)2 dx

,

which decreases to zero uniformly in x0 as R→ +∞ from being LK ∈ L0 (see the proof of Lemma 3.2
and also Proposition 9 of [43]). Therefore, there exists R0 > 0 such that λx

R < f ′(0)/2 for all x ∈ Rn

and R ≥ R0. In particular, by choosing x = xM(R0) there exists w ∈ C1
c (BR0(xM(R0))) such that w . 0 and

1
2

ˆ
Rn

ˆ
Rn
|w(x) − w(y)|2 K(x − y) dx dy <

f ′(0)
2

ˆ
Rn

w2 dx. (4.5)

Finally, to get the contradiction, multiply (4.4) by w2/v ≥ 0 and integrate in Rn. After symmetrizing
the integral involving LK we get

0 ≤
ˆ
Rn

w2

v
LKv dx −

f ′(0)
2

ˆ
Rn

w2 dx

=
1
2

ˆ
Rn

ˆ
Rn

(
v(x) − v(y)

) (w2(x)
v(x)

−
w2(y)
v(y)

)
K(x − y) dx dy −

f ′(0)
2

ˆ
Rn

w2 dx

≤
1
2

ˆ
Rn

ˆ
Rn
|w(x) − w(y)|2K(x − y) dx dy −

f ′(0)
2

ˆ
Rn

w2 dx,

which contradicts (4.5). Here we have used that the kernel is positive and symmetric and the inequality
(2.3). Therefore, infRn v > 0.

Step 2: We show that v ≡ 1.
Choose 0 < ξ0 < min{1,m}, which is well defined by Step 1, and let ξ(t) be the solution of the ODE{

ξ̇(t) = f (ξ(t)) in (0,+∞) ,
ξ(0) = ξ0 .

Since f > 0 in (0, 1) and f (1) = 0 we have that ξ̇(t) > 0 for all t ≥ 0, and lim
t→+∞

ξ(t) = 1.
Now, note that both v(x) and ξ(t) solve the parabolic equation

∂tw + LKw = f (w) in Rn × (0,+∞) ,

and satisfy
v(x) ≥ m ≥ ξ0 = ξ(0).

Thus, by the parabolic maximum principle (Proposition 4.2) applied to v − ξ, taking c(x) = −
(
f (v) −

f (ξ)
)
/(v − ξ), we deduce that v(x) ≥ ξ(t) for all x ∈ Rn and t ∈ (0,∞). By letting t → +∞ we obtain

v(x) ≥ 1 in Rn .

In a similar way, taking ξ̃0 > ‖v‖L∞ ≥ 1, using f < 0 in (1,+∞), f (1) = 0 and the parabolic maximum
principle, we obtain the upper bound v ≤ 1. �
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4.2. A one-dimensional symmetry result for positive solutions in a half-space

In this subsection we establish Theorem 1.6. To do it, we proceed in three steps. First, we show that
the solution is monotone in the xn direction by using a moving planes argument (see Proposition 4.6
below). Once this is shown, we can deduce that the solution v has uniform limits as xn± → ∞. Finally,
by using the sliding method (see Proposition 4.12 below), we deduce the one-dimensional symmetry
of the solution.

We proceed now with the details of the arguments. As we have said, the first step is to show that the
solution is monotone. We establish the following result.

Proposition 4.6. Let v be a bounded solution to one of the problems (P1) or (P2), with LK ∈ L0 such
that the kernel K is nonincreasing in the direction of xn in Rn

+, that is,

K(xH − yH, xn − yn) ≥ K(xH − yH, xn + yn) for all x, y ∈ Rn
+.

Let f be a Lipschitz nonlinearity such that f > 0 in (0, ‖v‖L∞(Rn
+)).

Then,
∂v
∂xn

> 0 in Rn
+.

To prove this monotonicity result, we use a moving planes argument, and for this reason we need a
maximum principle in “narrow” sets for odd functions with respect to a hyperplane (see
Proposition 4.10). Recall that for a set Ω ⊂ Rn, we define the quantity R(Ω) as the smallest positive R
for which

|BR(x) \Ω|

|BR(x)|
≥

1
2

for every x ∈ Ω. (4.6)

If no such radius exists, we define R(Ω) = +∞. We say that a set Ω is “narrow” if R(Ω) is small
depending on certain quantities.

An important result needed to establish the maximum principle in “narrow” sets is the following
ABP-type estimate. It is proved in [36] for the fractional Laplacian, following the arguments in [8]
(see also [9]). The proof for a general operator LK does not differ significantly from the one for the
fractional Laplacian. Nevertheless, we include it here for the sake of completeness.

Theorem 4.7. Let Ω ⊂ Rn with R(Ω) < +∞. Let LK ∈ L0(n, γ, λ,Λ) and let v ∈ L1
γ(R

n) ∩ Cα(Ω), with
α > 2γ, such that supΩ v < +∞ and satisfying{

LKv − c(x)v ≤ h in Ω ,

v ≤ 0 in Rn \Ω ,

with c(x) ≤ 0 in Ω and h ∈ L∞(Ω).
Then,

sup
Ω

v ≤ CR(Ω)2γ ‖h‖L∞(Ω) ,

where C is a constant depending on n, γ, and Λ.

The only ingredient needed to show Theorem 4.7 is the following weak Harnack inequality proved
in [19].
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Proposition 4.8 (see Corollary 4.4 of [19]). Let Ω ⊂ Rn and LK ∈ (n, γ, λ,Λ). Let w ∈ L1
γ(R

n)∩Cα(Ω),
with α > 2γ, such that w ≥ 0 in Rn. Assume that w satisfies weakly LKw ≥ h in Ω, for some h ∈ L∞(Ω).
Then, there exists an exponent ε > 0 and a constant C > 1, both depending on n, γ and Λ, such that( 

BR/2(x0)
wε dx

)1/ε

≤ C
(

inf
BR(x0)

w + R2γ ‖h‖L∞(Ω)

)
for every x0 ∈ Ω and 0 < R < dist(x0, ∂Ω).

With the previous weak Harnack inequality we can now establish the ABP estimate.

Proof of Theorem 4.7. First, note that it is enough to show it for v > 0 in Ω satisfying{
LKv ≤ h in Ω ,

v ≤ 0 in Rn \Ω .

Indeed, if we consider Ω0 = {x ∈ Ω : v > 0}, then since c ≤ 0 we have LKv ≤ LKv − c(x)v ≤ h in Ω0.
Define M := supΩ v. Then, for every δ > 0 there exists a point xδ ∈ Ω such that v(xδ) ≥ M − δ.

Consider now the function w := M − v+. Note that 0 ≤ w ≤ M, w(xδ) ≤ δ, and w ≡ M in Rn \Ω. If we
extend h to be 0 outside Ω, we can easily verify that LKw ≥ −h in BR(xδ).

Now, by choosing R = 2R(Ω), and using the weak Harnack inequality of Proposition 4.8, we get

M
(
1
2

)1/ε

≤

(
Mε |BR/2(xδ) \Ω|

|BR/2(xδ)|

)1/ε

=

(
1

|BR/2(xδ)|

ˆ
BR/2(xδ)\Ω

wε dx
)1/ε

≤

( 
BR/2(xδ)

wε dx
)1/ε

≤ C
(

inf
BR(xδ)

w + R2γ ‖h‖L∞(Ω)

)
≤ C

(
δ + R2γ ‖h‖L∞(Ω)

)
.

The conclusion follows from letting δ→ 0. �

As a consequence of this result, one can deduce easily a general maximum principle in “narrow”
sets.

Corollary 4.9. Let Ω ⊂ Rn with R(Ω) < +∞. Let LK ∈ L0(n, γ, λ,Λ) and let v ∈ L1
γ(R

n) ∩Cα(Ω), with
α > 2γ, such that supΩ v < +∞ and satisfying{

LKv + c(x)v ≤ 0 in Ω ,

v ≤ 0 in Rn \Ω ,

with c(x) bounded by below.
Then, there exists a number R > 0 such that v ≤ 0 in Ω whenever R(Ω) < R.

Proof. We write c = c+ − c−, and therefore LKv − (−c+)v ≤ c−v+. By Theorem 4.7 we get

sup
Ω

v ≤ CR(Ω)2γ
∥∥∥c−v+

∥∥∥
L∞(Ω)

≤ CR(Ω)2γ
∥∥∥c−

∥∥∥
L∞(Ω)

sup
Ω

v .

Hence, if CR(Ω)2γ ‖c−‖L∞(Ω) < 1, we deduce that v ≤ 0 in Ω. �
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The previous maximum principle in “narrow” sets is not suitable enough to apply the moving planes
method, and we need to adapt it to the setting of odd functions with respect to a hyperplane (see
Proposition 4.10 below, which will be deduced from Corollary 4.9). The reason why we need it is the
following. In the moving the argument, we would want to use a maximum principle in a “narrow”
band and applied to an odd function with respect to a hyperplane. However, odd functions cannot have
a constant sign in the exterior of a band, and in the hypotheses of Corollary 4.9 there is a prescribed
constant sign of a function outside the set Ω. Thus, we need another version of a maximum principle
in “narrow” sets that applies to odd functions and only requires a constant sign of the function at one
side of a hyperplane (in the spirit of the maximum principles of Proposition 2.3). This is accomplished
with the following result.

Proposition 4.10. Let H be a half-space in Rn, and denote by x# the reflection of any point x with
respect to the hyperplane ∂H. Let LK ∈ L0 with a positive kernel K satisfying

K(x − y) ≥ K(x − y#), for all x, y ∈ H. (4.7)

Assume that v ∈ L1
γ(R

n) ∩Cβ(Ω), with β > 2γ, satisfies
LKv ≥ c(x) v in Ω ⊂ H,

v ≥ 0 in H \Ω,

v(x) = −v(x#) in Rn,

with c(x) bounded below.
Then, there exist a number R such that v ≥ 0 in H whenever R(Ω) ≤ R.

Proof. Let us begin by defining Ω− = {x ∈ Ω : v < 0}. We shall prove that Ω− is empty. Assume by
contradiction that it is not empty. Then, we split v = v1 + v2, where

v1(x) =

v(x) in Ω−,

0 in Rn \Ω−,
and v2(x) =

0 in Ω−,

v(x) in Rn \Ω−.

We first show that LKv2 ≤ 0 in Ω−. To see this, take x ∈ Ω− and thus

LKv2(x) =

ˆ
Rn\Ω−

−v2(y)K(x − y) dy = −

ˆ
Rn\Ω−

v(y)K(x − y) dy.

Now, we split Rn \Ω− into

A1 = Ω#
−, and A2 = (H \Ω−) ∪ (H \Ω−)# ,

and we compute the previous integral in these two sets separately using that v is odd. On the one hand,
since v ≤ 0 in Ω− and K ≥ 0 in Rn, we have

−

ˆ
A1

v(y)K(x − y) dy = −

ˆ
Ω−

v(y#)K(x − y#) dy =

ˆ
Ω−

v(y)K(x − y#) dy ≤ 0.

On the other hand, by the kernel inequality (4.7)

−

ˆ
A2

v(y)K(x − y) dy = −

ˆ
H\Ω−

v(y)
(
K(x − y) − K(x − y#)

)
dy ≤ 0.
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Thus, we get LKv2 ≤ 0 in Ω−.
Finally, since LKv2 ≤ 0 in Ω−, it holds

LKv1 = LKv − LKv2 ≥ LKv ≥ c(x) v = c(x) v1 in Ω−.

Therefore v1 solves {
LKv1 ≥ c(x) v1 in Ω−,

v1 = 0 in Rn \Ω−,

and we can apply the usual maximum principle for “narrow” sets (Corollary 4.9) to v1 in Ω−. We
deduce that v1 ≥ 0 in all Rn whenever R(Ω) ≤ R. This contradicts the definition of v1 since we assumed
that Ω− was not empty. Thus, Ω− = ∅ and this yields v ≥ 0 in Ω. �

Remark 4.11. A maximum principle such as Proposition 4.10 was already proved for the fractional
Laplacian in [14], but with the additional hypothesis that either Ω is bounded or lim infx∈Ω, |x|→∞ v(x) ≥
0. In the proof of Theorem 3.1 in [36], Quaas and Xia use a suitable argument (the truncation used
in the previous proof, previously used by Felmer and Wang in [30]) to avoid the requirement of such
additional hypotheses on Ω or v.

With the maximum principle in “narrow” sets for odd functions with respect to a hyperplane we can
use the moving plane argument. Now we establish Proposition 4.6.

Proof of Proposition 4.6. The proof is based on the moving planes method, and is exactly the same
as the analogue proof of Theorem 3.1 in [36], where Quaas and Xia establish an equivalent result for
the fractional Laplacian. For this reason, we give here just a sketch. As usual, for λ > 0 we define
wλ(x) = v(xH, 2λ − xn) − v(xH, xn) (recall that xH ∈ R

n−1) and since the nonlinearity is Lipschitz, wλ

solves, in both cases —(P1) or (P2)—, the following problem:
LKwλ = cλ(x) wλ in Σλ ⊂ Hλ,

wλ ≥ 0 in Hλ \ Σλ,

wλ(xH, 2λ − xn) = −wλ(xH, xn) in Rn,

where Σλ := {x = (xH, xn) : 0 < xn < λ} and Hλ := {x = (xH, xn) : xn < λ} and cλ is a bounded
function. Note that wλ is odd with respect to ∂Hλ. Then, using the maximum principle in “narrow”
sets for odd functions (Proposition 4.10) we deduce that, if λ is small enough, wλ > 0 in Σλ.

To conclude the proof, we define

λ∗ := sup{λ : wη > 0 in Σλ for all η < λ}.

Note that λ∗ is well defined (but may be infinite) by the previous argument. To conclude the proof, one
has to show that λ∗ = ∞. This can be done by proving that, if λ∗ is finite, then there exists a small
δ0 > 0 such that for every δ ∈ (0, δ0] we have

wλ∗+δ(x) > 0 in Σλ∗−ε \ Σε

for some small ε. This can be established using a compactness argument exactly as in Lemma 3.1
of [36] and thus we omit the details. In the argument a Harnack inequality is needed, one can use
for instance Proposition 4.1. Finally, by the maximum principle in “narrow” sets we deduce that
wλ∗+δ(x) > 0 in Σλ∗+δ if δ is small enough, contradicting the definition of λ∗. �
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Now, we present the other important ingredient needed in the proof of Theorem 1.6. It is the
following symmetry result.

Proposition 4.12. Let LK ∈ L0 and let v be a bounded solution to one of the following problems: LKv = f (v) in Rn ,

lim
xn→±∞

v(xH, xn) = ±1 uniformly. (P3)


LKv = f (v) in Rn

+ = {xn > 0} ,
v = 0 in Rn \ Rn

+ = {xn ≤ 0} ,
lim

xn→+∞
v(xH, xn) = 1 uniformly.

(P4)

Assume that there exists a δ > 0 such that

f ′ ≤ 0 in [−1,−1 + δ] ∪ [1 − δ, 1],

for problem (P3) and
f ′ ≤ 0 in [1 − δ, 1]

for problem (P4).
Then, v depends only on xn and is increasing in that direction.

Proof. It is based on the sliding method, exactly as in the proof of Theorem 1 in [5]. The idea is,
as usual, to define vτ(x) := v(x + ντ) for every ν ∈ Rn with |ν| = 1 and νn > 0, and the aim is to
show that vτ(x) − v(x) ≥ 0 for all τ ≥ 0. Despite the fact that LK is a nonlocal operator, the proof is
exactly the same as the one in [5] —it only relies on the maximum principle, the translation invariance
of the operator and the Liouville type result of Theorem 1.5. Therefore, we do not include here the
details. �

Finally, we can proceed with the proof of Theorem 1.6.

Proof of Theorem 1.6. Note that by Proposition 4.12 we only need to prove that

lim
xn→+∞

v(xH, xn) = 1

uniformly. Therefore we divide the proof in two steps: first, we prove that the limit exists and is 1, and
then we prove that it is uniform.

Step 1: Given xH ∈ R
n−1, then lim

xn→+∞
v(xH, xn) = 1.

By Proposition 4.6 we know that v is strictly increasing in the direction xn. Since v is also bounded
by hypothesis, we know that, given xH ∈ R

n−1, the one variable function v(xH, ·) has a limit as xn → +∞,
which we call v(xH). Note that, since v(xH, 0) = 0 and vxn > 0, it follows that v(xH) > 0.

Let xk
n be any increasing sequence tending to infinity. Define vk(xH, xn) := v(xH, xn + xk

n). By the
regularity theory of the operator LK (see Section 2) and a standard compactness argument, we see
that, up to a subsequence, vk converge uniformly on compact sets to a function v∞ which is a classical
solution to {

LKv∞ = f (v∞) in Rn,

v∞ ≥ 0 in Rn.
(4.8)
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By Theorem 1.5, either v∞ ≡ 0 or v∞ ≡ 1. But, by construction,

v∞(xH, 0) = lim
k→+∞

vk(xH, 0) = lim
k→+∞

v(xH, xk
n) = v(xH) > 0,

and therefore the only possibility is

lim
xn→∞

v(xH, xn) = 1 for all xH ∈ R
n−1.

Step 2: The limit is uniform in xH.
Let us proceed by contradiction. Suppose that the limit is not uniform. This means that given any

ε > 0 small enough, there exists a sequence of points (xk
H, x

k
n) with xk

n → +∞ such that v(xk
H, x

k
n) = 1−ε.

Similarly as before, the sequence of functions ṽk(xH, xn) = v(xH + xk
H, xn + xk

n) converge uniformly on
compact sets to a function ṽ∞ that also solves (4.8). By Theorem 1.5, either ṽ∞ ≡ 0 or ṽ∞ ≡ 1. But, by
construction

ṽ∞(0, 0) = lim
k→+∞

ṽk(0, 0) = lim
k→+∞

v(xk
H, x

k
n) = 1 − ε,

which is a contradiction for ε > 0 small enough. Thus, the limit is uniform.
Finally, by applying Proposition 4.12, we get that v depends only on xn and is increasing in that

direction. �

5. Asymptotic behavior of a saddle-shaped solution

In this section, we show Theorem 1.3, concerning the asymptotic behavior of the saddle-shaped
solution.

In order to establish the result, it is important to study one-dimensional layer solutions in Rn.
Actually, in relation with the available results concerning a conjecture by De Giorgi, in low
dimensions all layer solutions are one-dimensional (see Subsection 1.3).

One-dimensional layer solutions in Rn are in correspondence with the ones in R. This comes for
free when dealing with the local case, since if v is a solution to −v̈ = f (v) in R, then w(x) = v(x · e)
solves −∆w = f (w) in Rn for every unitary vector e ∈ Rn. The same fact also happens for the fractional
Laplacian, that is, if v is a solution to (−∆)γv = f (v) in R, then w(x) = v(x · e) solves the same equation
in Rn. We can easily see this relation via the local extension problem.

Nevertheless, for a general operator LK this is not true anymore and we need a way to relate a
solution to a one-dimensional problem with a one-dimensional solution to a n-dimensional problem.
This is given in the next result. Some of its points appear in [21] with a different notation but we state
and prove them here for completeness.

Proposition 5.1. Let LK ∈ L0(n, γ, λ,Λ) be a symmetric and translation invariant integro-differential
operator of the form (1.2) with kernel K : Rn \ {0} → (0,+∞). Define the one dimensional kernel
K1 : R \ {0} → (0,+∞) by

K1(τ) :=
ˆ
Rn−1

K (θ, τ) dθ = |τ|n−1
ˆ
Rn−1

K (τσ, τ) dσ. (5.1)

(i) Let v : R → R and consider w : Rn → R defined by w(x) = v(xn). Then, LKw(x) = LK1v(xn). If
we assume moreover that K is radially symmetric, then the same happens with w(x) = v(x · e) for
every unitary vector e ∈ Sn−1. That is, LKw(x) = LK1v(x · e).
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(ii) If K is nonincreasing/decreasing in the xn-direction in {xn > 0}, then K1(τ) is
nonincreasing/decreasing in (0,+∞).

(iii) LK1 ∈ L0(1, γ, λ,Λ), and moreover, if LK is the fractional Laplacian in dimension n, then LK1 is
the fractional Laplacian in dimension 1.

Proof. We start proving point (i). We write y = (yH, yn), with yH ∈ R
n−1.

LKw(x) =

ˆ
Rn

(
w(x) − w(y)

)
K(x − y) dy

=

ˆ
Rn

(
v(xn) − v(yn)

)
K (xH − yH, xn − yn) dyH dyn.

Now we make the change of variables θ = xH − yH. That is,

LKw(x) =

ˆ
R

(
v(xn) − v(yn)

)ˆ
Rn−1

K (θ, xn − yn) dθ dyn

=

ˆ
R

(
v(xn) − v(yn)

)
K1(xn − yn) dyn = LK1v(xn).

This shows the first equality in (5.1). The alternative expression of the kernel K1, that is useful in some
cases, can be obtained from the change of variables θ = τσ. Furthermore, in the case of K radially
symmetric, the result is valid for u(x) = v(x · e) for every unitary vector e ∈ Sn−1 after a change of
variables in the previous computations.

The proof of point (ii) follows directly from the first expression of the unidimensional kernel K1.
That is,

K1(τ2) − K1(τ1) =

ˆ
Rn−1

(
K(θ, τ2) − K(θ, τ1)

)
dθ ≥ 0 for any τ2 > τ1 > 0.

We establish now point (iii). To do it, we bound the kernel K1 using the ellipticity condition on K:

K1(τ) = |τ|n−1
ˆ
Rn−1

K (τ(σ, 1)) dσ ≥ |τ|n−1
ˆ
Rn

cn,γ
λ

|τ|n+2γ(|σ|2 + 1)
n+2s

2

dσ

= cn,γ
λ

|τ|1+2γ

ˆ
Rn−1

dσ

(|σ|2 + 1)
n+2γ

2

= cn,γ
λ

|τ|1+2γ

2π
n−1

2

Γ( n−1
2 )

ˆ ∞

0

rn−2

(r2 + 1)
n+2γ

2

dr

= cn,γ
λ

|t|1+2γ

π
n−1

2 Γ( 1
2 + γ)

Γ( n
2 + γ)

= cn,γ
λ

|t|1+2γ

c1,γ

cn,γ
= c1,γ

λ

|t|1+2γ ,

where we have used the explicit value of the normalizing constant for the fractional Laplacian,

cn,γ = γ
22γΓ( n

2 + γ)
πn/2Γ(1 − γ)

, (5.2)

and the definition of the Beta and Gamma functions. The upper bound for K1 is obtained in the
same way. Note that the previous computation is an equality with λ = 1 in the case of the fractional
Laplacian. �
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In the proof of Theorem 1.3 we will use some properties of the layer solution u0, defined in (1.10).
First, in [21] it is proved that there exists a constant C such that

|u0(x) − sign(x)| ≤ C|x|−2γ and |u̇0(x)| ≤ C|x|−1−2γ for large |x|. (5.3)

In our arguments we need also to show that the second derivative of the layer goes to zero at infinity.
This is the first statement of the following lemma.

Lemma 5.2. Let K1 : R \ {0} → (0,+∞) be a symmetric kernel satisfying (1.4) and assume that it
is decreasing in (0,+∞). Let u0 be the layer solution associated to the kernel K1, that is, u0 solving
(1.10). Then,

(i) ü0(x)→ 0 as x→ ±∞.

(ii) ü0(x) < 0 in (0,+∞).

We prove here the first statement of this lemma, and we postpone the proof of the second one until
the next section, since we need to use a maximum principle for the linearized operator LK1 − f ′(u0).

Proof of point (i) of Lemma 5.2. By contradiction, suppose that there exists an unbounded sequence
{x j} satisfying |ü0(x j)| > ε for some ε > 0. Note that by the symmetry of u0 we may assume that
x j → +∞. Now define w j(x) := ü0(x + x j). By differentiating twice the equation of the layer solution,
we see that ü0 solves

LK1 ü0 = f ′′(u0)u̇2
0 + f ′(u0)ü0 in R.

Hence, as x j → +∞ a standard compactness argument combined with the asymptotic behavior given
by (5.3) yields that w j converges on compact sets to a function w that solves

LK1w = f ′(1)w in R.

In addition, since |ü0(x j)| > ε we have |w(0)| ≥ ε.
At this point we use Lemma 4.3 of [21] to deduce that, since f ′(1) < 1, then w → 0 as |x| → +∞.

Therefore, if w is not identically zero, it has either a positive maximum or a negative minimum, but
this contradicts the maximum principle (recall that f ′(1) < 1). We conclude that w ≡ 0 in R, but this is
a contradiction with |w(0)| ≥ ε. �

Now we have all the ingredients to establish the asymptotic behavior of the saddle-solution. The
proof follows exactly the same compactness arguments used to prove the analogous result in the local
case (see [13]) and for the fractional Laplacian using the extension problem (see [16, 17]). Thus we
will omit some details. The main ingredients too establish this results are the translation invariance of
the operator, the Liouville type and symmetry results of Theorems 1.5 and 1.6 and a stability argument
(recall the comments in Section 2).

Proof of Theorem 1.3. By contradiction, assume that the result does not hold. Then, there exists an
ε > 0 and an unbounded sequence {xk}, such that

|u(xk) − U(xk)| + |∇u(xk) − ∇U(xk)| + |D2u(xk) − D2U(xk)| > ε. (5.4)

By the symmetry of u, we may assume without loss of generality that xk ∈ O, and by continuity we can
further assume xk < C .
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Let dk := dist(xk,C ). We distinguish two cases:
Case 1: {dk} is an unbounded sequence. In this situation, we may assume that dk ≥ 2k. Define

wk(x) := u(x + xk),

which satisfies 0 < wk < 1 in Bk and

LKwk = f (wk) in Bk.

Letting k → +∞, by standard estimates for the operators of the classL0 (see Section 2) and the Arzelà-
Ascoli theorem, we have that, up to a subsequence, wk converges on compact sets to a function w which
is a pointwise solution to {

LKw = f (w) in Rn ,

w ≥ 0 in Rn .

Then, by Theorem 1.5, either w ≡ 0 or w ≡ 1. First, note that w cannot be zero. Indeed, since wk are
stable with respect to perturbations supported in Bk (see the comments in Section 2 and Remark 3.4), w
is stable in Rn, which means that the linearized operator LK − f ′(w) is a positive operator. Nevertheless,
if w ≡ 0, then the linearized operator LK − f ′(w) = LK − f ′(0) is negative for sufficiently large balls,
since f ′(0) > 0 and the first eigenvalue of LK is of order R−2γ in balls of radius R (as in Lemma 3.2, see
Proposition 9 of [43]). Therefore w ≡ 1.

On the other hand, since dk → +∞ and U(xk) = u0(dk), we get by the properties of the layer solution
that U(xk) → 1, ∇U(xk) → 0 and D2U(xk) → 0 —see (5.3) and Lemma 5.2. From this and condition
(5.4) we get

|u(xk) − 1| + |∇u(xk)| + |D2u(xk)| > ε/2,

for k big enough. This yields that

|wk(0) − 1| + |∇wk(0)| + |D2wk(0)| > ε/2,

and this contradicts w ≡ 1.
Case 2: {dk} is a bounded sequence. In this situation, at least for a subsequence, we have that

dk → d. Now, for each xk we define x0
k as its projection on C . Therefore, we have that ν0

k := (xk− x0
k)/dk

is the unit normal to C . Through a subsequence, ν0
k → ν with |ν| = 1.

We define
wk(x) := u(x + x0

k),

which solves
LKwk = f (wk) in Rn.

Similarly as before, by letting k → +∞, up to a subsequence wk converges on compact sets to a function
w which is a pointwise solution to

LKw = f (w) in H := {x · ν > 0} ,
w ≥ 0 in H ,

w is odd with respect to H.

For the details about the fact that O + x0
k → H, see [13].
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As in the previous case, by stability w cannot be zero, and thus w > 0 in H (by the strong maximum
principle for odd functions with respect to a hyperplane, see [14]). Hence, by Theorem 1.6, w only
depends on x · ν and is increasing. Finally, by the uniqueness of the layer solution, w(x) = u0(x · ν) and

u(xk) = wk(xk − x0
k) = w(xk − x0

k) + o(1)
= u0((xk − x0

k) · ν) + o(1) = u0((xk − x0
k) · ν0

k) + o(1)
= u0(dk|ν

0
k |

2) + o(1) = u0(dk) + o(1) = U(xk) + o(1),

contradicting (5.4). The same is done for ∇u and D2u. �

Remark 5.3. The previous result yields that, for ε > 0 the saddle-shaped solution satisfies u ≥ δ in
the set Oε := {(x′, x′′) ∈ Rm × Rm : |x′′| + ε < |x′|}, for some positive constant δ. That is, thanks to
the asymptotic result, and since U(x) ≥ u0(ε/

√
2) for x ∈ Oε, there exists a radius R > 0 such that

u(x) ≥ U(x)/2 ≥ u0(ε/
√

2)/2 if x ∈ Oε \ BR. Moreover, since u is positive in the compact set Oε ∩ BR

it has a positive minimum in this set, say m > 0. Therefore, if we choose δ = min{m, u0(ε/
√

2)/2} we
obtain the desired result.

6. Maximum principles for the linearized operator

In this section we show that the linearized operator LK − f ′(u) satisfies the maximum principle in O.
This, combined with the asymptotic result of Theorem 1.3, yields the uniqueness of the saddle-shaped
solution.

In order to prove the maximum principle of Proposition 1.4, we need a maximum principle in
“narrow” sets, stated next.

Proposition 6.1. Let ε > 0 and let

Nε ⊂ {(x′, x′′) ∈ Rm × Rm : |x′′| < |x′| < |x′′| + ε} ⊂ O

be an open set (not necessarily bounded). Let K be a radially symmetric kernel satisfying the positivity
condition (1.7) and such that LK ∈ L0. Let v ∈ C(Nε) ∩ Cα(Nε) ∩ L1

γ(R
2m), for some α > 2γ, be a

doubly radial function satisfying
LKv + c(x)v ≤ 0 in Nε ,

v ≤ 0 in O \ Nε ,

−v(x?) = v(x) in R2m,

lim sup
x∈Nε, |x|→∞

v(x) ≤ 0 ,

(6.1)

with c a function bounded by below.
Under these assumptions there exists ε > 0 depending only on λ,m, γ and ‖c−‖L∞ such that, if ε < ε,

then v ≤ 0 in Nε.

Proof. Assume, by contradiction, that

M := sup
Nε

v > 0 .
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Under the assumptions (6.1), M must be attained at an interior point x0 ∈ Nε. Then,

0 ≥ LKv(x0) + c(x0)v(x0) ≥ LKv(x0) − ‖c−‖L∞(Nε) M . (6.2)

Now, we compute LKv(x0). Since v is doubly radial and odd with respect to the Simons cone, we can
use the expression (1.5) to write

LKv(x0) =

ˆ
O

(
M − v(y)

)(
K(x0, y) − K(x0, y?)

)
dy + 2M

ˆ
O

K(x0, y?) dy

≥ 2M
ˆ
O

K(x0, y?) dy,

where the inequality follows from being M the supremum of v in O and the kernel inequality (1.7).
Combining this last inequality with (6.2), we obtain

0 ≥ LKv(x0) + c(x0)v(x0) ≥ M
(
2
ˆ
O

K(x0, y?) dy − ‖c−‖L∞(Nε)

)
.

Finally, if we use the lower bound of (1.6) and the fact that dist(x0,C ) ≤ ε/
√

2, we get

0 ≥ M
(
2
ˆ
O

K(x0, y?) dy − ‖c−‖L∞(Nε)

)
≥ M

(
1
C

dist(x0,C )−2γ − ‖c−‖L∞(Nε)

)
≥ M

(
1
C
ε−2γ − ‖c−‖L∞(Nε)

)
.

Therefore, for ε small enough, we arrive at a contradiction that follows from assuming that the
supremum is positive. �

Remark 6.2. Using same arguments as in the proof of Proposition 4.10, the previous result can be
extended to general doubly radial “narrow” sets (that is, assuming that the set Nε in the statement
of Proposition 6.1 satisfies (4.6), instead of just being contained in an ε-neighborhood of the cone).
Indeed, we only need to replace the symmetry with respect to a hyperplane by the symmetry with
respect to the Simons cone and use the kernel inequality (1.7) —note that in this case, the assumption at
infinity in (6.1) is not needed. Nevertheless, we preferred to present the result for sets that are contained
in an ε-neighborhood of the Simons cone, since we are only going to use the maximum principle in such
sets. In addition, the crucial fact that the sets are contained in {(x′, x′′) ∈ Rm×Rm : |x′′| < |x′| < |x′′|+ε}
makes the argument rather simple.

Once this maximum principle in “narrow” sets is available, we can proceed with the proof of
Proposition 1.4.

Proof of Proposition 1.4. For the sake of simplicity, we will denote

L w := LKw − f ′(u)w − cw .

A crucial point in this proof is that u is a positive supersolution of the operator L . Indeed, since f is
strictly concave in (0, 1) and f (0) = 0, then f ′(τ)τ < f (τ) for all τ > 0, and thus

L u = LKu − f ′(u)u − cu ≥ f (u) − f ′(u)u > 0 in Ω ⊂ O , (6.3)
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where in the first inequality we have used that u > 0 in O and that c ≤ 0.
By contradiction, assume that there exists x0 ∈ Ω such that v(x0) > 0. We will show next that, if we

assume this, we deduce v ≤ 0 in Ω, arriving at a contradiction.
Let ε > 0 be such that the maximum principle of Proposition 6.1 is valid and define the following

sets:
Ωε := Ω ∩ {|x′| > |x′′| + ε} and Nε := Ω ∩ {|x′′| < |x′| < |x′′| + ε} .

Define also, for τ ≥ 0,
w := v − τu.

First, we claim that w ≤ 0 in Ω if τ is big enough. To see this, note first that by the asymptotic
behavior of the saddle-shaped solution, we have

u ≥ δ > 0 in Ωε , (6.4)

for some δ > 0 (see Remark 5.3). Therefore, w < 0 in Ωε if τ is big enough. Moreover, since v ≤ 0 in
O \Ω, we have

w ≤ 0 in O \ Nε .

Furthermore, it also holds
lim sup

x∈Nε, |x|→∞
w(x) ≤ 0

and, by (6.3),
L w = L v − τL u ≤ 0 in Nε .

Thus, since w is odd with respect to C , we can apply Proposition 6.1 in Nε to deduce that

w ≤ 0 in Ω ,

if τ is big enough.
Now, define

τ0 := inf {τ > 0 : v − τu ≤ 0 in Ω} .

By the previous claim, τ0 is well defined. Moreover, it is easy to see that τ0 > 0. Indeed, it is obvious
v − τ0u ≤ 0 in Ω and thus, since v(x0) > 0, we have −τ0u(x0) < v(x0) − τ0u(x0) ≤ 0. Using that
u(x0) > 0, it follows that τ0 > 0.

We claim that v− τ0u . 0. Indeed, if v− τ0u ≡ 0 then v = τ0u and thus, by using (6.3), the equation
for v, and the fact that τ0 > 0, we get

0 ≥ L v(x0) = τ0L u(x0) > 0 ,

which is a contradiction.
Then, since v−τ0u . 0, the strong maximum principle for odd functions (see Proposition 2.3) yields

v − τ0u < 0 in Ω .

Therefore, by continuity, the assumption on v at infinity and (6.4), there exists 0 < η < τ0 such that

w̃ := v − (τ0 − η)u < 0 in Ωε .
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Note that here we used crucially (6.4), and this is the reason for which we needed to introduce the sets
Ωε and Nε. Using again the maximum principle in “narrow” sets with w̃ in Nε, we deduce that

v − (τ0 − η)u ≤ 0 in Ω ,

and this contradicts the definition of τ0. Hence, v ≤ 0 in Ω and, as we said, this contradicts our initial
assumption on the existence of a point x0 where v(x0) > 0. �

Note that if in the previous result we assume that ∂Ω∩C is empty, then Ω is at a positive distance to
the cone and the lower bound on u in (6.4) holds in Ω. In this case no maximum principle in “narrow”
sets is required in the previous argument. Instead, if we want to consider sets with ∂Ω ∩ C , ∅, we
need to introduce the set Ωε to have the uniform lower bound (6.4) and be able to carry out the proof.

The same argument used in the previous proof can be used to establish the remaining statement of
Lemma 5.2.

Proof of point (ii) of Lemma 5.2. Let v = ü0. First we show that v ≤ 0 in (0,+∞). To see this, note that
since f is concave and by point (i) of Lemma 5.2, we have that

LK1v − f ′(u0)v ≤ 0 in (0,+∞) .
v(x) = −v(−x) for every x ∈ R ,

lim sup
x→+∞

v(x) = 0 .

Now, we follow the proof of Proposition 1.4 but with the previous problem, replacing u by u0 and using
that

LK1u0 − f ′(u0)u0 > 0 in (0,+∞) .

All the arguments are the same, using the maximum principle of Proposition 4.10 in the set (0, ε), and
yield that v ≤ 0 in (0,+∞).

The fact that ü0 = v < 0 in (0,+∞) can be readily deduced from the strong maximum principle for
odd functions in R, as follows. Suppose by contradiction that there exists a point x0 ∈ (0,+∞) such
that v(x0) = 0. Then,

0 ≥ LK1v(x0) = −

ˆ +∞

−∞

v(y)K1(x0 − y) dy

= −

ˆ +∞

−∞

v(y)
(
K1(x0 − y) − K1(x0 + y)

)
dy > 0 ,

arriving at a contradiction. Here we have used that v . 0 and the fact that K1 is decreasing in (0,+∞),
which yields K1(x − y) ≥ K1(x + y) for every x > 0 and y > 0. �
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