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Abstract: Global navigation satellite system reflectometry (GNSS-R) is based on satellite signals’
multipath interference effect and has developed as one of the important remote sensing technologies
in sea ice detection. An isometric mapping (ISOMAP)-based method is proposed in this paper as a
development in sea ice detection approaches. The integral delay waveforms (IDWs), selected from
February to April in 2018, derived from TechDemoSat-1 (TDS-1) Delay-Doppler maps (DDMs) are
applied to open water and sea ice classification. In the first, the model for extracting low-dimensional
coordinates of IDWs employs the randomly selected 187666 IDW samples, which are 30% of the
whole IDW dataset. Then, low-dimensional coordinates of IDWs are used to train three different
classifiers of support vector machine (SVM) and gradient boosting decision tree (GBDT), linear
discriminant algorithm (LDA) and K-nearest neighbors (KNN) for determining the sea ice and sea
water. The remaining 437889 samples, about 70% of the whole datasets, are used to validate with the
ground surface type from the National Snow and Ice Data Center (NSIDC) data provided by the
National Oceanic and Atmospheric Administration (NOAA). The algorithm performance is evaluated,
and the overall accuracy of SVM, GBDT, LDA and KNN are 99.44%, 85.58%, 91.88% and 98.82%,
respectively. The sea ice detection methods are developed, and the accuracy of detection is improved
in this paper.
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1. Introduction

Sea ice is a critical component of the Earth’s climate system and plays a significant role in global
ocean and atmospheric circulations [1]. Sea ice information provides knowledge and plays a beneficial
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role in ocean voyages and natural resource exploration. Sea ice and open water (OW) show different
characteristics in roughness [2], which is one important parameter for sea ice detection. Compared to
OW, sea ice has higher albedo and roughness, which play an important role in energy exchanging
between sea and air. The reduced extent of Arctic sea ice and thinner ice cover have been indicated in
some previous studies [3]. The roughness and dielectric constant of ocean surface change with the
variation of the ground surface type, such as the appearance of sea ice. The surface of sea ice presents
more smoother than that of OW. These characteristics of OW and sea ice are the basis to detect sea ice.

During recent research, global navigation satellite systems reflectometry (GNSS-R) has played a
powerful role in using L-band signals scattered from the Earth’s surface to sense bio-geophysical
features [4]. The initial GNSS-R application was ocean altimetry detection [5] after the concept of
GNSS-R was proposed in 1988 [6]. Subsequently, the applications of GNSS-R have been extended to
wind speed retrieval [7-9], snow depth estimation [10], soil moisture sensing [11,12], sea target
detection [13] and sea ice detection [14—17].

Since the greatest amplitude of specular scattering is presented from the Earth’s surface GNSS
reflected signals, the specular scattering geometry can be used in the applications of GNSS-R. As one
of the most important GNSS-R observables, the Delay-Doppler Map (DDM) [18] is a function of time
delays and Doppler shifts. The function is to describe the power scattering from the reflected surface.
Through integrating DDM in the Doppler domain, the integration delay waveform (IDW) in Figure 1
can be obtained as another GNSS-R observable. The reflection over open water (OW), whose surface
is rough, often has a continuous pixel number jump like the blue line in Figure 1. The sea ice surface
is often considered as relatively smooth, and the IDW is shown as the red line in Figure 1, which has
only one pixel number jump.
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Figure 1. Classical IDWs of sea ice and OW.

In a recent GNSS-R sea ice detection development, Yan et al. [16] successfully utilized the
number of DDM pixels with signal-to-noise ratio (SNR) above a threshold for sea ice remote sensing.
Zhu et al.[19] recognized the transitions of ice and water with the differential DDM observable. Yan
et al. [20] classified the sea ice and open water with convolutional neural networks. Similarly, Hu et
al. [21] used IDW to detect sea ice and OW with the linear discriminant algorithm (LDA) method and
analyzed the noise impact in sea ice detection. DDM has been widely applied as reference data to
detect sea ice. sea ice studies using IDW as reference data are scarce, the observable of IDW has more
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potential to sense sea ice. IDW is utilized as research data to detect sea ice in this study, and the
isometric mapping (ISOMAP) is proposed to obtain the observable of IDW and use four different
classifiers to classify the low-dimensional features into sea ice and OW. These classifiers are based on
support vector machine (SVM), gradient boosting decision tree (GBDT), LDA and K-nearest
neighbors (KNN). Compared with previous studies, the whole IDW is used as data in this paper, instead
of leading edge slope (LES) or trailing edge slope (TES), as observations for sea ice detection.

This paper is structured as follows: Section 2 introduces data sources and methods. Section 3
presents the results of the ISOMAP-based sea ice detection in this paper. The discussion is presented
in Section 4, and Section 5 is the conclusions.

2. Data sources and ISOMAP-based method
2.1. Data sources

2.1.1. TechDemoSat-1 IDW data

TechDemoSat-1 (TDS-1) can provide the spaceborne GNSS-R DDM for spaceborne GNSS-R
study. In 2014, TDS-1 was launched as a national technology demonstration satellite. In the all regions
of the world, the related datasets can be found at the website (http:// www.merrbys.co.uk).

In [18], the power of scattered signals was described as time delay function, the function was
proposed as theoretical integrated delay waveform (IDW):

D?(p)
4mRZ(P)RE (D)
where 7 and fp, are the time delay value and the Doppler shift frequency, g and T; are the scattering
area pixels and the coherent integration time, A is the wavelength of the L1 signal, P; is the GNSS
transmitting power, y is Woodward’s ambiguity function (WAF) [22], G, and G, are transmitter
antenna gain and receiver antenna gain, R, is the distance from the transmitter to the surface point (SP),
R, is the distance from the receiver to SP, D? is the function of power antenna footprint, and o, (3) is
the normalized bistatic radar cross section. The reflection over rough open water (OW) surfaces often
has a continuous pixel number jump. The IDW of the considered relatively smooth sea ice surface has
only one pixel number jump.

Because of the opportunity in GNSS-R sea ice classification, 625555 IDWs were utilized in this
paper. In detail, a consecutive period from February to April 2018 was chosen to select IDWs for
detecting sea ice continuously. Due to the presence of massive amounts of sea ice at high latitudes, the
experiment was chosen for areas above 70°N latitude. These measures can provide the benefits in sea
ice detection study. The DDM metadata provides each DDM’s specular point position, which is also
utilized to calculate the correlation with the surface data from the National Snow and Ice Data Center
(NSIDC). In [23], details about TDS-1 DDM metadata can be found for the detection experiment.
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2.1.2.  Surface type data from NSIDC
The surface type data are provided from the NSIDC. The surface type data are utilized as true

type of IDWs in the ISOMAP-based sea ice detection experiment. NSIDC focuses on Earth's
atmospheric and oceanic changes, catastrophic weather warnings, and nautical and aeronautical charts.
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The NSIDC website (https://nsidc.org) provides the available ground data. Based on latitude and
longitude, two-dimensional matrix is the present of the surface-type. The NSIDC spatial resolution is 1 km.

2.2. ISOMAP-based method

The ISOMAP-based method is based on the isometric mapping and classifier. The low-
dimensional observed features of IDW are extracted by using ISOMAP, and then the classifiers such
as SVM, GBDT, LDA, KNN are used to classify the low-dimensional features of IDW into sea ice or OW.

2.2.1. Isometric mapping

Isometric mapping [24] is an improved function of multidimensional scaling (MDS) [25],
overcoming the difficulties of MDS through defining a new metric and substituting that for Euclidean
distance. The IDWs can preserve the relative stability of the feature when mapping to low-dimensional
features. ISOMAP implements a neighborhood graph that connects the closer feature points. ISOMAP
takes the following steps:

In the first step, the neighbors of each sample x; on the low dimensional manifold M based on
some appropriate distance metrics dx(x;x;) in input space X is determined. A k nearest neighbor
algorithm is used by ISOMAP to determine neighbors. These neighborhood relationships are
represented in a weighted graph G in which da(xi,xj) = dx(x;x;), if x; and x; are neighbors, and

dy (x;, x;) = oo otherwise.

Estimate distance dum(x;,x;) between any pair of points on the manifold M is the second step. Due
to the unknown embedding manifold, dum(x;x;j) approximates the shortest path between x; and x; on G,
which is calculates by the Floyd-Warshall algorithm [26]:

de (x;, x;) = min{dg (x;, x;), dg (x5, xi) + dg (xg, x7)} (2)

The shortest paths between any two points are represented in a matrix D where D;j = dg (x;, X;).
The last step is to apply classical MDS to obtain the matrix of distance, and the output is the low-
dimensional features of IDW.

2.2.2.  Support vector machine

As a classical machine learning algorithm, support vector machine (SVM) [27] is often used to
determine the type boundaries and the basis of SVM is statistical learning theory. The binary
classification problems are solved with SVM. The input data can be presented as

(xlﬂyl)r (x2! yZ)"“' (xnr yn) ER"XY,Y = (_1'1) (3)

where x; are the classification features of input data, and y; is the type label of xi. The SVM follows the
following rule in the linear classification problem:

yi(wTx;+b)=11<i<n (4)

where wx + b = 0 is a hyperplane, @ is the coefficient parameter, and b is the coefficient and bias
parameter. The classification algorithm is based on maximum interval, which can be expressed as:
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min(zllwllz) (5)
yi(wTx; +b) =1

Then, the parameters w and b can be obtained to classify the input data.
2.2.3. Gradient boosting decision tree

With improving the boosting tree algorithm, Gradient boosting was proposed successfully[28]. It
is composed with boosting and gradient descent. In order to get the optimal model, the gradient descent
is performed in function space.

The first step is to initialize the weak learner. The weak learner is shown as follows:

N
folx) = argmin ) L(y;,c) ©)
i=1

where y; € {0,1}. The next step is to calculate the negative gradients r»: at each gradient m (m = 1,
-, m).

Tmi = — [M]

of (x0) 2

f)=fin-1(x)

rmi obtained in first step is utilized as the new true sample value to compute a new regression tree
fm(x) and corresponding leaf node area Rj;,,. Then, the best-fit values of each corresponding leaf node
area for the leaf region will be calculated as follows:

Yim = arg m)g'n Z Ly, fm-1(x)) + 1) (8)

xiEij

where j = 1,--+, J,and Jis the number of leaf nodes of the regression tree. The strong learner will be updated.

J
Fn () = s () + ) Yl X € Ry ©)
j=1
After m times of updating the learner, the final learner can be obtained.
M ]
FO) = fu@®) = fol)+ D" ) Vil x € Ry (10)
m=1j=1

2.2.4. Linear discriminant algorithm
The dimensionality of data can be reduced by the linear discriminant algorithm (LDA) [29], and

the types of data can be determined with these low-dimensional features. The projected vector is
calculated as follows:
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y=4-x (11)

where x is n-dimensional column vectors, 4 is an m - n vector, y is the m-dimensional projected
vector. A can consist of 0 matrix and experiment data, such as A = [0, IDW]T.The best projection
vector x will be obtained with the Fisher projection criterion J(x). The total scatter of the projected
samples can be characterized by the trace of the covariance matrix of the projected features vector [30]
in the theory of the Fisher projection criterion. /(x) is calculated as follows:

xTS,x

J(x) = (12)

xS, x

where x is the unitary column vector. S;, is the maximum inter-class scattering matrix, S, is the
minimum intra-class scattering matrix. Due to the nonsingular property of S, , a generalized
eigenvalue problem [30] is considered to present the optimization problem. S, and S,, can be
calculated as follows:

SW = xezx (xs - Ho)(xs - .uO)T + XEZX (xs - ;ul)(xs - ;ul)T (13)
Sp = (o — 1) (o — )" (14)

where p, and p; denote sample means of two different type data sets, X,and X; are IDW sample sets
of two different types, and x denotes IDW sample in X, or X;. When unitary vector x maximizes J(x),
the Fisher optimal projection axis can be obtained. Find x such that it equals 0 and the relationship
between J(x) and x, x can be obtained as follows:

xTS,x

= S-S, x (15)

With maximizing criterion, the optimal projection x,,; and the input optimal feature vector can
be obtained as follows:

Xopt = argmaxl](x)l (16)

Yopt = A - Xopt (17)

Euclidean distance is employed to classify the features into sea ice and OW. The Euclidean
distance [31] is utilized to characterize similarity.

d
2
A ) = D [ya, = vl (18)
k=1
where Y, = [y1 IPREEN 2t d] and Y, = [yz Y2 d] are the input feature matrices of different types. Each

IDW is categorized as either T; or T,.
When d(Y,Y;) = min(d(Y;, Y;)), the classification can be calculated as follows:
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LY eTy 19
T, Y, €T, (19)

2.2.5. K-nearest neighbors

K-nearest neighbors (KNN) [32] is a basic algorithm of machine learning which is usually used
in applications of classification and regression. KNN uses the distance between different feature values
to classify the data. The first step for KNN is determine a distance measurement method, such as
Euclidean distance. Then, the k nearest samples of x in training sets, T = {(xq, y1),**, (xn, Yn)}, are
found to construct a new set Ni(x). The n-dimensional vector of a sample is y;, and y; € Y = {c;,
, ck }- The type of the sample x is determined with the principle of majority voting like follows:

y = argmax z I(yi, ¢)) (20)

X{ENk(x)
where i=1,--,N j=L--K and I is the indication function

1,i =
B

2.2.6. Seaice detection based on ISOMAP and classifiers

In this paper, the type of the ground surface is sea ice and OW. The classifiers of SVM, GBDT,
LDA and KNN were proposed to classify observations such as DDM features and SNR as sea ice or
OW. Four classifiers with different mechanisms are used to classify IDW features acquired by
ISOMAP. SVM is a supervised classification discriminative algorithm, GBDT is a supervised greedy
discriminative algorithm, LDA is a supervised dimensionality reduction algorithm, and KNN is a
supervised lazy learning algorithm. The performance evaluations are compared based on the evaluated
quantities in Table 1. The process flow of the experiment is presented in Figure 2.

Table 1. The definitions of evaluation metrics.

Evaluation Metric Function
Accuracy (%) TP+TN
TP+TN + FP+FN
Precision (%) TP
TP+ FP
Recall (%) TP
TP+ FN
Fl-value Recall - Precision - (1+ 5°) -1
- (Recall + Precision)
Kappa coefficient 2+(TP-TN — FN+FP)

(TP + FP)«(FP+TN)+ (TP + FN)+(FN + IN)

Metascience in Aerospace Volume 1, Issue 1, 38-52.
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Figure 2. Process flow of ISOMAP-based method.

In step 2, low-dimensional features are extracted from IDWs, and 30% of samples are randomly
selected as the training set. The remaining 70% of samples are used as the test set after low-dimensional
feature extraction.

In step 3, the low-dimensional features are applied to training the classifiers of SVM, GBDT,
LDA and KNN, and the remaining samples’ low-dimensional features are used as test sets to classify
sea ice and OW.

In step 4, the detection performance is analyzed and evaluated. The accuracy, precision, recall, F1
value, kappa coefticient [33] and confusion matrix are analyzed in the results.

3. Results

As illustrated in Section 2.2.6, the sea ice detection is conducted with a two-step method. The
first step aims to extract low-dimensional features from IDWs using ISOMAP. After extracting low-
dimensional features, the low-dimensional features are employed for sea ice and OW detection using
SVM, GBDT, LDA and KNN classifiers. There, 30% of the low-dimensional features of previously
selected samples are used as the training set, and the remaining 70% of low-dimensional features are
used as the test set to classify sea ice and OW.

The ISOMAP-based confusion matrices of RF, SVM, GBDT and LDA classifiers are presented
in Figure 3, which presents the classification results of each class. The evaluation metrics are computed
with the equations listed in Table 1 and shown in Table 2.

Table 2. Evaluation metrics of ISOMAP-based sea ice detection.

Evaluation ISOMAP-based detection

metric SVM GBDT LDA KNN
Accuracy (%) 99.44 85.58 91.88 98.82
Precision (%) 97.42 58.43 71.59 94.66
Recall (%) 99.88 99.93 99.60 99.81
Fl-value 0.98 0.74 0.78 0.96
Kappa coefficient 0.98 0.65 0.83 0.97
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The evaluation metrics are shown in Table 2. The predicted results are validated with the test
dataset, whose true types are selected from the NSIDC surface data. In Figure 3 (a), (b), (c) and (d),
437889 samples are selected for testing, in which there are 89038 OW and 348851 sea ice samples.
With SVM, GBDT, LDA and KNN classifiers, the ISOMAP-based sea ice detection obtains accuracy
values of 99.44%, 85.58%, 91.88% and 98.82%. The accuracy is comparable to previous studies [34—-36].

NOAA Class

NOAA Class

(a) SVM for ISOMAP-hased detection
0 1
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Figure 3. Confusion matrices of ISOMAP-based method: (a) SVM, (b) GBDT, (c¢) LDA, (d) KNN.

The ISOMAP-based OW-sea ice detection has comparable performance through SVM, GBDT,
LDA and KNN classifiers. The detection results for February 2018 are shown in Figure 4 to present

the overall space distribution.
The overall spatial distribution of the February 2018 classification results is shown in Figure 4,

which demonstrates the distribution of predicted and reference types.

Metascience in Aerospace
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(a) SVM for [ISOMAP-based detection (b) GBDT for ISOMAP-based detection
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Figure 4. Sea ice detection of ISOMAP-based method for February 2018: (a) SVM, (b)
GBDT, (c) LDA, (d) KNN.

4. Discussion

In order to analyze the errors in ISOMAP-based sea ice detection, the low-dimensional features
classified with classifiers are presented in Figure 5. The errors appear on the distribution boundaries
of low-dimensional data, which is caused by the noise distribution in the waveform of IDW. The greater
the degree and number of data fluctuations in IDW, the more difficult the IDW waveform is for
ISOMAP-based sea ice detection.

Another experiment is implemented to analyze the relationship between the misclassifications
and the degree and number of data fluctuations in IDW. First, the number of data fluctuations in IDW
is calculated and counted. Within three consecutive time delay sequences of IDW, if the difference
between the maximum pixel power and the minimum pixel power is greater than 1000 pixels, it will
be counted as one data fluctuation.

Metascience in Aerospace Volume 1, Issue 1, 38-52.
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(a) SVM for ISOMAP-based detection

(b} GBDT for ISOMAP-based detection
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Figure 5. Low-dimensional features of ISOMAP-based method: (a) SVM, (b) GBDT, (¢)

LDA, (d) KNN.

As shown in Figure 6, the data fluctuation numbers in predicted IDWs are counted to present
dramatic fluctuations in the IDW waveform. From Figure 6 (b), (c), the data fluctuation values of
wrong predicted results are mainly concentrated in the range of 5 to 30 and the range of 0 to 1. However,
the data fluctuation values of wrong predicted results are mainly concentrated only in the range of 5 to
30 for Figure 6(a), (d), and the data fluctuation values of correct predicted results are mainly
concentrated in the range of 0 to 5 for Figure 6. This shows that the data with too many dramatic
fluctuations can be filtered out to improve the quality of data and the GNSS-R sea ice detection.
Therefore, future experiments need to not only screen at SNR but also use data fluctuations to ensure
the quality of the DDMs or IDWs.
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(a) SVM for ISOMAP-based detection (b} GBDT for ISOMAP-based detection
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Figure 6. Data fluctuation counts of ISOMAP-based method: (a) SVM, (b) GBDT, (c)
LDA, (d) KNN.

5. Conclusions

In this paper, the ISOMAP-based method is proposed to use IDWs for GNSS-R sea-ice detection.
The experiments show that the ISOMAP-based method can be used to conduct sea ice detection and
obtain great classification accuracy. Above 70°N and during February-April 2018, the feasibility of
ISOMAP-based GNSS-R sea ice detection with selected IDWs is verified with the accuracy of 99.44%.
The errors in ISOMAP-based sea ice detection have been analyzed, and the analysis shows that the
data fluctuation numbers can reflect the quality of the data. The data predicted incorrectly are
concentrated in the range of 5 to 30, and the data predicted correctly are concentrated in the range of
0 to 5. Therefore, the data fluctuation number can be used as another important parameter to improve
the GNSS-R sea ice detection by selecting the higher quality data.
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