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Abstract: Traffic sign recognition is crucial not only for autonomous vehicles and traffic safety 

research but also for multimedia processing and computer vision tasks. However, traffic sign 

recognition faces several challenges, such as high intraclass variability and interclass similarity in 

visual features and background complexity. We propose a novel invariant cue-aware feature 

concentration transformer (TTSNet) to effectively address these challenges. TTSNet aims to learn the 

invariant and core information of traffic signs. To this end, we introduce three new modules to learn 

the features of traffic signs: attention-based internal scale feature interaction (DLFL), cross-scale 

cross-space feature modulation (SSFM), and eliminating spatial and information redundancy (ESIR) 

modules. The DLFL module extracts invariant cues from traffic signs through feature selection based 

on discriminative values. The SSFM-Fusion module aggregates multi-scale information from traffic 

sign images by concatenating multi-layer features. The ESIR module improves feature representation 

by eliminating spatial and channel information redundancy. Extensive experiments showed that 

TTSNet achieves state-of-the-art performance on the T100K (89.1%) and CTSDB (89.97%) datasets. 
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1. Introduction 

Traffic sign recognition is a fundamental problem in the field of computer vision. Its aim is to 

provide highly accurate traffic sign predictions. With the increasing number of private cars on the road, 

traffic density has risen significantly, and traffic jams are also increasing. In China, image recognition 

for unmanned vehicles has received growing attention, maintaining an annual growth rate of 9.37% [1]. 

Figure 1 illustrates two major challenges in traffic sign recognition—occlusion and complex 

backgrounds—using real-world street scenes as examples. Occlusion is a common issue in urban 

environments, where vehicles, trees, and infrastructure elements block parts of traffic signs. In Figure 

1(a), a large blue overhead sign is partially occluded by a bridge structure and a passing bus, making 

it harder to detect and read. Similarly, in Figure 1(b), a traffic sign is partially hidden behind tree 

branches, which obstructs visibility and increases the difficulty of recognition. On the other hand, 

complex backgrounds introduce visual noise and distractions, making it challenging for models to 

distinguish traffic signs from their surroundings. Figures 1(c) and 1(d) demonstrate such a challenge. 

In Figure 1(c), a traffic sign is positioned among dense trees and shadows, causing it to blend into the 

background, which makes detection more difficult. In Figure 1(d), the sign is located in a cluttered 

urban setting with trees, poles, and barriers, further complicating recognition.  

 

Figure 1. Two main challenges exist in traffic sign recognition. (a) and (b) illustrate the 

challenges of occlusion in traffic sign recognition. (c) and (d) demonstrate the challenges 

posed by complex backgrounds in traffic signs. 



 724 

Mathematical Biosciences and Engineering  Volume 23, Issue 3, 722–752. 

As autonomous vehicles are increasingly used, traffic sign recognition has become a key area of 

research [2,3]. This concept has attracted wide attention in the fields of multimedia processing [4,5], 

image classification [6,7], and image recognition [8]. However, the creation of traffic signs has long 

been a challenging task due to the large variation within classes and subtle variation between classes. 

Excellent performance on traffic signals can support downstream tasks. Automatic image recognition 

of traffic signs can aid a better understanding of transportation data in less developed areas. This study 

aims to further prevent the problem of traffic congestion and effectively maintain pedestrian safety, 

building on the development of recent work on traffic sign recognition. 

A substantial amount of work has been carried out on traffic sign recognition. In traffic sign 

recognition systems, fault detection and optimization algorithms are equally important. Jawad and 

Abid proposed a fault detection method for HVDC systems based on the Gray Wolf Optimization 

algorithm and artificial neural networks, demonstrating the effectiveness and potential of optimization 

algorithms in complex systems [9]. Deep learning (DL) methods have achieved better performance 

than traditional methods. Accordingly, we only mention DL-based image recognition methods. These 

can be broadly divided into two families: RoI-based methods (regions of interest) and IoU (image-only 

usage) methods. 

For methods based on RoIs, inference relies on analyzing local regions rather than the entire 

image, as local areas typically provide more significant information [10,11]. These approaches 

commonly employ the Region Proposal Network (RPN) [12] to identify distinctive local regions. Ge 

et al. [10] introduced a technique where the RPN initially locates regions of interest, which are then 

selected, resized, and processed through a backbone network to generate valuable local features, 

allowing for predictions focused on these specific regions. Liu et al. [11] developed an innovative 

model called Filtration and Distillation Learning (FDL), which intensifies attention on discriminative 

areas for the task of FBIC (Fine-Grained Bi-Image Classification). FDL uniquely utilizes the alignment 

between proposing and predicting regions, facilitating direct optimization of the proposals. 

Furthermore, this approach transfers object-level knowledge to effectively enhance attention on 

specific regions. However, RoI-based methods may occasionally lose critical information due to the 

cropping of localized image sections. Additionally, the RPN backbone is limited in its ability to capture 

relationships among the proposed regions, leading it to often suggest larger bounding boxes that 

contain substantial portions of the objects rather than highlighting the most informative parts. 

Moreover, training models with an RPN backbone can be challenging, as optimization goals may not 

align. Modifying the RPN backbone also adds complexity to the overall pipeline. 

IoU methods are advanced and promising because they leverage global image-level information 

and can be trained end-to-end without the need for additional annotations. The most widely used 

backbone for IoU methods is the convolutional neural network (CNN), such as VGG [13], ResNet [14], 

DenseNet [15], and GoogleNet [16]. Luo et al. [17] proposed an effective approach called Cross-X-

Learning, which exploits the relationships between multiple images and between multiple hidden 

layers in the network to achieve flexible multi-scale feature learning. Cross-X offers a reasonable 

training time and supports continuous training with ease. It also demonstrates computational efficiency 

when handling large datasets. Zhuang et al. [18] introduced the Attentive Pairwise Interaction Network 

(API-Net), a straightforward yet effective architecture designed to recognize fine-grained distinctions 

by attentively identifying contrasting features between arbitrary pairs of input images. These 
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contrasting features are obtained by computing pairwise interactions between the two images. With 

the addition of score ranking regularization, API-Net further generalizes its capabilities by prioritizing 

specific features, allowing it to be trained end-to-end as well. Du et al. [19] discovered that the key to 

FBIC is to encourage the network to learn at different granularities and gradually merge multi-

granularity functions. Ding et al. [20] proposed an attention pyramid network for FGVC, where high-

level semantic information and low-level details are exploited by building a pyramid hierarchy on a 

CNN. Several Transformer-based methods that can achieve state-of-the-art performance have recently 

been proposed due to the widespread adoption of the Transformer architecture [21]. He et al. [22] 

introduced the Transformer architecture for FBIC and achieved impressive performance. Their 

proposed model is based on vision Transformer (ViT) [23] with a novel part selection module that 

integrates all raw attention [24] weights of the Transformer into an attention map. Although IoU 

methods [25] significantly reduce the labor cost of annotating datasets and outperform previous 

methods, numerous challenges remain for traffic sign recognition [26]. 

Several challenges exist in traffic sign recognition that hinder recognition accuracy. These 

challenges can be summarized as follows: 

1) Background complexity: Background complexity is a major problem. Traffic signs are 

typically located in busy urban environments where the surrounding vehicles, pedestrians, and various 

advertisements can interfere with recognition. This problem requires the model to not only identify the 

sign itself but also ignore or minimize the effects of background distractions. 

2) Feature occlusion: The visual features of characters can exhibit high intraclass variation and 

interclass similarity. For example, the same traffic sign may appear distinct when photographed from 

different angles, distances, and lighting conditions, while various categories of traffic signs may 

overlap in shape or color. In this scenario, the model’s detection ability is severely compromised, 

necessitating the design of network architectures that can effectively extract key features. 

We have identified several important features by carefully observing the types of traffic signs and 

their performance in different environments. First, the shapes and colors of traffic signs vary in 

different traffic scenarios, but some invariant features can be used for fine-grained traffic sign 

classification. Second, some traffic signs may look similar but actually have varied meanings due to 

regional differences and different regulations. Although these characters look similar, their 

classification meanings are completely different. 

Figure 2 shows different scenarios for traffic signs captured in various real-world environments, 

including urban streets and motorways. On the left-hand side of the picture are road signs in 

complicated conditions, such as speed limits, warning signs, and direction signs placed on overhanging 

structures or road signs. The right side of the picture shows how to extract and magnify the road signs 

to highlight their details. These enlarged images highlight specific features of the traffic signs, such as 

numerical speed limits, prohibition symbols, and various color-coded categories. There are therefore 

two lessons for the challenges set out above. 

Finding Ⅰ: Invariant cues of specific traffic signs. Traffic signs are not simply categorized by their 

shape or color. Certain core features, such as patterns, symbols, and text, must be differentiated from 

others. Analysis of images of the same sign from different angles and lighting conditions can result in 

misleading information that negatively affects fine-grained detection. Nonetheless, we can effectively 

mitigate this risk by identifying these core features and the long-term semantic relationships defined 
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as invariant cues between graphic elements, such as the relationship between patterns and backgrounds 

or colors and shapes. 

 

Figure 2. Two findings exist in traffic sign recognition. 

Finding ⅠⅠ: Subtle discrepancies among different traffic signs. In certain types of traffic signs, 

subtle differences may not be easily noticeable. However, these differences may represent completely 

different instructions or meanings. For example, some signs may be nearly identical in shape, but slight 

variations in color or border design may indicate different traffic rules. Such subtle differences are 

crucial for the precise recognition of traffic signs. Therefore, the recognition of crucial fine-grained 

features in the classification of traffic signs is of particular importance. 

The above findings highlight the challenge of identifying invariant cues and subtle discrepancies 

in traffic sign images. Invariant cues remain consistent under varying conditions (e.g., lighting changes 

or occlusions), while fine-grained yet important details are often overlooked by coarse classification 

methods. Therefore, the effective use of these two insights plays an important role in improving the 

accuracy of traffic sign recognition. This work is motivated by the need to develop a method that 

focuses on invariant cues and enables the identification of invariant relationships between the 

components of traffic signs and the determination of the differences between specific traffic signs to 

achieve this goal. To address this, we design a multiscale feature aggregation module that integrates 

diverse visual information. Additionally, a feature abstraction module is introduced to extract the 

invariant and essential features of traffic signs. In summary, these two modules will enable our model 

to respond to the invariant cues in traffic sign images, thereby improving the performance of traffic 

sign recognition. 

Unlike previous studies on traffic sign recognition that focus on exploiting common traffic sign 

features, our work adopts an insight perspective to uncover the invariant cues of traffic sign images. 

Our motivation is two-fold: On the one hand, traffic sign recognition must be able to find the invariant 
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clues of certain traffic signs. On the other hand, distinguishing the discrepancy is crucial for 

recognizing similar traffic signs. We propose a novel feature transformation model capable of learning 

multi-scale semantic information and invariant cues in traffic signs to exploit the insights we observed. 

Overall, the main contributions of this work are as follows: An efficient TTSNet model was developed 

to exploit the results we observed in traffic sign datasets. Thereafter, a Transformer was used to study 

the positional relationships between traffic signs. In addition, we developed a feature extraction and 

fusion strategy to generate feature maps for our TTSNet model.  

2. Related work 

2.1. Problem formulation 

Traffic sign recognition can be briefly summarized as follows: Given a traffic sign image 𝑥 and 

its corresponding class 𝑦, the task is to find a mapping function 𝐹 to estimate 𝑦̂ = 𝐹(𝑥). 𝑦̂ should fit 

the real traffic sign class as closely as possible. Currently, neural networks are widely utilized for the 

mapping function 𝐹 . The focus of the issue lies in the network design. To minimize the loss, the 

network parameters 𝜃 and 𝐹 are updated iteratively. The optimization process typically uses gradient-

based methods, such as stochastic gradient descent: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃ℒ(𝑦̂, y),                                                                       (1) 

where 𝜂 is the learning rate, and ∇𝜃ℒ is the gradient of the loss with respect to the parameters. 

In recent years, numerous network architectures have emerged, such as CNNs, graph 

convolutional networks, and Transformers [26]. These DL-based methods establish a bridge between 

traffic sign images and their corresponding labels. Once the network architecture is established, the 

parameters in function 𝐹 can be obtained by minimizing the error between the predicted value 𝑦̂ and 

the ground truth 𝑦. The distance between 𝑦 and 𝑦̂ is typically measured using the mean square 

error (MSE), which is used to measure the difference between predicted and true values. The 

formula is as follows: 

𝑀𝑆𝐸 = 
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑁
𝑖=1 ,                                                          (2) 

where 𝑁 is the total number of data points, 𝑦𝑖 is the true value (ground truth) of the i-th data point, and 

𝑦̂𝑖 is the predicted value for the i-th data point. 

2.2. Transformer-based image recognition 

Transformer-based methods for computer vision can be classified into three main approaches: 

pure transformer architectures such as Vision Transformer (ViT), improved transformer variants such 

as Cross Transformer, Swine Transformer, and MSG Transformer, and hybrid models combining CNN 

and transformer with a focus on long-range dependency capture. 

Origin and general application: The Transformer [27] was originally proposed for natural 

language processing and has since found wide application in various fields due to its exceptional ability 
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to model long-dependent semantic relationships. Carion et al. [28] introduced this mechanism for the 

first time in computer vision tasks, proposing a Transformer-based object detector that achieved 

excellent performance. Subsequently, a novel unsupervised pretraining method [29] was presented to 

improve the performance of Transformer-based models. 

Transformer architectures and variants: Dosovitskiy et al. [30] directly applied a pure 

Transformer architecture, showcasing its capabilities in vision tasks. Chen et al. [31] proposed 

CrossViT, a dual-path Transformer architecture designed to capture and integrate multiscale features 

for image classification. Liu et al. [32] developed a hierarchical Transformer using sliding windows, 

enabling self-attention computation within these windows. This approach maintains linear 

computational complexity and facilitates cross-window connectivity. The MSG-Transformer [33] 

addresses the trade-off between efficiency and flexibility by assigning messenger tokens to each region, 

serving as carriers for cross-regional information exchange. However, the division of images into non-

overlapping segments may limit the capture of essential fine-grained details. 

Hybrid models combining Transformers with other architectures: Liu et al. [34] combined CNN 

and Swin Transformer [32], where CNN was used to extract superficial features, and the Swin 

Transformer was employed to exploit long-dependent semantic relationships. Li et al. [35] merged 

CNN and Transformer architectures for human pose estimation. The integration of CNNs and 

Transformers addressed specific challenges in capturing fine-grained details and long-range dependencies. 

2.3. Attention mechanism 

The attention mechanism plays a crucial role in improving the efficiency and accuracy of deep 

learning models. Its main function is to allow the model to focus on the most important features of the 

input data while ignoring irrelevant or less important information. By prioritizing essential features, 

the attention mechanism helps reduce noise, improve feature extraction, and improve the learning 

efficiency of the model. This feature is particularly useful for traffic sign recognition, where certain 

visual patterns, shapes, and colors are more important than others. Integrating an attention mechanism 

into the recognition process has been shown to significantly improve both learning efficiency and 

recognition accuracy [36]. 

In the context of traffic sign recognition, attention mechanisms have been successfully combined 

with traditional convolutional neural networks (CNNs) to achieve remarkable performance 

improvement. For example, Sun et al. [37] introduced a novel model called MobileNets CNN (MCNN), 

which was specifically designed for traffic sign patterns identification. This model integrates the 

squeeze-and-excitation (SE) module into the CNN architecture. The SE module is an advanced 

attention mechanism that adaptively recalibrates channel-wise feature responses, effectively 

improving the network’s ability to focus on informative features while suppressing irrelevant ones. By 

integrating the SE module, MCNN improves the feature representation capability, allowing the model 

to better capture fine-grained details and complex patterns in traffic sign images.  

Overall, the integration of attention mechanisms, exemplified by the squeeze-and-excitation 

module in MCNN, demonstrates the potential of combining advanced feature prioritization techniques 

with deep learning architectures to achieve state-of-the-art results in traffic sign recognition.  
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3. Proposed TTSNet model 

3.1. Overview 

The pipeline of the TTSNet (Traffic Sign Recognition via a Transformer by Learning 

Spectrogram Structural Features) model is shown in Figure 3. The proposed method includes four parts. 

The first part is the feature extraction backbone for extracting the multi-scale information of traffic 

signs. In this study, the CS module is adopted as the core of the backbone because it is excellent for 

eliminating spatial redundant features and information redundancy in traffic signs, such as warning 

signs and prohibition signs, using the shifted window scheme. The backbone has been further enhanced 

with the attention-based internal scale feature interaction (DLFI) for improved performance. The 

second part is the DLFI module, which encodes and decodes images. The third part is the SSFM fusion 

module (Cross-scale Cross-space Feature Modulation), which merges the multi-layer and multi-scale 

information of images. The fourth part is the detection head, where feature maps are finally used for 

the final detection. 

We have prepared a glossary of abbreviations to clarify the terminology used throughout the 

manuscript. Table 1 lists all module names and abbreviations consistently, along with their full 

definitions. The glossary ensures that readers can easily understand the components of our method, 

avoiding confusion caused by inconsistent naming in earlier drafts. 

Table 1. Glossary of abbreviations. 

Abbreviation Full name 

DLFI Attention-based Internal Scale Feature Interaction 

SSFM Cross-scale Cross-space Feature Modulation 

ESIR Eliminating Spatial and Information Redundancy 

Input-IoU Input-guided Intersection-over-Union 

CIoU Complete Intersection-over-Union 

PWC Pointwise Convolution (1×1 Conv) 

GWC Groupwise Convolution 

3.2. ESIR module 

Spatial and channel redundancy between features is exploited for TTSNet, and an efficient 

convolution module called ESIR is proposed to reduce redundant computing and facilitate the learning 

of representative features. The proposed ESIR consists of two units: spatial and channel reconstruction 

units. The SRU uses a separate-and-reconstruct method to reduce spatial redundancy, while the CRU 

uses a split-transform-and-fuse strategy to minimize channel redundancy. In addition, ESIR is a plug-

and-play architectural unit that can be seamlessly integrated into various CNNs and directly replaces 

standard convolutional layers.  
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Figure 3. Overall structure of the TTSNet. First, the input image first passes through SRU 

and CRU modules to extract various features, and the extracted features are merged by 1×1 

convolution. Second, the DLFI encoder further processes these features using a self-attention 

mechanism to capture global information and generate richer feature representations through 

linear projection. Third, the ESIR module processes the input image, generates multi-scale 

feature maps, and passes them to the subsequent multi-scale feature fusion module. Fourth, 

the SSFM module performs cross-scale fusion of features at different levels, and the final 

detection or classification result is output through the decoder. 

 

 

Figure 4. Structure diagram of the ESIR module. 
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The Spatial Reconstruction Department leverages a separate and reconstructed approach. The 

purpose of the separation operation is to distinguish feature maps with high information content from 

those with low information content corresponding to the spatial content. In addition, the scale factor is 

used in group normalization (GN) to evaluate the information content of different feature maps:  

𝑋output = 𝐺𝑁(𝑋) = 𝛾
𝑋 − 𝜇

√𝜎2 + 𝜀
+ 𝛽, (3)  

which is the transformation formula for the input data; 𝜇 and 𝜎 represent the mean and standard 

deviation of 𝑋, respectively; and 𝜖 is a small positive constant added for division stability. Parameters 

𝛾 and 𝛽 are trainable affine transformations. Specifically, we exploit the trainable parameters 𝛾∈ 𝑅 𝐶 

in the GN layers to evaluate the variance of spatial pixels for each batch and channel. The richer spatial 

information indicates greater variation in spatial pixels and contributes to a larger 𝛾: 

𝑊 = 𝐺𝑎𝑡𝑒(𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝛾(𝐺𝑁(𝑋))), (4)  

where the equation defines the gating mechanism used to modulate the normalized input features. The 

input 𝑋  contains informative and expressive spatial content, while 𝑋𝜔  captures less informative 

features. We first multiply the input features 𝑋  by 𝑊1  and 𝑊2 , yielding two weighted features: the 

informative features 𝑋1  and the less informative features 𝑋2 . This process effectively separates the 

input features into two distinct parts. 

The Channel Reconstruction Unit (Figure 4) is introduced, utilizing a split-transform-and-fuse 

strategy to exploit the channel redundancy of functions. Pointwise convolution (PWC) uses 1×1 

convolutions to process feature maps. PWC allows channel information to be mixed without changing 

the spatial dimensions. Features can be effectively combined and redundancies reduced while retaining 

important information by applying filters across all spatial locations for each channel. PWC is 

computationally efficient and helps in dimensionality reduction. 

PWC, also known as 1×1 convolution, individually operates at each spatial location, shuffling 

information across channels without changing spatial dimensions. The formula for PWC is as follows: 

𝑌𝑃𝑊𝐶 = ∑𝑊𝑃
(𝑙)

∗ 𝑌(𝑙−1) + ∑
𝜕2𝑌(𝑙−1)

𝜕𝑥𝑛
2

𝑁

𝑛=1

𝐿

𝑙=1

, (5)  

where 𝑌𝑃𝑊𝐶 is the output feature map after PWC, and 𝑊𝑃
(𝑙)
 represents the convolution kernel for the 

𝑙th layer, applied over the input feature map 𝑌(𝑙−1). Given that PWC is a  ×   convolution, it changes 

the number of channels without modifying the spatial dimensions. ∑ (𝜕^  𝑌^((𝑙 −  )))/𝑁
𝑛=1

(𝜕𝑥_𝑛^  ) is a second-order derivative term that captures the curvature or higher-order changes in the 

feature map at the spatial position 𝑥𝑛, which increases sensitivity to nonlinear relationships. The main 

term 𝑊𝑃
(𝑙)

∗ 𝑌(𝑙−1)  mixes information across all channels at each spatial location. Meanwhile, the 

second-order term adds fine-grained, nonlinear details to the feature extraction process. 

Group-wise convolution (GWC) is a type of convolution that divides the input channels into 

groups and independently performs convolutions within each group. This approach reduces the number 

of parameters and calculations while capturing spatial features across all channels. The formula for 
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GWC is as follows: 

𝑌𝐺𝑊𝐶
(𝑙) (𝑖, 𝑗) = ∑ (𝜔𝑘

(𝑙) ∗ 𝑌(𝑙−1)(𝑘, 𝑗) +
𝜕𝑌(𝑙−1)

𝜕𝑘
) + 𝜂 ∑ 𝑌(𝑙−1)(𝑚, 𝑗)

𝑚∈𝑁(𝑖)𝑘∈𝐺(𝑖)

, (6)  

where 𝑌𝐺𝑊𝐶
(𝑙) (𝑖, 𝑗) represents the output feature map at level 𝑙, group 𝑖, and spatial position 𝑗; 𝐺(𝑖) is 

the set of channels in group 𝑖; 𝜔𝑘
(𝑙)

 is the convolution kernel for the 𝑘th channel at level 𝑙; 𝑌(𝑙−1)(𝑘, 𝑗) 

is the feature map from the previous level; the ∗  symbol represents the convolution operation; 

(𝜕𝑌^((𝑙 −  ) ))/𝜕𝑘 captures the gradient with respect to the channel 𝑘, resulting in temporal or spatial 

sensitivity to changes; and 𝜂  is a scaling factor that modulates the influence of the neighboring 

channels. The formula combines direct feature values, weighted contributions, and gradient-based 

refinements, which allows the model to eliminate redundant channel information while preserving key 

details. The gradient term (𝜕𝑌^((𝑙 −  ) ))/𝜕𝑘 ensures that regions with strong variations (such as 

edges or sign boundaries) receive higher attention, improving robustness in cluttered backgrounds. By 

incorporating a secondary neighborhood sum ∑ 𝑌(𝑙−1)(𝑚, 𝑗)𝑚∈=𝑁(𝑖) , the model can adaptively fuse 

local and global information, helping to retain contextual details while reducing unnecessary channel 

redundancy.  

GWC extends the idea of convolution by dividing the input channels into groups and performing 

convolutions within each group. This method reduces the number of parameters and computational 

effort compared with standard convolutions. GWC can capture more localized feature interactions by 

focusing on specific groups of channels and effectively managing redundancies while retaining critical 

information. 

First, the separation process involves splitting the input 𝑋 into two different, distinct channels: 

the upper and lower channels. The upper channel, denoted as 𝑋𝑢𝑝, represents the input, which contains 

rich functions. This upper channel undergoes GWC and PWC processes. After these convolutions, the 

results are combined to output 𝑌1.  

Meanwhile, the lower channel, denoted as 𝑋𝑙𝑜𝑤, serves as a complementary source of rich features. 

This lower channel is processed using PWC. Thereafter, the resulting features are merged with the 

original input 𝑋 to form 𝑌2. This step is what we refer to as the transformation process. 

Finally, a merge operation is performed to merge outputs 𝑌1 and 𝑌2, resulting in the final output. 

This comprehensive process ensures that rich functionality and additional information are effectively 

combined, resulting in an improved representation of the input data.  

3.3. DLFI module 

Figure 5 illustrates the feature maps from Transformer blocks after stage fusion, with the feature 

maps in the final stage arranged according to their distinction scores. As shown in Figure 5, in earlier 

stages, such as Stage 1 and Stage 2, the  its k features exhibit minimal similarity to one another, 

while features with poor scores are almost identical. In contrast, in the later stages, such as Stage N, 

the  its k features demonstrate greater similarity and are more highly activated, whereas the poorly 
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scored features tend to appear noisy. Overall, features with high distinction scores across all stages 

prove to be more valuable than those with low scores. Building on this observation, we introduce the 

DLFI module to effectively utilize the information provided by these distinctive features, thereby 

improving the model's performance on the traffic sign recognition (TSR) task. To address the negative 

effects of disruptive features, the DLFI module is designed to mitigate their impact.  

 

        . Feature visualization in Transformer hidden layers. 

First, the DLFI module calculates the similarity between 𝑛 vectors. This similarity can be assessed 

using either cosine similarity or the reciprocal of the 𝐿2 distance. The cosine similarity is expressed as: 

𝐶𝑐𝑜𝑠(𝑥, 𝑦) =
𝑥 ⋅ 𝑦

∥ 𝑥 ∥⋅∥ 𝑦 ∥
=

∑ 𝑥𝑖𝑦𝑖
𝑑
𝑖=1

√∑ 𝑥𝑖
2𝑑

𝑖=1 ⋅ √∑ 𝑦𝑖
2𝑑

𝑖=1

, 
(7)  

where 𝑎 ∈ ℝ𝑑  and 𝑏 ∈ ℝ𝑑  are two vectors, and 𝐶𝑐𝑜𝑠(𝑥, 𝑦) ∈ [0, ]. The value of 𝐶𝑐𝑜𝑠 represents the 

degree of similarity between 𝑥 and 𝑦. In the DLFI module, cosine similarity is used to calculate the 

similarity between n vectors. Through this approach, the module can effectively capture the semantic 

relationships between features, thereby enhancing the model's performance in complex tasks such as 

occlusion handling and target recognition in cluttered backgrounds. The introduction of cosine 

similarity not only improves the robustness of feature representation but also provides the model with 
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an efficient feature matching mechanism, enabling more accurate identification and differentiation of 

targets in high-dimensional spaces. The 𝐿2distance is defined as 

𝐿2(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2 
𝑑

𝑖=1
, (8)  

where 𝑎 ∈ ℝ𝑑 and 𝑏 ∈ ℝ𝑑 represent two feature vectors. The similarity calculation is defined as 

{

𝑆𝑖𝑚cos(𝑣𝑖, 𝑞𝑣𝑗) = 𝑆𝐶𝑜𝑠(𝑣𝑖, 𝑣𝑗),    𝑖, 𝑗 ∈ [ ,  , 3,⋯ , 𝑛]

𝑆𝑖𝑚𝐿2
(𝑣𝑖 , 𝑣𝑗) =

 

𝐿2(𝑞𝑖 , 𝑞𝑗)
,      𝑖, 𝑗 ∈ [ ,  , 3,⋯ , 𝑛]

, (9)  

where 𝑣𝑖  and  𝑣𝑗  correspond to 𝑖 -th and 𝑗 -th patch vectors, respectively. 𝑆𝐶  represents the cosine 

similarity, and 𝐿2 represents the 𝐿2 distance. 

The DLFI module uses attention mechanisms to enable effective interaction between features of 

different scales. This aspect is crucial for improving the model's ability to detect objects of different 

sizes within the same scene, which calculates interactions between features. Given a feature map 𝐹 

with dimensions 𝐻×𝑊×𝐶 (height, width, and channels), the attention values can be calculated as 

𝐴𝑖,𝑗 =
𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝐹𝑖, 𝐹𝑗))

∑ 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒(𝐹𝑖, 𝐹𝑘))
𝑁
𝑘=1

, (10)  

where the DLFI module combines feature maps 𝐹1, 𝐹2, … 𝐹𝑛 from different scales to generate a unified 

feature representation. Let the dimensions of each feature map be 𝐻𝑖 × 𝑊𝑖 . The merger can be 

expressed as 

𝐹𝑓𝑢𝑠𝑒𝑑 = ∑𝛼𝑖 × 𝐹𝑖

𝑛

𝑖=1

, (11)  

where 𝛼𝑖  denotes the fusion weights, which are typically learned during training, reflecting the 

importance of the feature map of each scale. 

3.4. SSFM fusion module 

This network structure is designed to process input features through two parallel paths, allowing 

the local and global features to be captured. The first path applies a simple 1×1 convolution operation 

to the input, mainly focusing on simple feature transformation or dimensionality reduction (Figure 3). 

However, the second method is more complex as it first applies a 1×1 convolution and then passes the 

output through a RepBlock (re-parameterizable block) module. This module is likely to consist of a 

number of layers or operations that enable deeper feature extraction. Once both paths have processed 

their respective inputs, the outputs are combined through an element-wise summation operation (⨁). 

This fusion step integrates the information from both paths and allows the network to leverage simple 

and deeper feature representations. Such a design improves the network’s ability to extract robust and 

comprehensive features, which can improve the overall performance of the model, especially in tasks 

that require multi-level feature analysis. 
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The SSFM fusion module in the provided diagram is a critical aspect of the entire network. In 

particular, this module is responsible for combining features from multiple scales or layers. The fusion 

process is applied in several steps. Each feature map from the different layers (𝐹3, 𝐹4, and 𝐹5) is 

processed and merged by sequential “fusion” blocks. These blocks include various operations, such as 

element-wise addition, concatenation, or other forms of mixing, to summarize the spatial and 

contextual information from each scale. This module merges three feature maps, effectively combining 

different types of information. Although this module can preserve various details, it also allows for an 

extensive, comprehensive understanding of contextual information. 

 𝐹5 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐷𝐿𝐹𝐼(𝑄, 𝐾, 𝑉)), (12)  

where reshape represents restoring the shape of the flattened feature to the same shape as S5. In the 

overall fusion process, yellow represents a 1× 1 convolution kernel, while blue denotes a 3×3 

convolution kernel, which can be regarded as a downsampling operation, thereby reducing the size of 

the feature map by half. Accordingly, F5 first undergoes a 1×1 convolution and is then combined with 

𝐹4. The result of this combination is passed through another 1×1 convolution and combined with 𝐹3. 

This step completes a top-down process, in which the first output result is obtained after two mergers: 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑆𝐹𝑀(𝐹3, 𝐹4, 𝐹5). (13)  

3.5. IoU loss function 

In traffic sign recognition, certain environments can be particularly complex, resulting in various 

traffic signs being obscured and difficult to identify, which poses challenges to the entire recognition 

process. A novel loss function called Input-IoU is considered to improve the detection accuracy and 

speed up the overall prediction regression (Figure 6). 

 

 

Figure 6. Working principle of IoU loss function. 
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The objective is to address the problems of slow convergence and weak generalization of the 

CIoU loss function in traffic sign recognition tasks. Accordingly, this work proposes the use of 

additional bounding boxes to calculate the loss and speed up the bounding box regression. This method 

controls the aspect ratio of the auxiliary bounding boxes by adding a scaling factor using different 

scales of the auxiliary bounding boxes for the dataset and the detector, thereby overcoming the weak 

generalization limitations of the current method. The ground truth bounding box and the anchor box 

are denoted as 𝑏𝑔𝑡  and 𝑏 , respectively. The center point of the ground truth bounding box is 

represented as (𝑥𝑐
𝑔𝑡

, 𝑦𝑐
𝑔𝑡

), while the center point of the anchor box is denoted as (𝑥𝑐,𝑦𝑐). The width 

and height of the ground truth bounding box are represented as 𝑤𝑔𝑡 and ℎ𝑔𝑡, respectively. Meanwhile, 

the width and height of the anchor box are denoted by www and ℎ, respectively. The range of the 

scaling factor is between 0.5 and 1.5, with the following calculation formula: 

𝐼𝑜𝑈𝑖𝑛𝑝𝑢𝑡 =
𝑖𝑛𝑝𝑢𝑡

𝑢𝑛𝑖𝑜𝑛 
 , (14)  

where 𝐼𝑜𝑈𝑖𝑛𝑝𝑢𝑡 represents the intersection over union (IoU) of the input IoU, “input” refers to the 

intersection area between the auxiliary anchor box and the auxiliary bounding box, and “union” 

denotes the union area of the auxiliary anchor box and the auxiliary bounding box. Equation (15) 

defines the input IoU as the ratio of the intersection area to the union area between the auxiliary anchor 

box and the auxiliary bounding box. Unlike traditional 𝐿1 or 𝐿2 losses, which minimize coordinate 

differences, optimizing IoU directly improves the overlap between predicted and ground truth boxes. 

This approach enhances bounding box prediction by being scale-invariant, providing more meaningful 

optimization directions, and ensuring stable gradients even when boxes are highly overlapping. As a 

result, IoU-based optimization leads to more accurate and robust object detection. The left and right 

boundaries of the auxiliary bounding box are expressed as  

𝑏𝑙
𝑔𝑡

= 𝑥𝑐
𝑔𝑡

−
𝑤𝑔𝑡 ∗ 𝑟

 
, 𝑏𝑟

𝑔𝑡
= 𝑥𝑐

𝑔𝑡
+

𝑤𝑔𝑡 ∗ 𝑟

 
, (15)  

where 𝑏𝑙
𝑔𝑡
  represents the x coordinate of the left boundary of the auxiliary bounding box, 𝑏𝑟

𝑔𝑡
 

represents the x coordinate of the right boundary of the auxiliary bounding box, and 𝑟 is the scaling 

factor that controls the size of the auxiliary bounding box. The top and bottom boundaries of the 

auxiliary bounding box are expressed as 

𝑏𝑡
𝑔𝑡

= 𝑦𝑐
𝑔𝑡

−
ℎ𝑔𝑡 ∗ 𝑟

 
, 𝑏𝑏

𝑔𝑡
= 𝑦𝑐

𝑔𝑡
+

ℎ𝑔𝑡 ∗ 𝑟

 
, (16)  

where 𝑏𝑡
𝑔𝑡
 represents the y coordinate of the lower boundary of the auxiliary bounding box, while 𝑏𝑏

𝑔𝑡
 

represents the y coordinate of the upper boundary of the auxiliary bounding box. The left and right 

boundaries of the auxiliary anchor box are expressed as 

𝑏𝑙 = 𝑥𝑐
𝑔𝑡

−
𝑤 ∗ 𝑟

 
, 𝑏𝑟 = 𝑥𝑐 +

𝑤 ∗ 𝑟

 
, (17)  

where 𝑏𝑙 represents the x coordinate of the left boundary of the auxiliary anchor box, and 𝑏𝑟 denotes 
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the x coordinate of the right boundary of the auxiliary anchor box. The top and bottom boundaries of 

the auxiliary anchor box are expressed as 

𝑏𝑡 = 𝑦𝑐 −
ℎ ∗ 𝑟

 
, 𝑏𝑏 = 𝑦𝑐 +

ℎ ∗ 𝑟

 
, (18)  

where 𝑏𝑡 represents the y coordinate of the lower limit of the auxiliary anchor box, and 𝑏𝑏 represents 

the y coordinate of the top boundary of the upper limit auxiliary anchor box. The final loss function 

calculation formula is as follows: 

{
 
 

 
 𝐿𝐶𝐼𝑜𝑈 =  − 𝐼𝑜𝑈 +

𝜌2(𝑏, 𝑏𝑔𝑡)

𝑑2
+ 𝛼𝑣

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)2

𝛼 =
𝑣

( − 𝐼𝑜𝑈) + 𝑣

, (19)  

where 𝐿𝐶𝐼𝑜𝑈 represents the CIoU loss function, 𝜌
2(𝑏, 𝑏𝑔𝑡) denotes the Euclidean distance between the 

two, 𝑑 is the diagonal of the smallest bounding box, 𝑣 is the weighting parameter, and 𝛼 is the aspect 

ratio consistency parameter. 

To account for the diversity of input feature distributions, we introduce auxiliary boxes to guide 

the learning process: 

𝐿𝐼𝑛𝑝𝑢𝑡−𝐼𝑜𝑈 = ∑ 𝜔𝑘 ∙

𝑁

𝑘=1

𝐿𝐶𝐼𝑜𝑈(𝐵𝑃,𝐵𝑎𝑢𝑥
𝑘 ), (20)  

where 𝐵𝑎𝑢𝑥
𝑘  is the 𝑘-th auxiliary box generated from the input features. The weighting coefficient for 

the 𝑘-th auxiliary box is constrained such that ∑ 𝜔𝑘 =  𝑁
𝑘=1 . 

4. Experimental results and analysis 

4.1. Experimental setup 

Two datasets, namely, T100K and CTSDB, are introduced for training and evaluating our TTSNet 

model. The T100K dataset is a large traffic sign dataset with over 100,000 annotated images, mainly 

used for training and evaluating object detection and recognition models. CTSDB is a dataset 

specifically designed for traffic sign detection and recognition in China. This dataset contains 

thousands of annotated images of Chinese traffic signs taken under real driving conditions.  

In this paper, some representative methods used for comparison in the experiments are introduced 

to evaluate the performance of our TTSNet from multiple perspectives. Detection Transformer 

(DETR) [38] is an object detection model that uses a Transformer to directly predict bounding boxes 

and class labels. This model simplifies the detection process and efficiently performs across various 

tasks. D-DETR [39] is an improved version of DETR that uses deformable attention to focus on key 

areas in an image, improving efficiency and accuracy, especially for small objects, while accelerating 

training.  Conditional (C)-DETR [40] enhances object detection by incorporating conditional reasoning, 

allowing the model to consider the context of objects within scenes for improved accuracy. Detector 
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(SSD) [41] is a fast object detection model that detects objects in a single pass using multiple feature 

maps for different sizes, enabling real-time performance. Salience (S)-DETR [42] improves accuracy 

and efficiency by integrating attention mechanisms that focus on visually important areas, particularly 

when detecting small or obscured objects. Faster R-CNN [43] is a deep super-resolution network 

(DSR-NET) that focuses on improving the image resolution. DSRNet [44] enhances scene 

understanding by leveraging dynamic spatial reasoning to capture complex object interactions in visual 

tasks. RepLKNet [45] enhances feature extraction, particularly for fine-grained details. It combines 

CNN and Transformer strengths, achieving superior performance in tasks like image classification and 

object detection. DINO [46] uses knowledge distillation between two networks (a student and a teacher) 

to optimize feature learning and achieves state-of-the-art results on various vision tasks, especially in 

unsupervised pretraining. RepViT [47] divides an image into fixed-size patches, treats each patch as a 

sequence, and converts them into vectors through embedding. In TTSNet, based on the empirical 

observation of traffic recognition, the invariant cues-aware model has two novel modules: The DLFI 

module, which aggregates the multiscale information of the traffic recognition, and the TTS module, 

which extracts the core features of traffic recognition. In TTSNet+, based on TTSNet, the max pooling 

operation is altered by the DLFI module to further extract core representations in multiple stages. In 

this way, the dimension reduction of input vectors and the concentration of important features are 

accomplished at the same time. 

 

Figure 7. Partial displays of the T100K and CTSDB datasets. (a) T100K dataset. (b) CTSDB dataset. 

The mAP refers to the mean average precision, which measures the detection accuracy of an object 

detection model across multiple categories. @0.5 indicates that the IoU threshold is 0.5. If the IoU 

between the predicted and the ground truth boxes is greater than or equal to 0.5, then the detection is 

considered correct. The formula for IoU is defined as follows: 
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𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
. (23)  

The mAP@0.5 calculates the average precision for all categories when IoU ≥ 0.5. mAP is 

calculated as the average of the average precision (AP) across all categories: 

mAP@0.5 =
 

N
∑APi

N

i=1

. (24)  

The formula for mAP@0.5:0.95 is expressed as follows: 

𝑚𝐴𝑃@0.5: 0.95 =
 

 0
∑

 

𝑁
∑𝐴𝑃𝑖(𝑡)

𝑁

𝑖=1

0.95

𝑡=0.5

. (25)  

where 𝑡 is the IoU threshold, and 𝐴𝑃𝑖(𝑡) is the AP for the 𝑖th category at a given IoU threshold 𝑖. 

mAP@0.5:0.95 is more demanding in terms of model accuracy because it evaluates the model over a 

wider range of IoU thresholds. 

4.2. Experimental result analysis 

Our method was compared with several state-of-the-art methods, and the performance of different 

methods was analyzed. The best value is highlighted in bold. 

1) Results on the T100K dataset: We conducted comparative experiments on the T100K dataset, 

evaluating several state-of-the-art object detection models, as shown in Table 2. The quantitative 

results in Table 1 highlight the superior performance of our Transformer-based model, TTSNet. 

This advantage is largely attributed to its ability to capture long-range semantic dependencies, 

refine discriminative features, and enhance spatial-semantic fusion. Several benchmark models 

exhibit strong capabilities in specific areas: Deformable DETR efficiently handles complex 

scenes with varying object sizes using its deformable attention mechanism, improving speed 

and accuracy. DINO leverages an advanced self-supervised learning framework to achieve high 

recognition performance, particularly excelling with limited labeled data. SSD prioritizes real-

time performance by detecting objects at multiple scales using feature pyramids, while Salience 

DETR integrates saliency maps with Transformers to focus on critical regions in images. Faster 

R-CNN balances speed and accuracy with its region proposal network, whereas DSR-Net and 

RepViT further optimize efficiency by refining network architectures and training strategies for 

real-time applications. TTSNet outperforms all baseline models, achieving an mAP@0.5 of 

89.10%, which represents a 2.69% improvement over the best competing method. This superior 

performance is attributed to three key innovations in TTSNet; unlike DETR and DINO, which 

rely on standard Transformer self-attention, DLFI explicitly integrates long-range contextual 

relationships while enhancing discriminative features. This enables better object distinction in 

dense and cluttered scenes. Compared to RepLKNet and Deformable DETR, which primarily 

refine local receptive fields, ESIR enhances semantic feature interactions, ensuring that key 

object attributes are preserved while filtering out irrelevant background noise. This improves 

robustness in complex environments. While SSD and Faster R-CNN rely on traditional multi-

mailto:mAP@0.5=1Ni=1NAPi
mailto:𝑚𝐴𝑃@0.5:0.95=#1
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scale feature fusion, SSFM dynamically adapts feature modulation, ensuring that spatial and 

semantic representations are optimally aligned. This leads to more precise localization and 

better scale adaptability. 

Table 2. Performance comparison between our TTSnet and the state-of-the-art models on the T100k. 

Methods Year Foundational 

models 

Backbone mAP .5 (%) mAP .5:95 (%) 

DETR [38] 2020 Transfomer ResNet-50 57.30 40.3 

D-DETR [39] 2021 Transfomer ResNet-50 61.90 41.20 

C-DETR [40] 2022 Transfomer ResNet-50 72.3 64.8 

SSD [41] 2016 CNN MobileNet 74.24 58.37 

S-DETR [42] 2022 Transfomer ResNet-50 70.30 62.5 

Faster R-CNN [43] 2016 CNN ResNet-101 73.36 66.52 

DSR-Net [44] 2022 Transfomer ResNet-50 81.28 62.97 

RepLKNet [45] 2022 CNN ResNet-50 75.1 67.2 

DINO [46] 2023 Transfomer Swin 

Transformer 

70.70 51.78 

RepViT [47] 2024 Transfomer ViT 87.79 66.98 

YOLOv5 2020 Transfomer ResNet-50 87.95 67.83 

YOLOv8 2024 Transfomer ResNet-50 88.5 70.2 

TTSNet 2025 Transfomer ResNet-50 89.00 73.10 

TTSNet+ 2025 Transfomer ResNet-50 89. 0 7 .20 

 

2) Results on the CTSDB dataset: The proposed method was also evaluated on the CTSDB dataset. 

The corresponding results are shown in Table 3. The CTSDB still achieves an impressive 

mAP@.5 (%) of 89.97%. Additionally, RepViT consistently demonstrates exceptional 

performance, highlighting the importance of the end-to-end discovery approach to CTSDB tasks. 

Our approach, which goes one step further by leveraging multiscale information in CTSDB, is 

proven to increase accuracy. TTSNet shows a remarkable improvement of 1.06% over the 

dataset, proving the validity of our observation regarding the key differentiators. 

3) In the comparison experiments of different loss functions on the T100K dataset, we evaluated 

the performance of three loss functions—CIoU, EIoU, and Inner-CIoU—across three different 

input resolutions: 224 × 224, 384 × 384, and 448 × 448. The experimental results are presented 

for each resolution, focusing on two key performance metrics: mAP@.5 and mAP@.5:95. At 

the 448 × 448 resolution, we compared the performance of the three loss functions from both 

metrics. Inner-CIoU outperformed the other loss functions significantly, achieving mAP@.5 and 

mAP@.5:95 scores of 89.10% and 73.20%, respectively. This indicates that Inner-CIoU is 

particularly effective in improving object detection accuracy. In contrast, EIoU and CIoU 

showed slightly lower performance, with mAP@.5:95 scores of 72.20% and 72.10%, 

respectively. Despite this, both loss functions still achieved relatively high detection accuracy. 

Overall, Inner-CIoU demonstrated the best generalization ability and robustness on the T100K 

mailto:mAP@.5:95
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dataset, making it the most effective choice for enhancing object detection performance among 

the three loss functions tested. 

Table 3. Performance comparison between our TTSnet and the state-of-the-art models on the CTSDB. 

Methods Year Foundational 

models 

Backbone mAP .5 

(%) 

mAP .5:95 

(%) 

DETR [38] 2020 Transformer ResNet-50 59.1 41.8 

D-DETR [39] 2021 Transformer ResNet-50 63.70 42.20 

C-DETR [40] 2022 Transformer ResNet-50 74.5 66.1 

SSD [41] 2016 CNN MobileNet 75.21 58.70 

S-DETR [42] 2022 Transformer ResNet-50 70.70 63.4 

Faster R-CNN [43] 2016 CNN ResNet-101 74.24 69.59 

DSR-Net [44] 2022 Transformer ResNet-50 85.36 67.90 

RepLKNet [45] 2022 CNN ResNet-50 76.1 69.2 

DINO [46] 2023 Transformer Swin 

Transformer 

73.69 52.88 

RepViT [47] 2024 Transformer ViT 88.91 67.98 

YOLOv5 2020 Transformer ResNet-50 88.98 69.1 

YOLOv8 2024 Transformer ResNet-50 89.2 71.1 

TTSNet 2025 Transformer ResNet-50 89.92 74.00 

TTSNet+ 2025 Transformer ResNet-50 89.97 7 . 0 

Table 4. Comparison experiments of different loss functions on the T100k dataset. 

Resolution Loss function mAP .5 

(%) 

mAP .5:95 (%) Recall 

 CIoU 81.1 63.1 60.5 

224 × 224 EIoU 81.9 64.3 62.1 

 Input-CIoU 82. 0 6 .  62.8 

 CIoU 85.4 67.2 67.5 

384 × 384 EIoU 85.7 67.5 67.9 

 Input-CIoU 86.  68.  68.0 

 CIoU 88.2 72.20 69.2 

448 × 448 EIoU 88.7 72.10 70.5 

 Input-CIoU 89. 0 7 .20 70.9 

4.3. Parameter sensitivity analysis 

Various factors can influence the effectiveness of pattern recognition during model construction and 

training. Among these factors, the number of feature decompositions has a direct influence. We conducted 

comparative experiments with different numbers of feature decompositions (Figure 8) and used mAP@0.5, 
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mAP@0.95, and recall as evaluation metrics. Therefore, the results show that the accuracy peaks when 

decomposing three features. 

 

 

Figure 8. Feature decomposition number on TTSNet. 

 

Figure 9. Performance of the different network depths and activation functions in the 

TTSNet model on the T100K and CTSDB datasets. 

Table 5. Comparative experimental graph of the different activation functions. 

Datasets Layer Tanh Sigmoid ReLU mAP .5 (%) 

 3    88.30 

T100K 3    89.10 

 3    88.70 

 3    88.95 

CTSDB 3    89.97 

 3    89.20 
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The results of the TTSNet model running on the T100K dataset are discussed for the activation 

functions (Tanh, Sigmoid, and ReLU) (Figure 9 and Table 5). The different number of network layers 

that we can see in the red markings shows that the best results are obtained for three network layers, 

as well as for the activation function of the sigmoid. Overall, the results also confirm our previous 

experimental results; the network with three layers and using the sigmoid activation function 

performed best on the CTSDB dataset. 

 

Figure 10. Results of the ablation experiments. 

Table 6. Ablation experiments on the T100K and CTSDB datasets. 

Dataset DLFI CCFM ESIR Precision mAP .5 

(%) 
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4.4. Comparison of the ablation experiments 

The effects of the DLFI, SSFM fusion, and ESIR modules were analyzed through ablation studies 

on the T100K and CTSDB datasets, as shown in Table 6 and Figure 10. The results indicate that 

removing any of these modules leads to a performance drop, demonstrating their critical contributions. 

DLFI enhances object distinction by capturing long-range dependencies, SSFM ensures adaptive 

feature fusion for better localization and scale awareness, and ESIR improves feature interactions by 

preserving key semantic details while reducing noise. The performance gains of 0.9% on T100K and 
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1.9% on CTSDB confirm that TTSNet benefits from the synergy of these three modules, leading to 

more robust and accurate object detection. 

 

Figure 11. Confusion matrix of nine different classes of traffic signs. (a) SSD model. (b) 

Faster R-CNN model. (c) RepLKNet model. (d) DETR. (e) RepViT. (f) TTSNet (ours). 

Types of traffic signs: PS: prohibition signs; RS: regulatory signs; WS: warning signs; GS: 

guidance signs; IS: informational signs; CS: construction signs; PS2: parking signs; CA: 

cautionary signs; PS3: priority signs. 

4.5. Confusion matrix analysis 

A confusion matrix reflects the degree to which an algorithm can make wrong predictions on 

similar classes. In this experiment, we have confirmed that the confusion matrix has been normalized. 

To ensure data accuracy, we conducted rigorous checks on numerical precision throughout the 

computation and rendering processes, preventing any deviation caused by loss of precision. These 

measures enable the confusion matrix to accurately reflect the degree to which the algorithm confuses 

and misclassifies similar classes, thereby improving the reliability of the analysis results. Nine different 

traffic sign classes were selected, namely prohibition signs (PS), regulatory signs (RS), warning signs 

(WS), guidance signs (GS), informational signs (IS), construction signs (CS), parking signs (PS2), 

cautionary signs (CA), and priority signs (PS3). These categories represent a diverse range of traffic 

signs, each requiring fine-grained recognition capabilities. Six methods are used for comparison. As 

Figure 11 shows, a lighter color in the confusion matrix denotes a higher percentage of correct 

predictions in the corresponding class. Ground truth labels are on the x-axis, while predicted labels are 

(a) (b) (c)

(d) (e) (f)
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on the y-axis. 

We observe that CNN-based methods [Figure 11(a)–(c)] are prone to confused predictions, 

particularly among visually similar classes such as cautionary signs (CA) and warning signs (WS) or 

prohibition signs (PS) and priority signs (PR3). In contrast, Transformer-based methods [Figure 11(d)–

(f)] demonstrate better performance by leveraging their ability to model long-range dependencies and 

capture subtle distinctions in the visual characteristics of traffic signs. Among all methods, our 

proposed method [Figure 11(f)] exhibits the best performance, effectively distinguishing similar traffic 

signs. This success can be attributed to its ability to learn invariant features (e.g., color and shape 

consistency). It also captures subtle differences, such as symbol details or text variations, which helps 

minimize confusion among visually similar categories. Additionally, the T100K dataset does not suffer 

from class imbalance. The distribution of traffic signs in the dataset is relatively complete, ensuring 

that each category has sufficient representation for model training and evaluation. This balanced 

distribution allows for a fair comparison of classification performance across different methods. The 

confusion matrix in Figure 11 highlights which types of traffic signs are most prone to misclassification. 

Specifically, certain visually similar categories, such as cautionary signs (CA) and warning signs (WS) 

or prohibition signs (PS) and priority signs (PS3), exhibit higher confusion rates. This suggests that 

these classes share common visual elements that challenge recognition models. This balanced 

distribution allows for a fair comparison of classification performance across different methods.  

 

Figure 12. Traffic sign visualization heatmap. 

(e)

Original image DETR DINO TTSNet
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4.6. Visualization analysis 

Figure 12 illustrates five groups of traffic scene images [Figure 12(a)–(e)], with each group 

showing the original image on the left, followed by attention heatmaps generated by three different 

models: DETR, D-DETR, and our proposed TTSNet (from left to right). The attention maps 

demonstrate that TTSNet focuses more precisely on the traffic signs, exhibiting stronger target 

localization and more concentrated feature activation in the relevant regions. 

In contrast, DETR and D-DETR produce more scattered attention, with significant focus on 

irrelevant areas such as vehicles, road surfaces, or vegetation. These distractions indicate weaker 

discrimination and context understanding in complex scenes. TTSNet not only accurately captures all 

traffic signs but also reveals the relationships between different signs, thanks to its enhanced feature 

interaction and hierarchical attention mechanism. This highlights TTSNet’s superior capability in 

extracting and integrating task-relevant features, leading to more robust and reliable traffic sign recognition. 

 

Figure 13. Visual comparison of different algorithms on the T100K dataset. Types of traffic 

signs: PS: prohibition signs; WS: warning signs; IS: informational signs; CA: cautionary signs. 
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Figure 13 showcases the detection results across five real-world traffic scenes under challenging 

conditions: (a) heavy fog, (b) rain and reflective night lighting, (c) bright daylight with distant signs, 

(d) complex urban intersections, and (e) dense traffic with occlusions. From left to right, each row 

displays the outputs from DETR, D-DETR, C-DETR, and our proposed TTSNet. Across all scenarios, 

TTSNet consistently detects more traffic signs with higher confidence scores. For example, in foggy 

and rainy scenes [Figure 13(a)–(b)], where visibility is significantly reduced, TTSNet is still able to 

accurately identify both warning and instruction signs, while other models either fail to detect them or 

misclassify unrelated objects as signs. In Figure 13(c), TTSNet successfully detects small, distant signs 

missed by the others, and in Figure 13(d), it correctly identifies multiple sign types even against 

complex urban backdrops. In Figure 13(e), which contains multiple vehicles and partially occluded 

signs, TTSNet achieves accurate localization and classification with confidence scores as high as 0.93, 

outperforming the other models that show either missed detections or poor localization. TTSNet’s 

advantage lies in its ability to model long-range dependencies and contextual relationships between 

different signs, enabling it to handle small-scale, overlapping, or visually ambiguous signs with 

precision. These consistent improvements across a wide range of difficult conditions clearly 

demonstrate that TTSNet offers superior robustness, generalization, and multi-target discrimination 

capabilities compared to DETR, D-DETR, and C-DETR, making it highly suitable for complex real-

world traffic environments. 

Table 7 presents the quantitative evaluation of our model under different adverse weather 

conditions. For each weather scenario—fog, rain, backlight, and occlusion—we report the mAP@0.5, 

mAP@[0.5:0.95], and small-object mAP. The results demonstrate that while overall performance 

slightly decreases under more challenging conditions, the model maintains robust detection capabilities 

across all adverse-weather scenarios. 

Table 7. mAP metrics for different weather scenarios. 

Weather mAP .5 (%) mAP .5:95 (%) Small-object mAP 

Fog 92.3 78.5 70.2 

Rain 90.1 76.8 68.9 

Backlight 88.7 75.0 66.5 

Occlusion 85.2 72.3 63.7 

5. Conclusion 

In this work, we propose a method for learning core features and uncovering long-term semantic 

relationships within internal features for traffic sign recognition. Additionally, we address two 

challenges: the complexity of backgrounds and the confusion caused by occlusions in images. We 

address these issues by introducing an efficient TTSNet model that leverages the ESIR module to 

extract core features, the DLFI module to capture long-term semantic dependencies, and the TTSM-

Fusion module to merge the features. Extensive experiments show that TTSNet achieves state-of-the-

art performance on the T100K (89.1%) and CTSDB (89.97%) datasets. The results on these two 

datasets demonstrate that TTSNet performs exceptionally in identifying key features for traffic sign 
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recognition tasks. With ongoing advancements in technology, including the development of more 

efficient architectures and the integration of self-supervised and reinforcement learning methods, we 

expect that TTSNet’s accuracy and speed will continue to improve. Furthermore, as datasets become 

more diverse and representative of global traffic signs, the model’s generalization capabilities are 

likely to be enhanced. The application scope of TTSNet has the potential to extend beyond traditional 

road signs, possibly encompassing intelligent transportation systems, autonomous driving, and 

augmented reality in the future. 
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