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Abstract: Global navigation satellite system reflectometry (GNSS-R) is based on satellite signals’ 
multipath interference effect and has developed as one of the important remote sensing technologies 
in sea ice detection. An isometric mapping (ISOMAP)-based method is proposed in this paper as a 
development in sea ice detection approaches. The integral delay waveforms (IDWs), selected from 
February to April in 2018, derived from TechDemoSat-1 (TDS-1) Delay-Doppler maps (DDMs) are 
applied to open water and sea ice classification. In the first, the model for extracting low-dimensional 
coordinates of IDWs employs the randomly selected 187666 IDW samples, which are 30% of the 
whole IDW dataset. Then, low-dimensional coordinates of IDWs are used to train three different 
classifiers of support vector machine (SVM) and gradient boosting decision tree (GBDT), linear 
discriminant algorithm (LDA) and K-nearest neighbors (KNN) for determining the sea ice and sea 
water. The remaining 437889 samples, about 70% of the whole datasets, are used to validate with the 
ground surface type from the National Snow and Ice Data Center (NSIDC) data provided by the 
National Oceanic and Atmospheric Administration (NOAA). The algorithm performance is evaluated, 
and the overall accuracy of SVM, GBDT, LDA and KNN are 99.44%, 85.58%, 91.88% and 98.82%, 
respectively. The sea ice detection methods are developed, and the accuracy of detection is improved 
in this paper. 
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1. Introduction  

Sea ice is a critical component of the Earth’s climate system and plays a significant role in global 
ocean and atmospheric circulations [1]. Sea ice information provides knowledge and plays a beneficial 
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role in ocean voyages and natural resource exploration. Sea ice and open water (OW) show different 
characteristics in roughness [2], which is one important parameter for sea ice detection. Compared to 
OW, sea ice has higher albedo and roughness, which play an important role in energy exchanging 
between sea and air. The reduced extent of Arctic sea ice and thinner ice cover have been indicated in 
some previous studies [3]. The roughness and dielectric constant of ocean surface change with the 
variation of the ground surface type, such as the appearance of sea ice. The surface of sea ice presents 
more smoother than that of OW. These characteristics of OW and sea ice are the basis to detect sea ice. 

During recent research, global navigation satellite systems reflectometry (GNSS-R) has played a 
powerful role in using L-band signals scattered from the Earth’s surface to sense bio-geophysical 
features [4]. The initial GNSS-R application was ocean altimetry detection [5] after the concept of 
GNSS-R was proposed in 1988 [6]. Subsequently, the applications of GNSS-R have been extended to 
wind speed retrieval [7–9], snow depth estimation [10], soil moisture sensing [11,12], sea target 
detection [13] and sea ice detection [14–17].  

Since the greatest amplitude of specular scattering is presented from the Earth’s surface GNSS 
reflected signals, the specular scattering geometry can be used in the applications of GNSS-R. As one 
of the most important GNSS-R observables, the Delay-Doppler Map (DDM) [18] is a function of time 
delays and Doppler shifts. The function is to describe the power scattering from the reflected surface. 
Through integrating DDM in the Doppler domain, the integration delay waveform (IDW) in Figure 1 
can be obtained as another GNSS-R observable. The reflection over open water (OW), whose surface 
is rough, often has a continuous pixel number jump like the blue line in Figure 1. The sea ice surface 
is often considered as relatively smooth, and the IDW is shown as the red line in Figure 1, which has 
only one pixel number jump. 

 

Figure 1. Classical IDWs of sea ice and OW. 

In a recent GNSS-R sea ice detection development, Yan et al. [16] successfully utilized the 
number of DDM pixels with signal-to-noise ratio (SNR) above a threshold for sea ice remote sensing. 
Zhu et al.[19] recognized the transitions of ice and water with the differential DDM observable. Yan 
et al. [20] classified the sea ice and open water with convolutional neural networks. Similarly, Hu et 
al. [21] used IDW to detect sea ice and OW with the linear discriminant algorithm (LDA) method and 
analyzed the noise impact in sea ice detection. DDM has been widely applied as reference data to 
detect sea ice. sea ice studies using IDW as reference data are scarce, the observable of IDW has more 
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potential to sense sea ice. IDW is utilized as research data to detect sea ice in this study, and the 
isometric mapping (ISOMAP) is proposed to obtain the observable of IDW and use four different 
classifiers to classify the low-dimensional features into sea ice and OW. These classifiers are based on 
support vector machine (SVM), gradient boosting decision tree (GBDT), LDA and K-nearest 
neighbors (KNN). Compared with previous studies, the whole IDW is used as data in this paper, instead 
of leading edge slope (LES) or trailing edge slope (TES), as observations for sea ice detection. 

This paper is structured as follows: Section 2 introduces data sources and methods. Section 3 
presents the results of the ISOMAP-based sea ice detection in this paper. The discussion is presented 
in Section 4, and Section 5 is the conclusions. 

2. Data sources and ISOMAP-based method 

2.1. Data sources 

2.1.1. TechDemoSat-1 IDW data 
TechDemoSat-1 (TDS-1) can provide the spaceborne GNSS-R DDM for spaceborne GNSS-R 

study. In 2014, TDS-1 was launched as a national technology demonstration satellite. In the all regions 
of the world, the related datasets can be found at the website (http:// www.merrbys.co.uk).  

In [18], the power of scattered signals was described as time delay function, the function was 
proposed as theoretical integrated delay waveform (IDW): 

𝑊ூሺ𝜏ሻ ൌ 𝑇௜
ଶ න

𝐷ଶሺ𝜌⃑ሻ

4𝜋𝑅௥
ଶሺ𝜌⃑ሻ𝑅௧

ଶሺ𝜌⃑ሻ
ห𝜒൫𝜏, 𝑓஽ሺ𝜌⃑ሻ൯ห

ଶ
𝜎଴ሺ𝜌⃑ሻ𝑑ଶ𝜌  (1)

where 𝜏 and 𝑓஽ are the time delay value and the Doppler shift frequency, 𝜌⃗ and 𝑇௜ are the scattering 
area pixels and the coherent integration time, 𝜆 is the wavelength of the L1 signal, 𝑃௧ is the GNSS 
transmitting power, 𝜒  is Woodward’s ambiguity function (WAF) [22], 𝐺௧  and 𝐺௥  are transmitter 
antenna gain and receiver antenna gain, 𝑅௧ is the distance from the transmitter to the surface point (SP), 
𝑅௥ is the distance from the receiver to SP, 𝐷ଶ is the function of power antenna footprint, and 𝜎଴ሺ𝜌⃗ሻ is 
the normalized bistatic radar cross section. The reflection over rough open water (OW) surfaces often 
has a continuous pixel number jump. The IDW of the considered relatively smooth sea ice surface has 
only one pixel number jump. 

Because of the opportunity in GNSS-R sea ice classification, 625555 IDWs were utilized in this 
paper. In detail, a consecutive period from February to April 2018 was chosen to select IDWs for 
detecting sea ice continuously. Due to the presence of massive amounts of sea ice at high latitudes, the 
experiment was chosen for areas above 70°N latitude. These measures can provide the benefits in sea 
ice detection study. The DDM metadata provides each DDM’s specular point position, which is also 
utilized to calculate the correlation with the surface data from the National Snow and Ice Data Center 
(NSIDC). In [23], details about TDS-1 DDM metadata can be found for the detection experiment. 

2.1.2. Surface type data from NSIDC 

The surface type data are provided from the NSIDC. The surface type data are utilized as true 
type of IDWs in the ISOMAP-based sea ice detection experiment. NSIDC focuses on Earth's 
atmospheric and oceanic changes, catastrophic weather warnings, and nautical and aeronautical charts. 
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The NSIDC website (https://nsidc.org) provides the available ground data. Based on latitude and 
longitude, two-dimensional matrix is the present of the surface-type. The NSIDC spatial resolution is 1 km.  

2.2. ISOMAP-based method 

The ISOMAP-based method is based on the isometric mapping and classifier. The low-
dimensional observed features of IDW are extracted by using ISOMAP, and then the classifiers such 
as SVM, GBDT, LDA, KNN are used to classify the low-dimensional features of IDW into sea ice or OW. 

2.2.1. Isometric mapping 

Isometric mapping [24] is an improved function of multidimensional scaling (MDS) [25], 
overcoming the difficulties of MDS through defining a new metric and substituting that for Euclidean 
distance. The IDWs can preserve the relative stability of the feature when mapping to low-dimensional 
features. ISOMAP implements a neighborhood graph that connects the closer feature points. ISOMAP 
takes the following steps: 

In the first step, the neighbors of each sample xi on the low dimensional manifold M based on 
some appropriate distance metrics dx(xi,xj) in input space X is determined. A k nearest neighbor 
algorithm is used by ISOMAP to determine neighbors. These neighborhood relationships are 
represented in a weighted graph G in which dG(xi,xj) = dX(xi,xj), if xi and xj are neighbors, and 

𝑑௑൫𝑥௜, 𝑥௝൯ ൌ ∞ otherwise. 

Estimate distance dM(xi,xj) between any pair of points on the manifold M is the second step. Due 
to the unknown embedding manifold, dM(xi,xj) approximates the shortest path between xi and xj on G, 
which is calculates by the Floyd-Warshall algorithm [26]: 

𝑑ீሺ𝑥௜, 𝑥௝ሻ ൌ 𝑚𝑖𝑛൛𝑑ீሺ𝑥௜, 𝑥௝ሻ, 𝑑ீሺ𝑥௜, 𝑥௞ሻ ൅ 𝑑ீሺ𝑥௞, 𝑥௝ሻሽ (2)

The shortest paths between any two points are represented in a matrix D where 𝐷௜௝ ൌ 𝑑ீሺ𝑥௜, 𝑥௝ሻ. 
The last step is to apply classical MDS to obtain the matrix of distance, and the output is the low-
dimensional features of IDW. 

2.2.2. Support vector machine 

As a classical machine learning algorithm, support vector machine (SVM) [27] is often used to 
determine the type boundaries and the basis of SVM is statistical learning theory. The binary 
classification problems are solved with SVM. The input data can be presented as 

ሺ𝑥ଵ, 𝑦ଵሻ, ሺ𝑥ଶ, 𝑦ଶሻ,⋅⋅⋅, ሺ𝑥௡, 𝑦௡ሻ ∈ 𝑅௡ ൈ 𝑌, 𝑌 ൌ ሺെ1,1ሻ (3)

where xi are the classification features of input data, and yj is the type label of xi. The SVM follows the 
following rule in the linear classification problem: 

𝑦௜ሺ𝜔்𝑥௜ ൅ 𝑏ሻ ൒ 1,1 ൑ 𝑖 ൑ 𝑛   (4)

where 𝜔்𝑥 ൅ 𝑏 ൌ 0 is a hyperplane,   is the coefficient parameter, and b is the coefficient and bias 
parameter. The classification algorithm is based on maximum interval, which can be expressed as: 
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ቐ𝑚𝑖𝑛ሺ
1
2

‖𝜔‖ଶሻ

𝑦௜ሺ𝜔்𝑥௜ ൅ 𝑏ሻ ൒ 1
 (5)

Then, the parameters 𝜔 and b can be obtained to classify the input data. 

2.2.3. Gradient boosting decision tree 

With improving the boosting tree algorithm, Gradient boosting was proposed successfully[28]. It 
is composed with boosting and gradient descent. In order to get the optimal model, the gradient descent 
is performed in function space.  

The first step is to initialize the weak learner. The weak learner is shown as follows: 

𝑓଴ሺ𝑥ሻ ൌ 𝑎𝑟𝑔 𝑚𝑖𝑛
௖

෍ 𝐿ሺ𝑦௜, 𝑐ሻ

ே

௜ୀଵ

 (6)

where 𝑦௜ ∈ ሼ0,1ሽ. The next step is to calculate the negative gradients rmi at each gradient m (𝑚 ൌ 1,⋅
⋅⋅, 𝑚).  

𝑟௠௜ ൌ െ ൤
𝜕𝐿ሺ𝑦௜, 𝑓ሺ𝑥௜ሻሻ

𝜕𝑓ሺ𝑥௜ሻ
൨

௙ሺ௫ሻୀ௙೘షభሺ௫ሻ
 (7)

rmi obtained in first step is utilized as the new true sample value to compute a new regression tree 
𝑓௠ሺ𝑥ሻ and corresponding leaf node area 𝑅௝௠,. Then, the best-fit values of each corresponding leaf node 
area for the leaf region will be calculated as follows: 

ϒ௝௠ ൌ 𝑎𝑟𝑔 𝑚𝑖𝑛
ϒ

෍ 𝐿ሺ𝑦௜, 𝑓௠ିଵሺ𝑥௜ሻ ൅ ϒሻ
௫೔∈ோೕ೘

 (8)

where 𝑗 ൌ 1,⋅⋅⋅, 𝐽,and J is the number of leaf nodes of the regression tree. The strong learner will be updated. 

𝑓௠ሺ𝑥ሻ ൌ 𝑓௠ିଵሺ𝑥ሻ ൅ ෍ϒ௝௠𝐼, 𝑥 ∈ 𝑅௝௠

௃

௝ୀଵ

 (9)

After m times of updating the learner, the final learner can be obtained. 

𝑓ሺ𝑥ሻ ൌ 𝑓ெሺ𝑥ሻ ൌ 𝑓଴ሺ𝑥ሻ ൅ ෍ ෍ϒ௝௠𝐼, 𝑥 ∈ 𝑅௝௠

௃

௝ୀଵ

ெ

௠ୀଵ

 (10)

2.2.4. Linear discriminant algorithm 

The dimensionality of data can be reduced by the linear discriminant algorithm (LDA) [29], and 
the types of data can be determined with these low-dimensional features. The projected vector is 
calculated as follows: 
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𝑦 ൌ 𝐴 ⋅ 𝑥 (11)

where 𝑥  is n-dimensional column vectors, A is an 𝑚 ⋅ 𝑛  vector, 𝑦  is the m-dimensional projected 
vector. A can consist of 0 matrix and experiment data, such as 𝐴 ൌ ሾ𝑂, 𝐼𝐷𝑊ሿ்.The best projection 
vector 𝑥 will be obtained with the Fisher projection criterion 𝐽ሺ𝑥ሻ. The total scatter of the projected 
samples can be characterized by the trace of the covariance matrix of the projected features vector [30] 
in the theory of the Fisher projection criterion. 𝐽ሺ𝑥ሻ is calculated as follows: 

𝐽ሺ𝑥ሻ ൌ
𝑥்𝑆௕𝑥
𝑥்𝑆௪𝑥

 (12)

where 𝑥  is the unitary column vector. 𝑆௕  is the maximum inter-class scattering matrix, 𝑆௪  is the 
minimum intra-class scattering matrix. Due to the nonsingular property of 𝑆௪ , a generalized 
eigenvalue problem [30] is considered to present the optimization problem. 𝑆௕  and 𝑆௪  can be 
calculated as follows: 

𝑆௪ ൌ ෍ ሺ𝑥௦ െ 𝜇଴ሻሺ𝑥௦ െ 𝜇଴ሻ்

௫∈௑బ

൅ ෍ ሺ𝑥௦ െ 𝜇ଵሻሺ𝑥௦ െ 𝜇ଵሻ்

௫∈௑భ

 (13)

𝑆௕ ൌ ሺ𝜇଴ െ 𝜇ଵሻሺ𝜇଴ െ 𝜇ଵሻ் (14)

where 𝜇଴ and 𝜇ଵ denote sample means of two different type data sets, 𝑋଴and 𝑋ଵ are IDW sample sets 
of two different types, and 𝑥௦ denotes IDW sample in 𝑋଴ or 𝑋ଵ. When unitary vector 𝑥 maximizes 𝐽ሺ𝑥ሻ, 
the Fisher optimal projection axis can be obtained. Find 𝑥 such that it equals 0 and the relationship 
between 𝐽ሺ𝑥ሻ and 𝑥, 𝑥 can be obtained as follows: 

𝑥 ൌ
𝑥்𝑆௪𝑥
𝑥்𝑆௕𝑥

𝑆௪
ିଵ𝑆௕𝑥 (15)

With maximizing criterion, the optimal projection 𝑥௢௣௧ and the input optimal feature vector can 
be obtained as follows: 

𝑥௢௣௧ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥|𝐽ሺ𝑥ሻ| (16)

𝑦௢௣௧ ൌ 𝐴 ⋅ 𝑥௢௣௧ (17)

Euclidean distance is employed to classify the features into sea ice and OW. The Euclidean 
distance [31] is utilized to characterize similarity. 

𝑑ሺ𝑌ଵ, 𝑌ଶሻ ൌ ෍ฮ𝑦ଵೖ
െ 𝑦ଶೖ

ฮ
ଶ

ௗ

௞ୀଵ

 (18)

where 𝑌ଵ ൌ ൣ𝑦ଵభ
, ⋯ , 𝑦ଵ೏

൧ and 𝑌ଶ ൌ ൣ𝑦ଶభ
, ⋯ , 𝑦ଶ೏

൧ are the input feature matrices of different types. Each 

IDW is categorized as either 𝑇ଵ or 𝑇ଶ.  
When 𝑑ሺ𝑌, 𝑌௟ሻ ൌ 𝑚𝑖𝑛ሺ 𝑑ሺ𝑌௜, 𝑌௟ሻሻ, the classification can be calculated as follows: 
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𝑌 ∈ ሼ
𝑇ଵ, 𝑌௟ ∈ 𝑇ଵ
𝑇ଶ, 𝑌௟ ∈ 𝑇ଶ

 (19)

2.2.5. K-nearest neighbors  

K-nearest neighbors (KNN) [32] is a basic algorithm of machine learning which is usually used 
in applications of classification and regression. KNN uses the distance between different feature values 
to classify the data. The first step for KNN is determine a distance measurement method, such as 
Euclidean distance. Then, the k nearest samples of 𝑥 in training sets, 𝑇 ൌ ሼሺ𝑥ଵ, 𝑦ଵሻ,⋅⋅⋅, ሺ𝑥ே, 𝑦ேሻሽ, are 
found to construct a new set Nk(x). The n-dimensional vector of a sample is yi, and 𝑦௜ ∈ 𝑌 ൌ ሼ𝑐ଵ,⋅⋅⋅
, 𝑐௄ሽ. The type of the sample 𝑥 is determined with the principle of majority voting like follows: 

𝑦 ൌ 𝑎𝑟𝑔𝑚𝑎𝑥 ෍ 𝐼ሺ𝑦௜, 𝑐௝ሻ
௫೔∈ேೖሺ௫ሻ

 (20)

where 1, ,i N   , 1, ,j K  , and I is the indication function 

𝐼ሺ𝑥, 𝑦ሻ ൌ ൜
1, 𝑖𝑓ሺ𝑥ሻ ൌ 𝑦
0, 𝑖𝑓ሺ𝑥ሻ ് 𝑦

 (21)

2.2.6. Sea ice detection based on ISOMAP and classifiers 

In this paper, the type of the ground surface is sea ice and OW. The classifiers of SVM, GBDT, 
LDA and KNN were proposed to classify observations such as DDM features and SNR as sea ice or 
OW. Four classifiers with different mechanisms are used to classify IDW features acquired by 
ISOMAP. SVM is a supervised classification discriminative algorithm, GBDT is a supervised greedy 
discriminative algorithm, LDA is a supervised dimensionality reduction algorithm, and KNN is a 
supervised lazy learning algorithm. The performance evaluations are compared based on the evaluated 
quantities in Table 1. The process flow of the experiment is presented in Figure 2. 

Table 1. The definitions of evaluation metrics. 

Evaluation Metric Function 
Accuracy (%) TP TN

TP TN FP FN


  

 

Precision (%) TP

TP FP
 

Recall (%) TP

TP FN
 

F1-value 2Re Pr (1 )
, 1

(Re Pr )

call ecision

call ecision

 


  


 
 

Kappa coefficient 2 ( )

( ) ( ) ( ) ( )

TP TN FN FP

TP FP FP TN TP FN FN TN


    

  
 
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Figure 2. Process flow of ISOMAP-based method. 

In step 2, low-dimensional features are extracted from IDWs, and 30% of samples are randomly 
selected as the training set. The remaining 70% of samples are used as the test set after low-dimensional 
feature extraction. 

In step 3, the low-dimensional features are applied to training the classifiers of SVM, GBDT, 
LDA and KNN, and the remaining samples’ low-dimensional features are used as test sets to classify 
sea ice and OW. 

In step 4, the detection performance is analyzed and evaluated. The accuracy, precision, recall, F1 
value, kappa coefficient [33] and confusion matrix are analyzed in the results. 

3. Results 

As illustrated in Section 2.2.6, the sea ice detection is conducted with a two-step method. The 
first step aims to extract low-dimensional features from IDWs using ISOMAP. After extracting low-
dimensional features, the low-dimensional features are employed for sea ice and OW detection using 
SVM, GBDT, LDA and KNN classifiers. There, 30% of the low-dimensional features of previously 
selected samples are used as the training set, and the remaining 70% of low-dimensional features are 
used as the test set to classify sea ice and OW.  

The ISOMAP-based confusion matrices of RF, SVM, GBDT and LDA classifiers are presented 
in Figure 3, which presents the classification results of each class. The evaluation metrics are computed 
with the equations listed in Table 1 and shown in Table 2. 

Table 2. Evaluation metrics of ISOMAP-based sea ice detection. 

Evaluation 
metric 

ISOMAP-based detection 

SVM GBDT LDA KNN 

Accuracy (%) 99.44 85.58 91.88 98.82 
Precision (%) 97.42 58.43 71.59 94.66 
Recall (%) 99.88 99.93 99.60 99.81 
F1-value 0.98 0.74 0.78 0.96 
Kappa coefficient 0.98 0.65 0.83 0.97 
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The evaluation metrics are shown in Table 2. The predicted results are validated with the test 
dataset, whose true types are selected from the NSIDC surface data. In Figure 3 (a), (b), (c) and (d), 
437889 samples are selected for testing, in which there are 89038 OW and 348851 sea ice samples. 
With SVM, GBDT, LDA and KNN classifiers, the ISOMAP-based sea ice detection obtains accuracy 
values of 99.44%, 85.58%, 91.88% and 98.82%. The accuracy is comparable to previous studies [34–36]. 

`

 
Figure 3. Confusion matrices of ISOMAP-based method: (a) SVM, (b) GBDT, (c) LDA, (d) KNN. 

The ISOMAP-based OW-sea ice detection has comparable performance through SVM, GBDT, 
LDA and KNN classifiers. The detection results for February 2018 are shown in Figure 4 to present 
the overall space distribution. 

The overall spatial distribution of the February 2018 classification results is shown in Figure 4, 
which demonstrates the distribution of predicted and reference types. 
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Figure 4. Sea ice detection of ISOMAP-based method for February 2018: (a) SVM, (b) 
GBDT, (c) LDA, (d) KNN. 

4. Discussion 

In order to analyze the errors in ISOMAP-based sea ice detection, the low-dimensional features 
classified with classifiers are presented in Figure 5. The errors appear on the distribution boundaries 
of low-dimensional data, which is caused by the noise distribution in the waveform of IDW. The greater 
the degree and number of data fluctuations in IDW, the more difficult the IDW waveform is for 
ISOMAP-based sea ice detection.  

Another experiment is implemented to analyze the relationship between the misclassifications 
and the degree and number of data fluctuations in IDW. First, the number of data fluctuations in IDW 
is calculated and counted. Within three consecutive time delay sequences of IDW, if the difference 
between the maximum pixel power and the minimum pixel power is greater than 1000 pixels, it will 
be counted as one data fluctuation.  
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Figure 5. Low-dimensional features of ISOMAP-based method: (a) SVM, (b) GBDT, (c) 
LDA, (d) KNN. 

As shown in Figure 6, the data fluctuation numbers in predicted IDWs are counted to present 
dramatic fluctuations in the IDW waveform. From Figure 6 (b), (c), the data fluctuation values of 
wrong predicted results are mainly concentrated in the range of 5 to 30 and the range of 0 to 1. However, 
the data fluctuation values of wrong predicted results are mainly concentrated only in the range of 5 to 
30 for Figure 6(a), (d), and the data fluctuation values of correct predicted results are mainly 
concentrated in the range of 0 to 5 for Figure 6. This shows that the data with too many dramatic 
fluctuations can be filtered out to improve the quality of data and the GNSS-R sea ice detection. 
Therefore, future experiments need to not only screen at SNR but also use data fluctuations to ensure 
the quality of the DDMs or IDWs. 
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Figure 6. Data fluctuation counts of ISOMAP-based method: (a) SVM, (b) GBDT, (c) 
LDA, (d) KNN. 

5. Conclusions 

In this paper, the ISOMAP-based method is proposed to use IDWs for GNSS-R sea-ice detection. 
The experiments show that the ISOMAP-based method can be used to conduct sea ice detection and 
obtain great classification accuracy. Above 70°N and during February-April 2018, the feasibility of 
ISOMAP-based GNSS-R sea ice detection with selected IDWs is verified with the accuracy of 99.44%. 
The errors in ISOMAP-based sea ice detection have been analyzed, and the analysis shows that the 
data fluctuation numbers can reflect the quality of the data. The data predicted incorrectly are 
concentrated in the range of 5 to 30, and the data predicted correctly are concentrated in the range of 
0 to 5. Therefore, the data fluctuation number can be used as another important parameter to improve 
the GNSS-R sea ice detection by selecting the higher quality data. 
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