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Abstract: We consider an inverse problem regarding the detection of small conductivity
inhomogeneities in a boundary value problem for a semilinear elliptic equation. For such a problem,
that is related to cardiac electrophysiology, an asymptotic expansion for the boundary potential due to
the presence of small conductivity inhomogeneities was established in [4]. Starting from this we derive
Lipschitz continuous dependence estimates for the corresponding inverse problem.
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1. Introduction

Let Ω ⊂ Rd, d = 2, 3 be a bounded, connected, convex C1 domain and let

ωε =

m⋃
i=1

(zi + εBi) (1.1)

where Bi = riB, i = 1, . . . ,m, B is a given bounded smooth domain containing the origin and the
inhomogeneities (zi + εriB), i = 1, . . . ,m are disjoint. Let K0 and K1, . . . ,Km be symmetric, positive
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definite tensors and let f ∈ Lp(Ω) with p > d be not identically zero.
Consider the solution uε ∈ H1(Ω) of the boundary value problem−div(Kε∇uε) + χΩ\ωεu

3
ε = f in Ω

Kε∇uε · ν = 0 on ∂Ω,
(1.2)

where χΩ\ωε is the indicator function of the set Ω \ ωε , ν is the outward unit normal vector to ∂Ω and

Kε =

K0 x ∈ Ω \ ωε;
Ki x ∈ (zi + εriB), i = 1, . . . ,m.

(1.3)

The inverse problem we are interested in is the determination of ωε from the knowledge of uε|Γ
where Γ ⊂ ∂Ω is an open arc.

Let u ∈ H1(Ω) be the solution to−div(K0∇u) + u3 = f in Ω

K0∇u · ν = 0 on ∂Ω.
(1.4)

In [4] the following asymptotic expansion for (uε − u)|∂Ω has been derived

(uε − u)(y) = εd
m∑

i=1

rd
i

(
Mi(K0 − Ki)∇u(zi) · ∇xNu(zi, y) + u3(zi)Nu(zi, y)

)
+ o(εd), (1.5)

for y ∈ ∂Ω and where Mi ∈ R
d×d are symmetric matrices known as the polarization tensors and

depending on B,K0,Ki for i = 1, . . . ,m; for some specific shapes, the polarization tensors can be
explicitly computed (see, e.g., [2] for a detailed derivation). The function Nu appearing in the first
order term of the expansion is the Neumann function related to the operator −div(K0∇·) + 3u2, i.e., the
solution, for each y ∈ Ω, of−div(K0∇xNu(x, y)) + 3u2(x)Nu(x, y) = δy in Ω

K0∇xNu(x, y) · ν = 0 on ∂Ω.
(1.6)

The inverse problem of determiningωε from uε|Γ is related to a simplified version of a model describing
the electrical activity of the heart in the presence of small ischemic regions ( [4]). In order to detect the
set of inhomogeneities in [5] the authors implemented a successful reconstruction algorithm based on
the computation of the topological gradient of a suitable boundary misfit functional. In this paper we
prove that the centers and the radii of the conductivity inhomogeneities depend in a Lipschitz stable
way from the rescaled measurements (uε−u)|Γ

εd .
Similar stability results were obtained for the inverse conductivity equation in [8] and [9]. Here,

in order to derive the Lipschitz stability, we study the differentiability and injectivity properties of the
map T : Rm(d+1) → L∞(Γ) defined by

T (z, r) =

m∑
i=1

rd
i

(
Mi(K0 − Ki)∇u(zi) · ∇xNu(zi, y) + u3(zi)Nu(zi, y)

)
, y ∈ Γ

where z = (z1, z2, . . . , zm), r = (r1, . . . , rm) and apply an abstract theorem derived in [3] and in [6]. The
obtained result proves well-posedness of the inverse problem justifying mathematically the successful
reconstructions obtained in [5].
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2. Statement of the problem and preliminary results

We consider first the solution to the boundary value problem (1.4) where K0 ∈ R
d×d is a symmetric

constant matrix satisfying
α0|ξ|

2 ≤ ξT K0ξ ≤ β0|ξ|
2 ∀ξ ∈ Rd, (2.1)

being α0 ≥ 1. Problem (1.4) is referred to as the background problem, and its solution u as the
unperturbed potential. Such problem is well posed: as it was proved in [4, Theorem 4.1], for any
forcing term f ∈ H−1(Ω), there exists a unique weak solution u ∈ H1(Ω), continuously depending on
f .

Let ωε be the set defined in (1.1) consisting of m connected components of small size of prescribed
shape B and with centers zi and radii ri. We assume that the centers of the inclusions are well-separated
from the boundary and between each other; i.e.,

∃d0 > 0 : |zi − z j| > d0 i , j, dist(zi, ∂Ω) ≥ d0. (2.2)

Also the relative sizes {ri}
m
i=1 of the inclusions satisfy the condition

d0 ≤ rk ≤ d1 (2.3)

and we will assume ε small enough so that the sets zk + εrkB are disjoint and their distance is larger
then d0/2.

Moreover we assume the conductivity in ωε is strictly smaller then in Ω \ ωε; more precisely we
assume each matrix Ki ∈ R

d×d in (1.3) is symmetric and satisfies

αi|ξ|
2 ≤ ξT K0ξ ≤ βi|ξ|

2 ∀ξ ∈ Rd, 0 < αi ≤ βi < 1. (2.4)

We define the perturbed potential as the weak solution of (1.2). Also the well-posedness of this
problem is proved in [4, Theorem 4.1].

As recalled in the Introduction, in [4] the asymptotic expansion (1.5) has been derived for the
difference uε − u for all y ∈ ∂Ω under the assumption that f ∈ Lp(Ω), p ≥ d and f (x) ≥ m > 0 a.e. in
Ω. In [5] the result was extended to the case f ∈ Lp(Ω), ‖ f ‖Lp(Ω) , 0.

For some specific shapes this formula can be explicitly computed (see, e.g., [2] for a detailed
derivation).

Remark 2.1. Using the energy estimate in [4, Theorem 4.3] together with the estimate in [7, Lemma
1], we can conclude that the remainder term appearing in (1.5) satisfies:

o(εd) ≤ Cεd(1+γ), γ ∈

(
0,

1
2

]
.

From now on we will assume f ∈ Cα(Ω).
We will need some properties of the Neumann function NU defined in (1.6), analogous to the ones

that hold in the linear case. First of all notice that we can write

Nu(x, y) = Φ(x, y) + Z(x, y), (2.5)
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where Φ is a fundamental solution of the operator −div(K0∇ · ), i.e., (see [10, Chapter 1, Sections
8–10])

Φ(x, y) =


1

2π
√

det K0
ln

[
K−1

0 (x − y) · (x − y)
]− 1

2 d = 2

1
(d − 2)αd

√
det K0

[
K−1

0 (x − y) · (x − y)
] 2−d

2 d ≥ 3.
(2.6)

αd being the surface measure of the unit sphere, and Z(x, y) satisfying−divx(K0∇xZ(x, y)) + 3u2(x)Z(x, y) = −3u2(x)Φ(x, y) in Ω

K0∇xZ(x, y) · ν = −K0∇xΦ(x, y) · ν on ∂Ω.
(2.7)

Proposition 2.1. For the Neumann function NU defined in (1.6) the following hold

• NU(x, y) = NU(y, x) (symmetry of the Neumann function)
• NU(·, y),NU(x, ·) ∈ W1,p(Ω) ∀p ∈

[
1, d

d−1

)
• ∀α ∈ Rn α , 0, ∇xNU(x, ·) · α ∈ Lp(Ω) ∀p ∈

[
1, d

d−1

)
and ∇xNU(x, ·) · α < W1,1(Ω),

• D2
xNU(x, ·)α · β < L1(Ω) ∀α, β ∈ Rn, α, β , 0.

Proof. Let us first observe that u is C2,α(Ω), Φ(·, y) ∈ W1,1(Ω) and hence Φ(·, y) ∈ Lp(Ω) for p > 1.
Also, by the regularity of Φ(x, y) for x , y, it follows that K0∇xZ(x, y) · ν ∈ W1/2,p(∂Ω). Hence, by
elliptic regularity results for elliptic equations it follows that Z(·, y) ∈ W2,p(Ω) and ∇Z(·, y) is Hölder
continuous away from y. The last three properties then clearly follow from the analogous properties
of Φ(x, y). Moreover the differential operator −div(K0∇·) + 3u2 is self adjoint and hence applying [10,
Corollary II, page 22] it follows that the Neumann function is symmetric, i.e.,

Nu(x, y) = Nu(y, x) (2.8)

�

3. Main result

In this section, using the asymptotic expansion in (1.5), we derive a Lipschitz stability estimate for
the inverse problem under consideration. For seek of simplicity we will prove the result in the case of
a single inclusion ωε (m = 1) and, at the end of the section, we will state the general result and sketch
the proof.

Besides f ∈ Cα(Ω), we assume f > 0 in Ω. By elliptic regularity results, we have that u ∈ C2,α

whereas by the maximum principle for elliptic boundary value problems we have that also u > 0. In
addition to this, we also require that u satisfies:

∇u(z) , 0 ∀z ∈ Ω. (3.1)

Under these assumptions, it is possible to state our main result:

Theorem 3.1. Assume f ∈ Cα(Ω), f > 0 in Ω and let u satisfy (3.1). Let Γ be an open non-empty
subset of ∂Ω. Then, there exist some positive constants C1,C2, ε0 (depending only on the data) such
that, ∀ε < ε0

|r − r′| + |z − z′| ≤ C1ε
−d

∥∥∥uε − u′ε
∥∥∥

L∞(Γ)
+ C2ε

γ,
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where uε and u′ε are the solutions of (1.2) in presence of inclusions of the form {z+εrB} and {z′+εr′B},
respectively, and γ ∈

(
0, 1

2

)
.

To prove this result we will need the following:

Theorem 3.2. Let H be a Banach space, U ⊂ Rd+1 (d = 2, 3) an open set and K ⊂ U a convex
compact set. Let T ∈ C1(U; H) and assume T is injective as well DT (z, r) (for each (z, r) ∈ U) where
DT (z, r) ∈ L(Rd+1,H) is the Fréchet derivative of T evaluated in (z, r) ∈ U. Then, there exists a
constant c such that ∀(r, z), (r′, z′) ∈ K,

|z − z′| + |r − r′| ≤ c‖T (z, r) − T (z′, r′)‖H.

The above theorem is a particular case of [6, Theorem 2.1] (see also [3]). We will apply it with
H = L∞(Γ), U = Ω × R+ and since Ω is a convex set, we choose K = Ωd0 × [d0, d1] where Ωd0 = {x ∈
Ω : dist(x, ∂Ω) ≥ d0}. Moreover we will let T : Ω × R+ → L∞(Γ) be

T (z, r) = Fz,r(y) = rd
(
M(K0 − K1)∇u(z) · ∇xNu(z, y) + u3(z)Nu(z, y)

)
, (3.2)

i.e., the first-order term appearing in the expansion (1.5).

Proof of Theorem 3.1. We first observe that T is a continuous function between Ω×R+ and L∞(Γ), i.e.,
the function Fz,r(y) is continuous with respect to (z, r) ∈ U for every y ∈ Γ. According to the expression
in (3.2), this is a direct consequence of the fact that u ∈ C2,α(Ω) and of the smoothness of Nu(·, y) in Ωd0

for y ∈ ∂Ω (which can be deduced by local elliptic regularity results since all the coefficients appearing
in (1.6) are smooth). For the same reasons, the Fréchet derivative of T is well defined and continuous,
being

DT (z, r)[∆z,∆r] = DFz,r[∆z,∆r](y) = rd M(K0 − K1)D2u(z)∆z · ∇xNu(z, y)
+ rd M(K0 − K1)∇u(z) · D2

xNu(z, y)∆z

+ rd3u2(z)∇u(z) · ∆zNu(z, y) + rdu3(z)∇xNu(z, y) · ∆z

+ drd−1∆r
(
M(K0 − K1)∇u(z) · ∇xNu(z, y) + u3(z)Nu(z, y)

) (3.3)

where ∇xNu and D2
xNu indicate derivatives with respect to the first variable.

In order to apply Theorem 3.2, we now need to show the injectivity of T . Assume T (z, r) = T (z′, r′)
as elements of L∞(Γ). Consider now the expression (3.2) extended for y ∈ Ω and the function G(y) =

Fz,r(y) − Fz′,r′(y) with y ∈ Ω. As a first step we show that G(y) is the solution of the following Cauchy
problem: 

−div(K0∇G(y)) + 3u2(y)G(y) = 0 in Ω \ {z, z′},

G(y) = 0 on Γ,

K0∇G(y) · ν = 0 on Γ.

(3.4)

Indeed, G = 0 on Γ by assumption. To show that the normal derivative vanishes and that the equation
is satisfied, being Nu(z, y) and ∇Nu(z, y) the only terms in the expression of G that depend on y, it is
enough to consider the normal derivative and the operator applied to these latest terms. Now, using the
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boundary conditions in (1.6), the symmetry of Nu, the fact that K0 is constant and since z, z′ are well
separated from ∂Ω we have that, for y ∈ Γ

K0∇yNu(z, y) · ν = K0∇xNu(y, z) · ν = 0

and
K0∇y∇xNu(z, y) · ν = ∇yK0∇xNu(y, z) · ν = 0.

Moreover, ∀z , y,

−div
(
K0∇yNu(z, y)

)
+ 3u2(y)Nu(z, y) = −div (K0∇xNu(y, z)) + 3u2(z)Nu(y, z) = 0

and
−div

(
K0∇y∇xNu(z, y)

)
+ 3u2(y)∇xNu(z, y) =

= ∇x

[
−div (K0∇xNu(y, z)) + 3u2(z)Nu(y, z)

]
= 0.

Now, according to the unique continuation property for the Cauchy problem for Schrödinger type
operators with smooth potential (see [1, Theorem 1.9] applied with q = 3u2), we conclude that G ≡ 0
in Ω \ {z, z′}.

This implies that z = z′ and r = r′. To see this recall (2.5) and (2.6): the terms Nu(z, y) and Nu(z′, y)
have a singularity when approaching z and z′, of the kind ln |y − z| if d = 2 or |y − z|−1 if d = 3.
Those singularities cannot cancel with the terms ∇xNu(z, y), ∇xNu(z′, y), which grow with a different
rate (namely, as |y− z|d−1). Moreover, the coefficients appearing in front of Nu(z, y) and Nu(z′, y) do not
vanish because of the positivity of u so that the only way for T (z, r) ≡ T (z′, r′) is that z = z′ and r = r′.

We finally need to show that, for each (z, r) ∈ U, DT (z, r) is an injective map from Rd+1 to L∞(Γ). By
the linearity of DT (z, r)[∆z,∆r] with respect to (∆z,∆r), it is enough to prove that DT (z, r)[∆z,∆r] = 0
implies both ∆z = 0 and ∆r = 0. Define G̃(y) = DFz,r[∆z,∆r](y) y ∈ Ω . Recalling (3.3), analogously
to what was done before, we have that G̃ is the solution of the following Cauchy problem:

−div(K0∇G̃(y)) + 3u2(y)G̃(y) = 0 in Ω \ {z},

G̃(y) = 0 on Γ,

K0∇G̃(y) · ν = 0 on Γ.

This follows again by the fact that G̃ = 0 on Γ by assumption, whereas the differential equation
and the Neumann boundary condition are satisfied thanks to the symmetry of Nu(x, y) and because of
(1.6). By unique continuation, we conclude that G̃(y) ≡ 0 for every y , z. Now, if ∆z , 0 in (3.3),
being M and K0 − K1 positive definite and ∇u , 0, the last statement in Proposition 2.1 implies that
DT (z, r)[∆z,∆r] < L1(Ω) and therefore DT (z, r)[∆z,∆r] . 0. Moreover if ∆z = 0 and ∆r , 0 again
Proposition 2.1 together with the positivity of u implies that DT (z, r)[∆z,∆r] < W1,1(Ω) and therefore
cannot be identically zero.

We can now apply Theorem 3.2, obtaining

|z − z′| + |r − r′| ≤ C1‖T (z, r) − T (z′, r′)‖L∞(Γ). (3.5)

Recalling that, by (1.5) and Remark 2.1, for ε ≤ ε0 we have

uε(y) − u′ε(y) =
(
uε(y) − u(y)) − (u′ε(y) − u(y)

)
,
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we can conclude that

‖T (z, r) − T (z′, r′)‖L∞(Γ) ≤ ε
−d‖uε − u′ε‖L∞(Γ) + cεγd,

which together with (3.5) gives the thesis of Theorem 3.1. �

Remark 3.1. Observe that the above theorem holds for instance for u(x, y) = cos x + cos y in Ω =

[0, π]2 ⊂ R2. Let M0 ≡ I the identity matrix. It can be easily seen that u satisfies the equation in
(1.4) in Ω with f = cos x + cos y + (cos x + cos y)3. Moreover the normal derivative ∇u · ν vanishes in
∂Ω = ∂[0, π]2 and ∇u , 0.

We want to emphazise that the condition ∇u , 0 is necessary to guarantee the reconstruction of
the unknown inhomogeneities. In fact, in [8] where similar results as ours have been derived for the
conductivity equation with non homogeneous Neumann datum in dimension n ≥ 2 the authors prove
Lipschitz stability estimates assuming the background potential linear.

Guaranteeing the non-vanishing of ∇u in Ω for solutions to boundary value problems for linear
elliptic equations is not at all a trivial issue and has been studied in [11] in the two-dimensional setting.
The authors proved that a suitable choice of Dirichlet (Neumann) datum guarantees that the solution
does not have critical points in the interior. To our knowledge this results cannot be extended semilinear
equations and to dimension higher than two.

Finally, the condition ∇u , 0 is not always necessary since the theorem holds for instance for
u = c ∈ R.

We are now ready to state the more general stability result when in presence of multiple
inhomogeneities.

Theorem 3.3. Let uε and u′ε be the solutions associated to inclusions ωε, ω′ε satisfying (2.2), (2.3) and
the disjointness condition thereafter. Then, there exist positive constants C1, C2, δ and ε0 s.t. if ε < ε0

and ε−d‖uε − u′ε‖L∞(Γ) ≤ δ,

(i) m = m′ and, after appropriate reordering,

(ii) |zi − z′i | + |ri − r′i | < C1ε
−d

∥∥∥uε − u′ε
∥∥∥

L∞(∂Ω)
+ C2ε

γd for i = 1, . . . ,m.

Proof. (i) Let us show that m = m′ following the ideas contained in [9]. In order to simplify the
notation sometimes in what follows we will write z = (z1, . . . , zm), r = (r1, . . . , rm), z′ = (z′1, . . . , z

′
m′)

and r′ = (r′1, . . . , r
′
m′). Recall that

uε(y) − u′ε(y) = εd (
T (z, r)(y) − T (z′, r′)(y)

)
+ o(εd) (3.6)

Assume first uε(y) − u′ε(y) = 0 for y ∈ Γ; then from (3.6) we must have

T (z, r)(y) − T (z′, r′)(y)
∣∣∣∣
Γ

= 0.

With an argument analogous to the proof of theorem 3.1, letting G(y) = T (z, r)(y) − T (z′, r′)(y) for
y ∈ Ω, we have that G(y) satisfies

−div(K0∇G(y)) + 3u2(y)G(y) = 0 in Ω \ {z1, . . . , zm, z′1 . . . , z
′
m′},

G(y) = 0 on Γ,

K0∇G(y) · ν = 0 on Γ.

(3.7)
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and so that, by unique continuation, necessarily G ≡ 0 in Ω \ {z1, . . . , zm, z′1 . . . , z
′
m′}. This clearly

implies m = m′ since if it were not so the singularities of Nu(zi, y), ∇Nu(zi, y) i = 1, . . . ,m and Nu(z′i , y),
∇Nu(z′i , y) i = 1, . . . ,m′, as y approches zi and z′i respectively, could not cancel out.

Let now uε(y) − u′ε(y) , 0. The condition ε−d‖uε − u′ε‖L∞(Γ) ≤ δ together with (3.6) implies that for
ε ≤ ε0(δ) we have

‖T (z, r) − T (z′, r′)‖L∞(Γ) ≤
3
2
δ. (3.8)

If the thesis (i) did not hold, this would imply that for every δn = 2/3n, n ∈ N, there exist
{
z(n)

i

}m

i=1
= z(n),{

r(n)
i

}m

i=1
= r(n),

{
z′(n)

i

}m′

i=1
= z′(n) and

{
r′(n)

i

}m′

i=1
= r′(n) such that

‖T (z(n), r(n)) − T (z′(n), r′(n))‖L∞(Γ) ≤
1
n

(3.9)

with m , m′. Observe that m and m′ can be chosen independent of n since (2.3) together with the
disjointness assumption implies that the total number of inhomogeneity is bounded. By compactness,
up to subsequences we have

z(n) → z r(n) → r z′(n) → z′ r′(n) → r′

and (3.9) implies that
T (z, r)(y) − T (z′, r′)(y)

∣∣∣∣
Γ

= 0.

From now on the proof proceeds as in the case uε(y) − u′ε(y) = 0 for y ∈ Γ.
(ii) The proof follows the one in the case of a single inhomogeneity being just formally more

complicated. In fact, since m = m′ we have that

G(y) = T (z, r)(y) − T (z′, r′)(y) =

m∑
i=1

rd
i

(
Mi(K0 − Ki)∇u(zi) · ∇xNu(zi, y) + u3(zi)Nu(zi, y)

)
−

m∑
i=1

(r′i )
d
(
Mi(K0 − Ki)∇u(z′i) · ∇xNu(z′i , y) + u3(z′i)Nu(z′i , y)

)
Using now (3.7) with m = m′ by unique continuation we get G ≡ 0 in Ω \ {z1, . . . , zm, z′1 . . . , z

′
m}.

Then using assumption 2.2 we proceed exactly as in Theorem 3.1 showing that zi = zi, ri = r′i for
i = 1, · · · ,m. To prove the differentiability properties of T and injectivity of DT (z, r) note that

DT (z, r)[∆z,∆r] =

m∑
i=1

rd
i Mi(K0 − Ki)D2u(zi)∆zi · ∇xNu(zi, y)

+ rd
i Mi(K0 − Ki)∇u(zi) · D2

xNu(zi, y)∆zi

+ rd
i 3u2(zi)∇u(zi) · ∆zNu(zi, y) + rd

i u3(zi)∇xNu(zi, y) · ∆zi

+ drd−1
i ∆ri

(
M(K0 − Ki)∇u(zi) · ∇xNu(zi, y) + u3(zi)Nu(zi, y)

)
(3.10)

Reasoning as in Theorem 3.1 the the Fréchet derivative of T DT (z, r) is well defined and continuous.
Defining T (z, r)(y) = Fz,r(y) let G̃(y) = DFz,r[∆z,∆r](y) y ∈ Ω . Then from the expression of the
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derivative and analogously to what was done in Theorem 3.1, we have that G̃ is the solution of the
following Cauchy problem:

−div(K0∇G̃(y)) + 3u2(y)G̃(y) = 0 in Ω \ {z1, z2, . . . , zm},

G̃(y) = 0 on Γ,

K0∇G̃(y) · ν = 0 on Γ.

This follows again by the fact that G̃ = 0 on Γ by assumption, whereas the differential equation and
the Neumann boundary condition are satisfied thanks to the symmetry of Nu(x, y) and because of (1.6).
By unique continuation, we conclude that G̃(y) ≡ 0 for every y ∈ Ω \ {z1, z2, . . . , zm} and then using
the expression of DT (z, r) and proceeding as in the last part of Theorem 3.1 injectivity of DT (z, r) and
estimate (ii) follow concluding the proof.
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