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Abstract: We study the properties of the dual Sobolev space H−1,q(X) =
(
H1,p(X)

)′ on a complete
extended metric-topological measure space X = (X, τ, d,m) for p ∈ (1,∞). We will show that a crucial
role is played by the strong closure H−1,q

pd (X) of Lq(X,m) in the dual H−1,q(X), which can be identified
with the predual of H1,p(X). We will show that positive functionals in H−1,q(X) can be represented as a
positive Radon measure and we will charaterize their dual norm in terms of a suitable energy functional
on nonparametric dynamic plans. As a byproduct, we will show that for every Radon measure µ
with finite dual Sobolev energy, Capp-negligible sets are also µ-negligible and good representatives of
Sobolev functions belong to L1(X, µ). We eventually show that the Newtonian-Sobolev capacity Capp

admits a natural dual representation in terms of such a class of Radon measures.

Keywords: metric Sobolev spaces; capacity; modulus of a family of rectifiable curves; dynamic
transport plans; dual Cheeger energy; capacitary measures

Dedicated to Sandro Salsa on the occasion of his 70th birthday.

1. Introduction

In this paper we investigate the properties of the duals of the metric Sobolev spaces H1,p(X), where
X = (X, τ, d,m) is an extended metric-topological measure space and p ∈ (1,+∞).
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In the simpler case when (X, d) is a complete and separable metric space, τ is the topology induced
by the metric and m is a positive and finite Borel (thus Radon) measure on X, H1,p(X) can be defined
as the natural domain of the Lp(X,m)-relaxation of the pre-Cheeger energy form

pCEp( f ) :=
∫

X

(
lip f (x)

)p dm(x), f ∈ Lipb(X),

initially defined only for bounded Lipschitz functions. Here lip f (x) defines the asymptotic Lipschitz
constant

lip f (x) = lim sup
y,z→x

y,z

| f (y) − f (z)|
d(y, z)

.

For every function f ∈ H1,p(X) one can define the Cheeger energy

CEp( f ) :=
{

lim inf
n→∞

pCEp( fn) : fn ∈ Lipb(X), fn → f strongly in Lp(X,m)
}

and the Sobolev norm
‖ f ‖H1,p(X) :=

(
‖ f ‖p

Lp + CEp( f )
)1/p

,

thus obtaining a Banach space. It is therefore quite natural to study its dual, which we will denote by
H−1,q(X).

In such a general situation, however, when we do not assume any doubling and/or Poincaré
assupmptions, H1,p(X) may fail to be reflexive or separable and it is not known if the generating class
of bounded Lipschitz functions is strongly dense.

As a first contribution, we will show that it could be more convenient to consider the smaller
subspace H−1,q

pd (X) of H−1,q(X) obtained by taking the strong closure of Lq(X,m). Linear functionals in
H−1,q

pd (X) are characterized by their behaviour on Lipb(X) (or on even smaller generating subalgebras)
and their dual norm can also be computed by the formula

‖L‖H−1,q(X) = sup
{
〈L, f 〉 : f ∈ Lipb(X), pCEp( f ) + ‖ f ‖p

Lp ≤ 1
}
, (1.1)

which is well adapted to be applied to general Borel measures µ on X.
In Sections 3 and 4 we will show that H−1,q

pd (X) has three important properties:

(a) it can be identified with the predual of H1,p(X) (thus showing in particular that H1,p(X) is the dual
of a separable Banach space);

(b) every positive Borel measure µ satisfying∣∣∣∣∣∫
X

f dµ
∣∣∣∣∣ ≤ C

(
pCEp( f ) + ‖ f ‖p

Lp

)1/p
for every f ∈ Lipb(X)

can be extended in a unique way to a functional Lµ ∈ H−1,q
pd (X);

(c) every positive functional on Lipb(X) such that the supremum in (1.1) is finite can be represented
by a positive Radon measure.
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This last property relies on a representation formula of the dual of the Cheeger energy by
(nonparametric) dynamic plans (Theorem 4.6) which is interesting by itself. As a further important
application of this result, in the final section 5 we will show that negligible sets in E with respect to
the Newtonian capacity Capp are also µ-negligible for every positive Borel measure with finite dual
energy. As a byproduct, we can express the duality of µ with a function f in H1,p(X) in the integral
form

〈µ, f 〉 =

∫
X

f̃ dµ,

where f̃ is any good representative of f in the Newtonian space N1,p(X).
Our last application concerns the variational representation of the Newtonian capacity of a closed

set F ⊂ X (
Capp(F)

)1/p
= sup

{
µ(F) : µ ∈M+(X), µ(X \ F) = 0, ‖Lµ‖H−1,q(X) ≤ 1

}
.

Main notation

(X, τ) Hausdorff topological space
(X, τ, d) Extended metric-topological (e.m.t.) space, see §2.2 and Definition 2.2
X = (X, τ, d,m) Extended metric-topological measure (e.m.t.m.) space, see §2.2
M+(X) Positive and finite Radon measures on a Hausdorff topological space X, § 2.1
B(X) Borel subsets of X
f]µ Push forward of µ ∈M(X) by a (Lusin µ-measurable) map f : X → Y , (2.1)
Cb(X, τ), Cb(X) τ-continuous and bounded real functions on X
Lipb(X, τ, d) Bounded, τ-continuous and d-Lipschitz real functions on X, (2.2)
lip f (x) Asymptotic Lipschitz constant of f at a point x, (2.4)
A Compatible unital sub-algebra of Lipb(X, τ, d), Definition 2.3
L q(σ|µ) q-Entropy functionals on Radon measures, (4.2)
C([0, 1]; (X, τ)) τ-continuous curves defined in [0, 1] with values in X, § 2.4
τC, dC Compact open topology and extended distance on C([0, 1]; X), § 2.4
BVC([0, 1]; X) Continuous curves with d-bounded variation, § 2.4
RA(X) Continuous and rectifiable arcs, § 2.4
e(·, t), et(·), e[·] Evaluation maps along curves and arcs, § 2.4
τA, dA Quotient topology and extended distance on RA(X), § 2.4
Rγ Arc-length reparametrization of a rectifiable arc γ, § 2.4∫
γ

f Integral of a function f along a rectifiable curve (or arc) γ, § 2.4
`(γ) length of γ, § 2.4
νγ Radon measure in M+(X) induced by integration along a rectifiable arc γ, (2.9)
pCEp, CEp, CEp,κ (pre)Cheeger energy, Definition 3.1
H1,p(X) Metric Sobolev space induced by the Cheeger energy, Definition 3.1
|D f |? Minimal p-relaxed gradient, (3.1)-(3.2)
Barq(π) q-barycentric entropy of a dynamic plan, Definition 4.2
Bq(RA(X)) Plans with barycenter in Lq(X,m), Definition 4.2
Dq(µ0, µ1) Dual dynamic cost, (4.5)
Modp(Γ) p-Modulus of a collection Γ ⊂ RA(X), Definition 5.1
N1,p(X) Newtonian space, Definition 5.3
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Capp Newtonian capacity, (5.2)

2. Preliminary results

2.1. Topological and measure theoretic notions

Let (Y, τY) be a Hausdorff topological space. We will denote by Cb(Y, τY) the space of τY-continuous
and bounded real functions defined on Y; B(Y, τY) is the collection of the Borel subsets of Y; we will
often omit the explicit indication of the topology τY , when it will be clear from the context.

Definition 2.1 (Radon measures [22, Chap. I, Sect. 2]). A finite Radon measure µ : B(Y, τY)→ [0,+∞)
is a Borel nonnegative σ-additive finite measure satisfying the following inner regularity property:

∀ B ∈ B(Y, τY) : µ(B) = sup
{
µ(K) : K ⊂ B, K compact

}
.

We will denote by M+(Y) the collection of all the finite positive Radon measures on Y.

It is worth mentioning that every Borel measure in a Polish, Lusin, Souslin, or locally compact
space with a countable base of open sets is Radon [22, Ch. II, Sect. 3]. In particular the notation of
M+(Y) is consistent with the standard one adopted e.g., in [4, 6, 24], where Polish or second countable
locally compact spaces are considered.

If (Y, τY) is completely regular, the weak (or narrow) topology τM+
on M+(Y) can be defined as the

coarsest topology for which all maps

µ 7→

∫
Y

h dµ from M+(Y) into R

are continuous as h : Y → R varies in Cb(Y, τY) [22, p. 370, 371].
Recall that a set A ⊂ Y is µ-measurable, µ ∈ M+(Y), if there exist Borel sets B1, B2 ∈ B(Y, τY)

such that B1 ⊂ A ⊂ B2 and µ(B2 \ B1) = 0. A set is called universally (Radon) measurable if it is
µ-measurable for every Radon measure µ ∈M+(Y).

Let (Z, τZ) be another Hausdorff topological space. A map f : Y → Z is Borel (resp. µ-measurable)
if for every B ∈ B(Z) f −1(B) ∈ B(Y) (resp. f −1(B) is µ-measurable). f is Lusin µ-measurable if for
every ε > 0 there exists a compact set Kε ⊂ Y such that µ(Y \ Kε) ≤ ε and the restriction of f to Kε is
continuous. A map f : Y → Z is called universally Lusin measurable if it is Lusin µ-measurable for
every Radon measure µ ∈M+(Y).

Every Lusin µ-measurable map is also µ-measurable. Whenever f is Lusin µ-measurable, its push-
forward

f]µ ∈M+(Z), f]µ(B) := µ( f −1(B)) for every Borel subset B ⊂ B(Z) (2.1)

induces a Radon measure in Z.
Given a power p ∈ (1,∞) and a Radon measure µ in (Y, τY) we will denote by Lp(Y, µ) the usual

Lebesgue space of class of p-summable µ-measurable functions defined up to µ-negligible sets.

2.2. Extended metric-topological (measure) spaces

Let (X, τ) be a Hausdorff topological space. An extended distance is a symmetric map d : X × X →
[0,∞] satisfying the triangle inequality and the property d(x, y) = 0 iff x = y in X: we call (X, d) an
extended metric space. We will omit the adjective “extended” if d takes real values.
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Let d be an extended distance on X. For every f : X → R and A ⊂ X we set

Lip( f , A) := inf
{
L ∈ [0,∞] : | f (y) − f (z)| ≤ Ld(y, z) for every y, z ∈ A

}
.

We adopt the convention to omit the set A when A = X. We consider the class of τ-continuous and
d-Lipschitz functions

Lipb(X, τ, d) :=
{
f ∈ Cb(X, τ) : Lip( f ) < ∞

}
, (2.2)

and for every κ > 0 we will also consider the subsets

Lipb,κ(X, τ, d) :=
{
f ∈ Cb(X, τ) : Lip( f ) ≤ κ

}
.

A particular role will be played by Lipb,1(X, τ, d). It is easy to check that Lipb(X, τ, d) is a real and
commutative sub-algebras of Cb(X, τ) with unit. According to [2, Definition 4.1], an extended metric-
topological space (e.m.t. space) (X, τ, d) is characterized by a Hausdorff topology τ and an extended
distance d satisfying a suitable compatibility condition.

Definition 2.2 (Extended metric-topological spaces). Let (X, d) be an extended metric space, let τ be
a Hausdorff topology in X. We say that (X, τ, d) is an extended metric-topological (e.m.t.) space if:

(X1) the topology τ is generated by the family of functions Lipb(X, τ, d);

(X2) the distance d can be recovered by the functions in Lipb,1(X, τ, d) through the formula

d(x, y) = sup
f∈Lipb,1(X,τ,d)

| f (x) − f (y)| for every x, y ∈ X. (2.3)

We will say that (X, τ, d) is complete if d-Cauchy sequences are d-convergent. All the other topological
properties usually refer to (X, τ).

The previous assumptions guarantee that (X, τ) is completely regular. When an e.m.t. space (X, τ, d)
is provided by a positive Radon measure m ∈M+(X, τ) we will say that

the system X = (X, τ, d,m) is an extended metric-topological measure (e.m.t.m.) space.

Definition 2.2 yields two important properties linking d and τ: first of all

d is τ × τ-lower semicontinuous in X × X,

since it is the supremum of a family of continuous maps by (2.3). On the other hand, every
d-converging net (x j) j∈J indexed by a directed set J is also τ-convergent:

lim
j∈J

d(x j, x) = 0 ⇒ lim
j∈J

x j = x w.r.t. τ.

It is sufficient to observe that τ is the initial topology generated by Lipb(X, τ, d) so that a net (x j) is
convergent to a point x if and only if

lim
j∈J

f (x j) = f (x) for every f ∈ Lipb(X, τ, d).

In many situations it could be useful to consider smaller subalgebras which are however sufficiently
rich to recover the metric properties of an extended metric topological space (X, τ, d).
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Definition 2.3 (Compatible algebras of Lipschitz functions). Let A be a unital subalgebra of
Lipb(X, τ, d) and let us set Aκ := A ∩ Lipb,κ(X, τ, d).

We say that A is compatible with the metric-topological structure (X, τ, d) if

d(x, y) = sup
f∈A1

| f (x) − f (y)| for every x, y ∈ X.

In particular, A separates the points of X.

It is not difficult to show that any compatible algebra A is dense in Lp(X,m) [21, Lemma 2.27]. If
we do not make a different explicit choice, we will always assume that an e.m.t.m. space X is endowed
with the canonical algebra A (X) := Lipb(X, τ, d).

2.3. The asymptotic Lipschitz constant

For every f : X → R and x ∈ X, denoting by Ux the directed set of all the τ-neighborhoods of x, we
set

lip f (x) := lim
U∈Ux

Lip( f ,U) = inf
U∈Ux

Lip( f ,U) x ∈ X.

Notice that Lip( f , {x}) = 0 and therefore lip f (x) = 0 if x is an isolated point of X. We can also define
lip f as

lip f (x) = lim sup
y,z→x

y,z

| f (y) − f (z)|
d(y, z)

, (2.4)

where the convergence of y, z to x in (2.4) is intended with respect to the topology τ. In particular,

lip f (x) ≥ |D f |(x) := lim sup
y→x

| f (y) − f (x)|
d(x, y)

. (2.5)

It is not difficult to check that x 7→ lip f (x) is a τ-upper semicontinuous map and f is locally d-Lipschitz
in X iff lip f (x) < ∞ for every x ∈ X. When (X, d) is a length space, lip f coincides with the upper
τ-semicontinuous envelope of the local Lipschitz constant (2.5).

We collect in the next useful lemma the basic calculus properties of lip f .

Lemma 2.4. For every f , g, χ ∈ Cb(X) with χ(X) ⊂ [0, 1] we have

lip(α f + βg) ≤ |α| lip f + |β| lip g for every α, β ∈ R,

lip( f g) ≤ | f | lip g + |g| lip f ,

lip((1 − χ) f + χg) ≤ (1 − χ) lip f + χ lip g + lip χ| f − g|.

Moreover, whenever φ ∈ C1(R)

lip(φ ◦ f ) = |φ′ ◦ f | lip f .
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2.4. Continuous curves and rectifiable arcs

We briefly recap some useful results concerning the extended metric-topological structure of the
space of rectifiable arcs in an e.m.t. space (X, τ, d). We refer to [21, § 3] for a more detailed discussion
and for the related proofs.

For every γ : [0, 1]→ X and t ∈ [0, 1] we set

Vγ(t) := sup
{ N∑

j=1

d(γ(t j), γ(t j−1)) : 0 = t0 < t1 < · · · < tN = t
}
, `(γ) := Vγ(1).

BVC([0, 1]; X) will denote the space of d-continuous maps γ : [0, 1] → X such that `(γ) < ∞; notice
that if `(γ) = 0 then γ is constant. We will also consider the set of curves with constant velocity

BVCc([0, 1]; X) :=
{
γ ∈ BVC([0, 1]; X) : Vγ(t) = `(γ)t

}
. (2.6)

Notice that for every γ ∈ BVC([0, 1]; X) the map Vγ : [0, 1] → [0, `(γ)] is continuous and surjective
and whenever `(γ) > 0

there exists a unique `(γ)-Lipschitz map Rγ ∈ BVCc([0, 1]; X) such that
γ(t) = Rγ(`(γ)−1Vγ(t)) for every t ∈ [0, 1],

(2.7)

with |R′γ|(s) = `(γ) a.e.; when `(γ) = 0 then Rγ(t) = γ(t) is constant. We can use Rγ to define the
integral of a bounded or nonnegative Borel function f : X → R along γ:∫

γ

f =

∫ 1

0
f (Rγ(s))|R′γ|(s) ds = `(γ)

∫ 1

0
f (Rγ(s)) ds. (2.8)

We also notice that (2.8) yields∫
γ

f =

∫
X

f dνγ where νγ := `(γ)(Rγ)](L 1 [0, 1]). (2.9)

We will endow BVC([0, 1]; X) with the compact-open topology τC induced by τ. By definition, a
subbasis generating τC is given by the collection of sets

S (K,V) :=
{
γ ∈ C([0, 1]; X) : γ(K) ⊂ V

}
, K ⊂ [0, 1] compact, V τ-open in X.

By [19, § 46, Thm. 46.8, 46.10] if the topology τ is induced by a distance δ, then the topology τC is
induced by the uniform distance δC(γ, γ′) := supt∈[a,b] δ(γ(t), γ′(t)) and convergence w.r.t. the compact-
open topology coincides with the uniform convergence w.r.t. δ. If moreover τ is separable then also τC

is separable [14, 4.2.18].
We will denote by e : BVC([0, 1]; X) × [0, 1]→ X the evaluation map, which is defined by et(γ) =

e(γ, t) := γ(t) for every t ∈ [0, 1]; e is continuous. We will also adopt the notation e[γ] := e({γ} ×
[0, 1]) = {γ(t) : t ∈ [0, 1]} for the image of γ in X.

The extended distance d : X × X → [0,∞] induces the extended distance dC in BVC([0, 1]; X) by

dC(γ1, γ2) := sup
t∈[a,b]

d(γ1(t), γ2(t))
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and (C([0, 1]; X), τC, dC) is an extended metric-topological space [21, Prop. 3.2].
Let us denote by Σ the set of continuous, nondecreasing and surjective maps σ : [0, 1]→ [0, 1]. On

BVC([0, 1]; X) we introduce the relation

γ1 ∼ γ2 if ∃σi ∈ Σ : γ1 ◦ σ1 = γ2 ◦ σ2,

and the function

dA(γ1, γ2) := inf
σi∈Σ

dC(γ1 ◦ σ1, γ2 ◦ σ2) for every γi ∈ BVC([0, 1]; X).

It is possible to prove that ∼ is an equivalence relation [21, § 3.2, Cor. 3.5] and dA satisfies

dA(γ1, γ2) = dA(Rγ1 ,Rγ2) = inf
σ∈Σ

σ injective

dC(γ1, γ2 ◦ σ) = inf
γ′i∼γi

dC(γ′1, γ
′
2).

In particular dA satisfies the triangle inequality, is invariant with respect to ∼ and γ ∼ γ′ if and only if
dA(γ, γ′) = 0. We collect a list of useful properties [21, § 3.2]:

Lemma 2.5. (a) The space RA(X) := BVC([0, 1]; X)/ ∼ endowed with the quotient topology τA is
an Hausdorff space. We will denote by q : BVC([0, 1]; X)→ RA(X) the quotient map.

(b) If the topology τ is induced by the distance δ then the quotient topology τA is induced by δA

(considered as a distance between equivalence classes of curves).

(c) (RA(X), τA, dA) is an extended metric-topological space.

(d) For every γ, γ′ ∈ BVC([0, 1]; X) we have

γ ∼ γ′ ⇔ Rγ = Rγ′ ,

and all the curves γ′ equivalent to γ can be described as γ′ = Rγ ◦ σ for some σ ∈ Σ. Moreover,
if γ′ ∼ γ then

`(γ′) = `(γ), Rγ′ = Rγ,

∫
γ

f =

∫
γ′

f ,

so that the functions R, `, the evaluation maps e0, e1, and the integral
∫
γ

f are invariant
w.r.t. reparametrizations. We will still denote them by the same symbols.

(e) ` : RA(X) → [0,+∞] is τA-lower semicontinuous and e0, e1 : RA(X) → X are continuous. If
f : X → [0,+∞] is lower semicontinuous then the map γ 7→

∫
γ

f is lower semicontinuous w.r.t. τA

in RA(X).

We conclude this section with a list of useful properties concerning the compactness in RA(X) and
the measurability of some importants maps, see [21, Thm. 3.13].

Theorem 2.6. (a) If γi, i ∈ I, is a converging net in RA(X) with γ = limi∈I γi and limi∈I `(γi) = `(γ)
then

lim
i∈I

Rγi = Rγ w.r.t. τC,
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and for every bounded and continuous function f ∈ Cb(X, τ) we have

lim
i∈I

∫
γi

f =

∫
γ

f .

In particular, we have
lim
i∈I

νγi = νγ weakly in M+(X).

(b) The map γ 7→ νγ from RA(X) to M+(X) is universally Lusin measurable.

(c) The map γ 7→ Rγ is universally Lusin measurable from RA(X) to BVCc([0, 1]; X) endowed with
the topology τC and it is also Borel if (X, τ) is Souslin.

(d) If f : X → R is a bounded Borel function (or f : X → [0,+∞] Borel) the map γ 7→
∫
γ

f is Borel.
In particular the family of measures {νγ}γ∈RA(X) is Borel.

(e) If (X, τ) is compact and Γ ⊂ RA(X) satisfies supγ∈Γ `(γ) < +∞ then Γ is relatively compact in
RA(X) w.r.t. the τA topology.

(f) If (X, d) is complete and Γ ⊂ RA(X) satisfies the following conditions:

1) supγ∈Γ `(γ) < +∞;

2) there exists a τ-compact set K ⊂ X such that e[γ] ∩ K , ∅ for every γ ∈ Γ;

3) {νγ : γ ∈ Γ} is equally tight, i.e. for every ε > 0 there exists a τ-compact set Kε ⊂ X such that
νγ(X \ Kε) ≤ ε for every γ ∈ Γ,

then Γ is relatively compact in RA(X) w.r.t. the τA topology.

Notice that the third condition in the statement (f) of Theorem 2.6 implies the second one whenever
infγ∈Γ `(γ) > 0.

3. Metric Sobolev spaces and their duals

In this section we will always assume that X = (X, τ, d,m) is a complete e.m.t.m. space and A is a
compatible sub-algebra of Lipb(X, τ, d). We also fix a summability exponent p ∈ (1,∞) with conjugate
q = p/(p − 1).

3.1. The Cheeger energy

Let us first define the notion of Cheeger energy CEp associated to X, [3, 5, 6, 10, 21].

Definition 3.1 (Cheeger energy). For every κ ≥ 0 and p ∈ (1,∞) we define the “pre-Cheeger” energy
functionals

pCEp( f ) :=
∫

X

(
lip f (x)

)p dm, for every f ∈ Lipb(X, τ, d),

with pCEp( f ) = +∞ if f ∈ Lp(X) \ Lipb(X, τ, d). The Lp-lower semicontinuous envelope of pCEp is the
“strong” Cheeger energy

CEp( f ) := inf
{

lim inf
n→∞

∫
X

(
lip fn

)p dm : fn ∈ Lipb(X, τ, d), fn → f in Lp(X,m)
}
.
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For every k ≥ 0 and f ∈ Lp(X,m) we also set

pCEp,κ( f ) := pCEp( f ) + κ‖ f ‖p
Lp(X,m), CEp,κ( f ) := CEp( f ) + κ‖ f ‖p

Lp(X,m).

We denote by H1,p(X) the subset of Lp(X,m) whose elements f have finite Cheeger energy CEp( f ) < ∞:

it is a Banach space with norm ‖ f ‖H1,p(X) :=
(
CEp,1( f )

)1/p
.

Remark 3.2 (The notation CE and H1,p). We used the symbol CE instead of Ch (introduced by [6]) in
the previous definition to stress three differences:

• the dependence on the strongest lip f instead of |D f |,

• the factor 1 instead of 1/p in front of the energy integral.

In this paper we will mainly adopt the “strong” approach to metric Sobolev spaces and we will use the
notation H1,p(X) to stress this fact. We refer to [5, 6] for the equivalent weak definition of W1,p(X) by
test plan. In the final section 5 we will also use a few properties related to the intermediate (but still
equivalent) Newtonian point of view, see [8, 17].

It is not difficult to check that CEp : Lp(X,m) → [0,+∞] is a convex, lower semicontinuous and p-
homogeneous functional; it is the greatest Lp-lower semicontinuous functional “dominated” by pCEp.
Notice that when m has not full support, two different elements f1, f2 ∈ Lipb(X, τ, d) may give rise to
the same equivalence class in Lp(X,m). In this case, CEp can be equivalently defined starting from the
functional

p̃CEp( f ) := inf
{
pCEp( f̃ ) : f̃ ∈ Lipb(X, τ, d), f̃ = f m-a.e.

}
,

defined on the quotient space Lipb(X, τ, d)/ ∼m.
Whenever CEp( f ) < ∞ one can show [5, 6] that the closed convex set

S p( f ) :=
{
G ∈ Lp(X,m) : ∃ fn ∈ Lipb(X, τ, d) : fn → f , lip fn ⇀ G in Lp(X,m)

}
(3.1)

admits a unique element of minimal norm, the minimal relaxed gradient denoted by |D f |?. |D f |? is
also minimal in S p( f ) with respect to the natural order structure, i.e.,

|D f |? ∈ S p( f ), |D f |? ≤ G for every G ∈ S p( f ). (3.2)

The Cheeger energy CEp admits an integral representation in terms of the minimal relaxed gradient:

CEp( f ) =

∫
X
|D f |p?(x) dm(x) for every f ∈ H1,p(X),

and enjoys the following strong approximation result (see [5, 6] in the case of bounded Lipschitz
functions, [7] for the “metric” algebra generated by truncated distance functions and [21, Thm. 12.1]
for the general case):

Theorem 3.3 (Density in energy of compatible algebras). Let A be a compatible sub-algebra of
Lipb(X, τ, d) and let I be a closed (possibly unbounded) interval of R. For every f ∈ H1,p(X) taking
values in I there exists a sequence ( fn) ⊂ A with values in I such that

fn → f , lip fn → |D f |? strongly in Lp(X,m).
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We collect a list of useful properties [6] of the minimal p-relaxed gradient.

Theorem 3.4. For every f , g ∈ H1,p(X) we have

(a) (Pointwise sublinearity) For |D(α f + βg)|? ≤ α|D f |? + β|Dg|?.

(b) (Leibniz rule) For every f , g ∈ H1,p(X) ∩ L∞(X,m) we have f g ∈ H1,p(X) and

|D( f g)|? ≤ | f | |Dg|? + |g| |D f |?. (3.3)

(c) (Locality) For any Borel set N ⊂ R with L 1(N) = 0 we have

|D f |? = 0 m-a.e. on f −1(N).

In particular for every constant c ∈ R

|D f |? = |Dg|? m-a.e. on { f − g = c}.

(d) (Chain rule) If φ ∈ Lip(R) then φ ◦ f ∈ H1,p(X) with

|D(φ ◦ f )|? ≤ |φ′( f )| |D f |?. (3.4)

Equality holds in (3.4) if φ is monotone or C1.

3.2. Legendre transform of the Cheeger energy and the dual of the Sobolev space H1,p(X)

Let us now study a few important properties of the Legendre transform of the p-Cheeger energy
and its relation with the dual of the Sobolev space H1,p(X) when p ∈ (1,∞); recall that we denote by
q = p′ = p/(p−1) the conjugate exponent of p. Let us first recall a simple property of p-homogeneous
convex functionals (see e.g., [21, Lemma A.7].

Lemma 3.5 (Dual of positively p-homogeneous functionals). Let C be a convex cone of some vector
space V, p > 1, and φ, ψ : C → [0,∞] with ψ = φ1/p, φ = ψp. We have the following properties:

(a) φ is convex and positively p-homogeneous (i.e., φ(κv) = κpφ(v) for every κ ≥ 0 and v ∈ C) in C
if and only if ψ is convex and positively 1-homogeneous on C (a seminorm, if C is a vector space
and ψ is finite and even).

(b) Under one of the above equivalent assumptions, setting for every linear functional z : V → R

1
q
φ∗(z) := sup

v∈C
〈z, v〉 −

1
p
φ(v), ψ∗(z) := sup

{
〈z, v〉 : v ∈ C, ψ(v) ≤ 1

}
, (3.5)

we have

ψ∗(z) = inf
{
c ≥ 0 : 〈z, v〉 ≤ cψ(v) for every v ∈ C

}
, φ∗(z) = (ψ∗(z))q,

where in the first infimum we adopt the convention inf A = +∞ if A is empty.

(c) An element v ∈ C attains the first supremum in (3.5) if and only if

〈z, v〉 = (ψ∗(z))q = (ψ(v))p.
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We want to study the dual functionals related to CEp,κ and pCEp,κ. The simplest situation is provided
by Lp − Lq-duality:

1
q

CE∗p,κ(w) := sup
u∈Lp

∫
X

wu dm −
1
p

CEp,κ(u) for every w ∈ Lq(X,m),

1
q

pCE∗p,κ(w) := sup
u∈Lipb(X,τ,d)

∫
X

wu dm −
1
p

pCEp,κ(u) for every w ∈ Lq(X,m).

By Fenchel-Moreau duality Theorem (see e.g., [9, Theorem 1.11], [13, Chap. IV]) it is immediate to
check that

pCE∗p,κ(w) = CE∗p,κ(w) for every w ∈ Lq(X,m),
1
p

CEp,κ(u) = sup
w∈Lq(X,m)

∫
X

uw dm −
1
q

pCE∗p,κ(w) for every u ∈ Lp(X,m). (3.6)

The situation is more complicated if one wants to study the dual of CEp with respect to the Sobolev
duality. Just to clarify all the possibilities we consider three normed vector spaces:

• The separable and reflexive Banach space V := Lp(X,m);

• The vector space Ap associated to a compatible algebra A endowed with the norm pCE1/p
p,1 .

• The Banach space W = H1,p(X) with the norm CE1/p
p,1 .

Notice that we do not know any information concerning the separability and the reflexivity of the
Banach space H1,p(X) nor the (strong) density of A in W. Since both A and W = H1,p(X) are dense
in V = Lp(X,m), if we identify V ′ with Lq(X,m) we clearly have

Lq(X,m) = V ′ ⊂ (Ap)′, Lq(X,m) = V ′ ⊂ W ′ with continuous inclusions.

On the other hand, every element L ∈ W ′ can be considered as a bounded linear functional on Ap and
thus induces an element Lrestr of (Ap)′ just by restriction, but it may happen that this identification map
is not injective. Finally, since pCEp,1 may be strictly greater than CEp,1 on Ap, in general not all the
bounded linear functionals on Ap may admit an extension to W.

Taking all these facts into account, now we want to address the question of the unique extension of
a given bounded linear functional L on Ap to an element of the dual Sobolev space W ′. We begin with
a precise definition.

Definition 3.6 (The spaces H−1,q(X), H−1,q
pd (X) and A ′

q ). We define:

• H−1,q(X) as the dual W ′ of H1,p(X);

• H−1,q
pd (X) as the subset of H−1,q(X) whose elements L satisfy the following condition: for every

choice of f , fn ∈ H1,p(X), n ∈ N, and every constant C > 0

CEp( fn) ≤ C, lim
n→∞
‖ fn − f ‖Lp(X,m) = 0 ⇒ lim

n→∞
〈L, fn〉 = 〈L, f 〉. (3.7)
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• A ′
q as the set of linear functionals L on A satisfying the following two conditions: there exists a

constant D > 0 such that ∣∣∣〈L, f 〉
∣∣∣ ≤ D

(
pCEp,1( f )

)1/p
for every f ∈ A , (3.8a)

and for every sequence fn ∈ A and every constant C > 0

pCEp( fn) ≤ C, lim
n→∞
‖ fn‖Lp(X,m) = 0 ⇒ lim inf

n→∞

∣∣∣〈L, fn〉
∣∣∣ = 0. (3.8b)

When A = A (X) = Lipb(X, τ, d) we will write A ′
q = A ′

q (X).

It would not be difficult to check that if H1,p(X) is reflexive then A is strongly dense in H1,p(X)
and H−1,q(X) = H−1,q

pd (X) ' A ′
q . In the general case, only a partial result holds and we will show that

H1,p(X) can be identified with the dual of H−1,q
pd (X), i.e., H−1,q

pd (X) is a predual of H1,p(X) (this property
justifies the index pd in the notation). Let us start with a first identification:

Proposition 3.7 (A ′
q ' H−1,q

pd (X)). The following properties hold:

(a) A ′
q is a closed subspace of (Ap)′: in particular, it is a Banach space with the norm

‖L‖A ′
q :=

(
pCE∗p,1(L)

)1/q
= sup

{
〈L, f 〉 : f ∈ A , pCEp,1( f ) ≤ 1

}
.

(b) A linear functional L on A belongs to A ′
q if and only if for every ε > 0 there exists a constant

κ > 0 such that ∣∣∣〈L, f 〉
∣∣∣p ≤ ε pCEp( f ) + κ‖ f ‖p

Lp for every f ∈ A . (3.9)

In this case (3.8b) holds in the stronger form where lim inf is replaced by lim sup.

(c) Every linear functional L ∈ A ′
q admits a unique extension L̃ in H−1,q

pd (X). The map L 7→ L̃ is a

surjective isometry between A ′
q and H−1,q

pd (X), which is therefore a closed subspace of H−1,q(X).
In particular, if L, L′ ∈ H−1,q

pd (X) coincide on A then L = L′.

Proof. (a) It is sufficient to prove that A ′
q is closed in the Banach space (Ap)′. Let L be an element

of the closure and for every ε > 0 choose elements Lε ∈ A ′
q such that ‖L − Lε‖(Ap)′ ≤ ε. For every

sequence fn ∈ A as in (3.8b) we have

lim inf
n→∞

∣∣∣〈L, fn〉
∣∣∣ ≤ lim sup

n→∞

∣∣∣〈L − Lε, fn〉
∣∣∣ + lim inf

n→∞

∣∣∣〈Lε, fn〉
∣∣∣ ≤ Cε.

Since ε > 0 is arbitrary we obtain that L ∈ A ′
q .

(b) If L satisfies (3.9) and fn ∈ A is a sequence as in (3.8b) we have

lim sup
n→∞

∣∣∣〈L, fn〉
∣∣∣p ≤ lim sup

n→∞

(
ε pCEp( fn) + κ‖ fn‖

p
Lp

)
≤ εC;

since ε is arbitrary we deduce that lim supn→∞

∣∣∣〈L, fn〉
∣∣∣ = 0, thus (3.8b) in the stronger form.

In order to prove the converse implication, we argue by contradiction by assuming that there exists
ε > 0 and a sequence fn ∈ A such that∣∣∣〈L, fn〉

∣∣∣p ≥ εpCEp( fn) + n‖ fn‖
p
Lp > 0.
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By possibly replacing fn with fn
(
pCEp,1( fn)

)−1/p, it is not restrictive to assume that pCEp,1( fn) = 1; by
(3.8a) we have for n > ε

ε ≤ εpCEp( fn) + n‖ fn‖
p
Lp ≤

∣∣∣〈L, fn〉
∣∣∣p ≤ Dp

so that limn→∞ ‖ fn‖Lp = 0 but lim infn→∞

∣∣∣〈L, fn〉
∣∣∣ ≥ ε1/p > 0.

(c) In order to define L̃ we fix f ∈ H1,p(X) and any sequence fn ∈ A such that fn → f in Lp(X,m) with
Ep := sup pCEp( fn) < ∞. By (3.9), for every ε > 0 there exists κ > 0 such that

|〈L, fn − fm〉| ≤ 2ε1/pE + κ1/p‖ fn − fm‖Lp

which shows that the sequence n 7→ 〈L, fn〉 satisfies the Cauchy condition and thus admits a limit which
we denote by 〈L̃, f 〉. This notation is justified by the fact that the limit does not depend on the sequence
fn: in fact, if f ′n is another sequence converging to f in Lp(X,m) with equibounded energy, (3.7) shows
that limn→∞ 〈L, fn − f ′n〉 = 0. It is also easy to check that the map H1,p(X) 3 f 7→ 〈L̃, f 〉 is a linear
functional.

In order to show that L̃ is bounded, for every f ∈ H1,p(X) we select an optimal sequence fn such
that CEp( f ) = limn→∞ pCEp( fn): by construction∣∣∣〈L̃, f 〉

∣∣∣ = lim
n→∞

∣∣∣〈L, fn〉
∣∣∣ ≤ lim sup

n→∞
‖L‖A ′

q

(
pCEp,1( fn)

)1/p
= ‖L‖A ′

q

(
CEp,1( f )

)1/p

so that ‖L̃‖H−1,q(X) ≤ ‖L‖A ′
q . On the other hand for every f ∈ A with pCEp( f ) ≤ 1 by choosing the

constant sequence fn ≡ f we get

〈L, f 〉 = 〈L̃, f 〉 = ‖L̃‖H−1,q(X)

(
CEp,1( f )

)1/p
≤ ‖L̃‖H−1,q(X)

since CEp( f ) ≤ pCEp( f ) ≤ 1. It follows that ‖L‖A ′
q ≤ ‖L̃‖H−1,q(X) so that the extension map ι : L 7→ L̃ is

an isometry.
It remains to prove that the image of ι coincides with H−1,q

pd (X). Since it is clear that H−1,q
pd (X) ⊂

ι(A ′
q ), it is sufficient to show the converse inclusion, i.e., that every element L̃ = ι(L) satisfies (3.7). By

linearity, it is not restrictive to check (3.7) for f = 0. If fn ∈ H1,p(X) has equibounded Cheeger energy
and limn→∞ ‖ fn‖Lp = 0, by the very definition of the Cheeger energy and the definition of L̃ we can find
another sequence gn ∈ A such that

pCEp(gn) ≤ CEp( fn) +
1
n
, ‖gn − fn‖Lp ≤

1
n
,

∣∣∣〈L, gn〉 − 〈L̃, fn〉
∣∣∣ ≤ 1

n
.

Since L ∈ A ′
q and limn→∞ ‖gn‖Lp = 0 we have limn→∞ 〈L, gn〉 = 0 so that limn→∞ 〈L̃, fn〉 = 0. �

Let us now express the dual functionals by a infimal convolution.

Lemma 3.8. For every L ∈ H−1,q(X) and every α ≥ 0, β > 0 we have

1
q

CE∗p,α+β(L) = sup
g∈H1,p(X)

〈L, g〉 −
1
p

CEp,α(g) −
β

p
‖g‖p

Lp

= min
f∈Lq(X,m)

1
q

CE∗p,α(L − f ) +
1

qβq/p ‖ f ‖
q
Lq .

(3.10)
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Proof. (3.10) is a particular case of the duality formula for the sum of two convex functions ϕ, ψ :
W → (−∞,+∞]

(ϕ + ψ)∗(L) = min
f∈W

ϕ∗(L − f ) + ψ∗( f ) for every L ∈ W ′

which holds in every Banach space W whenever there exists a point w0 ∈ W such that φ(w0) < ∞ and
ψ is finite and continuous at w0 by Fenchel-Rockafellar Theorem ( [20], see also [9, Theorem 1.12]).
Here W = H1,p(X), φ(g) := 1

pCEp,α(g), ψ(g) := β

p‖g‖
p
Lp . �

We collect in the next proposition a further list of useful properties. We will denote by
Jp : Lp(X,m)→ Lq(X,m) the duality map

(Jpu)(x) := |u(x)|p−1u(x),
∫

X
u Jpu dm = ‖u‖p

Lp = ‖Jpu‖qLq ,

and by Ap : H1,p(X) → P(H−1,q(X)) the subdifferential of the Cheeger energy with respect to the
Sobolev duality

L ∈ Apu ⇔ u ∈ H1,p(X), 〈L, v − u〉 ≤
1
p

CEp(v) −
1
p

CEp(u) for every v ∈ H1,p(X). (3.11)

Since CEp is continuous in H1,p(X), Apu , ∅ for every u ∈ H1,p(X) [13, Chap. 1, Prop. 5.3] (notice that
Ap is different from the subdifferential of CEp w.r.t. the Lp-Lq duality pair). The sum

Qp,κ := Ap + κJp is the subdifferential in H1,p(X) of
1
p

CEp,κ.

Proposition 3.9. We have the following properties

(a) For every L ∈ H−1,q
pd (X) and every κ ≥ 0 we have

1
q

CE∗p,κ(L) = sup
f∈H1,p(X)

〈L, f 〉 −
1
p

CEp,κ( f )

= sup
f∈A

〈L, f 〉 −
1
p

CEp,κ( f ) (3.12)

= sup
f∈A

〈L, f 〉 −
1
p

pCEp,κ( f ) =
1
q

pCE∗p,κ(L). (3.13)

(b) H−1,q
pd (X) coincides with the (strong) closure of V ′ = Lq(X,m) in W ′ = H−1,q(X).

(c) For every L ∈ H−1,q
pd (X) and κ > 0 there exists a unique solution uκ = Q−1

p,κ(L) ∈ H1,p(X) of the
problem

min
u∈H1,p(X)

1
p

CEp,κ(u) − 〈L, u〉 (3.14)

which satisfies

Qp,κuκ = Apuκ + κJpuκ 3 L, CE∗p,κ(L) = CEp,κ(uκ) = 〈L, uκ〉. (3.15)
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(d) For every L ∈ H−1,q(X) and κ > 0 there exists a unique function fκ := Rκ(L) solving the minimum
problem

1
q

CE∗p,κ(L) = min
f∈Lq(X,m)

1
q

CE∗p(L − f ) +
1

qκq/p ‖ f ‖
q
Lq (3.16)

The map Rκ : H−1,q(X) → Lq(Z,m) is strongly continuous. Moreover, if L ∈ H−1,q
pd (X) then

fκ = Rκ(L) = κJpuκ = κJp ◦ Q−1
p,κ(L).

(e) For every L ∈ H−1,q(X) we have

CE∗p(L) = lim
κ↓0

CE∗p,κ(L) = sup
κ>0

CE∗p,κ(L).

Proof. (a) (3.13) (which implies (3.12)) follows by an easy approximation argument combining the
definition of CEp and the continuity property (3.7) and it follows by the same argument at the end of
the proof of claim (c) of Proposition 3.7.

(b) Since H−1,q
pd (X) is a closed subspace of H−1,q(X) and clearly contains Lq(X,m), it is sufficient to

prove that Lq(X,m) is dense in H−1,q
pd (X). For every n ∈ N we consider the functional Gn := CE∗p,1+np

and we want to show that
lim sup

n↑∞
Gn(L) = 0; (3.17)

by using (3.10) (with α := 1, β := np), (3.17) is in fact equivalent to the density of Lq(X,m) in H−1,q
pd (X).

By the first formula of (3.10), for every ε > 0 we can find gn ∈ H1,p(X) such that

1
q

Gn(L) ≤ 〈L, gn〉 −
1
p

CEp,1(gn) −
np

p
‖gn‖

p
Lp + ε. (3.18)

Since

〈L, gn〉 ≤
2q/p

q
CE∗p,1(L) +

1
2p

CEp,1(gn)

and Gn(L) ≥ 0, we obtain

1
2p

CEp,1(gn) +
np

p
‖gn‖

p
Lp ≤ ε +

2q/p

q
CE∗p,1(L)

so that CEp,1(gn) is uniformly bounded and ‖gn‖Lp → 0 as n → ∞. By (3.7) we conclude that
limn→∞ 〈L, gn〉 = 0 and therefore (3.18) yields lim supn→∞Gn(L) ≤ ε. Since ε > 0 is arbitrary, we
obtain (3.17).

(c) The existence of a solution uκ ∈ H1,p(X) to (3.14) follows by (3.7) and the Direct method of the
Calculus of Variations. Let us take a minimizing sequence fn ∈ H1,p(X) such that

lim
n→∞

1
p

CEp,κ( fn) − 〈L, fn〉 = M := inf
f∈H1,p(X)

1
p

CEp,κ( fn) − 〈L, fn〉. (3.19)
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Since fn is uniformly bounded in H1,p(X), up to extracting a suitable subsequence (still denoted by fn),
it is not restrictive to assume that fn is converging to a function f ∈ H1,p(X) weakly in Lp(X,m) and

S = lim
n→∞
‖ fn‖Lp = lim

n→∞

[ p
κ

(
M + 〈L, fn〉 −

1
p

CEp( fn)
)]1/p

. (3.20)

We prove that fn is a Cauchy sequence: by the uniform convexity of the Lp(X,m)-norm, for every ε > 0
there exist S ′ < S < S ′′ such that for every h1, h2 ∈ Lp(X,m)

‖h1‖Lp ≤ S ′′, ‖h2‖Lp ≤ S ′′,
∥∥∥∥∥h1 + h2

2

∥∥∥∥∥
Lp
≥ S ′ ⇒ ‖h2 − h1‖ ≤ ε. (3.21)

By (3.20) we can find n̄ ∈ N such that for every n ≥ n̄ and

‖ fn‖Lp ≤ S ′′, M −
1
p

CEp( fn) + 〈L, fn〉 ≥
κ

p
(S ′)p.

For every m, n ≥ n̄ we thus get

M ≤
1
p

CEp,κ

(1
2

( fn + fm)
)
−

1
2
〈L, fn + fm〉

≤
1
2

(1
p

CEp( fn) − 〈L, fn〉 +
1
p

CEp( fm) − 〈L, fm〉
)

+
κ

p

∥∥∥∥ fn + fm

2

∥∥∥∥p

Lp

≤ M −
κ

p
(S ′)p +

κ

p

∥∥∥∥ fn + fm

2

∥∥∥∥p

Lp
,

and therefore ∥∥∥∥ fn + fm

2

∥∥∥∥
Lp
≥ S ′

so that (3.21) yields ‖ fn− fm‖Lp ≤ ε for every n,m ≥ n̄. We deduce that limn→∞ ‖ fn− f ‖Lp = 0; since fn is
uniformly bounded in H1,p(X), (3.7) yields limn→∞ 〈L, fn〉 = 〈L, f 〉 and the lower semicontinuity of the
Cheeger energy yields CEp( f ) ≤ lim infn→∞ CEp( fn). By (3.19) we conclude that 1

pCEp,κ( f ) − 〈L, f 〉 =

M so that f is the unique minimizer of (3.14).

(d) (3.16) is an immediate consequence of (3.10) with α = 0 and β = κ.
In order to prove the continuity of Rκ, let Ln ∈ H−1,q(X) be a sequence strongly converging to L and

let fn = Rκ(Ln) ∈ Lq(X,m). Since CE∗p,κ(Ln) is uniformly bounded, we obviously get a uniform bound
for CE∗p,κ(Ln − fn) and ‖ fn‖Lq . Let f ∈ Lq(X,m) be any weak Lq limit point of fn, e.g., attained along a
subsequence fn( j). Since limn→∞ CE∗p,κ(Ln) = CE∗p,κ(L) and

lim inf
j→∞

CE∗p,κ(Ln( j) − fn( j)) ≥ CE∗p,κ(L − f ), lim inf
j→∞

‖ fn( j)‖
q
Lq ≥ ‖ f ‖

q
Lq

we deduce that
CE∗p,κ(L) ≥ CE∗p,κ(L − f ) +

1
qκq/p ‖ f ‖

q
Lq

so that f = Rκ(L). Since Rκ(L) is the unique weak limit point of the sequence fn in Lq, we conclude
that fn ⇀ Rκ(L) in Lq(X,m). The same variational argument also shows that lim supn→∞ ‖ fn‖Lq ≤ ‖ f ‖Lq

so that the convergence is strong.
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Finally, if L ∈ H−1,q
pd (X), fκ is the (unique) minimizer of (3.10) and uκ is the (unique) minimizer of

(3.14), we get

1
q

CEp(L − fκ) +
1
p

CEp(uκ) − 〈L − fκ, uκ〉 +
1

qκq/p ‖ fκ‖
q
Lq +

κ

p
‖uκ‖

p
Lp − 〈 fκ, uκ〉 = 0

which yields
Apuκ = L − fκ, fκ = κJpuκ.

(e) Since the map κ 7→ CE∗p,κ(L) is nonincreasing, we have limκ↓0 CE∗p,κ(L) = supκ>0 CE∗p,κ(L) ≤ CE∗p(L).
On the other hand, for every f ∈ H1,p(X) and ε > 0, choosing κ > 0 sufficiently small so that κ

p‖ f ‖
p
Lp ≤ ε

we get

〈L, f 〉 −
1
p

CEp( f ) − ε ≤ 〈L, f 〉 −
1
p

CEp( f ) −
κ

p
‖ f ‖p

Lp = 〈L, f 〉 −
1
p

CEp,κ( f )

≤
1
q

CE∗p,κ(L) ≤
1
q

sup
κ>0

CE∗p,κ(L)

Since the inequality holds for every ε > 0 and every f ∈ H1,p(X), we obtain the converse inequality
CE∗p(L) ≤ supκ>0 CE∗p,κ(L). �

Proposition 3.9 yields the following interesting duality result, which is also related to the theory of
derivations discussed in [12].

Corollary 3.10 (H1,p(X) is the dual of a Banach space). H1,p(X) can be isometrically identified with
the dual of H−1,q

pd (X). In particular, if Lq(X,m) is a separable space, H1,p(X) is the dual of a separable
Banach space.

Proof. Let z be a bounded linear functional on H−1,q
pd (X). Since Lq(X,m) is continuously and densely

imbedded in H−1,q
pd (X), for every f ∈ Lq(X,m) 〈z, f 〉 ≤ ‖z‖H−1,q

pd (X)‖ f ‖Lq , so that there exists a unique
u = ι(ζ) ∈ Lp(X,m) such that

〈z, f 〉 =

∫
X

u f dm for every f ∈ Lq(X,m).

By (3.6) and the strong density of Lq(X,m) in H−1,q
pd (X)

1
p

CEp,1(u) = sup
f∈Lq(X,m)

∫
X

u f dm −
1
q

CE∗p,1( f ) = sup
f∈Lq(X,m)

〈z, f 〉 −
1
q
‖ f ‖q

H−1,q(X)

= sup
f∈H−1,q

pd (X)

〈z, f 〉 −
1
q
‖ f ‖q

H−1,q
pd (X)

=
1
p
‖z‖p

(H−1,q
pd (X))′

.

It follows that ι is an isometry from the dual of H−1,q
pd (X) and H1,p(X). Since ι is clearly surjective, we

conclude. �
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Remark 3.11 (H1,p(X) as Gagliardo completion [16]). Recall that if (A, ‖ · ‖A) is a normed vector space
continuously imbedded in a Banach space (V, ‖ · ‖V), the Gagliardo completion AV,c is the Banach space
defined by

W :=
{
v ∈ V : ∃(an)n ⊂ A, lim

n→∞
‖an − v‖V = 0, sup

n
‖an‖A < ∞

}
with norm

‖v‖W := inf
{

lim inf
n→∞

‖an‖A : an ∈ A, lim
n→∞
‖an − v‖V = 0

}
.

When supp(m) = X, we can identify A with a vector space A with the norm induced by pCEp imbedded
in V := Lp(X,m); it is immediate to check that H1,p(X) coincides with the Gagliardo completion of A
in V . When A (and therefore W) is strongly dense in V , we can identify the dual V ′ of V as a subset of
the dual W ′ of W and we can define the set W ′

pd as the closure of V ′ in W ′. If V is uniformly convex,
the same statements and characterizations given in Propositions 3.7 and 3.9 hold in this more abstract
setting. In particular, W can be isometrically identified with the dual of W ′

pd.

3.3. Radon measures with finite (dual) energy

The following result provides a useful criterion to check if a linear functional on A belongs to A ′
q .

Let us first recall that a subset F ⊂ L1(X,m) is weakly relatively compact in L1(X,m) if and only if it
satisfies one of the following equivalent properties [13, Chap. VIII, Theorem 1.3]:

a) for all ε > 0 there exists m ≥ 0 such that∫
| f (x)|≥m

| f (x)| dm(x) ≤ ε for every f ∈ F;

b) (Equiintegrability) For all ε > 0 there exists δ > 0 such that for every Borel set B ⊂ X∫
B
| f (x)| dm(x) ≤ ε whenever f ∈ F and m(B) ≤ δ.

c) (Uniform superlinear estimate) There exists a positive, increasing, l.s.c. and convex function Φ :
[0,∞)→ [0,∞) such that limr→∞Φ(r)/r = +∞ and

sup
f∈F

∫
X

Φ(| f (x)|) dm(x) < ∞.

Proposition 3.12. Let L be a linear functional on A satisfying (3.8a). If for every sequence fn ∈ A
satisfying

− 1 ≤ fn ≤ 1, lim
n→∞
‖ fn‖Lp(X,m) = 0, {(lip fn)p : n ∈ N} is equiintegrable (3.22)

one has lim infn→∞ |〈L, fn〉| = 0, then L ∈ A ′
q .

Proof. We split the proof in two steps.
Claim 1: if L is a linear functional on A satisfying (3.8a) and for every sequence ( fn)n∈N ⊂ A

lim
n→∞
‖ fn‖Lp = 0 and {(lip fn)p : n ∈ N} equiintegrable ⇒ lim inf

n→∞
|〈L, fn〉| = 0 (3.23)

Mathematics in Engineering Volume 3, Issue 1, 1–31.



20

then L ∈ A ′
q .

We argue by contradiction and we assume that there exists a sequence fn ∈ A such that

pCEp,1( fn) ≤ C, lim
n→∞
‖ fn‖Lp = 0 and lim inf

n→∞
|〈L, fn〉| > 0.

By possibly changing the sign of fn it is not restrictive to assume that 〈L, fn〉 ≥ c > 0 for every
n ∈ N. Applying Mazur Lemma we find coefficients αn,m ≥ 0, n ∈ N, 0 ≤ m ≤ M(n) such that
gn :=

∑M(n)
m=0 αn,m lip fn+m is strongly converging in Lp(X,m). Thus n 7→ gp

n is strongly converging in
L1(X,m) and it is therefore equi-integrable.

We now consider f̃n :=
∑M(n)

m=0 αn,m fn+m. By construction

〈L, f̃n〉 =

M(n)∑
m=0

αn,m〈L, fn+m〉 ≥ c > 0, lim
n→∞
‖ f̃n‖Lp = 0 (3.24)

and

lip f̃n ≤

M(n)∑
m=0

αn,m lip fn+m = gn

so that (3.23) yields lim infn→∞ 〈L, f̃n〉 = 0, which contradicts the first inequality of (3.24).

Claim 2: it is sufficient to prove the implication (3.23) for sequences taking values in [−1, 1]. Let
fn ∈ A as in (3.23), mn := sup | fn|, Ep := supn pCEp( fn) < ∞, and let φ ∈ C1(R) be an odd function
such that

φ(r) = r if |r| ≤ 1/2, −1 ≤ φ(r) ≤ 1, 0 ≤ φ′(r) ≤ 1 for every r ∈ R. (3.25)

Let us fix ε > 0 and δ := ε/3E so that Epδp ≤ εp/3. For every choice of n ∈ N we can find an odd
polynomial Pn such that (see e.g., [21, Lemma 2.23])

−1 ≤ Pn(r) ≤ 1, 0 ≤ P′n(r) ≤ 1, |P′n(r) − φ′(r)| ≤ δ for every r ∈ [−mn,mn],

We set
gn := Pn ◦ fn, hn := fn − gn = Qn( fn) where Qn(r) = r − Pn(r);

notice that gn and hn belong to A as well. Since lip gn ≤ lip fn and gn takes values in [−1, 1], by
assumption we have lim infn→∞ |〈L, gn〉| = 0. On the other hand, ‖hn‖Lp ≤ ‖ fn‖Lp , lip hn ≤ lip fn, and
lip hn(x) ≤ Q′n( fn(x)) lip fn(x) ≤ δ lip fn(x) whenever | fn(x)| < 1/2. Since Chebichev inequality yields

m
{
| fn| ≥ 1/2

}
≤ 2p‖ fn‖

p
Lp(X,m), lim

n→∞
m
{
fn ≥ 1/2

}
= 0,

we can choose n0 sufficiently big so that for every n ≥ n0∫
{| fn |≥1/2}

(lip fn)p dm ≤ εp/3,
∫

X
|hn|

p dm ≤ εp/3,

and ∫
X
(lip hn)p dm ≤ δp

∫
{| fn |<1/2}

(lip fn)p dm +

∫
{| fn |≥1/2}

(lip fn)p dm ≤ δpEp +
1
3
εp ≤

2
3
εp.

(3.8a) then yields |〈L, hn〉| ≤ Dε for n ≥ n0 and therefore lim infn→∞ |〈L, fn〉| ≤ Dε. Since ε > 0 is
arbitrary, we conclude. �
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Our last criterium concerns positive functionals, i.e., satisfying

〈L, f 〉 ≥ 0 whenever f ∈ A , f ≥ 0. (3.26)

We will see in Theorem 4.7 that they are always induced by a Radon measure.

Theorem 3.13. If L is a linear functional on A satisfying (3.8a) and (3.26), then L ∈ A ′
q .

Proof. We apply Proposition 3.12 and refine the last argument of its proof. Let fn ∈ A as in (3.22)
with Ep := supn CEp( fn) We select strictly positive parameters ε, κ > 0, δ := ε/3E, the odd function φ
as in (3.25) with φκ(r) := κφ(r/κ), and odd polynomials P̃κ,ε satisfying

−1 ≤ P̃κ,ε(r) ≤ 1, 0 ≤ P̃′κ,ε(r) ≤ 1, |P̃′κ,ε(r) − φ′(r)| ≤ δ if |r| ≤
1
κ
.

We also set Pκ,ε(r) := κP̃κ,ε(r/κ), Qκ,ε(r) = r − Pκ,ε(r), gn,κ := Pκ,ε( fn), hn,κ := fn − gn,κ = Qκ,ε( fn). By
(3.26) and observing that −κ ≤ gn,κ ≤ κ and the constant function 1 ∈ A has finite Cheeger energy, we
have

−κ〈L, 1〉 = −〈L, κ〉 ≤ 〈L, gn,κ〉 ≤ 〈L, κ〉 = κ〈L, 1〉.

On the other hand, since 0 ≤ Q′n,κ ≤ 1 if |r| ≤ 1 and |Q′n,κ(r)| ≤ δ if |r| ≤ κ/2, we have

|hn,κ| ≤ | fn|, lip hn,κ ≤ lip fn, lip hn,κ ≤ δ lip fn if | fn| < κ/2.

Applying Chebychev inequality

m
{
| fn| ≥ κ/2

}
≤

2p‖ fn‖
p
Lp(X,m)

κp ,

we can find n0 (depending on ε, κ) sufficiently big such that∫
X
|hn,κ|

p dm ≤ εp/3,
∫
{ fn≥κ/2}

(lip fn)p dm ≤ εp/3 for every n ≥ n0,

so that ∫
X
(lip hn,κ)p dm ≤ δp

∫
{| fn |<κ/2}

(lip fn)p dm +

∫
{| fn |≥1/2}

(lip fn)p dm ≤ δpEp +
1
3
εp ≤

2
3
εp.

By (3.8a) it follows that

lim inf
n→∞

|〈L, fn〉| ≤ lim inf
n→∞

(
|〈L, gn,κ〉| + |〈L, hn,κ〉|

)
≤ κ〈L, 1〉 + Dε.

Since ε, κ are arbitrary, we get lim infn→∞ |〈L, fn〉| = 0. �

Definition 3.14 (Measure with finite dual energy). A Radon measure µ ∈ M+(X) has finite energy if
there exists a constant D > 0 such that∫

X
f dµ ≤ D

(
pCEp,1( f )

)1/p
for every nonnegative f ∈ Lipb(X, τ, d). (3.27)
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Corollary 3.15 (Measures with finite dual energy belong to A ′
q (X)). If µ ∈ M+(X) has finite energy

then the linear functional f 7→
∫

X
f dµ on A (X) = Lipb(X, τ, d) belongs to A ′

q (X) and can be uniquely
extended to a functional Lµ ∈ H−1,q

pd (X) satisfying

CE∗p,κ(Lµ) = pCE∗p,κ(µ) for every κ > 0. (3.28)

In particular there exists a unique element uκ = Q−1
p,κ(Lµ) ∈ H1,p(X) minimizing (3.14) with L = Lµ. uκ

satisfies the variational inequality∫
X

f dµ − κ
∫

X
Jp(uκ) f dm ≤

1
p

CEp(uκ + f ) −
1
p

CE(uκ) for every f ∈ Lipb(X, τ, d). (3.29)

Proof. We can apply Theorem 3.13 with A = Lipb(X, τ, d). Clearly (3.26) holds; by decomposing
f ∈ Lipb(X, τ, d) as the difference f = f+ − f− of its positive and negative part and recalling that
pCEp( f±) ≤ pCEp( f ), (3.27) yields (3.8a) with constant 2D. (3.29) follows by (3.15) and the definition
of Ap given in (3.11). �

4. Dynamic representation of Radon measures with finite energy

4.1. Nonparametric dynamic plans and their barycentric entropy

Definition 4.1 ((Nonparametric) dynamic plans). A (nonparametric) dynamic plan is a Radon measure
π ∈M+(RA(X)) on RA(X) such that

π(`) :=
∫

RA(X)
`(γ) dπ(γ) < ∞. (4.1)

Using the universally Lusin-measurable map R : RA(X) → BVCc([0, 1]; X) in (2.7) we can also
lift π to a Radon measure π̃ = R]π on the subset BVCc([0, 1]; X) of BVC([0, 1]; X) defined in (2.6).
Conversely, any Radon measure π̃ on C([0, 1]; (X, τ)) concentrated on BVC([0, 1]; X) yields the Radon
measure π := q]π̃ on RA(X). Notice that q](R]π) = π.

If π is a dynamic plan in M+(RA(X)), thanks to Theorem 2.6(e) and Fubini’s Theorem [11, Chap. II-
14], we can define the Borel measure µπ := Proj(π) ∈M+(X) by the formula∫

f dµπ :=
"

γ

f dπ(γ) for every bounded Borel function f : X → R.

µπ is a Radon measure with total mass π(`) given by (4.1) [21, § 8] and it can also be considered as the
integral w.r.t. π of the Borel family of measures νγ, γ ∈ RA(X) [11, Chap. II-13], in the sense that∫

X
f dµπ(x) =

∫
RA(X)

( ∫
X

f dνγ
)

dπ(γ).

Recall that p, q ∈ (1,∞) is a fixed pair of conjugate exponents.

Definition 4.2. We say that π ∈ M+(RA(X)) has barycenter in Lq(X,m) if there exists h ∈ Lq(X,m)
such that µπ = hm, or, equivalently, if∫ ∫

γ

f dπ(γ) =

∫
f h dm for every bounded Borel function f : X → R,

and we call Barq(π) := ‖h‖Lq(X,m) the barycentric q-entropy of π. We will denote by Bq(RA(X)) the set
of all plans with barycenter in Lq(X,m) and we will set Barq(π) := +∞ if π < Bq(RA(X)).
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Barq : M+(RA(X))→ [0,+∞] is a convex and positively 1-homogeneous functional, which is lower
semicontinuous w.r.t. the weak topology of M+(RA(X)), since it can also be characterized as the Lq

entropy of the projected measure µπ = Proj(π) with respect to m:

Barq
q(π) = Lq(µπ|m),

where for an arbitrary σ ∈M+(X)

Lq(σ|m) :=


∫

X

(dσ
dm

)q
dm if σ � m,

+∞ otherwise.
(4.2)

Notice that Barq(π) = 0 iff π is concentrated on the set of constant arcs in RA(X).
For every µ0, µ1 ∈M+(X) we will consider the (possibly empty) set

Π(µ0, µ1) :=
{
π ∈M+(RA(X)) : (ei)]π = µi

}
and we define

Dq(µ0, µ1) := inf
{

Barq
q(π) : π ∈ Π(µ0, µ1)

}
, (4.3)

with the usual convention Dq(µ0, µ1) := +∞ if Π(µ0, µ1) = ∅. Clearly Dq(µ0, µ1) = +∞ if µ0(X) ,
µ1(X).

Assuming that (X, d) is complete, it is possible to show ( [21, § 11]) that whenever Dq(µ0, µ1) < +∞

the infimum in (4.3) is attained and the set of optimal plans Πo(µ0, µ1) is a compact convex subset of
M+(RA(X)). Morever, for every optimal π ∈ Πo(µ0, µ1) the measure µo = Proj(π) is independent of π.

Dq provides an important representation for the dual of the p-Cheeger energy.

Theorem 4.3 ( [21, Thm. 11.8]). For every µ0, µ1 ∈M+(X) we have

Dq(µ0, µ1) = pCE∗p(µ0 − µ1). (4.4)

Remark 4.4. Let µ = µ0 − µ1 with µi ∈ M+(X) and let µ+, µ− ∈ M+(X) be mutually singular Radon
measures providing the Jordan decomposition of µ as µ+ − µ− with µ′ = µ0 − µ+ = µ1 − µ− ∈ M+(X).
(4.4) shows that

Dq(µ0, µ1) = pCE∗p(µ0 − µ1) = pCE∗p(µ+ − µ−) = Dq(µ+, µ−).

Denoting by c : X → RA(X) the map that at every point x associates the constant curve taking values
x, if πo ∈ Πo(µ+, µ−) and π′ := c]µ′, it is easy to check that π := πo + π′ ∈ Πo(µ0, µ1).

4.2. Dynamic representation of the dual energy

Definition 4.5. For every nonparametric dynamic plan π ∈M+(RA(X)) and κ > 0 we define

Eq,κ(π) := Barq
q(π) + κ−q/pLq((e1)]π|m).

For every µ ∈M+(X) we set

Dq,κ(µ) := inf
{
Eq,κ(π) : π ∈M+(RA(X)), (e0)]π = µ

}
. (4.5)
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Theorem 4.6. For every µ ∈M+(X) we have

Dq,κ(µ) = pCE∗p,κ(µ).

Moreover, if one of the above quantities is finite

(a) The infimum in (4.5) is attained and there exists a unique pair of functions fκ, gκ ∈ Lq(X,m) such
that for every optimal plan π

gκm = Proj(π), µκ = fκm = (e1)]π, π ∈ Πo(µ, µκ).

(b) There exists a unique solution uκ = Q−1
p,κ(Lµ) of

Apu + κJpu 3 Lµ

and it satisfies
Jp

(
|Du|?

)
= gκ, κJpu = fκ (4.6)

〈Lµ, u〉 = CEp,κ(u) = CE∗p,κ(Lµ) = pCE∗p,κ(µ).

Moreover, setting µ± := (µ − µκ)± and µ′ := µ − µ+ = µκ − µ−, we can always choose π = πo + π′

where πo ∈ Πo(µ+, µ−), π′ = c]µ
′, pCE∗p(µ − µκ) = Barq

q(π) = Barq
q(πo).

Proof. By Corollary 3.15 we can extend µ to a functional Lµ ∈ H−1,q
pd (X) satisfying (3.28). We can then

apply Proposition 3.9 and find nonnegative fκ ∈ Lq(X,m) and uκ ∈ Lp(X,m) such that

CE∗p,κ(Lµ) = CE∗p(Lµ − fκ) + κ−q/p‖ fκ‖
q
Lq(X,m) = pCE∗p(µ − fκm) + κ−q/pLq( fκm|m)

and uκ satisfies fκ = κJpuκ and (3.15) with L = Lµ. Setting µκ := fκm and selecting π ∈ Πo(µ, µκ)
according to Remark 4.4, (4.4) yields

CE∗p,κ(Lµ) = Barq
q(π) + κ−q/pLq((e1)]π|m) = Eq,κ(π) ≥ Dq,κ(µ).

On the other hand, it is easy to check that Dq,κ(µ) ≥ pCE∗p,κ(µ), since for every plan π ∈M+(RA(X)) as
in (4.5) and every f ∈ Lipb(X, τ, d)∫

X
f dµ ≤

∫
X

f d(e0)]π −
∫

X
f d(e1)]π +

∫
X

f d(e1)]π

≤

∫
RA(X)

∫
γ

lip f dπ(γ) + ‖ f ‖Lp

(
Lq((e1)]π|m)

)1/q

≤
∥∥∥ lip f

∥∥∥
Lp Barq(π) + ‖ f ‖Lp

(
Lq((e1)]π|m)

)1/q
≤

(
pCEp,κ( f )

)1/p (
Eq,κ(π)

)1/q
.

Using now the fact that 〈Lµ − fκ, u〉 = Barq
q(π) = CEp(uκ) we get∫

X
gq
κ dm =

∫
X
|Duκ|

p
? dm = 〈Lµ − fκ, uκ〉. (4.7)
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We can also select a sequence wn ∈ Lipb(X, τ, d) such that wn → uκ, lip wn → |Duκ|? strongly in
Lp(X,m), so that

〈Lµ − fκ, uκ〉 = lim
n→∞
〈Lµ − fκ,wn〉 = lim

n→∞

( ∫
X

wn dµ −
∫

X
wn dµ1

)
= lim

n→∞

( ∫
RA(X)

wn(e0(γ)) − wn(e1(γ))
)

dπ(γ)

≤ lim sup
n→∞

∫
RA(X)

∫
γ

lip wn dπ(γ) = lim sup
n→∞

∫
X

gκ lip wn dm =

∫
X

gκ|Du|? dm.

Inserting this inquality in (4.7) we obtain the first identity of (4.6). �

Let us give a first important application of the above result to the representation of positive
functionals.

Theorem 4.7. Let A be a compatible subalgebra of Lipb(X, τ, d) and let L be functional on A
satisfying

|〈L, f 〉| ≤ D
(
pCE1,p( f )

)1/p
for every f ∈ A , 〈L, f 〉 ≥ 0 for every positive f ∈ A .

Then L admits a unique extension L̃ ∈ H−1,q
pd (X) and there exists a unique µ ∈M+(X) representing L as

〈L, f 〉 =

∫
X

f dµ for every f ∈ A . (4.8)

Proof. By Theorem 3.13 and Proposition 3.7(c) we know that L is the restriction to A of a unique
functional L̃ ∈ H−1,q

pd (X). It is easy to check that L̃ is also positive on H1,p(X) and applying Proposition
3.9 we can find a sequence wn ∈ Lq(X,m), wn ≥ 0, strongly converging to L̃ in H−1,q(X). Let µn := wnm

and νn := R1(wn)m; applying Theorem 4.6 we can find optimal dynamic plans πn ∈ Πo(µn, νn) such that
Barq(πn) = pCE∗1,p(µn − νn) ≤ C. Since Lq(νn|m) is also uniformly bounded, the sequence πn satisfies
the tightness criterium of [21, Lemma 8.5], so that it admits a subsequence (still denoted by πn) weakly
converging to π ∈ Bq(RA(X)) ⊂M+(RA(X)).

The Radon measure µ := (e0)]π is the weak limit of µn: in particular, for every f ∈ A

〈L, f 〉 = 〈L̃, f 〉 = lim
n→∞

∫
X

f dµn =

∫
X

f dµ. �

5. Measures with finite energy and Newtonian capacity

In this last section we apply the previous result to prove new properties of the Newtonian capacity.
We first recall the basic facts about the Newtonian approach [18,23], based on the notion of p-Modulus
which has been introduced by Fuglede [15] in the natural framework of collection of positive measures,
as in [1]. We refer to [8, 17] for a comprehensive presentation of this topic. As usual, p, q ∈ (1,∞)
denote a pair of conjugate exponents.
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5.1. p-Modulus of a family of arcs and Newtonian Sobolev spaces

Definition 5.1 (p-Modulus of a family of rectifiable arcs). The p-Modulus of a collection Γ ⊂ RA(X)
is defined by

Modp(Γ) := inf
{∫

X
f p dm : f : X → [0,∞] is Borel,

∫
γ

f ≥ 1 for all γ ∈ Γ

}
.

Γ is said to be Modp-negligible if Modp(Γ) = 0. We say that a property P on RA(X) holds Modp-a.e. if
the set of arcs where P fails is Modp-negligible. We say that a property P on X holds quasi everywhere
(q.e.) if the set of points E where P fails is m-negligible and satisfies

Modp(ΓE) = 0 where ΓE :=
{
γ ∈ RA(X) : `(γ) > 0, e[γ] ∩ E , ∅

}
.

Notice that if E is m-negligible then for Modp-a.e. arc γ the set {t ∈ [0, 1] : Rγ(t) ∈ E} is L 1-
negligible. It can be shown (see e.g., [8]) that Modp is an increasing and subadditive functional which
is continuous along increasing sequences. In fact, by [1] and [21, § 7.2], Modp is also continuous
along decreasing sequence of compact sets, so that it is a Choquet capacity for the compact paving in
RA(X) [11, Chap. III, 28].

It is not difficult to check that for every dynamic plan π ∈ Bq(RA(X)) and every π-measurable set
Γ ⊂ RA(X)

π(Γ) ≤ Barq(π) Mod1/p
p (Γ),

which in particular shows that Borel Modp-negligible sets are also π-negligible for every
π ∈ Bq(RA(X)). In fact, a much more refined result holds [1, 21]:

Theorem 5.2. If X is a complete e.m.t.m. space and τ is a Souslin topology for X, then every Borel or
Souslin set Γ in RA(X) is Modp-capacitable and satisfies(

Modp(Γ)
)1/p

= sup
{
π(Γ) : π ∈M+(RA(X)), Barq(π) ≤ 1

}
.

In particular, Γ is Modp-negligible if and only if π(Γ) = 0 for every π ∈ Bq(RA(X)).

Recall that ei(γ), i = 0, 1, denote the initial and final points of a rectifiable arc γ ∈ RA(X).

Definition 5.3 (Newtonian weak upper gradient). Let f : X → R be m-measurable and p-summable
function. We say that f belongs to the Newtonian space N1,p(X) if there exists a nonnegative g ∈
Lp(X,m) such that ∣∣∣∣ f (e1(γ)) − f (e0(γ))

∣∣∣∣ ≤ ∫
γ

g for Modp-a.e. arc γ ∈ RA(X). (5.1)

In this case, we say that g is a N1,p-weak upper gradient of f .

Functions with Modp-weak upper gradient have the important Beppo-Levi property of being
absolutely continuous along Modp-a.e. arc γ (more precisely, this means f ◦ Rγ is absolutely
continuous, see [23, Proposition 3.1]). Notice that functions in N1,p(X) are everywhere defined. We
say that f̃ ∈ N1,p(X) is a good representative of a function f ∈ Lp(X,m) if m({ f̃ , f }) = 0.

Weak upper gradient enjoys a strong stability property [8, Prop. 2.3], resulting from a refined version
of Fuglede’s Lemma:
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Theorem 5.4. Let fn ∈ N1,p(X), gn ∈ Lp(X,m) be two sequences strongly converging to f , g ∈ Lp(X,m)
respectively in Lp(X,m). If gn is a N1,p-weak upper gradient of f then there exists a good representative
f̃ ∈ N1,p(X) of f and a subsequence k 7→ n(k) such that fn(k) → f̃ quasi everywhere; moreover g is a
N1,p-weak upper gradient of f̃ .

It is clear that a function f ∈ Lipb(X, τ, d) belongs to N1,p(X) and lip f is a N1,p-weak upper gradient
(it is in fact an upper gradient). By Theorems 5.4 and 3.3 one can easily get that also every f ∈ H1,p(X)
admits a good representative f̃ ∈ N1,p(X) and |D f |? is a N1,p-weak upper gradient of f̃ . Equivalently,
f̃ is absolutely continuous along Modp-a.e. arc and g satisfies (5.1) Modp-a.e.

In fact these two notions are essentially equivalent modulo the choice of a representative in the
equivalence class [1, 5, 6, 21]:

Theorem 5.5. Let us suppose that X is a complete e.m.t.m. space. Every function f ∈ N1,p(X) also
belongs to H1,p(X) and every N1,p-weak upper gradient g satisfies g ≥ |D f |? m-a.e., so that |D f |? is
also the minimal N1,p-weak upper gradient of f .

5.2. Applications to the Newtonian capacity

The Newtonian capacity Capp(E) of a subset E ⊂ X can be defined as

Capp(E) := inf
{
CEp,1(u) : u ∈ N1,p(X), u ≥ 1 on E

}
. (5.2)

By choosing u as the function taking the constant value 1 it is immediate to check that in our setting
the capacity of a set is always finite and

Capp(E) ≤ m(X) < ∞ for every E ⊂ X.

It can be proved [8, Prop. 1.48] that

E ⊂ X has 0 capacity if and only if E is m-negligible and Modp(ΓE) = 0, (5.3)

so that a property P on X holds quasi everywhere if the set where P fails has 0 capacity. Notice that if
f̃i ∈ N1,p(X) coincide m-a.e., then f̃1 = f̃2 q.e. in X. Notice moreover that we can use q.e. inequality in
(5.2), i.e.,

u ∈ N1,p(X), u ≥ 1 q.e. on E ⇒ Capp(E) ≤ CEp,1(u).

We also recall that the capacity satisfies the following properties [8, Thm 1.27, Prop. 2.22, Thm. 6.4]:

Capp(∅) = 0

m(E) ≤ Capp(E)

E1 ⊂ E2 ⇒ Capp(E1) ≤ Capp(E2)

Capp(E1 ∪ E2) + Capp(E1 ∩ E2) ≤ Capp(E1) + Capp(E2)

Capp

( ∞⋃
n=1

En) ≤
∞∑

n=1

Capp(En)

En ↑ E ⇒ Capp(E) = lim
n→∞

Capp(En) = sup
n>0

Capp(En).
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We want now to study the relation between the Newtonian capacity and measures µ ∈ M+(X) with
finite energy, according to Definition 3.14. We will denote by

µ = µa + µ⊥, µa = %m � m, µ⊥ ⊥ m (5.4)

the canonical Lebesgue decomposition of µ w.r.t. m. Since by a simple truncation argument it is easy
to check that

1
q

pCE∗p,1(µ) = sup
{ ∫

X
f dµ −

1
p

pCEp,1( f ) : f ∈ Lipb(X, τ, d), f ≥ 0
}

we obtain that
µ ≤ ν ⇒ pCE∗p,1(µ) ≤ pCE∗p,1(ν).

In particular pCE∗p,1(µ⊥) ≤ pCE∗p,1(µ) < ∞.

Theorem 5.6. Let µ ∈ M+(X) be a measure with finite energy and let Lµ ∈ H−1,q
pd (X) be the linear

functional associated to µ according to Corollary 3.15.

(a) If E is a universally measurable subset of X with 0 capacity then E is µ-negligible.

(b) If u ∈ H1,p(X) is nonnegative and ũ ∈ N1,p(X) is a good representative of u, then ũ ∈ L1(X, µ) and

〈Lµ, u〉 =

∫
X

ũ dµ ≤
(
pCE∗p,1(µ)

)1/q(
CEp,1(u)

)1/p
. (5.5)

Proof. (a) Let E be a set with 0 capacity according to (5.3); since m(E) = 0, by considering the
Lebesgue decomposition (5.4) it is sufficient to show that µ⊥(E) = 0. It is not restrictive to assume
µ⊥(X) > 0; by Theorem 4.6 we can find a plan π ∈ Bq(RA(X)) such that

µ⊥ = (e0)]π.

It follows that

µ⊥(E) = π
{
γ ∈ RA(X) : e0(γ) ∈ E

}
≤ π(ΓE) ≤ Modp(ΓE) Barq(π) = 0.

(b) Let us first assume that ũ ≤ M for some constant M > 0. We can find a sequence un ∈ Lipb(X, τ, d)
taking values in [0,M], converging to ũ q.e. and with un → u, lip un → |Du|? in L2(X,m). The uniform
bound, the q.e. convergence and the fact that Lµ ∈ H−1,q

pd (X) yield

lim
n→∞

∫
X

un dµ =

∫
X

ũ dµ = 〈Lµ, ũ〉 = 〈Lµ, u〉 ≤
(
pCE∗p,1(µ)

)1/q(
CEp,1(u)

)1/p

The case of a general nonnegative u follows by passing to the limit in the sequence uM := u ∧ M as
M ↑ ∞ and using monotone convergence. �

Theorem 5.7. For every Borel set E ⊂ X and every measure µ ∈M+(X) with finite energy we have

µ(E) ≤
(

Capp(E)
)1/p(

pCE∗p,1(µ)
)1/q

. (5.6)
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If F ⊂ X is a closed set then there exists µ ∈M+(X) supported in F with

µ(F) = Capp(F) = pCE∗p,1(µ) = CEp,1(u)

where u ∈ N1,p(X) realizes the infimum of (5.2) and

Lµ = Jpu + Apu in H−1,q
pd (X).

Equivalently, for every closed set F ⊂ X(
Capp(F)

)1/p
= max

{
µ(F) : µ ∈M+(X), pCE∗p,1(µ) ≤ 1

}
. (5.7)

Proof. (5.6) follows easily by (5.5).
Let us now consider the case when F is closed and let us set K := {u ∈ N1,2(X) : u ≥ 1 q.e. on F};

K can be identified with a convex subset of H1,p(X). Let un ∈ K be a sequence satisfying
limn→∞ CEp,1(un) = Capp(F). By a truncation argument, it is not restrictive to assume that 0 ≤ un ≤ 1.

By applying Mazur’s Theorem and Theorem 5.4 it is not restrictive to assume that there exists
u ∈ N1,p(X) such that

un → u q.e.,
∥∥∥un − u

∥∥∥
L2 +

∥∥∥|Dun|? − |Du|?
∥∥∥

L2 → 0

Up to modifying u in a set of 0 capacity, we can thus suppose that u ∈ K, 0 ≤ u ≤ 1, and CEp,1(u) =

Capp(F). The minimality yields that there exists L ∈ Ap(u) + Jp(u) ⊂ H−1,p(X) such that

〈L, v − u〉 ≥ 0 for every v ∈ K.

In particular, choosing v = u + φ with φ nonnegative we get

〈L, φ〉 ≥ 0 for every φ ∈ N1,p(X), φ ≥ 0,

so that L ∈ H−1,q
pd (X) and its action on bounded Lipschitz functions can be represented by a positive

Radon measure µ according to (4.8) thanks to Theorem 4.7
Choosing now φ ∈ Lipb(X, τ, d) such that φ ≡ 0 on F we get

〈L, φ〉 =

∫
X
φ dµ = 0,

so that µ(X \F) = 0 and µ is concentrated on F (recall that Lipb(X, τ, d) generates the τ topology of X).
Since L has finite energy pCE∗p,1(µ) = CE∗p,1(L). Since u ∈ N1,p(X) is nonnegative it follows that

Capp(F) = CEp,1(u) = CE∗p,1(L) = 〈L, u〉 =

∫
X

u dµ = µ(F).

The renormalization µ̃ := µ
(
pCE∗p,1(µ)

)−1/q provides (5.7). �
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