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Abstract: We extend to the parabolic setting some of the ideas originated with Xiao Zhong’s proof
in [31] of the Holder regularity of p—harmonic functions in the Heisenberg group H". Given a number
p = 2, in this paper we establish the C* smoothness of weak solutions of a class of quasilinear PDE in
H" modeled on the equation

2n
Oy = in((l + |V0u|2)p22X,»u).

i=1
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1. Introduction

In this paper we establish the C*° smoothness of solutions of a certain class of quasilinear parabolic
equations in the Heisenberg group H” (see [16, 18, 19,29] for a review of the literature on subelliptic,
and degenerate parabolic PDE in the Heisenberg group). In a cylinder Q = Q x (0, 7T), where Q c H"
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is an open set and 7' > 0, we consider the equation
2n
O = Z XiAi(x,Vou) in Q=Qx(0,7), (1.1)
i=1
modeled on the regularized parabolic p-Laplacian

2n
O = ZX,»((I + |V0u|2)p22Xl-u), (12)
i=1

where p > 2. The term regularized here refers to the fact that the non-linearity (1 + |V0u|2)% affects
the ellipticity of the right hand side only when the gradient blows up, and not when it vanishes, thus
presenting a weaker version of the singularity in the p—Laplacian. Here, we indicate with
X = (X1, ..., Xon, X2n41) the variable point in H". We alert the reader that, although it is customary to
denote the variable x,,,; in the center of the group with the letter ¢, we will be using z instead, since
we have reserved the letter ¢ for the time variable. Consequently, we will indicate with 9; partial
differentiation with respect to the variable x;, i = 1,...,2n, and use the notation Z = 9, for the partial
derivative 0,,,,,. The notation Vou = (X,u, ..., Xp,u) represents the so-called horizontal gradient of the
function u, where
X = 0 - %a X,0i = Opei + %az, i=1,..n.

As it is well-known, the 2n + 1 vector fields X, ..., X»,, Z are connected by the following commutation
relation: for every couple of index i, j, if i < j, then i < n and [X;, X;] = 6;4,;Z, all other commutators
being trivial.

We now introduce the relevant structural assumptions on the vector-valued function
(x, &) = A(x, &) = (A1(x,8), ..., App(x,8)): there exist p > 2,0 > 0and 0 < A < A < oo such that for
a.e. x € Q,& € R? and for all n € R**, one has

-2 -2
AG +1EP) 7 Il < Bg,Aix, mimy < MG + IED)T InP, (13)
n—1 .
Ai(x, O +10,,Ai(x, )] < A6 + IEP) 7.

Given an open set Q C H", we indicate with W!?(Q) the Sobolev space associated with the p-energy

Sqp(u) = i fg [Voul?, i.e., the space of all functions u € L”(€2) such that their distributional derivatives

P
WLp(Q)

denote by Wé”’ () the completion of C;(€2) with respect to such norm. A function
u € LP((0,T), W,"(Q)) is a weak solution of (1.1) if

T T 2n
f f up, dxdt — f f ZA,-(x, Vou)X;¢ dxdt = 0, (1.4)
0 Ja 0 Jo

for every ¢ € C7(Q). Our main result is the following.

Xiu, i = 1,...,2n, are also in L”(Q). The corresponding norm is |[u]| = |lullr) + IVoullr@)- We

Theorem 1.1. Let A; satisfy the structure conditions (1.3) for some p > 2 and 6 > 0. We also assume
that (1.1) can be approximated as in (1.6)-(1.8) below. Let u € LP((0,T), Wé’p (Q)) be a weak solution
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of (1.1)in Q = QX (0,T). For any open ball B cCc Qand T > t, > t; > 0, there exist constants
C=Cn,p,A,N\NdB,0Q),T —t,,0) >0and a = a(n, p, A, \,d(B,0Q), T — t,,06) € (0, 1) such that

T 1
P 14
IVoutllcosx 1)) + 1Zullcex 1)) < C(f f((S + |V0M|2)édde) . (1.5)
0o Ja

Besides the structural hypothesis (1.3), Theorem 1.1 will be established under an additional
technical approximating assumption. Namely, for € > 0 we consider the left-invariant Riemannian
metric g, in H" in which the frame defined by X7 = Xi,..., X5 = X5,, X5 | = &€Z is orthonormal, and
denote by V, the gradient in such metric. We will adopt the unconventional notation W!"#(Q) to
indicate the Sobolev space associated with the p-energy &g, (1) = i fg |V ul’. We assume that one
can approximate A; by a l-parameter family of regularized approximants
A%(x, &) = (A{(x,§), ..., A5, (x,8)) defined for a.e. x € Q and every & € R?>*!and such that for a.e.

x € Q, and for all & = (&1, ..., €, Expe1) € R?™! 0one has uniformly on compact subsets of Q x (0, T),
(A‘Ll:(x’ él:)’ eeey A§n+1(xa f)) 8—>_01 (Al (-x’ él:l LREEY) on)a ceey AQn(-x’ é‘:l 5 eeey §2n)7 O)’ (16)
and furthermore . .
A + €))7 InP* < 8, Af(x, Enim; < NS + 1EP) T Inl?, (1.7)
p-1 .
JAZ(x, O] + 105, A5(x, 6 < A + €))7,

for all n € R*"*!, and for some 0 < 1 < A < oo independent of &. The proof of the C'* regularity
in Theorem 1.1 is based on a priori estimates for solutions of the one-parameter family of regularized
partial differential equations which approximate (1.1) as the parameter ¢ — 0. The key will be in
establishing estimates that do not degenerate as € — 0. Specifically, for any £ > 0 we will consider a

weak solution u® to the equation
2n+1

O’ = Z XA (x, Vi) (1.8)
i=1

in a cylinder Qyp = B(xg, Ry) X (ty, t1), with B(xy, Ry) € Q and (ty,t;) € (0,7T), and with (parabolic)
boundary data u® = u. Since (1.8) is strongly parabolic for every € > 0, the solutions #® are smooth in
every compact subset K C Qy and, in view of the comparison principle, and of the uniform Harnack
inequality established in [2], converge uniformly on compact subsets to a function uy. The bulk of the
paper consists in establishing higher regularity estimates for u, that are uniform in € > 0, to show that
ug inherits such higher regularity and is a solution of (1.1), thus it coincides with u. Here is our main
result in this direction.

Theorem 1.2. In the hypothesis (1.6), (1.7), consider for each € > 0 a weak solution

u® € LP((0,T), Whr2(Q)) N C*(Q) of the approximating equation (1.8) in Q. For any open ball

BccQandT > t, >t > 0 there exists a constant C = C(n, p, 4, \,d(B,0Q), T —t,,6) > 0, such that
2n

%) _ T P
IVt oy + f f CE\ AT Z IX?X5u’Pdxdt < C f f (0 +|Vou')2dxdt.  (1.9)
n B ’ 0 Q

ij=1
Moreover, for any open ball B cC Qand T > t, > t; > 0, there exist constants C > 0 and a € (0, 1),
which depend on n, p, A, \,d(B,0Q), T — t,,0, such that

1

T 1
IVl llce Bt iy + 12U |l coBx 1)) < C(f f(5 + |V€u€|2)2dxdt) . (1.10)
0o Ja
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We emphasise that the constants in (1.9) and (1.10) are independent of &.

It is worth mentioning here that the prototype for the class of equations (1.1) and for their
parabolic approximation comes from considering the regularized p—Laplacian operator
Lyu = divg,,,,((6 + IVoulzo)przV()u) in a sub-Riemannian contact manifold (M, w, g9), where M is the
underlying differentiable manifold, w is the contact form and g, is a Riemannian metric on the contact
distribution. The measure yj is the corresponding Popp measure. The approximants are constructed
through Darboux coordinates, considering the p—Laplacians associated to a family of Riemannian
metrics g. that tame gy and such that the metric structure of the spaces (M, g.) converge in the
Gromov-Hausdorff sense to the metric structure of (M, w, gp). For a more detailed description,
see [8, Section 6.1]. As an immediate corollary of Theorem 1.1 one has the following.

Theorem 1.3. Let (M, w, gy) be a contact, sub-Riemannian manifold and let Q C M be an open set.
For p > 2, consider u € LP((0,T), Wé’p (Q)) be a weak solution of

. p=2
O = divg, 1, (6 + [Voul} ) = Vou),

in Q = Qx(0,T). For any open ball B cC Qand T > t, > t; > 0, there exist constants C =
Cn,p,d(B,0Q), T —t,0) > 0and a = a(n, p,d(B,0Q), T — 1,,0) € (0, 1) such that

T 1
Votlleo s + 1 Zllco i < C( f f G+ |Vou|2)‘z’dxdr)‘ . (1.11)
0 Q

The C'* estimates in (1.10) in Theorem 1.2 allow us to apply the Schauder theory developed in
[5,30], and finally deduce the following result.

Theorem 1.4. Let k € N and a € (0,1). If Ai(x,£),0,,Ai(x, ), 0:,Ai(x, E) € Ciﬁ satisfy the structure
conditions (1.3) for some p > 2 and 6 > 0, then any weak solution u € L((0,T), Wé’p(Q)) is C**12 on
compact subsets of Q.

The present paper is the first study of higher regularity of weak solutions for the non stationary
p-Laplacian type in the sub-Riemannian setting, and it is based on the techniques introduced by Zhong
in [31]. The stationary case has been developed so far essentially only in the Heisenberg group case
thanks to the work of Domokos, [14], Manfredi, Mingione [21], Mingione, Zatorska-Goldstein and
Zhong [22], Ricciotti [26,27] and Zhong [31]. Regularity in more general contact sub-Riemannian
manifolds, including the rototraslation group, has been recently established by the two of the authors
and coauthors [8] and independently by Mukherjee [25] based on an extension of the techniques in [31].
Domokos and Manfredi [15] are rapidly making substantial progress in higher steps groups and in some
special non-group structures, using the Riemannian approximation approach as in the work [8].

The plan of the paper is as follows. In Section 2 we collect some preparatory material that will be
used in the main body of the paper. Section 3 is devoted to proving the first part of Theorem 1.2, which
establishes the Lipschitz regularity of the approximating solutions #°. In Section 4 we prove the Holder
regularity of derivatives of #® in Theorem 1.2. Finally, in Section 5 we use the comparison principle
and Theorem 1.2 to establish Theorem 1.1.

Some final comments are in order. The non-degeneracy hypothesis 6 > 0 in (1.3) (see also (1.7)) is
not needed in the Euclidean setting and, in the stationary regime, it is not needed in the Heisenberg
group either. We suspect the C' regularity of weak solutions for (1.1) still holds without this
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hypothesis, but at the moment we are unable to prove it. In this note we use ¢ > 0 notably in (3.17)
and in Theorem 3.13.

In order to extend the parabolic regularity theory to the sub-Riemannian setting one has to find a way
to implement, in this non-Euclidean framework, some of the techniques introduced by Di Benedetto
[13] which rely on non-isotropic cylinders in space-time. The key idea is to work with cylinders whose
dimensions are suitably rescaled to reflect the degeneracy exhibited by the partial differential equation.
To give an example, if one sets x € €, R, u > 0, one can define the intrinsic cylinder

Or(1) := B(x,R) x (> PR*,0), with sup [Vou| < u.
Or(W)

In contrast with the usual parabolic cylinders of the linear theory, the shape of the Qr(u) cylinders is
stretched in the time dimension by a factor of the order |Vou|*~7.

The use of such non-isotropic cylinders seems necessary in order to make-up for the different
homogeneity of the time derivative and the space derivatives in the degenerate regime 6 = 0. In a
future study we plan to return to the problem of extending Di Benedetto’s Caccioppoli inequalities on
non-isotropic cylinders to the Heisenberg group and beyond.

2. Preliminaries

In this section we collect a few definitions and preliminary results that will be used throughout the
rest of the paper. As indicated in the introduction, for each € € (0, 1) we define g, to be the Riemannian
metric in H" such that Xj, ..., X5,, £Z is an orthonormal frame, and denote such frame as X7,..., X ..
The corresponding gradient operator will be denoted by V..

Definition 2.1. For xy € Q c H", we define a parabolic cylinder Q. ,(x¢,%) C Q to be a set of the
form Q. ,(xo,t) = B«(xp,7) X (fp — 2, ty). where r > 0, Bu(xy,7) C Q denotes the g,-Riemannian
ball of center x, and 7y € (0, 7). We call parabolic boundary of the cylinder Q. ,(xo, %) C Q the set
B.(xq,7) X {ty — r*} U OB:(x0, 1) X [ty — 1, 1p).

First of all we recall the Holder regularity, and local boundedness of weak solutions of (1.1) and
(1.8) from [2].

Lemma 2.2. Let Q = QX (0,T) c H* XR*, and 6 > 0. For e > 0 and p > 2, consider a weak
solution u® € LP((0,T), W'P¢(Q)) N C*(Q) of the approximating equation (1.8) in Q. For any open
ball Bcc Qand T > t, > t; > 0 there exist constants C = C(n, p, A, \,d(B,0Q), T — t,) > 0, and

a=an,p, A, A\ dB,0Q), T —t,) € (0,1), such that

T 1
26|l Bxey 1)) < C(f f(5 + |Vgu8|2)7dxdt) . (2.1)
0 Jo

When € > 0 and 6 > 0, classical regularity results (e.g., [20]) yield that weak solutions have
bounded gradient, and hence (1.8) is strongly parabolic, thus leading to weak solutions being smooth.
Clearly such smoothness may degenerate as € — 0, and the main point of this paper is to show that
this does not happen.
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Let Q2 C R” be a bounded open set and let Q = Q X (0, T). For a functionu : Q - R,and 1 < p,¢q
we define the Lebesgue spaces L”(Q) = L([0, T'], LP(€2)), endowed with the norms

T 1
il = ([ ([ wravar)’ (22)

When p = ¢, we will refer to L7?(Q) as L’(Q). One has the following useful reformulation of the
Sobolev embedding theorem [16] in terms of L7 spaces. In the next statement, we will indicate
with N = 2n + 2 the homogenous dimension of H" with respect to the non-isotropic group dilations,
0,(x) = (Axy, ..., A%z), and we will denote by

Ni=N+2=2n+4 (2.3)

the corresponding parabolic dimension with respect to the dilations (x, ) — (5,x, A%1).

Lemma 2.3. Let v be a Lipschitz function in Q, and assume that for all 0 < t < T, v(-,t) has compact
support in X {t}.

(i) There exists C = C(n) > 0 such that for any € € [0, 1] one has

2N 2N

(ii) If v € L**(Q), then v € Lm’ﬁlz(Q), and there exists C > 0, depending on n, such that for any
€ € [0, 1] one has
VP sy 2y < OV + 1VeVPanyg)-
LNMI-2 N2 (@)

We note that as & decreases to zero, the background geometry shifts from Riemannian to sub-
Riemannian. The stability with respect to € of the constant C in the Lemma 2.3 is not trivial, see [7,10].
In the sequel we will use an interpolation inequality that will take the place of the Sobolev inequality
in a Moser type iteration, just as, for example, in [11, Proposition 4.2]. Although the result does not use
the equation at all, we state it in terms that will make it immediately applicable later on. Henceforth,
to simplify the notation, we will routinely omit the indication of dx, dxdt, etc. in all integrals involved,

unless there is risk of confusion.

Lemma 2.4. Let u® be a weak solution of (1.8)in Q. If > 0, and n € C'([0,T], Cy (Q)) vanishes on
the parabolic boundary of Q, then there is a constant C > 0, depending only on ||u®||;~(g), such that

2n+1

5] 12 B
f f (6 + [V PYEP DR P2 < CB+ p + 1) f f 6+ Vo) > XX P
f Q 151 Q

ij=1

5]
+ C,Bzf f(5+ Vo YE PP (i + [Vanl®).
N Q

Proof. Writing (6 + |V,uf[?)BP+2/2 = (6 + |V uf|))BP/2(5 + |V.uf)?), one has

%) 5]
f‘fw+wmﬁwwmﬂwﬂzaf.fw+wwwwwﬂwﬂ
151 Q I3l Q
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2n+1

5}
£y f f (6 + Ve PYEPRXFu X uf 2 = f f (6 + [V ) EP 2 2
i=1 I3 n Q
2n+1
—Z f f X{(6 + IV PYP PP Xu Y g ™2 = (B + 2) f f (6 + Ve )P X utusint™ X
2n+1
<o [* (@ mart R g pe ) f [ @ w3 e xstnenp
131 i,j=1

2
+C(B + 2)f f(5 + Ve ) B DR PV ).
N Q

To conclude the argument, it suffices to apply Young’s inequality.

3. Caccioppoli type inequalities and Lipschitz regularity of »°

In this section we establish Lipschitz regularity for the derivatives of the solutions #®. The main
results of this section are summarized in the following estimates, which are unform in &€ > 0.

Theorem 3.1. Let A? satisfy the structure conditions (1.3) for some p > 2 and 6 > 0. Consider an
open set Q C H" and T > 0, and let u® be a weak solution of (1.8) in Q = QX (0, T). For any open ball
BccQandT >t, >t >0, there exists a constant C > 0, depending on n, p, A, \,d(B,0Q),T —t,,9,
such that

Vet + f f 6 + Vo)™ (Z XeXu? + V.7 3.1

1 i,j=1

T
scf f(5+|vgu8|2)5.
0 Q

The proof of Theorem 3.1 will follow from combining the results in Theorem 3.11, Lemma 3.12,
Proposition 3.13 and Proposition 4.1, that are all established later in the section. The Caccioppoli
inequalities needed to prove Theorem 3.1 will take up most of the section, and they all apply to a
solution u® of the approximating equation (1.8) in a cylinder O = Q x (0,7). We begin with two
lemmas in which we explicitly detail the PDE satisfied by the smooth approximants Zu® and Xju®

Lemma 3.2. Let u® be a solution of (1.8) in Q. If we set vi = Xju®, with ¢ = 1,..,2n + 1, and
se = (=D for € < 2n, s3,41 = 0, then the function vé solves the equation

2n+1
s = D Xi(A (x, Vo) XEX5u) (32)
ij=1
2n+1
g SeXets n
+Zx AT, (0 Vo) = =5 AL (V) + S Z(AS, (3, Vi),
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Proof. Differentiating (1.8) with respect to X7, when ¢ < n, we find

2n+1 2n+1 2n+1
e = D XEXTAS(x, Vo) = > XE(XFAS(x, Vo)) + ) X5, X{IAS(x, Viout®)
i=1

i=1 i=1

2n+1 2n+1
= 3 XS (. Vo )XEXuE) + ) XE(AZ, (x, Vo) = x“"Afo(x, V%)) + Z(AL, , (x, Vo)),
ij=1 =

Taking the derivative with respect to X when n + 1 < £ < 2n, we obtain

2n+1 2n+1 2n+1
i = D XEXTAS(x, Vo) = ) XE(XEAS(x, Vo)) + ) (X7, XEIAS(x, Viott®)

i=1 i=1

2n+1 2n+1
= > Xp(AL (x, Vau)XEXouT) + ) XE(A7, A2, (Vo)) = Z(AL (x, Vo)),
i,j=1 i=1

Since for £ = 2n+ 1 the vector field X7 commutes with the others, taking the derivatives with respect
to X5 ., we obtain the thesis.

m]
Lemma 3.3. Let u® be a solution of (1.8) in Q. Then, the function Zu® is a solution of the equation
2n+1 2n+1
DzZut = Y XF(AL (x, Vo XZu) + ) XE(AL, | (x, Vott®),
i,j=1 i=1
Proof. The assertion immediately follows from Lemma 3.2, with £ = 2n + 1, since X5 | = &Z.
m]

Lemma 3.4. Let u® be a solution of (1.8) in Q. For any 8 > 0 and for all n € C'([0,T], Cy(Q)), one

has
1 AB+1) . -
s | et 2 .fj@HVM)WZHWWW

A 16A £12) 2 +2 +2
SwH¢7+{£LWWM)wmwf+——ffﬁwnM

+A(ﬁ+1)(16—A+2) ’ (6 + Vo’ P) s P\ ZuF
1 A U n\Zul".

Proof. We use ¢ = n?|Zu®|PZu? as a test function in the equation satisfied by Zu?, see Lemma 3.3, to
obtain

%) 2n+1
f f 8, Zu | Zuf P Zuf = f f ZX’“”(A (6, Vo)X Zuo Y | Zu P Zu®

i,j=1
2n+1
f f XA, (VP Zu Pz
i,j=1

Mathematics in Engineering Volume 3, Issue 1, 1-31.



The left-hand side of the latter equation can be expressed as follows:

) 1 %)
0.2\ Zut P Zuf = —— f f(? |Zuf P2,
‘[Ilv L ' ﬁ + 2 N Q '

Considering the first term in the right-hand side, we obtain

2n+1 2n+1
f f Z X5 (A2, (x, Vo) X5 Zuo yP\ Zu P 2o = f f ZA (%, Vo)) XS Zu XE P\ Zu® P Zu®)

i,j=1 i,j=1
2n+1 2n+1
= —Zf f Z Af (x Vu) X5 ZunXn|Zu® PZu® — (B + l)f f Z Af (x, Vgug)X]‘g-Zuan2|Zu8|ﬁXqu8.
i,j=1 i,j=1

As for the second term in the right-hand side, we have

2n+1 2n+1
f f 3 XAAL, Va2 P 2 = 2 f f D A 6 Vet X Zu P Zu

i,j=1 i,j=1
2n+1
-B+ 1)[ f Z A7 (%, Vi Zut PXEZuf.
i,j=1

Combining the latter three equations, we find

2n+1
543 f f HNZu P + (B+ 1) f f Z O A5 (x, Vo) XS Zu | Zu* P X Zu®
2n+1 2n+1
= —2f f Z N HER Vgug)X}?ZustUMZusIﬁZus - f f Z A7 (x V‘gu‘g)an)ﬂZu‘g|ﬁZu‘9
ij=1 i,j=1

2n+1

—B+1) f f ZAllem(x,Vgug)UZIZu‘SlBXquS.

i,j=1

The structure conditions (1.3) yield

ﬁ+2f|Zu I’mnz‘ +/1(,3+1)f f(5+IV )T IV Zu Pz inf <

2n+1
743 f \Zu* I’mnz‘ +B+1) f f ZafjAg(x Vo)X Zue XS Zu® 11| ZucP

i,j=1
2n+1

= —2f fZ 0 A7 (x, Vou®) X5 Zu XimlZu® PZu® + —f leu P2nom

i,j=1

2n+1 2n+1
f f Z AS (e Va X Zu P Zu® — (B + 1)f f Z A7 (s Vo | Zuf P XE Zu®
< 21\[ f(5 + |V‘9M‘s|2)%|VgZM|77|V,s77||th‘9|[}Jrl + —f f|ZU8|ﬁ+2ﬂ3ﬂ7
n Jo B+2J, Ja
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%) -1 5] p-1
+2A f f O + IVeu) T nVenllZuP* + (B + DA f f (6 + V) T 1 Zu PV o Zuf),
1 Q h Q

thus concluding the proof.
O

Lemma 3.5. Let u® be a weak solution of (1.8) in Q. There exists Cy = Co(n, p, A, A) > 0. For any
2t 20,82 0andalln e Cy(Q), we have

1 12 ) 2n+1
73 f IS + IVt TYPP| f f 7 + IV PYP P2 3 IXExeu? (3.3)
Q n 131

i,j=1
1)
< Cof f(']z + |Vg77|2 + 7]|Zl7|)((5 + |V€u8|2)(p+ﬁ)/2
| Q

5]
+CoB+ 1) f f 76 + Vot )52 7.
n Q

Proof. In view of Lemma 3.2 we know that, if u® € C*(Q) is a solution of d,u® = ZZ"“ XPA? (x, Vou®),
then v = Xju® solves (3.2). If in the first term in the right-hand side of (3.2) we use the fact that
X;Xf. £ = X‘J?Xgu‘8 + [X;,Xf]ua = va? + s¢Zv;, we find

2n+1 2n+1
i = > XE(AL (6, Vau)X5vE) + ¢ Z X£(As,.,,, (6 Vout)Zu )+ (3.4)
i,j=1
g 5 & st’xt’+sm P
+ ) Xe(A7 (Vo) - AL, (3 Ve ) + SZ(AS, (X, Vott%)).

Fix n € C7(Q) and let ¢ = *(6 + |V.u®|)P?X:u®. Taking such ¢ as the test-function in the weak
form of (3.4), and integrating by parts the terms in divergence form, one has

1 1 5 2
— f f (6+|V£u8|2)20t[X§u8] e
2n+1
vy f f | (6 Ve XX + VY X

i,j=1

2n+1 1
:_sz f fQ Al (% Vaus)Zu‘ng(nz(M|V£u8|2)ﬁ/2X§u8)
i=1
2n+1

f f > Xe(AL, (0 Vo) - M A (5 V)G + IV PP X
i=1

+ 8¢ f f SIZ(AG, (X, Vet (S + Vo PP X0,

The latter equation implies that for every € = 1, ...,2n + 1 one has

1 53 . 22
5+ Vot za[xw]
2w+2)£fgz( +|Veu'l)20,| X, u” | 1
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2n+1
+y f f L (0, Vo) XEXEUXEXGu® 1128 + [Vou PP

i,j=1

2n+1
+Z’8 f f L (0 Vo) XX X XE (Vo) 16 + Vo)
i,j=1
2n+1
=—Z f f A, (x, Vo) XEXFueX5ue X (7 ) (6 + [V oul Y2
ij=1vn JQ ¢
2n+1

%)
— Sy Z f f Eees, ()C \Y MS)Zuxs(n (6 + |V u8|2)ﬁ/2Xs s)
i=1
2n+1 .
f fz A7, (x, Vo) % o (5, Vot )) f(ﬂ2(5+ |Vgu8|2)ﬂ/2X§u8)
i=1
2n+1

s Z f f Z(AL 6 V)P + Ve PYPXGu® = I + I+ I + 1.

Summing over ¢ = 1,...,2n + 1, by a simple application of the chain rule, and using the structural
assumption (1.7), we see that the left-hand side can be bounded from below by

1 ? e\a+1| 2
ﬁ+2f fa,[<<s+|vgu|> |

+ZZ+122+1 f f A (%, Vo)X Xpu" X X{u (6 + Ve P

et
DI f f PPAL (5, Vo) XX Xu X (VoIS + Vo)

o on+l
/3+2f fat (5+|Vu|)z+1 n +zf f ”Zl|X8X8u8|

(V)P

2
+/l—ﬁf fn2(6+|Vgu 2
4 I3 Q

Since the last term in the right-hand side of this estimate is nonnegative, we obtain from this bound

1 f 2841 2 & " 2
— | [+ V)] +A O +|V
B+2 Jo 7 n f Qn

2n+1
<Y (+L+5+1).

t=1

2n+1
N Z IXEXSu P (3.5)

i.j=1

Next, we estimate each of the terms in the right-hand side separately. Recalling that from (1.7) one has
|Aie,(x, | = 10g,A(x, m)| < C(6 + Il ) > , one has that for any @ > 0 there exists C, > 0 depending
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only on @, p, n and the structure constants, such that

2n+1

2n+1 2n+1 fh
d=->> ft fg A% (x, Vo) XEXEUXEuXE () + [Vou PP (3.6)
=1 £=1 ij=1"1

2n+1

5]
& - EYVE, € & PN
<2) f f (6 + IVets )2 PIXEXEU ||V |V ol + Ve
ij=1vYh JQ
2n+1

153 1
<« Z f fn2(6 + |V€u8|2)(P+ﬂ—2)/2|X;;Xfu5|2 + Caf f(6 + |Vgu€|2)(p+ﬁ)/zlvgr]|2-
131 Q f Q

ij=1
Analogously, we find

2n+1 2n+1

5}
> I<a) f fg (S + VoY PFDRXEX 0l (3.7)
=1 g

i,j=1
53 15)
+C f f O + IV’ )P PRIV P + Co(B+ 1) f f (6 + |Vuf ) PE=212 7,72,
151 Q 151 Q

In a similar fashion, we obtain

2n 2n+1

5]
Z [ <a Z f f (6 + Vo )PP 2R IXEX U Py (3.8)
=1 n JQ

i,j=1
15}
+Co(B+ 1) f f(é + Vo) PRl + ).
1 Q

Finally, integrating by parts twice, and using the structural assumptions, one has

2n+1 2n+1

15)
Z I=- Z f f Z(A s n(x, V)6 + [V PP XEu? (3.9)
=1 =1 Yn JQ

2n+1 f
=2, f f Apsson(x, Vout®INZn(6 + Vo2 X
=1 Y Q

2n+12n+1 th _
+'B Z Z f fAf"'sl”('x’ VSMS)UZ((S + |Vau£|2)ﬁT2Xju8Xqu8X§u8
=1 j=1 v vQ
2n+1

5]
+ f f Ao, Vot NP6 + Vot PV X5 2
=1 Yn JQ

2n+1

15}
=2 Z f fAhs,,»n(X, V. unZn(s + |V€u’5|2)ﬁ/2)(‘(’?u‘9
=1 Y JQ

2n+1 2n+1 1>
B2
By f f X-(Agsn(x,Vsus)n2(5+|Vgu8|2)2X~u‘9X‘9u8)Zu8
" o J +s¢ J 4

=1 j=1
2n+1

5]
) Zf f X (Avssn o, Vot P 6 + 1V, P2 2
(=1 Y1 Q
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2n+1

<a Z f f (6 + VD) P22 X2 X0 Pop?

i,j=1

2
+CE+D) f [+ DB 4 9 + )
1 Q

5]
+ Co(B + 1)4f f((; + V) PHBD2| 78,
l Q

Combining (3.6)—(3.9) with (3.5), we reach the desired conclusion (3.3).
O

In the case 8 = 0 we obtain the following stronger estimate, which we will need in the sequel. We
denote by || - || the L™ norm of a function on the parabolic cylinder Q.

Lemma 3.6. Let u® be a weak solution of (1.8)in Q, lett, > t; >0, andn € C'([0,T], Cy () be such
that 0 < n < 1, and for which 01| < C||V %>, where C > 0 is a universal constant. For every a > 0
there exists C, > 0 such that

2n+1

1 £12\,,2 f2 " & EVE, E12,.2
EL((‘”'VE”')")L”L [@mary® Y exery

i,j=1

%) 5]
<a f f \Zu* Py’ + Ca f f (6 + IV Py (i + IVl + InZnl).
n Q n Q

Proof. In view of Lemma 3.2 we notice that, if u® € C*(Q) is a solution of 0,u® = Zl-szl XPA? (x, Vou®),
then vi = X7u® solves

2n+1 2n+1

& _ el Ve AE & ef p€ SeX, 5+5€"
8v5 = ijZ—lXi (XA (x, Vo)) + Z X¢(Az, (x, Vo) - AL, (6 Ve ) (3.10)
+ s;Z(AHW(x, V.u®)).

With 7 as in the statement of the lemma, we take ¢ = 772X§u‘9 as a test function in the weak form of
(3.10). Integrating by parts the terms in divergence form, one has

2n+1

f f n0.(X5u®)* + Z f f X(A%(x,V uS))XS( ’Xu )
2n+1
= f f UZZXS(Afx[(x Vi) % 2 s (1 Vott®) ) X0

+ 5 f f T Z(AS, (X, V) Xou®.

2n+1

f f 20,(XsuY + ) f f AL (x, Vo) XEX U XX Eu®

i,j=1

This gives
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2n+l 5} 2n+1 t)
- Z f f T X (A7 (x, V) Zu® ~ Z f f X (A (x, Vouf)nXenXiu®
i,j=1 g Q i,j=1 13 Q
1> 2n+1 Soxe
— f f Z (Afxg(x, Vgu‘g) _ ﬁA?‘xz 1(x’ Vgue))Xlg(UZX?us)
1 Q =1 ’ 2 et

2n+1

5]
) f fg PZAS, (6, Vel DXou® = I+ I+ I + 1.
j=1¥h

Summing over € = 1, ...,2n + 1, in view of the structural hypothesis (1.7), after an integration by parts
in the first term in the left-hand side we obtain the following bound

1 p 53 . 2n+1
- f 6+ Ve Py + A f f 6+ Vo)™ > IXEXu Py
2 Q gl 31 Q i,j:1
5]
<SL+L+0+1+ f f(é + |V P mom.
131 Q

Next, we estimate each of the terms in the right-hand side separately. Recalling that IAffj(x, nl <

Co+ |77|2)pT_2, we find that for any @, @, > O there exist C,,,C,, > 0, depending only on a;, @3, p,n
and the structure constants, such that

2n+1 2n 2n+1 o
Z I = Z Z f f X (A2 (x, Vou®)) Zu®
=1 (=1 ij=1vY1 JQ

2n+1 2n+1

2n+1 2n+1 1 5
=-2 f f Al (x, Vo' mXmZu® — f f nzAf(x, V.u®)X; Zu®
;1 ; N Q ; ; I3 Q
2n+1 2n+1 >
=-2 f f Al (x, V' X mZu®
2.2,

=1 i=1
2n+1 2n+1 to 2n+1 2n+1 1>
+ Z Z f f AS(x, Vou®)2nZnXiu® + Z Z f f nzAffj(x, Veu®)X; Zu" Xju
=1 i=1 Yh JQ =1 ij=1Yn JQ ’
53 2n+1 2n+1 153
< f f &+ [V )PPV onliZuf) + - f f (& + IVu Y220
hoJQ =1 =1 Y1 JQ
2n+1 2n+1 1>
F f f (S + [V )PV, Zu?|
=1 ij=1¥n JQ
%) 15}
<a f f (6 + |V P22\ Zuf P + Cy, f f (6 + |V uf )PV )
h Q 14 Q
2n+1 2n+1 t>
+ f f (6 + IV Py 20z
a 2n+1 2n+1 5 15
2 4 £12\(p-2)/2 12 2 £12\p/2
T > Zf Ln (6 + V") P 22V Zu P + Cop IVl f f 6+ VY
=1 i,j=1 1 1 supp(n
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Now, we apply Lemma 3.4 to find, for any a > 0,
a 2n+1 2n+1 f
IVnl? Z Z f f((s + |V€u€|2)(p—2)/2|V€ZME|2774

a||om|| 2 3
<acf f(6+IVgu|)2|Z ffl
AT
53 »
+af f(5+|vgu8|2)zn4.
131 Q

Analogously,
2n+1 2n+1 2n+1
DB+ I < aZf f(5+ IVt )22 XX 0 Pop?
=1 (=1 i,j=1

5}
+Cf f(5+|Vsu8|2)”/2|Vgn|2-
1 Q

Using the structure conditions, one has

2n+1 2n+1
214 Zf f((5+|v )P IR, Zu
i,j=1
2n+1
<a ) f f 6 + IV )PPV, Zu Pop?
i,j=1

+C, f [ @+ DBy + 9. + iz,
13 Q

thus concluding the proof.

O

Next, we need to establish mixed type Caccioppoli inequalities, where the left-hand side includes
terms with both horizontal derivatives and derivatives along the second layer of the stratified Lie algebra

of H".
Lemma 3.7. Set T > t, > t; > 0. Let u® be a weak solution of (1.8) in Q = QX (0,T). Let 8 > 2 and

letn € C1((0,T),Cy(Q)), with0 < n < 1. For all @ < 1 there exist constants Cy, C, = C(, A, A) > 0
such that

1> o 2n+1
f f T]B+2(5+|V€u€|2)T|Zu€|ﬁZ|XfXj€-u€|2 (3.11)
hoJQ ij=1
nﬁ+2
Q

151
15 _
+ B+ 1) f f (6 + Vol P) T |V o Zu P20 P2 2|V 2
5] Q
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2n+1

< Co(B+ 1’1 +[Verllze) f f 0F + 170 + IV D) 1Zu P2 ) XX sue?

i,j=1

2 fzf 2. B+3 o 2 B+4
N 1Zuf P 2P 0mldx + Zu P2
(L+1IVnlP)B +2) Ji, Ja 7 10m B+22 Jo v
%) "
+CA(B+ 1) f f (6 + Vo )7 |Zut PP
N Q

5}
+ f f Zu IV PO ).
n Q

Proof. Letn € Cy (% (0,T)) be a nonnegative cutoff function. Fix 8 > 2 and ¢ € {1, ..., 2n}. Note that

=N

O,(1Xeu®P|ZutP) = 2X5uf 0, X5uf | Zuf P + BIXEu® P\ Zuf P> Zuf 0, Zu’,

which suggests to use 2X:u®|Zu*l as a test function in the Eq (3.2) satisfied by X¢u® and to choose
ﬁngu‘glleuglﬂ‘ZZug as a test function in the Eq (3.3) satisfied by Zu®. Eq (3.2) becomes in weak form

2n+1

f f AT EEDY f f ¢ (0, Vo) XEXUP)XED + SZ(AL, (%, Vo))

i,j=1

2n+1 53 S€x€+
—Zf f N A7, (1 Vu%))XE).
i=1 Y JQ

Consequently, if we substitute the test function ¢ = 2qﬁ+2|Zu|ﬂX§u, we obtain
15
2 f f O, Xeu | Zuf PXEuf (3.12)
2n+1
+2 Z f f £ (x, Vsu‘g)Xfou'snBJrz|Zu8|ﬂX§Xfu€

i,j=1

2n+1
- _Z f f es Vgug)Xfongf(nB”IZMSIB)Xfua
i,j=1

2n+1

—2)° f f Az, (6, Vo) XEX w2 Zut P XS, Xgu®

i,j=1

15)
-2 f f Z(A s son(x, VoD Zuf P X u®

2n+1
— Zi“f f A,gx[(x V.u Sfxéﬂen - H(x V,uf )XS(T]B+2|ZM |’BX€ s)

=L+L+1+ 1.

We will show that these terms satisfy the following estimate

4 2n+l1 2n+1

> Z THES af fn“(m Vo )'T 1z Y XX (3.13)

k=1 i,j=1
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t 2n+1
+ Ca(ﬁ + 1)2(1 + ||V877||%oo f f(nﬁ + T’ﬁ+4)(6 + |V6u8|2)§|zu8|ﬂ—2 Z |XfXjI/t8|2
Q

h i.j=1

Qa f’zf a
+ 1Zu P 2P0, + — f |Zuf PP+
(L+1IVanlP)YB +2) Ji, Ja 7 10m B+22 Jo "

153 B
+aB+ 1y f f 6 + Vo P) T P Zut PN Zu PV P
N Q

=N

We first note that

2n+1 2n+1 2n+1

15}
INAESDIDY f f A (x, Vo)X X5 X (12|20 P )X
=1 (=1 ij=1vh JQ

2n+1 2n+1

15 el
<WMAB+2) Y Y f f (6 + IVt P) T [XEXEUl ™ |V IV a1 2P
=1 j=1 v vQ
2n+1 2n+1

%) .
gy Yy f fg 6+ IV P)'T (XX o 22 |V 2
=1 j=1 ¥

2n+1

15 S
<a f f 126 + Vo) T 12l ) XX !
51 Q

ij=1

15)
+ Co(B + 1) f f IVl (6 + Vo P51 ZutP
5] Q

2n+1

53
+ C,(B + 1)2(1 + ||Vg77||2)f f176(5 + |V8u8|2)§|zu€|ﬁ—2 Z |XfXJ£-u8 2
hoJQ Q=1
T f tz f P46 + Vo P)'7 | Zu PV o Zu P
L+IVenll? Ji, Ja ¢ € ‘

The last term can be estimated, as follows, using Lemma 3.4:
153 b2
@ f f 46 + Vo ) 7 1Zu PV Zuf |
I Q

1) _
< aCaa f f & + Vo) T VPP 2P
151 Q

2 ("
+ 7 g18+2 +3a
:8—+2ft: L| u Iﬂ Tlﬁ )

(04 g )4
+ 7 g1p+2, B+4 +aC f f S+ V‘g £12\73 ,B+4 7 g8
B+ 1) L' u’l 773 = AW \ Q( IVeu'l") Uﬁ |Zu"

1) _
<aCy, f f G+ Vo D)= VP12 P XX’

I3 Q ij

+2_a/flzflzu8|ﬁ+217ﬁ+3an+ a flzualﬁ+2]7ﬁ+4
B+2J, Ja T+ 12 Jg

1=

(3.14)
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5]
+aCy, f f 6 + Vol P) i1 ZuP.

1 Q

From here estimate (3.13) holds. Integrating by parts we have

2n+1 2n+1 2n+1 t>
Y=-23% f f AZ(x, Vo)X (P22 PLXE XS )
=1 (=1 i j=1vn JQ

%) .
<2(B+2)A f f © + IV P) T IV pllZut P +
I3 Q

1 .
+2(B+ 1) f f & + Vo) T PP \ZuP IV, Zu|
N Q

2n+1

5]
ccpe1? [ [ @rmaRiPmer? Y e
N Q

i,j=1
2n+1

153 .
+a f f 6+ Vo) = 1P ZuP Y XX
hoJQ ij=1
2 p-2
+ af f(5 + Vo) T P HZu PV Zu
n Q

2n+1

15}
+Co(B+ 1) f f 6 + IV P \Zu P2 ) IXEXSuel
n Q

ij=1

From here, using inequality (3.14), we deduce that Ig satisfies inequality (3.13). The estimate of Ig
can be made as follows:

153 »
7] < af f(é + IV P T P Zu PV Zu

n Q
15 2n+1
+C, f fg &+ IV P \Zu P ) IXEXSue?
h i,j=1

From here and (3.14) the inequality (3.13) follows. The estimate of I;,‘ is analogous:
5] .
11 <208 + 1)Af f(5 + IV P) T I gl ZUE PV i
1 Q

153 _
+2(8+ DA f f (6+|V€u8|2)p7177ﬁ+2|2u8|ﬁ_1|V€Zu8||V8u8|
151 Q
2n+1 ) .
.
+AZ f f (5+IVguSIZ)TnmIZuslﬁIXfXjugl
=10 YQ

15 .
<ap+ 1)2f f(5 + IV P) T 1 Zut PN Zu PV
31 Q

2n+1 5 2
t Q

i.j=1
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+Co(B+ D( + IIVanllim)f fg(é + V)2 1Zu P o + 7).

We now recall the following pde from Lemma 3.3

2n+1 2n+1
OZut = ) XF(AL, (x, V)X Zu) + ) XF(AL, | (x, Vout),
ij=1 i=1

Substituting in this equation the test function ¢ = 8|ZulP~>Zun’**|V .u®|?, one obtains

5]
B f f A Zu\Zu’ P2 Zut P 2|V i
I Q
2n+1 1
+ BB - 1)2 ft fg Aig,(x, Vo) XS Zue X; Zu® | Zu P2 |V i
i,j=1%1

2n+1

5]
= —ﬁZ ft fg Ajg,(x, Vgug)X]'s.Zu‘SlZug|ﬁ_2Zu8Xf(nB+2|V8u8|2)
|

i,j=1
2n+1

12
By f f A o 06 VX120 P20 21
Pt " a ” n+

2n+1

1
= BB +2) Z f f Aig (x, Vo) XS Zuo\ Zu 2 Zue X |V o
131 Q

ij=1

2n+1 1
-2 Z f f A, (x, Vsug)ng.Zu‘ElZua|B_ZZusr]ﬂ+2X§u8XfX§u8
Lij=1vY1 YQ

2n+1 53
-pB-1 ) f f AL (6 Vot ZU P2 X2 P Y P
=1 Yh JQ

2n+1

12
—,8(,8+1)Z f f AL (V)| Zut P Zut XV P
i=1 Yh JQ

2n+1
it=1
4+

=1

15}

f f A 06 V)N Zu P2 2t X XEX U
n Q

e+ D

We observe that the ellipticity condition yields

2n+1 t
BB - 1)2 f f Aig (Vo) X5 ZuX: Zu® | Zu P2 2 IV
1 Q

ij=1
15 .
> B+ 17°C, f f 6 + Vot P) IV Zu P2 P2 29 P
1 Q
Let us now consider I°:

163
P =-BpB+2) Z f f A (x, Vo) XS ZuO\ Zu P 2 Zue X! |V
Q

(3.15)
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%) 8
<2+ sz f (6 + Vo) T |V, Zuf | Zuf P~ |V iV ot
n Q
153 B
<aB+1) f f (6 + Vo) T IV Zu PIZu PP 2V e P
1 Q
t . p
LGB+ 1Y f f 6 + Vo DY IZu PV
1N Q

The estimate of ° is identical to that /; and we thus omit it. Let us consider I”. One has
153 .
<@+ 1)2f f(<5 + |V;5M8|2)p71|th8|ﬂ_2|VsZM€|TIﬁ+2|Vebt‘9|2
N Q
%) .
<aB+ 1)2f f(5 + |Vaua|2)pTZ|ZM8|[H|VaZM‘9|2773+2|V.sbl8|2
1 Q

5]
+Co(B+ 1) f f (6 + IV )2 | Zu P2V
n Q

Similar consideration holds for 78
15 .
I <@+1y f f 6 + IVettP) T 1Zu P o IV oIV o
131 Q
5]
< CA(B+1) f f (6 + Vo) |Zu Prf |V oy
131 Q

%) .
+ CA(B + 1) f f 6 + Vo P)'T |Zu PP+,
1 Q

Finally, we estimate I°.

2n+1

15 _
P <C\B+ I)Z f f (6 + IVai® )= |Zuf P 12|V | X XEu
Li=1 Y YQ

2n+1

5]
<Ca(B+1) Z f f (6 + Vo) 2 | Zut P2 2 XX Eu .
N Q

=1
It follows that

4 2n+1 2n+1

9 t .
IR EDNEX f f PO + V)T |ZuP ) XX P
k=1 (=1 k=5 no JQ ij=1

2n+1

5}
+ Co(B+ 11+ Vi) f f 0F + 190 + VP 1Zu P2 ) XX ue?
n Q

ij=1

2ar ftzf a
+ |Zus|ﬁ+2 +3|a |dx+ f|2u8|ﬁ+2 +4
L+ IValPYB+2) J,, Ja 7 10m B+22 Jo 7

153 »
+aB+ 1) f f (6 + Vol P) T |V Zu PIZuf P22 + P )|V s P
t Q

=t
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15 .
+ CA(B + 1) f f (6 + Vo P) 7 | Zuf P22,
1 Q

Summing up Egs (3.12) and (3.15), we obtain
2

n+1 ty g o}
> f f P26 + Vo) ZuPIXEX U + f (P \Zu PV )
Q Q |

ij=1v1

153 B
+ f f (6 + Vo) T Vo Zu PIZuf P2 2|V
n Q
15 4 2n+1 9
= f f Zu PV PO, ) + Y Y I+ > I,
n JQ k=1 £=1 k=5

Applying (3.16), the proof is completed.
O

At this point we make use of the non-degeneracy condition 6 > 0, and recalling that Z is obtained
as a commutator of the horizontal vector fields and that n < 1, we estimate

2n+1

%) %) _
f fg \Zu P dxdt < Cs f fg @ +IVauP)'T D IXeXsufPdt. (3.17)
n 1

ij=1
Lemma 3.6 and (3.17) yield the following

Corollary 3.8. Let u® be a weak solution of (1.8) in Q. Forany t; > t; > 0, and all n € C5 (), such
thatn < 1, |01 < C|IVenl>. For every fixed value of § there exists Cs depending on 8, p,n and on the
structure constants, such that

2n+1

1 f ? b2 EYE,E
5 fg (6 + V)| + f fg G+ V)= Y XX U P
1

i,j=1
5]
<Gy f f © + IV Py (i + Vo + InZn).
151 Q

Corollary 3.9. Let u® be a solution of (1.8) in Qx (0, T) and B.(xo, r) X (ty— 12, ty) a parabolic cylinder.
Letn € C®(By(xy, r)X(ty—1?, ty)) be a non-negative test functionn < 1, which vanishes on the parabolic
boundary and such that there exists a constant C,n > 1 for which ||07|l;~ < Cia(1 + ||[V.7|[2.). Set
t, = to — r*. There exists a constant Cs , also depending on 6, such that for all § > 2 one has

2n+1

10 .
f f 775+2(6+|V8u’5|2)p72|2u’5|ﬁz|Xfou‘9|2+ max f P2 Zuf PV it (3.18)
1 Q Q

_2 ~ te(ty—r2 1
0—F il (to 0]

10 B
+B+1)7 f f((S Vo P) T IV Zu PIZu P2 Y P
to—12 JQ

10 2n+1
& g E1Pp— EvVveE,,£E
fg 16 + Ve P |z P2 ) IXEXEue?

ij=1

< CaaB+1)°(1 + |V877||%°°)f

o r2

10

FCAB+ 1) f 6 + IVt ) 2 |z 2.
Q

to—r2
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Proof. The statement follows at once by standard parabolic pde arguments, after choosing «

appropriately small in (3.11) and applying (3.17), once one notes that |Zu®| < Zf;’;l IXFX5ufl.

O
Corollary 3.10. In the hypotheses of the previous corollary we have
2n+1

10 .
2 f f 12 + Vo' P) T IZu PIX XU+ max f N2 PV i
t()—l‘2 Q Q

~ te(to—r2,to]
i,j=1

) B
+(B+ 1)2f f((5 IV )T IV Zu PIZu P22V P
to—r2 JQ

P

248
fg (6 + Vo) T IXEXuP,

2n+1 10
< O+ POVl + P2 Y [

= 2
i,j=1 to—r

where ¢ = c(n, p,L) > 0.

Proof. In order to handle the first term in the right-hand side of the sought for conclusion, it suffices to
observe that

CB+ DAVl + Dif(6 + (Vo) 12up ZZH XEXCuP =
2n+1 v

_ P (6 . IVaulz)(p_Z)(ﬁ_Z)/Zﬁl ZuPX(| Z XX uoR)B-DIE

2n+1 v

D XU PYPCB + 1PVl + 1).

ij=1

e2\(PHB-2/B
+17(6 + Vo) (

The conclusion then follows from Hoélder’s inequality. We can handle the second term in the same way
2n+1

Zuf=* > XX ue?

i.j=1

(p+2)/2

CB+ 1(IVerll7 (6 + IV os’T?)

(=24 2n+1
-2 2 2% —4 2\ (B—4
=P o+ Vaul) T 1Zuf T ) XX Uty E R
i,j=1

2n+1
o2\ 2(PHB-2)/B e &
x17(6 + Vo) O IXeXeu YECB + 1AVl + 1).
i,j=1
O

The key step in the proof of the Lipschitz regularity of solutions is the following Caccioppoli type
inequality which is a parabolic analogue of [31, Theorem 3.1].

Theorem 3.11. Let u® be a solution of (1.8) in Q x (0,T) and By(xy,r) X (ty — %, ty) a parabolic
cylinder. Let n € C*(By(xo,r) X (ty — 1%, ty]) be a non-negative test function n < 1, which vanishes on
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the parabolic boundary such that there exists a constant C 5 > 1 for which ||0m||~ < Caa(1+]|Venl20).
Sett) = ty — 1, t, = ty. There exists a constant C > 0 depending on § p, and A such that for all § > 2

one has

2n+1

153 1
f fn (6 + |V u | )(P 2+4p)/2 Z |X£X8u8|2d.th + ﬁ - max f(6 + |V£u8|2)§+ln2
131 Q

te(to—r2,to]
i,j=1

<cw+mewm+m&mw+nf‘f & + [V )PP,

spt(n)

Proof. In view of Lemma 3.5, the conclusion will follow once we provide an appropriate estimate of

the term
5]
f f (0 + |V PP P2 Zyf 2,
n Q

The first step is to apply Holder’s inequality to obtain

!
fzfn2(5+|Vgu8|2)(p—2+,6’)/2lzu<€|2
31 Q
12 p-2 % "2 P+ iz
<( f f P26 + Vo P)'T |2 P2 dxd) ™ ( f f 6+ V)= )"
n f spi(n)

(since |Zu®| < Z 1 XFX5u®))

ij=1
f f]78+2(5+|v usl ) > |ZL£ |ﬁZ|X8X£ gl ﬁ+2 f f (5+|V ual )—)ﬁ+2
i,j=1 pi(n)
(the first integral in the right-hand side can be bounded by applying Corollary 3.10, resulting in the estimate)

p— 2+ﬁ 2n+1

5)
SClﬁz(ﬁ+1)/$(||V8nlliw+l)/ﬁ2(f fyf(5+|vgu| > Ixexzul) /’”
1 Q

i,j=1
2 pB £
xpfbf 6+ V)T )
3 spt(n)

(by Young’ s inequality, recalling C( from the statement of Lemma 3.5)

B ACB+HDNG g o

<C £ D2Vl + 1) © + Vo)™
Bl gy )6 T N

I7—2+/3 2n+1

+ 1 ftzfnﬁ(é'i_lv 8|2) 2 Z|X8X8 8|2
268+ J, Jo ot £y

i,j=1

Now we note that

4 1)*\2
A 17

Substituting the previous estimate in Lemma 3.5, we conclude

5]
Lftff®+wm2
131 Q
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15}
PNy o
< Can@B+ D’ UIVallie + InZnlls + 1) f f 6+ V)=
1 spi(n)

This completes the proof of the theorem.
O

In the next result, from Lemma 2.4 and Theorem 3.11 we will establish local integrability of V u®
in L? for every g > p.

Lemma 3.12. Let u® be a solution of (1.8) in Q. For any open ball B cC Qand T > t, > t
consider a test function n € C” ([0, T] x B), vanishing on the parabolic boundary, such that n
N0l < ClIVenl?. For every B > 0, there exists a constant C = C(n, p, A, A,d(B,0Q), T — t,,5)
such that

vV OIA IV
p—

%) 5]
f f (6 + [V PYEP DR 2 < CP(B + 1) f f (6 + [V Py,
3l Q 51 B

Proof. We begin by examining the case § = 0. Applying Lemma 2.4 and Corollary 3.8 one can find
positive constants Cy, C,, C3, depending on n, p, A, A,d(B,0Q), T — t,,0, such that

) ) _
f f 6 + [V )PP < Ci(p + 1)° f f @+ Vo)™ Y IXeXeu Pl
n Jo no JQ ij
15 )
+ O f f (& + [V PY (Il + Ve < C f f (6 + [Vau Py (i + Vel + InZn),
3 Q 51 Q

concluding the proof in the case § = 0. Next, we consider the range § > 2. The interpolation
inequality Lemma 2.4 and Theorem 3.11 imply the existence of positive constants Cy,...,C7,
depending on n, p, A, A, d(B,0Q), T — t,, and ¢, such that

15}
f f (6 + [V P)FrP 22 2 (3.19)
13 Q

2 " 2, b2 2 2
<CyB+p+1) f f(é + |V.u®|?) 2 Z |X]8.Xfu’9| |77|'BJr
131 Q i,j

%)
+ Csf3* f f (& + IV Y PP (I + Vo)
n Q
5]
<CsB+p+1) f f (6 + [V YT PP (i + Vol + InZn)
I3 Q
< C(B+ D (IVeanpl2e + |InZ7ll = + 1) f (6 + |Vus )PP,
B

Iterating the latter [8]/2 times, the conclusion follows.
O

In the next result we establish Lipschitz bounds that are uniform in &. The argument consists in
implementing Moser iterations, and rests on the observation that the quantity 6 + |V.u?|* is bounded
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from below by ¢ > 0, and that for every 8 > 0 it is bounded in L”*# in a parabolic cylinder, uniformly
in €.

In the iteration itself, we will consider metric balls B, defined through the Carnot-Caratheodory
metric associated to the Riemannian structure g, defined by the orthonormal frame X7, ..., X5 . We
recall here that g, converges to the sub-Riemannian structure of the Heisenberg group in the Gromov-
Hausdorff sense [19], and in particular B, — By in terms of Hausdorff distance. These considerations

should make it clear that the estimates in the following theorem are stable as € — O.

Theorem 3.13. Let u® be a solution of (1.8) in QX (0,T) and Qf = B.(xo, 1) X (t) — 1%, ty) a parabolic
cylinder contained in Qx (0, T'). For given o € (0, 1), there exists a constant C = C(p, o, By, 4, \,0) > 0
such that

70
sup G+ V) <C f JC (6 + Va5 (3.20)
r2 J B(xo,r)

B(xo,0r)X(to—(0r)%,10)

Proof. We recall the main steps. Let us consider a family of cylinders QF = B.(x, ri)x(to—rf, f) CC Q5
and with r; < r;_;. Applying (ii) in Lemma 2.3 to the function wg = (6 + IVsuglz)ﬁ%z, one obtains

N2

10 5 BN, Ny
E 2N =2)
[ ] @emaee ) <y,
to—r? J Be(x0,r:) Ni=20 N2

2 2
< ||"1/'ﬁ||2,oo,QtE + ”VSW,BHZ,Z,Q‘?

2n+1

1 B2
2O+ IV PP Y IXPXu’ + ——  max f 6+ |Vl P) T i
f fB (x0.17) 7 Z B+ 2 teto-r i) I,z 1

Next, we set g = (6 + |V.u®>)?~2/2, Using Theorem 3.11, along with the fact that (§ + |V,u®]) > § > 0,
we obtain

Ny -2
Y BN\ M C + 6
(f f (6 + [VouP)™id 2>) ('8 p)zf f (6 + [Vt ) B2,
tO_r,-z Be(x0,r) — Tl 1) Be(x0,1i)
— (ﬂ+2)N1
Setting g = and k = 1n the latter inequality, we deduce

1

10 qk

( f f («/6+|vgus|2>qk)
to=r? J B(x0.7)

2N 2+/3 12
soree () (£, £, 0B ”8'“”)
2+N 2+/3
S el A A “‘9'2”)

The classical Moser iteration scheme in see [24] now applies, leading to the sought for conclusion.
m]
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4. Holder regularity of derivatives of u°

This section focuses on the proof of the second part of Theorem 1.2. Namely, we want to prove that
for each 6, £ > 0 a weak solution

u® € LP((0,T), W'"P2(Q)) n C*(Q)

of the approximating PDE (1.8) in Q = Q x (0, T') satisfies the Holder estimates

T 1

2,2 P

IV o1l coBxer i) + 12U lce B 1)) < C(f f(5 + |V ouf| )ZdXdl) ,
0o Ja

for any open ball Bcc Qand T > t, > t; > 0, and for some constants C = C(n, p, A, A, d(B,0Q),T —
t,0) > 0and @ = a(n, p, A, A,d(B,0Q), T — 1,,06) € (0,1) independent of €. It is clear that the above
estimate represents the e-version of (1.11).

We begin by studying the regularity of the derivatives of #°. In view of Lemma (3.2) and (3.3), for

eache>0,0=1,---,2n+ 1 all derivatives X7u® and Zu® of u® satisfy the PDE
2n+1 2n+1
o=y Xf( 3 a DX + af(x, t)) (1), @.1)
i=1 =1
where

a?j(xa t) = Aifj(-x’ V8u8)9

SeXe+sen A¢

X2 +1

a;(x, 1) = A7 (x,Veou®) — (x, Vou®),

a®(x,t) = seZ(AS, . (x, Vou®)).

{+sen

By Lemma 3.3, Zu?® satisfies the same equation, for s, = 0. For every K cC Q, by Theorem 3.13, |V .u/°|
is bounded in K uniformly in &. Hence a; ; and a; are locally bounded in K, with ellipticity constants
uniform in € > 0, but dependent on ¢. Precisely, there exists a constant C, and constants A; = ¢ and
As = A(6* + C}) such that for every 7 € R*"*! and for a.e. (x,1) € K,e>0,i,j=1,---,2n+ 1

2n+1

llaf;x, Dl + laf(x, Dl < Co Al < Z ag(x, Oman; < Aol (4.2)
=1

Since a® = 0 in the equation satisfied by Zu®, we will then start with studying the regularity of
derivatives of the solution along the center of the group.

Proposition 4.1. Let u® be a solution of (1.8) in Q% (0,T) and Q, = B(xy, r) X (ty — %, ty) a parabolic
cylinder contained in Q x (0,T). There exists constants C = C(p,o,4,A,0) > 0 and
a=a(p,o,4,A\,0) € (0,1) such that

1Zull o,y + IV Zut N0, ) < C(nuaan(Q,) n ||vgu8||mg,.>).
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Proof. First of all, we observe that since 6 > 0 is fixed, Lemma 3.12 and Theorem 3.11 imply that for
all i, j = 1,...,2n, one has |X;X;u®| is bounded in L? uniformly in & > 0. It follows that Zu® € L[ZOC(Q)
uniformily in € > 0. Since Zu?® is a solution of (4.1), with a® = 0, the Caccioppoli inequality implies
that V.Zu? is in leoc(Q)’ uniformly in € > 0. The stable Harnack inequality established in [9] and [2]
(see also [1,17,28] for the Riemannian case) yields interior Holder estimates for w® in Q,, which are

stable as € — 0. O

Actually, we will prove a stronger result, in parabolic Morrey spaces. M%“((Q) denotes the space of
all functions f € L(Q) such that

1, Yo 1/q
Iflleigr = Sup (™ f f |fl9dxdt) "~ < oo, (4.3)
re BNQ

min(fy—r2,0)
where S is the set of positive radius r such that B = B(xp,r) C Q,and > <ty < T.

We also recall that the parabolic Campanato spaces -Z¢%*(Q) is the collection of all f € L(Q) such
that

Lo w [ g 1/q
/1l £e() = sup 7(’” I = S0l dde) < +0oo. (4.4)
reS min(zg—r2,0) J BNQ
Here, we have set

1o
.f(xo,l‘o) = r_Nl f f(.x, t)dXdl
min(to—r2,0) JBNQ
Remark 4.2. Let @ € (0,1) denote the Holder exponent of Zu® (which is uniform in € > 0). By
observing that w® — w®(xy, tp) is also a solution of (4.1), then a standard Caccioppoli type argument

yields
to 1 10
f f \V.ZuPdxdt < C— f \Zu® — Zu(xo, to)Pdxdt < Cr2 2™, (4.5)
1o-r2 JB r= Jw-@n? J2B
where N; = 2n + 4 is the parabolic dimension, defined in (2.3).

This shows, in particular, that for every compact K cointained in Q there is a constant C > 0
independent of € such that ||V,Zul|;p«) < C, so that the coefficient a® in Eq (4.1) satisfies

lla®ll2x) + lla®llpex) < Co. (4.6)

A standard argument, see for instance [12], shows that the Campanato space is isomorphic to the
space of Holder continuous functions. In particular, we rely on the following instance of this general
result.

Lemma 4.3. Let K cC Q. There exists M,ry > 0 such that for any (xo,t0) € K and 0 < r < ry, if
f € L9 (B(xo,r) X (tg — 1, 10)) then f € C(B(xo,r/M) X (tg — r*/M?, 1y)).

We need to invoke a standard result from the theory of Morrey-Campanato which adapts
immediately to the Heisenberg group setting, see [6,23].

Lemma 4.4. For each € > 0, let w® be a weak solution in a cylinder Q = Q %X (0,T) to the Eq (4.1)
with smooth coefficients. Assume that for every compact K CC Q there are constants Cy, As, As,> 0,
a € (0, 1) such that (4.2) and (4.6) are satisfied. Also assume that

Wl + IVew Nl < Co. 4.7
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Then for every K CcC Q, there exists a constant C > 0 depending on Cy, As, As, @ such that
”Vngle,a(K) <C.

Proof. Choose r > 0 such that the cylinder Q, C K, and denote by z° the unique solution of the linear
PDE, (where we omit the term a):

2n+1 2n+1
0,7 = Z Xf( Z afj(x, t)ijs), z° = w® on the parabolic boundary of Q,.
i=1 =1
From the maximum principle [|z°||1~g,) < [IW®ll=,) < Co, by assumption. Arguing as in Remark 4.2,

we see that [|V.z°[[y240,) < C. Choosing the test function ¢ = w® — z° in the weak formulation of (4.1)
we obtain

1) 10 10
f flV(g(w‘9 — 2°)dxdr < f fa,-Xf(wg - 2)dxdt + f fa(ws — Z)dxdt
to—r2 B to—rz B to—r2 B

From the hypothesis (4.7), (4.6), and using Young inequality, it immediately follows that

10 0] 1
f ‘f|Va(W‘9 — 2°)dxdt < Cr™ + CrN'/Z(f vfazdxdt)2 < cMitet, (4.8)
to—r2 B to—r2 B

The thesis follows from the fact that
”VSWSHMZ*"‘(Q,) < ||Ve(2® - Wg)lleﬂ(Q,) + ||VsZ€||M2ﬂ(Q,) <2C

and the right hand side is bounded independently of &. O

Remark 4.5. If u® be a solution of (1.8) in Q X (0, T'), the derivative d,u® satisfies the same equation as
Zu®. As aresult, arguing as in Remark 4.2 we deduce that for every compact K contained in Q there is
a constant C > 0 independent of & such that

IV o0, u|lppey < C

Proof of Theorem 1.2. For every K cC Q, by Theorem 3.13, there exists a constant C independent
of & such that |V,u°| < Cy and Theorem 3.11 imply that for all i, j = 1, ..., 2n, one has [|X;X u®l|;» < C.
Hence the function w, = X7u® for every £ = 1, ..., 2n satisfies (4.7). Furthermore we already noted that
it is a solution of equation (4.1) with smooth coefficients satisfying (4.2) and (4.6) uniformly in € > 0.
One can apply Lemma 4.4 and Remark 4.5 to conclude that ||0,X]u®||yp.e + [V X7uf||ppe < C, for a
suitable constant C. In view of the Poincaré inequality, and recalling that its costant is independent
of & (see [7,9]), one then has that V,u® belongs to the Campanato spaces .#>. Finally, by virtue of
Lemma 4.3 it follows that V. u® is Holder continuous, with norm independent of &, thus concluding the
proof.

5. Proof of Theorem 1.1
We will need a simple form of the comparison principle, see [3] and [4].
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Lemma 5.1. Let u,w be weak solutions of (1.1) in a cylinder B X (t1, t,). If on the parabolic boundary
Bx{tj} UdB X (t1,1,) one has that u > w, then u > w in B X (¢, ;).

We now show how Theorem 1.1 follows from the comparison principle and from Theorem 1.2.

Proof of Theorem 1.1. Recall from Lemma 2.1 that u is Holder continuous in any compact subdomain
of Q, in particular in the closure of B X (¢, ;). For each & > 0 consider u®, the unique smooth solution
of the quasilinear parabolic problem

{ O = Y77 XPAS(x, Vou®), in BX (t1,1) (5.1)

ut? =u in Bx{H}UdB X (t,1),

where Af(x, ) satisfies the structure conditions (1.7). By virtue of Theorem 3.1 and of the Holder
regularity from Theorem 1.2, one has that for every K cCc @, and ¢ > 1, there exist
M = M(p,q,1,A,n,06) > 0and @ = a(p,q,1, A,n,0) € (0, 1), such that for every € > 0, (xo,1)) € K
and B(xy, r) X (ty — %, 1) C O,

Vel Vet 11l 2 Bxo.rxcto-r2aoy < M,
”Z'Vaua'ql|L2(B(x0,r)><(to—r2,to)) <M

||V8u8||Cg(B(X0,r)><(t0—r2,to)) + ||Zu8||Cg(B(xo,r)X(to—r2,t0)) < M'

By the theorem of Ascoli-Arzela, one can find u, € Cllo’f(Q) and a sequence &; — 0 such that

Ek

u® — uy and Vo u*™ — Vouy uniformly on compact subsets of Q.

The latter implies that u, is a weak solution of (1.1), in B(x, ) X (ty — 1%, ty), which agrees with the
function u on the parabolic boundary of B(xy, r) X (ty — 2, t;). By the comparison principle, the solution
to this boundary values problem is unique, and hence we conclude that u € C llo’f(B(xo, r) X (ty — 1%, 1)).

O
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