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Richard Lagos1,*, Andrei González-Galeano2,3, Jaleydi Cárdenas-Poblador4,5, Álvaro
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Abstract: This study presents, as a proof-of-concept, a mathematical model describing the
transmission dynamics of cystic echinococcosis. This neglected zoonosis is caused by the larval stage
of Echinococcus granulosus s.l. involving dogs and sheep as definitive hosts and sheep as intermediate
hosts. The model incorporates the dual role of humans as final hosts and as active participants in
the parasite’s transmission cycle through practices such as feeding dogs with infected viscera. A
system of nine ordinary differential equations represents human subpopulations (children and adults)
and the concentration of viable parasite eggs. The basic reproductive number (R0) was computed
via the next-generation matrix approach, and bifurcation analysis indicated a forward bifurcation at
R0 = 1, confirming that R0 < 1 ensures disease control. Global sensitivity analysis using Sobol indices
identified the infestation rate (β) and adult transmission rate (βAG) as the most influential parameters,
explaining 35.9% and 29.9% of R0 variance, respectively. These findings highlight that interventions
reducing β and βAG may effectively decrease human infection rates.
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1. Introduction

Cystic echinococcosis (CE), also known as hydatid disease, is a zoonosis caused by the larval stage
of Echinococcus granulosus sensu lato (E. granulosus s.l.) [1–6]. The parasite’s life cycle requires two
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mammalian hosts: the dog (the definitive host), in which adult cestodes develop within the intestine,
and the sheep (intermediate host), where hydatid cysts form in the viscera [7]. The domestic cycle
begins when dogs ingest infected sheep viscera; the dogs subsequently expel eggs that contaminate
pastures and water sources through their feces. Sheep then ingest these eggs while grazing, completing
the cycle. CE remains endemic in sheep-farming regions, where specific socioeconomic practices
sustain transmission despite ongoing control efforts.

The environmental presence of E. granulosus s.l. eggs in soil have not been fully utilized in
mathematical models as an indicator of transmission dynamics to estimate prevalence in dogs and
infection risk in sheep and humans. Environmental infestation, calculated as the percentage of
positive samples per unit area

# positive samples/area
# samples analyzed/area

× 100

[8], directly reflects the contaminant load and its potential epidemiological impact [1–5, 9–11]. The
persistence of echinococcosis in sheep production systems is influenced by human practices
associated with slaughter and animal management, specifically the feeding of infected viscera to dogs.
While studies have quantified environmental infestation through field and laboratory research, these
have predominantly adopted a descriptive approach based on empirical data [2, 10, 11]. Humans
assume a dual role in these epidemiological dynamics in that they act as ‘victims’ when infected and
as ‘perpetuating agents’ through behaviors that sustain the parasite’s cycle. Mathematical modeling,
including both deterministic and stochastic variants, serves as a vital tool for identifying the
fundamental parameters that govern disease transmission and spread [12–20]. Furthermore, it enables
the evaluation of the potential impact of control measures not yet implemented in a target population.
Existing literature reveals approaches that compartmentalize the three hosts into mutually exclusive
groups based on the disease’s natural history; some of these studies [17–19] incorporate the
concentration of environmental eggs produced by infectious dogs.

In this paper, we propose a complementary mathematical modeling approach designed to explicitly
represent the mechanisms sustaining disease perpetuation. This framework enables the analysis of
diverse epidemiological scenarios contingent on environmental infestation levels and human behavior,
providing a tool for a systemic understanding of the transmission process. To facilitate the modeling
of individuals infected in childhood who remain asymptomatic until adulthood, the population is
segmented into two age groups: children (under 15 years old) and adults. The resulting model consists
of nine compartments: four for each age group, categorized by epidemiological status as susceptible,
exposed, infected, or recovered, and an additional compartment representing the concentration of
viable E. granulosus s.l. eggs in the environment. This methodology yields quantitative insights into
the role of humans, which can be integrated into broader models of disease transmission and spread.

2. Materials and methods

2.1. The model

A mathematical model was developed to address the domestic life cycle of CE, identifying dogs as
the definitive hosts and sheep as the intermediate hosts. Humans, categorized as either children (K) or
adults (A), were incorporated as accidental hosts within the transmission cycle.

The human host populations were classified into standard epidemiological states: susceptible (s),
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exposed (e), infected (i), and recovered (r). The variable Xk denotes the size of the host population
X ∈ {K, A} in the epidemiological class k ∈ {s, e, i, r}. Total population sizes were defined as NH =

NK + NA, where NX represented the total size of host population X across all epidemiological classes.
The dynamics of CE transmission were formulated based on the variables and parameters defined

in Tables 1 and 2, respectively. The model assumed that the susceptible child population K s had a
constant recruitment rate of µN. This population decreased upon exposure to the disease at a rate of
βKG or when maturing into susceptible adults As at a rate of τ. Conversely, K s increased through the
re-exposure of recovered children at a rate of m1.

The population of exposed children (Ke) increased via interaction with an environment containing
viable E. granulosus s.l. eggs (G) at a rate βKG. This group decreased as individuals developed clinical
symptoms at a rate of α1, progressing to the infected stage Ki or maturing into exposed adults Ae at a
rate of τ. Infected children Ki recovered at a rate of γ1 or progressed to infected adult stage Ai at a rate
of τ. A natural death rate, d, was applied to all human compartments.

For the adult population, As increased through the re-exposure of recovered individuals at a rate of
m2 and decreased upon exposure at a rate of βAG. Exposed adults (Ae) increased through environmental
interaction at a rate of βAG and decreased at a rate of α2 upon showing symptoms, progressing to Ai,

who subsequently recovered at a rate of γ2.

In practice, CE prevalence in dogs was determined through parasitological fecal diagnosis using the
enzyme-linked immunosorbent assay (ELISA), DNA detection, or polymerase chain reaction (PCR).
These assessments were conducted within epidemiological units that accounted for local risk factors
such as slaughtering practices and viscera disposal methods. The results were used to calculate the
environmental infestation index (EII), defined as [8]

EII =
Number of positive samples/area
Number of samples analyzed/area

× 100.

Assuming regular EII measurements within fixed areas, this metric was introduced into the
mathematical model as the environmental infestation rate, denoted by β.

It was further assumed that exposed and infected adults maintained the parasite cycle by feeding
dogs with parasitized viscera at a rate of β. These assumptions provided the framework for analyzing
the interaction between the parasite cycle and human disease dynamics (see Figure 1). Consequently,
the transmission dynamics of CE in human populations were expressed by the following system of
ordinary differential equations.

The model proposed the hypothesis that, under specific conditions, the concentration of viable E.
granulosus s.l. eggs was influenced by the infestation rate β. Specifically, it was postulated that in cases
where b = dG, the parameter β played a critical role in increasing the concentration of the causative
agent in the human population.

Mathematical Biosciences and Engineering Volume 23, Issue 3, 776–798.



779

dK s

dt
= µN + m1 Kr −

(
d + τ + βKGG/N

)
K s,

dKe

dt
= βKGGK s/N − (d + τ + α1) Ke,

dKi

dt
= α1 Ke −

(
d + τ + γ1

)
Ki,

dKr

dt
= γ1 Ki −

(
d + τ + m1

)
Kr,

dAs

dt
= τK s + m2 Ar −

(
d + βAGG/N

)
As,

dAe

dt
= τKe + βAGGAs/N −

(
d + α2

)
Ae,

dAi

dt
= τKi + α2 Ae −

(
d + γ2

)
Ai,

dAr

dt
= τKr + γ2 Ai −

(
d + m2

)
Ar,

dG
dt
= (b − dG )G +

β

N

(
Ae + Ai

)
.

(2.1)

Ks Ke Ki Kr

As Ae Ai Ar

G

µN

dKs dKe dKi dKr

βKG GKs/N α1 Ke γ1 Ki

βAG GAs/N

α2 Ae γ2 Ai

τKs τKe
τKi τKr

dAs dAe dAi dAr

dGGbG

βAe/N
βAi/N

m2A
r

m1K
r

Figure 1. Flowchart for the model of human population epidemiological stage
compartments.

2.2. Well-posedness of the solutions

To ensure the model (2.1) was epidemiologically and mathematically well-posed, its properties
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were verified within a feasible domain prior to the primary mathematical analysis.
Theorem 1. The nonnegative orthant

M =
{
x =

(
K s,Ke,Ki,Kr, As, Ae, Ai, Ar,G

)
∈ R9

+

}
(2.2)

is a positively invariant set for system (2.1). Consequently, all solutions of the system remain
nonnegative for nonnegative initial data.

Proof. Observe that each component equation of system (2.1) can be written in the form

dxi

dt
= fi(x) = gi(x) − hi(x) xi, (2.3)

where xi ∈ {K s,Ke,Ki,Kr, As, Ae, Ai, Ar,G}.
Moreover, each function gi(x) does not explicitly depend on xi and satisfies gi(x) ≥ 0 whenever

x j ≥ 0 for all j , i. Therefore, for each i,

dxi

dt

∣∣∣∣∣
xi=0
= fi(x)|xi=0 ≥ 0, whenever x j ≥ 0 for all j , i. (2.4)

This implies that the vector field points inward on the boundary ofM, and soM is a positively invariant
set for system (2.1).

2.3. Disease-free equilibrium and calculation of the basic reproductive number

The basic reproductive number (R0) was identified as a critical parameter within the mathematical
modeling of infectious diseases. This value represents the average number of secondary infections
generated by a single infectious individual introduced into a completely susceptible population. Its
value determines the potential for disease persistence: If R0 < 1, the infection tends toward extinction,
whereas if R0 > 1, the disease may persist and spread within the population [21].

This study implemented the approach proposed by van den Driessche [22] to calculate R0. This
method, based on decomposing the system into new infections and transitions between compartments,
utilized the next-generation matrix to provide a robust framework for compartmental models.

To compute R0, the next-generation matrix approach was employed. Let x ∈ Rm denote the vector
of infected (or infection-related) compartments, those containing individuals capable of contributing
to new infections. The dynamics of the infected subsystem were expressed as

ẋ = F (x) −V(x),

where F represents the rate of appearance of new infections that appear in each compartment, and V
accounts for all other transitions, including disease progression, recovery, natural death, and movement
between infected classes. For the proposed model, the vectors F and V were defined based on the
interaction rates between human hosts and the environment.

F =



βKGG
N KS

0
βAGG

N AS

0
bG + βN (Ae + Ai)


V =


(d + τ + α1)Ke

−α1Ke + (d + τ + γ1)Ki

−τKe + (d + α2)Ae

−τKi − α2Ae + (d + γ2)Ai

dGG


. (2.5)
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The model was then evaluated at the disease-free equilibrium (DFE),

E0 = (K s
0,K

e
0,K

i
0,K

r
0, A

s
0, A

e
0, A

i
0, A

r
0,G0),

where

K s
0 =

µN
d + τ

,

As
0 =
τ

d
K s

0 =
τµN

d(d + τ)
,

Ke
0 = Ki

0 = Kr
0 = Ae

0 = Ai
0 = Ar

0 = G0 = 0.

(2.6)

The DFE was obtained by setting all infected compartments to zero and solving the remaining steady-
state equations for the susceptible populations. Subsequently, the Jacobian matrices of F andV were
computed with respect to the infected variables at the DFE, denoted as F and V , respectively:

F =
∂F

∂x

∣∣∣∣
E0
, V =

∂V

∂x

∣∣∣∣
E0
.

In this case,

F =


0 0 0 0 βKG

N KS
0

0 0 0 0 0
0 0 0 0 βAG

N AS
0

0 0 0 0 0
0 0 β

N
β

N b


,

V =


(d + τ + α1) 0 0 0 0
−α1 (d + τ + γ1) 0 0 0
−τ 0 (d + α2) 0 0
0 −τ −α2 (d + γ2) 0
0 0 0 0 dG


,

V−1 =



1
(d+τ+α1) 0 0 0 0
α1

(d+τ+α1)(d+τ+γ1)
1

(d+τ+γ1) 0 0 0
τ

(d+τ+α1)(d+α2) 0 1
(d+α2) 0 0

τα1
(d+τ+α1)(d+τ+γ1)(d+γ2) +

τα2
(d+τ+α1)(d+α2)(d+γ2)

τ
(d+τ+γ1)(d+γ2)

α2
(d+α2)(d+γ2)

1
(d+γ2) 0

0 0 0 0 1
dG


.

(2.7)

The next-generation matrix was then defined as

K = FV−1.

The basic reproductive number was computed as the spectral radius (the largest nonnegative
eigenvalue) of this matrix:

R0 = ρ(FV−1).
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Consequently, the basic reproductive number for the mathematical model (2.1) was determined to be

R0 =

√
bAs

0α2ββAG

N2(α2 + d)(d + γ2)dG

+
bAs

0ββAG

N2(α2 + d)dG

+
bα1ββKGK s

0τ

N2(d + γ2)(α1 + d + τ)(d + γ1 + τ)dG

+
bα2ββKGK s

0τ

N2(α2 + d)(d + γ2)(α1 + d + τ)dG

+
bββKGK s

0τ

N2(α2 + d)(α1 + d + τ)dG
. (2.8)

The resulting R0 for the mathematical model (2.1) represents the threshold for domestic
transmission dynamics. The following theorem establishes the fundamental property of R0 as a
threshold value at R0 = 1, which follows directly from the construction of the next-generation matrix.

Theorem 2. Given the model (2.1), the disease-free equilibrium E0 is locally asymptotically stable if
and only if R0 < 1.

Proof. See [22].

2.4. Equilibrium points

2.4.1. Case b = dG

Theorem 3. If b = dG, the disease-free equilibrium is the unique equilibrium of system (2.1).

Proof. Assume equilibrium conditions and let b = dG. Then, from the equation governing G, it
follows that

β

N

(
Ae + Ai

)
= 0.

By the positivity of solutions, this implies Ae = Ai = 0. Substituting these values into the equilibrium
equations for Ai, Ki, Kr, and Ar yields

Ki = Ke = Kr = Ar = 0.

Next, the equilibrium equation for Ae reduces to GAs = 0. If As = 0, then substituting all
equilibrium values into the equations for As and K s leads to µN = 0, a contradiction. Hence, G = 0,
and consequently,

K s =
µN

d + τ
, As =

τµN
d(d + τ)

.

Thus, the unique equilibrium point is

x∗ =
(
µN

d + τ
, 0, 0, 0,

τµN
d(d + τ)

, 0, 0, 0, 0
)
, (2.9)

which corresponds to the disease-free equilibrium.
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2.4.2. General case

We consider system (2.1) at equilibrium by blocks: first the children block, then the adult block,
and finally the parasites block. Our goal is to characterize a general equilibrium with components(

K∗s ,K
∗
e ,K

∗
i ,K

∗
r , A

∗
s, A

∗
e, A

∗
i , A

∗
r ,G

∗) .
(I) Children block

From the differential equations associated with Ke, Ki, and Kr, it follows that

K∗e = A1G∗K∗s , where A1 =
βKG/N

d + τ + α1
, (2.10)

K∗i = A2K∗e = A2A1G∗K∗s , where A2 =
α1

d + τ + γ1
, (2.11)

K∗r = A3K∗i = A3A2A1G∗K∗s , where A3 =
γ1

d + τ + m1
. (2.12)

Hence,
K∗s + K∗e + K∗i + K∗r = K∗s + AG∗K∗s , (2.13)

where A = A1 + A1A2 + A1A2A3.
Let K = K s + Ke + Ki + Kr. Then,

dK
dt
=

dK s

dt
+

dKe

dt
+

dKi

dt
+

dKr

dt
= −(d + τ)K + µN. (2.14)

At equilibrium,
dK
dt
= 0, and therefore,

K∗ =
µN

d + τ
, (2.15)

which implies

K∗s + K∗e + K∗i + K∗r =
µN

d + τ
.

Combining this relation with (2.13), we obtain

K∗s + AG∗K∗s =
µN

d + τ
. (2.16)

(II) Adults block

From the differential equations associated with Ae, Ai, and Ar, we obtain

A∗e = B1K∗e + B2G∗A∗s, where B1 =
τ

d + α2
, B2 =

βAG/N
d + α2

, (2.17)

A∗i = B3K∗i + B4A∗e, where B3 =
τ

d + γ2
, B4 =

α2

d + γ2
, (2.18)

A∗r = B5K∗r + B6A∗i , where B5 =
τ

d + m2
, B6 =

γ2

d + m2
. (2.19)
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Consequently,
A∗s + A∗e + A∗i + A∗r = A∗s +CG∗A∗s + BG∗K∗s , (2.20)

where B = A1B1 + A1A2B3 + A1B1B4 + A1A2A3B5 + A1A2B3B6 + A1B1B4B6, C = B2 + B2B4 + B2B4B6.
Let A = As + Ae + Ai + Ar. Then,

dA
dt
=

dAs

dt
+

dAe

dt
+

dAi

dt
+

dAr

dt
= τK − dA. (2.21)

At equilibrium,
dA
dt
= 0, yielding

A∗ =
τ

d
K∗ =

τµN
d(d + τ)

. (2.22)

Thus,

A∗s + A∗e + A∗i + A∗r =
τµN

d(d + τ)
.

Combining this relation with (2.20), we obtain

A∗s +CG∗A∗s + BG∗K∗s =
τµN

d(d + τ)
. (2.23)

(III) Parasites block

At equilibrium, the parasites equation yields

G∗ =
β/N

dG − b
(
A∗e + A∗i

)
, (2.24)

provided that dG − b , 0. Recall that the case dG = b has already been analyzed.
Using expressions (2.17) and (2.18) for A∗e and A∗i , respectively, we obtain

G∗ = DG∗
(
EK∗s + FA∗s

)
, (2.25)

where D =
β/N

dG − b
, E = A1B1 + A1A2B3 + A1B1B4, F = B2 + B2B4.

Our objective is now to analyze the solutions of the system (2.16)–(2.23)–(2.25) for K∗s , A∗s, and G∗,
treating A, B, C, D, E, and F as previously defined constants.

Equation (2.25) can be rewritten as

G∗
[
1 − D

(
EK∗s + FA∗s

)]
= 0. (2.26)

If G∗ = 0, then

(
K∗s ,K

∗
e ,K

∗
i ,K

∗
r , A

∗
s, A

∗
e, A

∗
i , A

∗
r ,G

∗) = (
µN

d + τ
, 0, 0, 0,

τµN
d(d + τ)

, 0, 0, 0, 0
)
, (2.27)

which corresponds to the disease-free equilibrium.
If 1 − D

(
EK∗s + FA∗s

)
= 0, then

EK∗s + FA∗s =
1
D
. (2.28)
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From (2.16) and (2.23), respectively, we obtain

K∗s =
I

1 + AG∗
, A∗s =

H(1 + AG∗) − BIG∗

(1 + AG∗)(1 +CG∗)
, (2.29)

where H =
τµN

d(d + τ)
, I =

µN
d + τ

.

Substituting into (2.28), we obtain a quadratic equation for G∗:

AC
D

(G∗)2 +

(A +C
D
− EIC − AFH − BFI

)
G∗ −

(
EI + FH −

1
D

)
= 0. (2.30)

Once G∗ is determined, the values of K∗s and A∗s follow from (2.29), and the remaining equilibrium
components can be computed iteratively.

2.5. Model bifurcation

Once the value of R0 has been determined, the following step in the process is to analyze the
dynamics of the system around the critical threshold R0 = 1. In this context, bifurcation theory plays a
crucial role, as it allows for the description of the changes in the endemic equilibrium as the
parameters are altered around this threshold. In particular, by applying the center manifold theorem
developed by Castillo Chávez [25], it is possible to determine the direction of the bifurcation and
establish whether the model exhibits a forward or backward bifurcation.

From an epidemiological perspective, this analysis is highly relevant. In models demonstrating
forward bifurcation, the design of control strategies that reduce R0 to 1 is sufficient to achieve disease
eradication. However, in the presence of backward bifurcation, even when R0 < 1, the infection can
persist, implying the need to implement stricter control measures to completely eliminate the
disease [23–25].

The present study shows that the model under analysis exhibits a forward bifurcation, implying that
the condition R0 = 1 is sufficient to control the spread of the disease. The findings obtained from this
study contribute to a more profound comprehension of transmission thresholds and furnish a robust
mathematical framework for the design of effective control strategies.

To determine the direction of the model’s bifurcation, the center manifold theorem, as outlined
in [25], will be employed. The initial step in this process is to calculate the Jacobian at the disease-free
equilibrium (2.6).

J =



−τ − d 0 0 m1 0 0 0 0 −
K sβKG

N

0 −τ − d − α1 0 0 0 0 0 0
K sβKG

N
0 α1 −τ − γ1 − d 0 0 0 0 0 0

0 0 γ1 −τ − m1 − d 0 0 0 0 0

τ 0 0 0 −d 0 0 m2 −
AsβAG

N

0 τ 0 0 0 −d − α2 0 0
AsβAG

N
0 0 τ 0 0 α2 −γ2 − d 0 0

0 0 0 τ 0 0 γ2 −m2 − d 0

0 0 0 0
β

N
β

N
β

N
0 dG − b



.
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Setting R0 = 1 and solving for the parameter β, we obtain

β =

[
bAs

0α2βAG

N2(α2 + d)(d + γ2 )dG
+

bAs
0βAG

N2(α2 + d)dG

+
bα1βKG K s

0τ

N2(d + γ2 )(α1 + d + τ)(d + γ1 + τ)dG
+

bα2βKG K s
0τ

N2(α2 + d)(d + γ2 )(α1 + d + τ)dG

+
bβKG K s

0τ

N2(α2 + d)(α1 + d + τ)dG

]−1

. (2.31)

Following an evaluation of the Jacobian at the designated point, denoted by β∗, the right and left
eigenvectors, denoted by v and w, respectively, are calculated.

An analysis of the sign of the components of the left eigenvector v allows for the determination of
the direction of the model’s bifurcation at the critical point R0 = 1.

The left eigenvector v associated with the zero eigenvalue of the Jacobian is expressed in compact
form as follows:

v =



0

r1

r1(d + α2 )(τ + d + α1 )
γ2τ + dτ + α2τ + γ1γ2 + dγ2 + dγ1 + α2γ1 + d2 + α2 d + α1 d + α1α2

0

0

r1(γ2 + d + α2 )(τ + d + α1 )(τ + γ1 + d)
τ
(
γ2τ + dτ + α2τ + γ1γ2 + dγ2 + dγ1 + α2γ1 + d2 + α2 d + α1 d + α1α2

)
r1(d + α2 )(τ + d + α1 )(τ + γ1 + d)

τ
(
γ2τ + dτ + α2τ + γ1γ2 + dγ2 + dγ1 + α2γ1 + d2 + α2 d + α1 d + α1α2

)
0

r1µΦ

d(b − dG)(τ + d)
(
γ2τ + dτ + α2τ + γ1γ2 + dγ2 + dγ1 + α2γ1 + d2 + α2 d + α1 d + α1α2

)



,

where

Φ = βAG (γ2τ
2 + dτ2 + α2τ

2 + γ1γ2τ + 2dγ2τ + α1γ2τ + dγ1τ + α2γ1τ + 2d2τ + 2α2 dτ + α1 dτ + α1α2τ

+ dγ1γ2 + d2γ2 + α1 dγ2 + d2γ1 + α2 dγ1 + α1 dγ1 + α1α2γ1 + d3 + α2 d2 + α1 d2 + α1α2 d)

+ βKG (dγ2τ + d2τ + α2 dτ + dγ1γ2 + d2γ2 + d2γ1 + α2 dγ1 + d3 + α2 d2 + α1α2 d).

Once the left eigenvector v has been obtained, the right eigenvector w is determined, corresponding
to the same zero eigenvalue of the Jacobian matrix evaluated at β∗. This vector satisfies the relation
w⊤J(β∗) = 0 and is normalized so that w⊤v = 1. Its general compact form is expressed as
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w =



r1

−
r1(τ + γ1 + d)(τ + m1 + d)

τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d

−
r1α1 (τ + m1 + d)

τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d

−
r1α1γ1

τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d
r1τΨ

βKG d(d + α2 )(γ2 + d)(m2 + d)
(
τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d

)
−

r1τ(τ + γ1 + d)(τ + m1 + d)(βAGτ + βKG d + α1βAG )
βKG d(d + α2 )

(
τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d

)
−

r1τ(τ + m1 + d)Ξ
βKG d(d + α2 )(γ2 + d)

(
τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d

)
−

r1τΩ

βKG d(d + α2 )(γ2 + d)(m2 + d)
(
τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d

)
−

r1(τ + d)(τ + d + α1 )(τ + γ1 + d)(τ + m1 + d)
βKGµ

(
τ2 + m1τ + γ1τ + 2dτ + α1τ + γ1 m1 + dm1 + α1 m1 + dγ1 + α1γ1 + d2 + α1 d

)



.

The term Ω denotes the common denominator, which incorporates a series of parameters, namely
τ, γ1 , γ2 ,m1 ,m2 , α1 , α2 , d, βKG , βAG , and Ψ, which collectively represent the polynomial numerator of the
fifth component of the given vector. This factor Ω is analogous to Φ in the eigenvector v but for the
right eigenvector w.

According to the center manifold theorem (see in the Appendix section), to determine the direction
of the bifurcation, it is necessary to calculate the signs of the coefficients a and b of the normal forms
associated with the system (2.1). In this case, the coefficient b is always positive, and a is negative.
Therefore, the model (2.1) exhibits a forward bifurcation at R0 = 1.

2.6. Global stability

Theorem 4 (Global stability of the disease-free equilibrium). Assume that dG > b. If the basic
reproductive number satisfies R0 ≤ 1, then the disease-free equilibrium

x∗ =
(
µN

d + τ
, 0, 0, 0,

τµN
d(d + τ)

, 0, 0, 0, 0
)

of system (2.1) is globally asymptotically stable in the positively invariant region Ω.

Proof. Consider the Lyapunov function

V = c1Ke + c2Ki + c3Ae + c4Ai + c5G, (2.32)

where the positive coefficients ci are defined as

c2 =
c1α1

d + τ + γ1
,

c3 =
c1τ

d + α2
,

c4 =
c3α2

d + γ2
,

c5 =
c4(d + γ2)
β/N

.

(2.33)
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Differentiating (2.32) along the solutions of system (2.1) and rearranging terms, we obtain

V̇ = Ke
[
c2α1 + c3τ − c1(d + τ + α1)

]
+ Ki

[
c4τ − c2(d + τ + γ1)

]
+ Ae

[
c4α2 + c5

β

N
− c3(d + α2)

]
+ Ai

[
c5
β

N
− c4(d + γ2)

]
+G

[
c1
βKKs

N
+ c3
βAAs

N
+ c5(b − dG)

]
. (2.34)

By construction of the coefficients (2.33), there exist constants κi > 0, i = 1, 2, 3, such that

V̇ = −κ1Ke − κ2Ki − κ3Ae +G
[
c1
βKKs

N
+ c3
βAAs

N
+ c5(b − dG)

]
. (2.35)

Evaluating the susceptible compartments at the disease-free equilibrium,

Ks∗ =
µN

d + τ
, As∗ =

τµN
d(d + τ)

, (2.36)

the remaining term involving G becomes

G
[c1βK

N
Ks∗ +

c3βA

N
As∗ + c5(b − dG)

]
. (2.37)

Substituting (2.36) into (2.37), we obtain

G
[
c1βK

N
µN

d + τ
+

c3βA

N
τµN

d(d + τ)
+ c5(b − dG)

]
= G

[
c1µβK

d + τ
+

c3τµβA

d(d + τ)
+ c5(b − dG)

]
. (2.38)

Next, we express the first two terms in (2.38) in terms of c5. Using again (2.33), we obtain

c1 = c5
β

N
(d + α2)(d + γ2)

τα2
, c3 = c5

β

N
d + γ2

α2
. (2.39)

Substituting (2.39) into (2.38) yields

c5G
[
β

N
(d + α2)(d + γ2)

τα2

µβK

d + τ
+
β

N
d + γ2

α2

τµβA

d(d + τ)
− (dG − b)

]
= (dG − b)c5 (R0 − 1) G. (2.40)

The fraction appearing in (2.40) coincides exactly with the basic reproductive number R0, previously
obtained by the next-generation matrix method. Hence,

V̇ ≤ (dG − b)c5(R0 − 1)G. (2.41)
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Because dG > b, and R0 ≤ 1, it follows from (2.41) that V̇ ≤ 0 in Ω, and

V̇ = 0 ⇐⇒ Ke = Ki = Ae = Ai = G = 0.

The largest invariant set contained in {V̇ = 0} is the disease-free equilibrium x∗. By LaSalle’s
invariance principle, x∗ is globally asymptotically stable in Ω.

Remark. The condition dG > b guarantees that the environmental pathogen population decays in the
absence of new infections, which is essential for global stability of the disease-free equilibrium.

2.7. Local stability and forward bifurcation

The local dynamics of system (2.1) near the disease-free equilibrium are governed by the spectral
properties of the linearized system at the critical threshold R0 = 1. At this value, the Jacobian matrix
has a simple zero eigenvalue, and all remaining eigenvalues have negative real parts. As a consequence,
linearization alone is not sufficient to characterize the local behavior of solutions.

According to the center manifold theorem (see the Appendix Material), the qualitative dynamics of
system (2.1) in a neighborhood of the disease-free equilibrium at R0 = 1 are completely determined
by the flow restricted to a one-dimensional center manifold. In particular, the stability and bifurcation
properties of the equilibrium can be inferred from the reduced normal form

u̇ = au2 + bµu + O(|u|3),

where u represents the coordinate on the center manifold, µ = R0 − 1 is the bifurcation parameter, and
the coefficients a and b depend on the model parameters.

The sign of the coefficient b determines the direction in which equilibria bifurcate from the disease-
free equilibrium, and the sign of a determines their local stability. For the present model, explicit
calculations show that b > 0 for all admissible parameter values, whereas a < 0. Therefore, when R0

crosses the critical value R0 = 1, a branch of locally asymptotically stable endemic equilibria emerges
for R0 > 1, but the disease-free equilibrium loses stability.

This behavior corresponds to a forward (supercritical) bifurcation, which implies that the transition
from disease extinction to persistence occurs smoothly as R0 increases through unity.
Theorem 5 (Forward bifurcation at the disease-free equilibrium). Let R0 denote the basic reproductive
number associated with system (2.1). Assume that all model parameters are positive. Then, at R0 =

1, the disease-free equilibrium of system (2.1) undergoes a forward (supercritical) bifurcation. In
particular, the disease-free equilibrium is locally asymptotically stable for R0 < 1 and unstable for
R0 > 1, and a unique locally asymptotically stable endemic equilibrium exists for R0 > 1 sufficiently
close to one.

3. Results

To illustrate the dynamics of CE transmission, the system of ordinary differential equations
described in Eq (2.1) was numerically solved using the ode45 function in MATLAB (version
R2022a [26]). This integrator, based on the explicit Runge-Kutta method of order 4(5) with variable
step size, allows for efficient control of local error by automatically adjusting the step size according
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to the variability of the solution. The numerical simulations were performed using the values
documented in Tables 1 and 2, which correspond to the parameters and initial data, respectively. To
illustrate the phenomenon of adults who are inadvertently infected during childhood due to
undetected disease, a simulation of its dynamics over a 20-year period was performed.

3.1. Impact of the infestation rate on the number of infected individuals

In this section, we will present simulations for model (2.1) using the parameter values available in
the literature (see Table 1). The initial values are presented in Table 2.

As illustrated in Figure 2(a),(b), a decrease in the concentration of E. granulosus s.l. eggs leads
to a concurrent decrease in the number of infected individuals, affecting both children and adults.
Figure 2(c),(d) illustrate the impact of an increase in the concentration of E. granulosus s.l. eggs on
the number of human subjects, both children and adults, infected with CE.

Table 1. Definitions and values of epidemiological parameters (unit: yr−1).

Parameter Description Value Range Reference
µ Human birth rate 0.0141 0.0141–0.4161 [16–20]
d Human death rate 0.0141 0.0141–0.4161 [16–20]
βKG Transmission rate to human juveniles 0.0323 1.0 × 10−11–0.0430 [16, 17, 19, 20]
βAG Transmission rate to human adults 0.0323 1.0 × 10−11–0.0430 [16, 17, 19, 20]
β E. granulosus infestation rate 18.0328 0–1.0 × 102 [11]
dG Parasite egg mortality rate 10.4200 – [17]
b Released rate from infected dog 9.7000 – [17]
α1 Rate at which exposed juveniles become infected 0.0703 0.0693–0.0714 [16, 18, 20]
α2 Rate at which exposed adults become infected 0.0703 0.0693–0.0714 [16, 18, 20]
γ1 Treatment rate (juveniles) 0.5000 0.0500–0.5000 [27]
γ2 Treatment rate (adults) 0.5000 0.0500–0.5000 [27]
τ Average time from child to adult (1/τ) 0.0667 – Assumed
m1 Loss of immunity rate (juveniles) 0.5000 – Assumed
m2 Loss of immunity rate (adults) 0.5000 – Assumed

Table 2. Initial conditions.

Variable Description Initial value
K s Susceptible children 27,167
Ke Exposed children 310
Ki Infected children 0
Kr Recovered children 0
As Susceptible adults 27,232
Ae Exposed adults 100
Ai Infected adults 0
Ar Recovered adults 0
G E. granulosus s.l. eggs 1.4400×107
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Figure 2. The concentration of E. granulosus s.l. eggs affects the prevalence of CE infection
in children and adults.

3.2. Sensitivity analysis

In order to quantify the influence of certain parameters on the basic reproductive number, R0, a
global sensitivity analysis was performed. This analysis was based on Sobol indices [28] and was
carried out using Python’s SALib library. The problem was defined through the establishment of fixed
values for the parameters b, dG, m1, m2, τ, and N. In addition, ranges of variation were determined
for the nine parameters of interest: α1, α2, β, βKG, βAG, d, γ1, γ2, and µ. We then employed Saltelli’s
sampling method, which extends the Sobol sequence to ensure efficient and uniform exploration of the
parameter space, generating 10,000 samples per parameter with second-order interaction. For each set
of parameters, the function defining R0 was evaluated, and the first-order and total-order Sobol indices
were calculated from the results obtained.

Let us analyze the sensitivity indices shown in Table 3 and Figure 3. The most influential parameters
on R0 are β, βAG, and d, and parameters α1, α2, γ1, and µ are noninfluential, as their total indices are
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negligible. β and βAG are controllable parameters. In particular, this suggests that if the infestation
rate could be reduced, the variability in the basic reproductive number of E. granulosus s.l. infection
in humans would also be reduced. The sum of the first-order effects is approximately 0.9, indicating
that not all variance in R0 is explained by the parameters independently. That is, there are interactions
between them. The total sum of the indices is approximately 1.1, which indicates the presence of
interactions, as it captures both the individual and combined effects of the parameters. This discrepancy
between the sums provides a quantitative illustration of the interactions between the parameters of R0,

with the magnitude of the difference indicating the magnitude of these interactions.

Table 3. First-order and total-effect sensitivity indices obtained with the method of Saltelli.

Parameter First-order indices Total-order indices
α1 0.0000 0.0000
α2 -0.0000 0.0000
β 0.3590 0.4290
βKG 0.0010 0.0020
βAG 0.2990 0.3620
d 0.2400 0.3000
γ1 -0.0000 0.0000
γ2 0.0040 0.0060
µ 0.0000 0.0000

Figure 3. First-order and total Sobol indices for 9 parameters of the basic reproductive
number of model (2.1).
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4. Discussion

The infestation index serves as the primary metric for establishing risk levels and defining control
zones for CE. Consequently, findings from laboratory analyses of environmental samples, including
dog feces, soil, surface water, and fur [1–5, 9–11], are instrumental in calculating this index. The
model incorporates the infestation rate, β, as a key parameter, based on the hypothesis that establishing
temporal regularity in environmental monitoring is feasible for detecting viable E. granulosus s.l. eggs.

As established in previous studies [23–25], analyzing the bifurcation type in mathematical models
for infectious disease dynamics is of paramount importance, as it determines the feasibility of
eradication strategies. While this mathematical model does not directly incorporate the specific
behaviors of dogs and sheep, this strategic simplification enables a rigorous analysis of the bifurcation
type. The identification of a forward bifurcation indicates that the disease can potentially be
eradicated through the implementation of suitable control measures.

Previous research [12–15] developed mathematical models to understand CE transmission from
infected animals to humans, with sensitivity analyses identifying transmission rates as highly
influential parameters for the basic reproductive number (R0). The present sensitivity analysis,
utilizing Sobol indices [28], demonstrates that the infestation rate (β) has the greatest impact on R0.
This validates its status as a primary target for public health interventions. This parameter, which is
based on the environmental infestation index (EII) obtained through coproparasitological diagnoses in
dogs, stands as a critical factor in the reemergence of the disease [8].

The incorporation of the β parameter into the extended SEIR model serves as a proof-of-concept.
It demonstrates that periodic sampling (e.g., semiannual) provides valuable data for reducing R0 by
minimizing the environmental burden of viable eggs. Specifically, implementing strict regulations
on sheep slaughter and the disposal of infected viscera, common practices in endemic sheep-farming
areas, results in lower infestation rates, thereby facilitating disease eradication.

The predictive performance of the model, based on the integration of epidemiological data,
improves the surveillance of cystic echinococcosis. The implementation of periodic coprological
diagnostics instead of eventual sampling provides a robust basis for estimating the infestation rate, a
central parameter for projecting the human disease burden. In this way, the model improves the
efficient allocation of resources, guiding parasitic control strategies (such as those as discussed
in [29]) in dogs, vaccination of intermediate hosts, and early detection in humans by serological and
ultrasonographic techniques.

In establishing a baseline for the disease in dogs, the EII allows for the definition of risk levels and
priority control areas. Calculating this index requires the detection of E. granulosus s.l. in the
environment, typically through the analysis of representative fecal samples from dogs within specific
epidemiological units. However, these analyses are currently not conducted on a regular basis.
Consequently, a key limitation of the model is its reliance on the environmental infestation rate, as the
practical data required for its determination are not routinely available in many study areas.

5. Conclusions

In this study, a mathematical model was developed and analyzed as a proof of concept with the
aim of describing the dynamics of transmission of the E. granulosus s.l. parasite to humans. The
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model incorporates the infestation rate. Assuming constant disease transmission rates, the
next-generation matrix was implemented to calculate the basic reproductive number, R0. A sensitivity
analysis was conducted, revealing that the disease transmission rate and infestation rate are the
parameters that most influence the variability of R0. Specifically, 29.90% of the variance of R0 in the
model is directly explained by the parameter βAG, and 35.90% is explained by the parameter β,
revealing that a reduction in the parameters, β and βAG would lead to a decrease in human infections
by E. granulosus s.l. A viable strategy for βAG is to educate the rural population to avoid close contact
with dogs in sheep farming environments, thereby minimizing zoonotic exposure. β could be reduced
by improving sheep slaughtering practices and the safe disposal of viscera, preventing dogs from
feeding on it, and reducing the resulting environmental burden of parasite eggs. Consequently, these
findings underscore the importance of integrated One Health interventions that combine community
education and dog reservoir control to interrupt the transmission cycle in endemic regions. The
calculation of the proportion of variance contributed by individual parameters and their interactions
with other parameters was determined to be 36.2% and 42.9%, respectively. In the present study, a
bifurcation analysis of the model was carried out, through which it was determined that the
bifurcation is forward. Therefore, it has been established that a clear threshold for the eradication of
the disease is one that meets the condition R0 < 1. Consequently, it has been determined that a
strategy aimed at reducing βAG and β could potentially lead to a decrease in human infections. In this
study, it has been observed that, by incorporating the infestation rate into the mathematical model,
human behavior can be characterized as responsible for perpetuating the parasite’s life cycle. In
addition, the simulations have depicted a clear association between the variations in the availability of
E. granulosus s.l., and the number of infected humans.
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A. Appendix

Consider a general system of ODEs with a parameter φ,

dx
dt
= f (x, φ), (A.1)

f : Rn × R, f ∈ C2(Rn × R).
Without a loss of generality, it is assumed that 0 is an equilibrium for system (A.1) for all values of

the parameter φ, that is,

f (0, φ) ≡ 0 for all φ. (A.2)

Theorem 6 (Center manifold theorem). Assume

A1: A = Dx f (0, 0) =
(
∂ fix j(0, 0)

)
is the linearization matrix of system (A.1) around the equilibrium

0 with φ evaluated at 0. Zero is a simple eigenvalue of A, and all other eigenvalues of A have
negative real parts;

A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v corresponding to the
zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0), (A.3)

b =
n∑

k,i=1

vkwi
∂2 fk

∂xi∂φ
(0, 0). (A.4)

The local dynamics of (A.1) around 0 are totally determined by a and b.

1) a > 0, b > 0
When φ < 0 with |φ| << 1, 0 is locally asymptotically stable, and there exists a positive unstable
equilibrium; when 0 < φ << 1, 0 is unstable and there exists a negative and locally asymptotically
stable equilibrium;

2) a < 0, b < 0
When φ < 0 with |φ| << 1, 0 is unstable; when 0 < φ << 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium;
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3) a > 0, b < 0
When φ < 0 with |φ| << 1, 0 is unstable, and there exists a locally asymptotically stable negative
equilibrium; when 0 < φ << 1, 0 is stable, and a positive unstable equilibrium appears;

4) a < 0, b > 0
When φ changes from negative to positive, 0 changes its stability from stable to unstable.
Correspondingly, a negative unstable equilibrium becomes positive and locally
asymptotically stable.
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