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1. Introduction and background: Dispersive properties of the point-singular perturbed
Schrödinger equation

A typical obstacle to the dispersive and scattering properties of the time evolution group associated
with the Schrödinger equation

i∂tu = −∆u + Vu (1.1)

in the unknown u ≡ u(t, x), where t ∈ R, x ∈ Rd (d ∈ N), and V : Rd → R is a given measurable
potential, is the existence of non-trivial solutions to

− ∆u + Vu = µu (1.2)

for some µ ∈ R.
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In those cases, relevant in a variety of contexts, where V is sufficiently localised (‘with short
range’) and/or is a suitably small perturbation of the Laplacian, non-trivial L2(Rd)-solutions to (1.2)
are interpreted as bound states of the associated Schrödinger operator, and if µ > 0 one refers to it as
an eigenvalue embedded in the continuum. Solutions to (1.2) in weaker L2-weighted spaces are
generally known instead as resonances (a notion that we shall explicitly define in due time for the
purposes of the present analysis), and they too affect the dispersive and scattering behaviour of the
propagator defined by (1.1).

When V ∈ L2
loc(R

d), and in (1.2) u ∈ H2
loc(R

d), it was first proved by Kato [30] that positive
eigenvalues are absent, and by Agmon [1] and by Alshom and Smith [10] that positive resonances are
absent too. For rougher (non-L2

loc) potentials, positive eigenvalues were excluded by Ionescu and
Jerison [27] and by Koch and Tataru [32] by means of suitable Carleman-type estimates which imply,
owing to a unique continuation principle [29, 31], that the corresponding eigenfunctions must be
compactly supported and hence vanish. Absence of positive resonances whose associated resonant
state u (solution to (1.2)) satisfies appropriate radiation conditions at infinity, was proved by Georgiev
and Visciglia [20] for Ld/2

loc -potentials decaying as |x|−(1+ε) or faster.
A closely related and equally challenging context, which this work is part of, is the counterpart

problem of existence or non-existence of spectral obstructions (eigenvalues or resonances) when the
potential V in (1.1) and (1.2) is formally replaced by a finite number of delta-like bumps localised at
certain given points in space. This corresponds to a well-established rigorous construction of point-like
perturbations of the free Laplacian usually referred to as ‘Schrödinger operator with point interaction’
(we refer to the monograph [4] as the standard reference in this field).

We recall that among the various equivalent, yet conceptually alternative ways of defining on L2(Rd)
the formal operator

“ − ∆ +

N∑
j=1

ν j δ(x − y j)” (1.3)

obtained by adding to the free Laplacian N singular perturbations centred at the points y1, . . . , yN ∈ R
d

and of magnitude, respectively, ν1, . . . , νN ∈ R, one is to obtain (1.3) as the limit of Schrödinger
operators with actual potentials V ( j)

ε (x − y j) each of which, as ε ↓ 0, spikes up to a delta-like profile,
the support shrinking to the point {y j}, and another way is to define (1.3) as a self-adjoint extension of
the restriction of −∆ to smooth functions supported away from the y j’s. Either approach reproduces
the free Laplacian unless when d = 1, 2, 3, in which case one obtains a non-trivial perturbation of −∆.

In this work we shall focus on d = 3 spatial dimensions and therefore fix a collection

Y := {y1, . . . , yN} ⊂ R
3

of N distinct points where the perturbation is supported at. It turns out [4, Section II.1.1] that the
operator

−∆ � C∞0 (R3\Y)

is densely defined, real symmetric, and non-negative on L2(Rd), and admits a N2-real-parameter family
of self-adjoint extensions, each of which acts as the free negative Laplacian on functions that are
supported away from the interaction centres. The most relevant extensions constitute the N-parameter
sub-family

{−∆α,Y |α ≡ (α1, . . . , αN) ∈ (−∞,∞]N}
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of so-called ‘local’ extensions, that is, the rigorous version of (1.3): for them the functions u in the
domain of self-adjointness are only qualified by certain local boundary conditions at each singularity
centre, with no pairing between distinct centres, which take the explicit form

lim
r j↓0

(∂(r ju)
∂r j

− 4πα jr ju
)

= 0 , r j := |x − y j| , j ∈ {1, . . . ,N} .

Physically, each α j is proportional to the inverse scattering length of the interaction supported at y j.
In particular, if for some j ∈ {1, . . . ,N} one has α j = ∞, then no actual interaction is present at the
point y j, and in practice things are as if one discards it. When α = ∞, one recovers the the Friedrichs
extension of −∆ � C∞0 (R3 \Y), namely the self-adjoint negative Laplacian with domain H2(R3). We
may henceforth assume, without loss of generality, that α runs over RN .

The perturbations −∆α,Y of −∆ have a long history of investigation and in Section 2 we shall list a
number of properties that rigorously qualify them and are relevant for our subsequent analysis. In the
mathematical literature they were introduced and characterised for the case N = 1 by Berezin and
Faddeev [12], Albeverio, Høegh-Krohn, and Streit [6], Nelson [35], Albeverio, Fenstad, and
Høegh-Krohn [3], and Albeverio and Høegh-Krohn [5]. For generic N > 1 centres, −∆α,Y was
rigorously studied first by Albeverio, Fenstad, and Høegh-Krohn [3], and subsequently characterised
by Zorbas [45], Grossmann, Høegh-Krohn, and Mebkhout [24, 25], D

‘
abrowski and Grosse [14], and

more recently by Arlinskiı̆ and Tsekanovskiı̆ [11], and by Goloshchapova, Malamud, and
Zastavnyi [22, 23].

The analysis of the dispersive and scattering properties of the Schrödinger propagator eit∆α,Y , t ∈ R,
has been an active subject as well. A class of Lp → Lq dispersive estimates were established by
D’Ancona, Pierfelice, and Teta [15] (in weighted form), and by Iandoli and Scandone [26] (removing
the weights used in [15] in the largest regime possible of the (p, q)-indices). The Lp-boundedness of the
wave operators for the pair (−∆α,Y ,−∆) in the regime p ∈ (1, 3) (from which dispersive and Strichartz
estimates can be derived by intertwining −∆ and −∆α,Y), as well as the Lp-unboundedness of the wave
operators when p = 1 or p ∈ [3,+∞], was proved by Dell’Antonio et al. [16] (with counterpart results
by Duchêne, Marzuola, and Weinstein [17] in d = 1 and Cornean, Michelangeli, and Yajima [13] in
d = 2 dimensions).

In analogy with the ordinary Schrödinger equation (1.1), also the dispersive features of the singular
point-perturbed Schrödinger equation

i∂tu = −∆α,Y u (1.4)

strictly depend on the possible presence of eigenvalues or resonances for −∆α,Y , and indeed in the
above-mentioned works [15,16,26] special assumptions on the choice of α and Y are often made so as
to ensure that no spectral obstruction occurs.

In fact (see Theorem 2.2 below for the complete summary and references), the spectrum σ(−∆α,Y)
only consists of an absolutely continuous component [0,+∞) which is also the whole essential
spectrum, plus possibly a number of non-positive eigenvalues. Thus, as usual, for the purposes of the
dispersive analysis, one considers Pac eit∆α,Y , namely the action of the singular Schrödinger propagator
on the sole absolutely continuous subspace of L2(R3), and additionally one has to decide whether
possible resonances are present.

When N = 1 the picture is completely controlled: −∆α,Y has only one negative eigenvalue if α < 0,
and has only a resonance, at zero, if α = 0; correspondingly the integral kernel of the propagator eit∆α,Y
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is explicitly known, as found by Scarlatti and Teta [39] and Albeverio, Brzeźniak, and D
‘
abrowski [2],

from which Lp → Lq dispersive estimates are derived directly, as found in [15]. In certain regimes of
p, q slower decay estimates do emerge in the resonant case α = 0, as opposed to the non-resonant one.

For generic N perturbation centres, it is again well understood (see Theorem 2.2 below) that at
most N non-positive eigenvalues can add up to the absolutely continuous spectrum [0,+∞) of −∆α,Y .
In particular, as discussed by one of us in [38, Sect. 3], a zero-energy eigenvalue may occur (see
also [4, page 485]).

The study of resonances for generic N has been attracting a considerable amount of attention. As
explained in Section 2, it is known since the already mentioned work [25] by Grossmann, Høegh-
Krohn, and Mebkhout (see also [4, Sect. II.1.1]), that resonances and eigenvalues z2 of −∆α,Y are
detected, on an equal footing, by the singularity of an auxiliary N × N square matrix Γα,Y(z) depending
on z ∈ C. Real negative resonances (thus z = iλ with λ > 0) are excluded by the arguments of [25].
A zero resonance may occur, and one of us [38] qualified this possibility in terms of a convenient
low-energy resolvent expansion which is at the basis of our definition 2.5 below. Complex resonances
(Imz < 0) have been investigated by Albeverio and Karabash [7–9] and Lipovský and Lotoreichik [34],
using techniques on the localisation of zeroes of exponential polynomials, and turn out to lie mostly
within certain logarithmic strips in the complex z-plane. Real positive resonances (thus, z ∈ R \ {0})
have been recently excluded by Galtbayar and Yajima [19], and implicitly also by Sjöstrand [40], and
by Goloshchapova, Malamud, and Zastavnyi [22, 23].

In this work we supplement this picture by demonstrating the absence of positive resonances for
−∆α,Y with an argument that has the two-fold virtue of being particularly compact as compared to the
general settings of [40] and [22, 23], and exploiting the explicit structure of the matrix Γα,Y(z), unlike
the abstract reasoning of [19] (further comments in this respect are cast at the end of Section 3). As
such, the approach that we present here has its own autonomous interest.

Moreover, we have already mentioned that the absence of positive resonances for an ordinary
Schrödinger operator −∆ + V is typically proved with Carleman’s estimate, whereas for the singular
version −∆α,Y it appears to be very hard to use those classical techniques – and indeed our proof relies
on a direct analysis based on the explicit formula for the resolvent: this makes any proof of absence of
resonances surely valuable.

In Section 2 we present the rigorous context within which our main result is formulated. In
particular, we survey the definition and the basic properties of the singular point-perturbed
Schrödinger operator −∆α,Y and we formulate the precise definition of resonance.

The proof of our main theorem is then discussed in Section 3, together with a few additional
comments for comparison with the previous literature.

We conclude our presentation in Section 4 with some final remarks that connect our main theorem
with recent dispersive and scattering results for the Schrödinger evolution of the singular
point-perturbed Laplacian, and highlight interesting open questions.

Notation. For vectors in x, y ∈ Rd the Euclidean norm and scalar products shall be denoted,
respectively, by |x| and x · y, whereas for the action of an operator (or a matrix, in particular) A on the
vector v we shall simply write Av. The expression δ j,k denotes the Kronecker delta. By 1 and O we
shall denote, respectively, the identity and the zero operator, irrespectively of which vector space they
act on, which will be clear from the context. By z and Z∗ we shall denote, respectively, the complex
conjugate of a scalar z ∈ Z and the transpose conjugate of a square matrix Z with complex entries. We
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shall use the shorthand 〈x〉 :=
√

1 + x2 for x ∈ R. By B(X,Y) we shall denote the space of bounded
linear operators from the Banach space X to the Banach space Y . For a vector ψ in a Hilbert space H
theH → H rank-one orthogonal projection onto the span of ψ shall be indicated with |ψ〉〈ψ|. The rest
of the notation is standard or will be declared in due time.

2. Set-up and main result

Let us start by collecting an amount of well known facts concerning the three-dimensional singular
point-perturbed Schrödinger operator that we informally referred to in the course of the previous
Section.

Let us fix N ∈ N, a collection Y = {y1, . . . , yN} of distinct points in R3, and a multi-index parameter
α ≡ (α1, . . . , αN) ∈ RN .

For z ∈ C and x, y, y′ ∈ R3, let us set

Gy
z(x) :=

eiz|x−y|

4π|x − y|
, Gyy′

z :=


eiz|y−y′ |

4π|y − y′|
if y′ , y

0 if y′ = y ,
(2.1)

and

Γα,Y(z) :=
((
α j −

iz
4π

)
δ j,k − G

y jyk
z

)
j,k=1,...,N

. (2.2)

Clearly, the map z 7→ Γα,Y(z) has values in the space of N × N symmetric, complex valued matrices,
and is entire. Therefore, z 7→ Γα,Y(z)−1 is meromorphic on C and hence the subset Eα,Y ⊂ C of poles of
Γα,Y(z)−1 is discrete. Let us further define

E±α,Y := Eα,Y ∩ C±

E0
α,Y := Eα,Y ∩ R ,

(2.3)

where C+ (resp., C−) denotes as usual the open complex upper (resp., lower) half-plane.

Definition 2.1. Let z ∈ C+ \ E+
α,Y . The operator −∆α,Y is defined on the domain

D(−∆α,Y) :=

u ∈ L2(R3)

∣∣∣∣∣∣∣∣∣∣
u = Fz +

N∑
j,k=1

(Γα,Y(z)−1) jk Fz(yk)G
y j
z

for some Fz ∈ H2(R3)

 (2.4)

by the action
(−∆α,Y − z2

1) u = (−∆ − z2
1) Fz . (2.5)

It is straightforward to check that at fixed z the decomposition (2.4) of a generic element inD(−∆α,Y)
is unique, and that the space D(−∆α,Y), as well as the action of −∆α,Y on a generic function of its
domain, are actually independent of the choice of z. Moreover, on H2-functions F vanishing at all
points of Y one has −∆α,Y F = −∆F.

Theorem 2.2 (Basic properties of the point-perturbed Schrödinger operator).
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(i) The operator −∆α,Y is self-adjoint on L2(R3) and extends the operator −∆ � C∞0 (R3 \Y). The
Friedrichs extension of the latter, namely −∆ with domain H2(R3), corresponds to the formal
choice α = ∞ in Definition 2.1.

(ii) If u ∈ D(−∆α,Y) and u|U = 0 for some open subsetU ⊂ R3, then (−∆α,Yu)|U = 0.
(iii) The set E+

α,Y of poles of Γα,Y(z)−1 in the open complex half-plane consists of at most N points that
are all located along the positive imaginary semi-axis, and for z ∈ C+ \ E+ one has the resolvent
identity

(−∆α,Y − z2
1)−1 − (−∆ − z2

1)−1 =

N∑
j,k=1

(Γα,Y(z)−1) jk |G
y j
z 〉〈G

yk
z | . (2.6)

(iv) The essential spectrum of −∆α,Y is purely absolutely continuous and coincides with the
non-negative half-line, the singular continuous spectrum is absent, and there are no positive
eigenvalues:

σess(−∆α,Y) = σac(−∆α,Y) = [0,+∞)
σsc(−∆α,Y) = ∅

σp(−∆α,Y) ⊂ (−∞, 0] .

(v) There is a one-to-one correspondence between the poles z = iλ ∈ E+
α,Y of Γα,Y(z)−1 and the

negative eigenvalues −λ2 of −∆α,Y , counting the multiplicity. The eigenfunctions associated with
the eigenvalue −λ2 < 0 have the form

u =

N∑
j=1

c jG
y j

iλ,

where (c1, . . . , cN) ∈ ker Γα,Y(iλ). In the special case N = 1 (Y = {y}),

σp(−∆α,Y) =

∅ if α > 0
{−(4πα)2} if α < 0 ,

and the unique negative eigenvalue, when it exists, is non-degenerate and with eigenfunction
G

y
−4πiα.

Theorem 2.2 is a collection of classical results from [24, 25, 45], which are discussed in detail, e.g.,
in [4, Sect. II.1.1].

In addition to Theorem 2.2, the spectral behavior of −∆α,Y on the real line, and in particular the
nature of the spectral point z2 = 0, was discussed by one of us in [38], and we shall now review those
results.

Let us first remark, as emerges from Theorem 2.2, that the eigenvalue zero is absent when N = 1,
but may occur when N > 2: examples of configurations of the y j’s that produce a null eigenvalue are
shown in [38, Sect. 3].

In [38] a limiting absorption principle for −∆α was established, in the spirit of the classical Agmon-
Kuroda theory for the free Laplacian [1, 33], and a low-energy resolvent expansion was produced,
analogously to the case of regular Schrödinger operators with scalar potential [1, 28].
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Theorem 2.3 ( [38]). Let σ > 0 and let Bσ be the Banach space

Bσ := B(L2(R3, 〈x〉2+σdx), L2(R3, 〈x〉−2−σdx)) .

(i) For every z ∈ C+\E+
α,Y one has (−∆α,Y−z2

1)−1 ∈ Bσ, and the map C+\E+
α,Y 3 z 7→ (−∆α,Y−z2

1)−1 ∈

Bσ can be continuously extended to R \ E0
α,Y .

(ii) In a real neighborhood of z = 0, one has the expansion

(−∆α,Y − z2
1)−1 = z−2R−2 + z−1R−1 + R0(z) , (2.7)

for some R−2,R−1 ∈ Bσ and some continuous Bσ-valued map z 7→ R0(z). Moreover, R−2 , O if
and only if zero is an eigenvalue for −∆α,Y .

In view of Theorem 2.3(ii) and of the heuristic idea of a resonance as the existence of a non-L2

solution u to −∆α,Yu = z2u, it is natural to say that −∆α,Y has a zero resonance when (−∆α,Y − z2
1)−1 =

O(z−1) as z→ 0, that is, with respect to the low-energy asymptotics (2.7), when R−2 = O and R−1 , O.
There is an equivalent way to formulate such an occurrence (the proof of which is also deferred to

Section 3).

Lemma 2.4. The following facts are equivalent:

(i) in the asymptotics (2.7), R−2 = O and R−1 , O;
(ii) the matrix Γα,Y(0) is singular, but zero is not an eigenvalue of −∆α,Y .

The resolvent identity (2.6) and Lemma 2.4 above finally motivate the following precise notion of
resonance.

Definition 2.5. Let z ∈ C. The operator −∆α,Y has a resonance at z2 if the matrix Γα,Y(z) is singular, but
z2 is not an eigenvalue of −∆α,Y .

As announced in previous Section’s introduction, in this work we focus on the exclusion of positive
resonances – informally speaking, to draw a parallel to (1.2), we shall conclude that the equation

− ∆α,Yu = µu (µ > 0) (2.8)

admits no non-trivial solutions, be they in L2(R3) (non-existence of embedded eigenvalues, as seen
already in Theorem 2.2(iv)) or outside of L2(R3) (non-existence of embedded resonances). More
precisely, in this work we prove that for any z ∈ R \ {0}, the spectral point µ = z2 is not a resonance.

In view of Definition 2.5 and Theorem 2.2(iv), the absence of positive resonances is tantamount as
the non-singularity of Γα,Y(z) for any z ∈ R \ {0}. This is precisely the form of our main result.

Theorem 2.6. For every α ∈ RN , every collection Y = {y1, . . . yN} of N distinct points in R3, and every
z ∈ R \ {0}, the matrix Γα,Y(z) is non-singular. Equivalently, the self-adjoint operator −∆α,Y has no real
positive resonances.

Theorem 2.6, combined with Theorem 2.3, essentially completes the picture of the spectral theory
for three-dimensional Schrödinger operators with finitely many point interactions.

For completeness of presentation, at the end of the proof in the following Section, we shall
comment on the comparison with the previous literature on the positive resonances of −∆α,Y , and in
the subsequent Section 4 we shall connect our main theorem with recent dispersive and scattering
results for the propagator eit∆α,Y , together with some relevant open problems.
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3. Proof of the main Theorem and additional remarks

This Section is mainly devoted to the proof of Theorem 2.6. In terms of the notation (2.3), one has
to prove that the set E0

α,Y \ {0} of non-zero poles of Γα,Y(z)−1 on the real line is empty.
In practice it suffices to only consider z > 0, for Γα,Y(−z) = Γα,Y(z)∗ for any z ∈ R, and hence E0

α,Y is
symmetric with respect to z = 0.

In fact, E0
α,Y is also finite. Indeed, E0

α,Y ⊂ Eα,Y is a discrete set, and for z ∈ R one has Γα,Y(z) =

− iz
4π1+Λα,Y(z) where the matrix norm of Λα,Y(z) is uniformly bounded in z, therefore Γα,Y(z) is invertible

for large enough z.
Let us first present the proof of Lemma 2.4, which was at the basis of the definition of resonance

for −∆α,Y .

Proof of Lemma 2.4. We recall [28, Section 2] that (−∆ − z2
1)−1 ∈ Bσ for every z ∈ C+, and the map

C+ 3 z 7→ (−∆ − z2
1)−1 ∈ Bσ can be continuously extended to the real line. Moreover, we observe that

the map R 3 z→ |Gy1
z 〉〈G

y2
z | ∈ Bσ is continuous for any y1, y2 ∈ R

3. Owing to these facts, one compares
the limits z → 0 in the resolvent identity (2.6), in the resolvent expansion (2.7), and in the low-energy
expansion

Γα,Y(z)−1 = z−2A−2 + z−1A−1 + O(1)

established in [38, Proposition 5], and concludes

R−2 , O ⇔ A−2 , O , R−1 , O ⇔ A−1 , O . (*)

We can now prove the desired equivalence.
(i)⇒ (ii). Since R−2 = O, Theorem 2.3(ii) guarantees that z = 0 is not an eigenvalue for −∆α,Y .

Moreover, since R−1 , O, by (*) also A−1 , O, which implies in particular that Γα,Y(0) is singular.
(ii)⇒ (i). Since z = 0 is not an eigenvalue for −∆α,Y , Theorem 2.3(ii) guarantees that R−2 = O,

whence also A−2 = O owing to (*). Since Γα,Y(0) is singular, necessarily A−1 , O, whence also
R−1 , O again owing to (*). �

Our argument for Theorem 2.6 is based upon the following useful result in linear algebra. We
denote by S ymN(R) the space of N × N symmetric real matrices.

Lemma 3.1. Let A, B ∈ S ymN(R), and assume furthermore that B is positive definite. Then A − iB is
non-singular.

Proof. Suppose for contradiction that A − iB is singular. Then there exist v,w ∈ Rn, at least one of
which is non-zero, such that

(A − iB)(v + iw) = 0 .

We can exclude for sure that v = 0, for in this case Bw + iAw = 0, whence in particular Bw = 0 and
therefore w = 0, against the assumption that v + iw , 0. Applying B−1 to the identity above, separating
real and imaginary parts, and setting C := B−1A, one gets

Cv = −w , Cw = v ,

which implies C2v = −v. As v , 0, the conclusion is that −1 is an eigenvalue for C2. However, the
matrix C = B−1A can be diagonalised over R, since it is similar to the symmetric matrix B−1/2AB−1/2,
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and therefore C2 is similar to a positive semi-definite matrix. Hence −1 cannot be in the spectrum of
C2. �

We shall also make use of the following property.

Lemma 3.2. Let N, d ∈ N and let y1, . . . , yN be distinct vectors in Rd. Then there exists a unit vector
a ∈ Rd such that the numbers a · v j are all distinct.

Proof. Let σd be the area measure on the unit sphere Sd−1 := {x ∈ Rd | |x| = 1}. For every pair ( j, k),
with j, k ∈ {1, . . . ,N}, j , k, let us consider the set

P jk := {x ∈ Rd | x · (y j − yk) = 0} .

Since y j , yk, P jk is an hyperplane in Rd, whence σd(Sd−1 ∩ P jk) = 0. It follows that the set

Q := Sd−1 \
⋃

j,k∈{1,...,N}
j,k

(Sd−1 ∩ P jk)

satisfies σd(Q) = σd(Sd−1), and in particular Q is non-empty. If we choose a ∈ Q, then by construction
the numbers a · y j are all distinct. �

We are ready to prove the main Theorem.

Proof of Theorem 2.6. Let z > 0: owing to the scaling property

Γα,Y(λz) = λΓλ−1α,λY(z)

valid for every λ > 0, it is enough to prove that Γα,Y := Γα,Y(1) is non-singular for any choice of α and
Y .

Using (2.1) and (2.2), we re-write

Γα,Y = Aα,Y − iBY

with Aα,Y , BY ∈ S ymN(R) given explicitly by

(Aα,Y) jk := α jδ j,k − ReG
y jyk

1

(BY) jk :=
1

4π
sinc(|y j − yk|) ,

where the real function sinc(x) is defined by

sinc(x) :=


sin(x)

x
if x , 0

1 if x = 0 .

Owing to Lemma 3.1, the thesis follows when one proves that BY is positive definite.
Based on an immediate integration in polar coordinates, it is convenient to express

sinc(|x|) =
1

4π

∫
S2

eixp dσ2(p), x ∈ R3 ,
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where σ2(p) is the area measure on the unit sphere S2 ⊂ R3.
For generic v ≡ (v1, . . . , vN) let BY[v] := v · BYv be the quadratic form associated to BY . Since

BY[v] =

N∑
j,k=1

1
4π

v jvk sinc(|y j − yk|)

=
1

16π2

N∑
j,k=1

v jvk

∫
S2

ei(y j−yk)·p dσ2(p)

=
1

16π2

∫
S2

∣∣∣∣∣ N∑
j=1

v j eiy j·p
∣∣∣∣∣2dσ2(p) > 0 ,

then the matrix BY is positive semi-definite.
To demonstrate that BY is actually positive definite, we specialise to the present context the clever

argument by Castel, Filbir, and Szwarc [46] (in [46] the general question of linear independence of
exponential maps over subsets of Rd is addressed).

Assume that for some v ∈ R3 \ {0} one has BYv = 0. From the above computation of BY[v], one
deduces

N∑
j=1

v j eiy j·p = 0 ∀p ∈ S2. (*)

We show, by induction on N, that the latter identity implies v = 0. The case N = 1 is obvious. Let
N > 2, and in (*) let us consider all possible p ∈ S2 of the form

p = a sin t + b cos t , t ∈ [0, 2π)

for two fixed vectors a, b ∈ R3 such that |a| = |b| = 1, a ⊥ b, and the scalars α j := y j · a with
j ∈ {1, . . . ,N} are all distinct. Lemma 3.2 ensures that this choice of a and b is possible. It is non-
restrictive to assume α1 < · · · < αN , and let us also set β j := y j · b, j ∈ {1, . . . ,N}. Then (*) reads

N∑
j=1

v j ei(α j sin t+β j cos t) = 0 ∀t ∈ [0, 2π) .

In fact, since l.h.s. above depends analytically on t, such an identity holds true for every t ∈ C.
Specialising it for t = −iτ, τ ∈ R, it takes the form

N∑
j=1

v j eα j sinh τ+iβ j cosh τ = 0 ∀τ ∈ R ,

and also, upon dividing by exp(αN sinh τ + iβN cosh τ) , 0,

N∑
j=1

v j e(α j−αN ) sinh τ+i(β j−βN ) cosh τ = 0 ∀τ ∈ R .

Since α j < αN for j < N, taking in the latter expression τ arbitrarily large and positive implies
necessarily vN = 0. By the inductive assumption that (*) implies v = 0 when it is considered with N−1
instead of N, one concludes that also v1 = · · · = vN−1 = 0. �

Mathematics in Engineering Volume 3, Issue 2, 1–14.



11

In the remaining part of this Section we comment on how the absence of positive resonances for
−∆α,Y could be also read out from the already mentioned works [19, 22, 23, 40].

In [40] a wide class of compactly supported perturbations of the Laplacian is considered,
originally introduced by Sjöstrand and Zworski in [41], which include the case of finitely many point
interactions. For these operators, it is proved a version of Rellich’s uniqueness theorem [40, Theorem
2.4], which combined with the classical unique continuation principle for the Laplacian allows to
deduce the absence of real resonances.

In [19] the reasoning is based upon the computation of the residue of Γα,Y(z)−1 at a generic pole
z ∈ E0

α,Y . From the resolvent identity (2.6) and the information that (−∆α,Y − z2
1)−1 is bounded for

z ∈ R \ {0} it is shown that one obtains instead a zero value, thus contradicting the fact that z is a pole.
This approach requires the additional knowledge (already available, as seen in Theorem 2.2(iv)) that
−∆α,Y has no positive eigenvalues, and by-passes the explicit structure of the matrix Γα,Y(z).

In [22, 23] strictly speaking no reference to (positive) resonances of −∆α,Y is made. The operator
−∆α,Y and its main properties are recovered by means of the alternative framework of boundary triplets
and Weyl function. Then the positive definiteness of what we denoted here by BY is indirectly alluded to
by considering another matrix, with similar structure, and proving for the latter the positive definiteness
by means of general properties of positive definite functions like our sinc(x).

4. Connection with the dispersive properties of eit∆α,Y and open problems

In this short, concluding section we return to the general subject of the dispersive properties of
the singular point-perturbed Schrödinger equation (1.4), in order to emphasize the connection of our
Theorem 2.6 with recent dispersive and scattering results for the propagator eit∆α,Y .

We already mentioned in Section 1 that L1 → L∞ (and hence by interpolation general Lp → Lq)
dispersive estimates for eit∆α,Y were first proved in [15], with a suitable weight that accounts for the
singularity |x − y j|

−1 of eit∆α,Y f , whereas the subsequent work [26] reproduced such estimates without
weight in the regime q ∈ [2, 3). In [15] the authors assumed that Γα,Y(z) be non-singular for every
z ∈ R. In view of Theorem 2.6, it is sufficient to impose that zero is regular (it is neither an eigenvalue,
nor a resonance).

On a related note, we mentioned that in [16] the Lp-boundedness for the wave operator for the pair
(−∆α,Y ,−∆) was proved for all possible p’s, namely p ∈ (1, 3), under the implicit assumption of the
absence of a zero eigenvalue as well as of positive resonances. The latter condition is now rigorously
confirmed by Theorem 2.6.

This rises up two interesting open questions. First, one would like to investigate whether, in the
spirit of [15, 26], an obstruction at zero in the form of a zero-energy eigenvalue or resonance would
still allow one to derive certain (possibly slower) dispersive estimates. Let us recall that the
counterpart problem for ordinary Schrödinger operators with spectral obstruction at zero has been
intensively studied, significantly by Jensen and Kato [28], Rauch [36], Rodnianski and Schlag [37],
Erdoğan and Schlag [18] and Yajima [42].

Analogously, it would be of interest to understand whether some Lp-boundedness of the wave
operator for (−∆α,Y ,−∆) is still valid in the presence of a zero-energy eigenvalue, thus extending the
recent results by Goldberg and Green [21] and by Yajima [43, 44] on the Lp-boundedness of wave
operators for the ordinary Schrödinger operators with threshold singularities.
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These are questions that surely deserve to be investigated.
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