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Abstract: Traffic sign recognition is crucial not only for autonomous vehicles and traffic safety
research but also for multimedia processing and computer vision tasks. However, traffic sign
recognition faces several challenges, such as high intraclass variability and interclass similarity in
visual features and background complexity. We propose a novel invariant cue-aware feature
concentration transformer (TTSNet) to effectively address these challenges. TTSNet aims to learn the
invariant and core information of traffic signs. To this end, we introduce three new modules to learn
the features of traffic signs: attention-based internal scale feature interaction (DLFL), cross-scale
cross-space feature modulation (SSFM), and eliminating spatial and information redundancy (ESIR)
modules. The DLFL module extracts invariant cues from traffic signs through feature selection based
on discriminative values. The SSFM-Fusion module aggregates multi-scale information from traffic
sign images by concatenating multi-layer features. The ESIR module improves feature representation
by eliminating spatial and channel information redundancy. Extensive experiments showed that
TTSNet achieves state-of-the-art performance on the T100K (89.1%) and CTSDB (89.97%) datasets.
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1. Introduction

Traffic sign recognition is a fundamental problem in the field of computer vision. Its aim is to
provide highly accurate traffic sign predictions. With the increasing number of private cars on the road,
traffic density has risen significantly, and traffic jams are also increasing. In China, image recognition
for unmanned vehicles has received growing attention, maintaining an annual growth rate of 9.37% [1].
Figure 1 illustrates two major challenges in traffic sign recognition—occlusion and complex
backgrounds—using real-world street scenes as examples. Occlusion is a common issue in urban
environments, where vehicles, trees, and infrastructure elements block parts of traffic signs. In Figure
1(a), a large blue overhead sign is partially occluded by a bridge structure and a passing bus, making
it harder to detect and read. Similarly, in Figure 1(b), a traffic sign is partially hidden behind tree
branches, which obstructs visibility and increases the difficulty of recognition. On the other hand,
complex backgrounds introduce visual noise and distractions, making it challenging for models to
distinguish traffic signs from their surroundings. Figures 1(c) and 1(d) demonstrate such a challenge.
In Figure 1(c), a traffic sign is positioned among dense trees and shadows, causing it to blend into the
background, which makes detection more difficult. In Figure 1(d), the sign is located in a cluttered
urban setting with trees, poles, and barriers, further complicating recognition.

occlusion ‘ ( )

TR

Figure 1. Two main challenges exist in traffic sign recognition. (a) and (b) illustrate the
challenges of occlusion in traffic sign recognition. (c) and (d) demonstrate the challenges
posed by complex backgrounds in traffic signs.
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As autonomous vehicles are increasingly used, traffic sign recognition has become a key area of
research [2,3]. This concept has attracted wide attention in the fields of multimedia processing [4,5],
image classification [6,7], and image recognition [8]. However, the creation of traffic signs has long
been a challenging task due to the large variation within classes and subtle variation between classes.
Excellent performance on traffic signals can support downstream tasks. Automatic image recognition
of traffic signs can aid a better understanding of transportation data in less developed areas. This study
aims to further prevent the problem of traffic congestion and effectively maintain pedestrian safety,
building on the development of recent work on traffic sign recognition.

A substantial amount of work has been carried out on traffic sign recognition. In traffic sign
recognition systems, fault detection and optimization algorithms are equally important. Jawad and
Abid proposed a fault detection method for HVDC systems based on the Gray Wolf Optimization
algorithm and artificial neural networks, demonstrating the effectiveness and potential of optimization
algorithms in complex systems [9]. Deep learning (DL) methods have achieved better performance
than traditional methods. Accordingly, we only mention DL-based image recognition methods. These
can be broadly divided into two families: Rol-based methods (regions of interest) and IoU (image-only
usage) methods.

For methods based on Rols, inference relies on analyzing local regions rather than the entire
image, as local areas typically provide more significant information [10,11]. These approaches
commonly employ the Region Proposal Network (RPN) [12] to identify distinctive local regions. Ge
et al. [10] introduced a technique where the RPN initially locates regions of interest, which are then
selected, resized, and processed through a backbone network to generate valuable local features,
allowing for predictions focused on these specific regions. Liu et al. [11] developed an innovative
model called Filtration and Distillation Learning (FDL), which intensifies attention on discriminative
areas for the task of FBIC (Fine-Grained Bi-Image Classification). FDL uniquely utilizes the alignment
between proposing and predicting regions, facilitating direct optimization of the proposals.
Furthermore, this approach transfers object-level knowledge to effectively enhance attention on
specific regions. However, Rol-based methods may occasionally lose critical information due to the
cropping of localized image sections. Additionally, the RPN backbone is limited in its ability to capture
relationships among the proposed regions, leading it to often suggest larger bounding boxes that
contain substantial portions of the objects rather than highlighting the most informative parts.
Moreover, training models with an RPN backbone can be challenging, as optimization goals may not
align. Modifying the RPN backbone also adds complexity to the overall pipeline.

IoU methods are advanced and promising because they leverage global image-level information
and can be trained end-to-end without the need for additional annotations. The most widely used
backbone for IoU methods is the convolutional neural network (CNN), such as VGG [13], ResNet [14],
DenseNet [15], and GoogleNet [16]. Luo et al. [17] proposed an effective approach called Cross-X-
Learning, which exploits the relationships between multiple images and between multiple hidden
layers in the network to achieve flexible multi-scale feature learning. Cross-X offers a reasonable
training time and supports continuous training with ease. It also demonstrates computational efficiency
when handling large datasets. Zhuang et al. [18] introduced the Attentive Pairwise Interaction Network
(API-Net), a straightforward yet effective architecture designed to recognize fine-grained distinctions
by attentively identifying contrasting features between arbitrary pairs of input images. These
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contrasting features are obtained by computing pairwise interactions between the two images. With
the addition of score ranking regularization, API-Net further generalizes its capabilities by prioritizing
specific features, allowing it to be trained end-to-end as well. Du et al. [19] discovered that the key to
FBIC is to encourage the network to learn at different granularities and gradually merge multi-
granularity functions. Ding et al. [20] proposed an attention pyramid network for FGVC, where high-
level semantic information and low-level details are exploited by building a pyramid hierarchy on a
CNN. Several Transformer-based methods that can achieve state-of-the-art performance have recently
been proposed due to the widespread adoption of the Transformer architecture [21]. He et al. [22]
introduced the Transformer architecture for FBIC and achieved impressive performance. Their
proposed model is based on vision Transformer (ViT) [23] with a novel part selection module that
integrates all raw attention [24] weights of the Transformer into an attention map. Although IoU
methods [25] significantly reduce the labor cost of annotating datasets and outperform previous
methods, numerous challenges remain for traffic sign recognition [26].

Several challenges exist in traffic sign recognition that hinder recognition accuracy. These
challenges can be summarized as follows:

1) Background complexity: Background complexity is a major problem. Traffic signs are
typically located in busy urban environments where the surrounding vehicles, pedestrians, and various
advertisements can interfere with recognition. This problem requires the model to not only identify the
sign itself but also ignore or minimize the effects of background distractions.

2) Feature occlusion: The visual features of characters can exhibit high intraclass variation and
interclass similarity. For example, the same traffic sign may appear distinct when photographed from
different angles, distances, and lighting conditions, while various categories of traffic signs may
overlap in shape or color. In this scenario, the model’s detection ability is severely compromised,
necessitating the design of network architectures that can effectively extract key features.

We have identified several important features by carefully observing the types of traffic signs and
their performance in different environments. First, the shapes and colors of traffic signs vary in
different traffic scenarios, but some invariant features can be used for fine-grained traffic sign
classification. Second, some traffic signs may look similar but actually have varied meanings due to
regional differences and different regulations. Although these characters look similar, their
classification meanings are completely different.

Figure 2 shows different scenarios for traffic signs captured in various real-world environments,
including urban streets and motorways. On the left-hand side of the picture are road signs in
complicated conditions, such as speed limits, warning signs, and direction signs placed on overhanging
structures or road signs. The right side of the picture shows how to extract and magnify the road signs
to highlight their details. These enlarged images highlight specific features of the traffic signs, such as
numerical speed limits, prohibition symbols, and various color-coded categories. There are therefore
two lessons for the challenges set out above.

Finding I: Invariant cues of specific traffic signs. Traffic signs are not simply categorized by their
shape or color. Certain core features, such as patterns, symbols, and text, must be differentiated from
others. Analysis of images of the same sign from different angles and lighting conditions can result in
misleading information that negatively affects fine-grained detection. Nonetheless, we can effectively
mitigate this risk by identifying these core features and the long-term semantic relationships defined
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as invariant cues between graphic elements, such as the relationship between patterns and backgrounds
or colors and shapes.

Finding I: Invariant cues

Finding II: Discrepancy

CG@v

Figure 2. Two findings exist in traffic sign recognition.

Finding II: Subtle discrepancies among different traffic signs. In certain types of traffic signs,
subtle differences may not be easily noticeable. However, these differences may represent completely
different instructions or meanings. For example, some signs may be nearly identical in shape, but slight
variations in color or border design may indicate different traffic rules. Such subtle differences are
crucial for the precise recognition of traffic signs. Therefore, the recognition of crucial fine-grained
features in the classification of traffic signs is of particular importance.

The above findings highlight the challenge of identifying invariant cues and subtle discrepancies
in traffic sign images. Invariant cues remain consistent under varying conditions (e.g., lighting changes
or occlusions), while fine-grained yet important details are often overlooked by coarse classification
methods. Therefore, the effective use of these two insights plays an important role in improving the
accuracy of traffic sign recognition. This work is motivated by the need to develop a method that
focuses on invariant cues and enables the identification of invariant relationships between the
components of traffic signs and the determination of the differences between specific traffic signs to
achieve this goal. To address this, we design a multiscale feature aggregation module that integrates
diverse visual information. Additionally, a feature abstraction module is introduced to extract the
invariant and essential features of traffic signs. In summary, these two modules will enable our model
to respond to the invariant cues in traffic sign images, thereby improving the performance of traffic
sign recognition.

Unlike previous studies on traffic sign recognition that focus on exploiting common traffic sign
features, our work adopts an insight perspective to uncover the invariant cues of traffic sign images.
Our motivation is two-fold: On the one hand, traffic sign recognition must be able to find the invariant
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clues of certain traffic signs. On the other hand, distinguishing the discrepancy is crucial for
recognizing similar traffic signs. We propose a novel feature transformation model capable of learning
multi-scale semantic information and invariant cues in traffic signs to exploit the insights we observed.
Overall, the main contributions of this work are as follows: An efficient TTSNet model was developed
to exploit the results we observed in traffic sign datasets. Thereafter, a Transformer was used to study
the positional relationships between traffic signs. In addition, we developed a feature extraction and
fusion strategy to generate feature maps for our TTSNet model.

2. Related work
2.1. Problem formulation

Traffic sign recognition can be briefly summarized as follows: Given a traffic sign image x and
its corresponding class y, the task is to find a mapping function F to estimate y = F(x). ¥ should fit
the real traffic sign class as closely as possible. Currently, neural networks are widely utilized for the
mapping function F. The focus of the issue lies in the network design. To minimize the loss, the
network parameters 8 and F are updated iteratively. The optimization process typically uses gradient-
based methods, such as stochastic gradient descent:

Ors1 = 0 =V L(D,y), (1)

where 7 is the learning rate, and V4 £ is the gradient of the loss with respect to the parameters.

In recent years, numerous network architectures have emerged, such as CNNs, graph
convolutional networks, and Transformers [26]. These DL-based methods establish a bridge between
traffic sign images and their corresponding labels. Once the network architecture is established, the
parameters in function F can be obtained by minimizing the error between the predicted value y and
the ground truth y. The distance between y and y is typically measured using the mean square
error (MSE), which is used to measure the difference between predicted and true values. The
formula is as follows:

1 ~
MSE = S35, (i = 9%, 2)

where N is the total number of data points, y; is the true value (ground truth) of the i-th data point, and
¥; is the predicted value for the i-th data point.

2.2. Transformer-based image recognition

Transformer-based methods for computer vision can be classified into three main approaches:
pure transformer architectures such as Vision Transformer (ViT), improved transformer variants such
as Cross Transformer, Swine Transformer, and MSG Transformer, and hybrid models combining CNN
and transformer with a focus on long-range dependency capture.

Origin and general application: The Transformer [27] was originally proposed for natural
language processing and has since found wide application in various fields due to its exceptional ability
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to model long-dependent semantic relationships. Carion et al. [28] introduced this mechanism for the
first time in computer vision tasks, proposing a Transformer-based object detector that achieved
excellent performance. Subsequently, a novel unsupervised pretraining method [29] was presented to
improve the performance of Transformer-based models.

Transformer architectures and variants: Dosovitskiy et al. [30] directly applied a pure
Transformer architecture, showcasing its capabilities in vision tasks. Chen et al. [31] proposed
CrossViT, a dual-path Transformer architecture designed to capture and integrate multiscale features
for image classification. Liu et al. [32] developed a hierarchical Transformer using sliding windows,
enabling self-attention computation within these windows. This approach maintains linear
computational complexity and facilitates cross-window connectivity. The MSG-Transformer [33]
addresses the trade-off between efficiency and flexibility by assigning messenger tokens to each region,
serving as carriers for cross-regional information exchange. However, the division of images into non-
overlapping segments may limit the capture of essential fine-grained details.

Hybrid models combining Transformers with other architectures: Liu et al. [34] combined CNN
and Swin Transformer [32], where CNN was used to extract superficial features, and the Swin
Transformer was employed to exploit long-dependent semantic relationships. Li et al. [35] merged
CNN and Transformer architectures for human pose estimation. The integration of CNNs and
Transformers addressed specific challenges in capturing fine-grained details and long-range dependencies.

2.3. Attention mechanism

The attention mechanism plays a crucial role in improving the efficiency and accuracy of deep
learning models. Its main function is to allow the model to focus on the most important features of the
input data while ignoring irrelevant or less important information. By prioritizing essential features,
the attention mechanism helps reduce noise, improve feature extraction, and improve the learning
efficiency of the model. This feature is particularly useful for traffic sign recognition, where certain
visual patterns, shapes, and colors are more important than others. Integrating an attention mechanism
into the recognition process has been shown to significantly improve both learning efficiency and
recognition accuracy [36].

In the context of traffic sign recognition, attention mechanisms have been successfully combined
with traditional convolutional neural networks (CNNs) to achieve remarkable performance
improvement. For example, Sun et al. [37] introduced a novel model called MobileNets CNN (MCNN),
which was specifically designed for traffic sign patterns identification. This model integrates the
squeeze-and-excitation (SE) module into the CNN architecture. The SE module is an advanced
attention mechanism that adaptively recalibrates channel-wise feature responses, effectively
improving the network’s ability to focus on informative features while suppressing irrelevant ones. By
integrating the SE module, MCNN improves the feature representation capability, allowing the model
to better capture fine-grained details and complex patterns in traffic sign images.

Overall, the integration of attention mechanisms, exemplified by the squeeze-and-excitation
module in MCNN, demonstrates the potential of combining advanced feature prioritization techniques
with deep learning architectures to achieve state-of-the-art results in traffic sign recognition.
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3. Proposed TTSNet model
3.1. Overview

The pipeline of the TTSNet (Traffic Sign Recognition via a Transformer by Learning
Spectrogram Structural Features) model is shown in Figure 3. The proposed method includes four parts.
The first part is the feature extraction backbone for extracting the multi-scale information of traffic
signs. In this study, the CS module is adopted as the core of the backbone because it is excellent for
eliminating spatial redundant features and information redundancy in traffic signs, such as warning
signs and prohibition signs, using the shifted window scheme. The backbone has been further enhanced
with the attention-based internal scale feature interaction (DLFI) for improved performance. The
second part is the DLFI module, which encodes and decodes images. The third part is the SSFM fusion
module (Cross-scale Cross-space Feature Modulation), which merges the multi-layer and multi-scale
information of images. The fourth part is the detection head, where feature maps are finally used for
the final detection.

We have prepared a glossary of abbreviations to clarify the terminology used throughout the
manuscript. Table 1 lists all module names and abbreviations consistently, along with their full
definitions. The glossary ensures that readers can easily understand the components of our method,
avoiding confusion caused by inconsistent naming in earlier drafts.

Table 1. Glossary of abbreviations.

Abbreviation Full name
DLFI Attention-based Internal Scale Feature Interaction
SSFM Cross-scale Cross-space Feature Modulation
ESIR Eliminating Spatial and Information Redundancy

Input-IoU Input-guided Intersection-over-Union

CloU Complete Intersection-over-Union
PWC Pointwise Convolution (1x1 Conv)
GWC Groupwise Convolution

3.2. ESIR module

Spatial and channel redundancy between features is exploited for TTSNet, and an efficient
convolution module called ESIR is proposed to reduce redundant computing and facilitate the learning
of representative features. The proposed ESIR consists of two units: spatial and channel reconstruction
units. The SRU uses a separate-and-reconstruct method to reduce spatial redundancy, while the CRU
uses a split-transform-and-fuse strategy to minimize channel redundancy. In addition, ESIR is a plug-
and-play architectural unit that can be seamlessly integrated into various CNNs and directly replaces
standard convolutional layers.
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Figure 3. Overall structure of the TTSNet. First, the input image first passes through SRU
and CRU modules to extract various features, and the extracted features are merged by 1x1
convolution. Second, the DLFI encoder further processes these features using a self-attention
mechanism to capture global information and generate richer feature representations through
linear projection. Third, the ESIR module processes the input image, generates multi-scale
feature maps, and passes them to the subsequent multi-scale feature fusion module. Fourth,
the SSFM module performs cross-scale fusion of features at different levels, and the final
detection or classification result is output through the decoder.
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Figure 4. Structure diagram of the ESIR module.
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The Spatial Reconstruction Department leverages a separate and reconstructed approach. The
purpose of the separation operation is to distinguish feature maps with high information content from
those with low information content corresponding to the spatial content. In addition, the scale factor is
used in group normalization (GN) to evaluate the information content of different feature maps:

Xowpue = GN(X) =y + B, (3)

X—pu
VoZ +¢
which is the transformation formula for the input data; u and o represent the mean and standard
deviation of X, respectively; and € is a small positive constant added for division stability. Parameters
y and [ are trainable affine transformations. Specifically, we exploit the trainable parameters y € R C
in the GN layers to evaluate the variance of spatial pixels for each batch and channel. The richer spatial
information indicates greater variation in spatial pixels and contributes to a larger y:

W = Gate(Sigmoid (WV(GN(X))), (4)

where the equation defines the gating mechanism used to modulate the normalized input features. The
input X contains informative and expressive spatial content, while X, captures less informative
features. We first multiply the input features X by W, and W,, yielding two weighted features: the
informative features X; and the less informative features X,. This process effectively separates the
input features into two distinct parts.

The Channel Reconstruction Unit (Figure 4) is introduced, utilizing a split-transform-and-fuse
strategy to exploit the channel redundancy of functions. Pointwise convolution (PWC) uses 1x1
convolutions to process feature maps. PWC allows channel information to be mixed without changing
the spatial dimensions. Features can be effectively combined and redundancies reduced while retaining
important information by applying filters across all spatial locations for each channel. PWC is
computationally efficient and helps in dimensionality reduction.

PWC, also known as 1X1 convolution, individually operates at each spatial location, shuffling
information across channels without changing spatial dimensions. The formula for PWC is as follows:

9 Y(l 1)
Yowe —ZW(” Lyt +Z —— (5)
n

where Ypyy ¢ 1s the output feature map after PWC, and Wp(l) represents the convolution kernel for the

Ith layer, applied over the input feature map Y~ Given that PWC isa 1 X 1 convolution, it changes
the number of channels without modifying the spatial dimensions. YN_;(372 Y~ ((l —1)))/
(0x_n"2) is a second-order derivative term that captures the curvature or higher-order changes in the
feature map at the spatial position x,,, which increases sensitivity to nonlinear relationships. The main

term Wp(l) + Y= mixes information across all channels at each spatial location. Meanwhile, the

second-order term adds fine-grained, nonlinear details to the feature extraction process.

Group-wise convolution (GWC) is a type of convolution that divides the input channels into
groups and independently performs convolutions within each group. This approach reduces the number
of parameters and calculations while capturing spatial features across all channels. The formula for
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GWC is as follows:

® ® oyt
V@ =) (wk YD) +— >+n > v, (6)
keG (i) MeN (i)

where YG(II/)VC(i, J) represents the output feature map at level [, group i, and spatial position j; G (i) is

the set of channels in group i; w,((l) is the convolution kernel for the kth channel at level [; y (-1 (k, )

is the feature map from the previous level; the * symbol represents the convolution operation;
(@Y"((l = 1) ))/0k captures the gradient with respect to the channel k, resulting in temporal or spatial
sensitivity to changes; and 7 is a scaling factor that modulates the influence of the neighboring
channels. The formula combines direct feature values, weighted contributions, and gradient-based
refinements, which allows the model to eliminate redundant channel information while preserving key
details. The gradient term (dY"((l — 1) ))/0k ensures that regions with strong variations (such as
edges or sign boundaries) receive higher attention, improving robustness in cluttered backgrounds. By

incorporating a secondary neighborhood sum Y.e—n(;) YD (m, ), the model can adaptively fuse

local and global information, helping to retain contextual details while reducing unnecessary channel
redundancy.

GWC extends the idea of convolution by dividing the input channels into groups and performing
convolutions within each group. This method reduces the number of parameters and computational
effort compared with standard convolutions. GWC can capture more localized feature interactions by
focusing on specific groups of channels and effectively managing redundancies while retaining critical
information.

First, the separation process involves splitting the input X into two different, distinct channels:
the upper and lower channels. The upper channel, denoted as X, represents the input, which contains
rich functions. This upper channel undergoes GWC and PWC processes. After these convolutions, the
results are combined to output ;.

Meanwhile, the lower channel, denoted as Xj,,,, serves as a complementary source of rich features.
This lower channel is processed using PWC. Thereafter, the resulting features are merged with the
original input X to form Y,. This step is what we refer to as the transformation process.

Finally, a merge operation is performed to merge outputs Y; and Y, resulting in the final output.
This comprehensive process ensures that rich functionality and additional information are effectively
combined, resulting in an improved representation of the input data.

3.3. DLFI module

Figure 5 illustrates the feature maps from Transformer blocks after stage fusion, with the feature
maps in the final stage arranged according to their distinction scores. As shown in Figure 5, in earlier
stages, such as Stage I and Stage 2, the Hits@k features exhibit minimal similarity to one another,
while features with poor scores are almost identical. In contrast, in the later stages, such as Stage N,
the Hits@k features demonstrate greater similarity and are more highly activated, whereas the poorly
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scored features tend to appear noisy. Overall, features with high distinction scores across all stages
prove to be more valuable than those with low scores. Building on this observation, we introduce the
DLFI module to effectively utilize the information provided by these distinctive features, thereby
improving the model's performance on the traffic sign recognition (TSR) task. To address the negative
effects of disruptive features, the DLFI module is designed to mitigate their impact.

Hits@k discrimination score features
coreco I
Score(q;)
1
j=1 sim(q;, q;)

Score(q;) =

Sim(qi,qj)

oooooooooooo

Stage | |11 1 | o

~ SENEEE  EEENER

Visual 1. - T Tl =

patches . . A 4 ALo e

Figure 5. Feature visualization in Transformer hidden layers.

First, the DLFI module calculates the similarity between n vectors. This similarity can be assessed
using either cosine similarity or the reciprocal of the L, distance. The cosine similarity is expressed as:

d
Xy i=1XiYi

o 0y \/Z‘Ezle . JZ?=1y? (7)

where a € R% and b € R are two vectors, and C,,s(x,y) € [0,1]. The value of C_, represents the
degree of similarity between x and y. In the DLFI module, cosine similarity is used to calculate the
similarity between n vectors. Through this approach, the module can effectively capture the semantic

Ccos(x' y) =

relationships between features, thereby enhancing the model's performance in complex tasks such as
occlusion handling and target recognition in cluttered backgrounds. The introduction of cosine
similarity not only improves the robustness of feature representation but also provides the model with
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an efficient feature matching mechanism, enabling more accurate identification and differentiation of

targets in high-dimensional spaces. The L,distance is defined as

d
L= ) -7, ®)

where a € R? and b € R¢ represent two feature vectors. The similarity calculation is defined as
Simeos (Vi 4v)) = Scos (v vy), 1,j €[1,2,3,+,7]

1
Y N I’I]E [1l2131'”rn] ’ (9)
Ly(qiq))

where v; and v; correspond to i-th and j-th patch vectors, respectively. S¢ represents the cosine

Simy, (v, v;) =

similarity, and L, represents the L, distance.

The DLFI module uses attention mechanisms to enable effective interaction between features of
different scales. This aspect is crucial for improving the model's ability to detect objects of different
sizes within the same scene, which calculates interactions between features. Given a feature map F
with dimensions HxWXC (height, width, and channels), the attention values can be calculated as

exp (score(Fl-, F]))
Ai P =

B ' 10
1 Y- exp (score(F;, Fy)) (10)

where the DLFI module combines feature maps Fy, F,, ... F,, from different scales to generate a unified
feature representation. Let the dimensions of each feature map be H' X W'. The merger can be
expressed as

n

FfusedzzaiXFif (11)

i=1
where @; denotes the fusion weights, which are typically learned during training, reflecting the
importance of the feature map of each scale.

3.4. SSFM fusion module

This network structure is designed to process input features through two parallel paths, allowing
the local and global features to be captured. The first path applies a simple 1x1 convolution operation
to the input, mainly focusing on simple feature transformation or dimensionality reduction (Figure 3).
However, the second method is more complex as it first applies a 1x1 convolution and then passes the
output through a RepBlock (re-parameterizable block) module. This module is likely to consist of a
number of layers or operations that enable deeper feature extraction. Once both paths have processed
their respective inputs, the outputs are combined through an element-wise summation operation ().
This fusion step integrates the information from both paths and allows the network to leverage simple
and deeper feature representations. Such a design improves the network’s ability to extract robust and
comprehensive features, which can improve the overall performance of the model, especially in tasks
that require multi-level feature analysis.
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The SSFM fusion module in the provided diagram is a critical aspect of the entire network. In
particular, this module is responsible for combining features from multiple scales or layers. The fusion
process is applied in several steps. Each feature map from the different layers (F3, F,, and Fs) is
processed and merged by sequential “fusion” blocks. These blocks include various operations, such as
element-wise addition, concatenation, or other forms of mixing, to summarize the spatial and
contextual information from each scale. This module merges three feature maps, effectively combining
different types of information. Although this module can preserve various details, it also allows for an
extensive, comprehensive understanding of contextual information.

Fs = Reshape(DLFI(Q,K,V)), (12)

where reshape represents restoring the shape of the flattened feature to the same shape as S5. In the
overall fusion process, yellow represents a 1X 1 convolution kernel, while blue denotes a 3x3
convolution kernel, which can be regarded as a downsampling operation, thereby reducing the size of
the feature map by half. Accordingly, F5 first undergoes a 1X1 convolution and is then combined with
F,. The result of this combination is passed through another 1X1 convolution and combined with F;.
This step completes a top-down process, in which the first output result is obtained after two mergers:

Output = SSFM(Fs, F,, Fs). (13)

3.5. loU loss function

In traffic sign recognition, certain environments can be particularly complex, resulting in various
traffic signs being obscured and difficult to identify, which poses challenges to the entire recognition
process. A novel loss function called Input-IoU is considered to improve the detection accuracy and
speed up the overall prediction regression (Figure 6).

w
: Real bounding
h Rinpue | box.
G 2. ) Anchor
frame
ST (©)
h’input h gt gt Secondary
(v ) bounding box
w9t
Secondary
gt anchor frame
w,

input

Figure 6. Working principle of IoU loss function.
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The objective is to address the problems of slow convergence and weak generalization of the
CIoU loss function in traffic sign recognition tasks. Accordingly, this work proposes the use of
additional bounding boxes to calculate the loss and speed up the bounding box regression. This method
controls the aspect ratio of the auxiliary bounding boxes by adding a scaling factor using different
scales of the auxiliary bounding boxes for the dataset and the detector, thereby overcoming the weak
generalization limitations of the current method. The ground truth bounding box and the anchor box
are denoted as b9' and b, respectively. The center point of the ground truth bounding box is

represented as (x? g y? t), while the center point of the anchor box is denoted as (x.y.). The width

and height of the ground truth bounding box are represented as w9t and h9¢, respectively. Meanwhile,
the width and height of the anchor box are denoted by www and h, respectively. The range of the
scaling factor is between 0.5 and 1.5, with the following calculation formula:

LoyinPut — input

(14)

where IoU™P%t represents the intersection over union (IoU) of the input IoU, “input” refers to the

union ’

intersection area between the auxiliary anchor box and the auxiliary bounding box, and “union”
denotes the union area of the auxiliary anchor box and the auxiliary bounding box. Equation (15)
defines the input IoU as the ratio of the intersection area to the union area between the auxiliary anchor
box and the auxiliary bounding box. Unlike traditional L, or L, losses, which minimize coordinate
differences, optimizing loU directly improves the overlap between predicted and ground truth boxes.
This approach enhances bounding box prediction by being scale-invariant, providing more meaningful
optimization directions, and ensuring stable gradients even when boxes are highly overlapping. As a
result, loU-based optimization leads to more accurate and robust object detection. The left and right
boundaries of the auxiliary bounding box are expressed as

gt gt
pat _ gt _ WO w9t xr
;| =X, ———— >

gt _ gt
c 2 'br _xc +

(15)

where blg ¢ represents the x coordinate of the left boundary of the auxiliary bounding box, by ‘

represents the x coordinate of the right boundary of the auxiliary bounding box, and r is the scaling

factor that controls the size of the auxiliary bounding box. The top and bottom boundaries of the

auxiliary bounding box are expressed as

h9t x r
>

h9t x r
t t t t
b =y? —T,b;f =yl +

(16)

where b * represents the y coordinate of the lower boundary of the auxiliary bounding box, while b J ‘

represents the y coordinate of the upper boundary of the auxiliary bounding box. The left and right
boundaries of the auxiliary anchor box are expressed as
W kT Wk

> by = xc + > (17)

where b; represents the x coordinate of the left boundary of the auxiliary anchor box, and b, denotes

_ 9t
bl_xc -
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the x coordinate of the right boundary of the auxiliary anchor box. The top and bottom boundaries of
the auxiliary anchor box are expressed as

hxr hxr
—— by = Yo + =, (18)

where b, represents the y coordinate of the lower limit of the auxiliary anchor box, and b, represents

by =y —

the y coordinate of the top boundary of the upper limit auxiliary anchor box. The final loss function
calculation formula is as follows:

( p?(b, b9")
LCIOU:]‘_IOU-I_T-*_(XU
4 wit w
v =— —— —)?,
v=— (arctan ngr — arctan h) (19)
B v
T A =T00) + v

where L,y represents the CloU loss function, p?(b, b9%) denotes the Euclidean distance between the
two, d is the diagonal of the smallest bounding box, v is the weighting parameter, and « is the aspect
ratio consistency parameter.

To account for the diversity of input feature distributions, we introduce auxiliary boxes to guide
the learning process:

N
Linput—1ov = Z Wi 'LCIOU(BP,B(Ifux)' (20)
k=1
where BY,, is the k-th auxiliary box generated from the input features. The weighting coefficient for

the k-th auxiliary box is constrained such that ¥¥_; w, = 1.
4. Experimental results and analysis
4.1. Experimental setup

Two datasets, namely, T100K and CTSDB, are introduced for training and evaluating our TTSNet
model. The T100K dataset is a large traffic sign dataset with over 100,000 annotated images, mainly
used for training and evaluating object detection and recognition models. CTSDB is a dataset
specifically designed for traffic sign detection and recognition in China. This dataset contains
thousands of annotated images of Chinese traffic signs taken under real driving conditions.

In this paper, some representative methods used for comparison in the experiments are introduced
to evaluate the performance of our TTSNet from multiple perspectives. Detection Transformer
(DETR) [38] is an object detection model that uses a Transformer to directly predict bounding boxes
and class labels. This model simplifies the detection process and efficiently performs across various
tasks. D-DETR [39] is an improved version of DETR that uses deformable attention to focus on key
areas in an image, improving efficiency and accuracy, especially for small objects, while accelerating
training. Conditional (C)-DETR [40] enhances object detection by incorporating conditional reasoning,
allowing the model to consider the context of objects within scenes for improved accuracy. Detector
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(SSD) [41] is a fast object detection model that detects objects in a single pass using multiple feature
maps for different sizes, enabling real-time performance. Salience (S)-DETR [42] improves accuracy
and efficiency by integrating attention mechanisms that focus on visually important areas, particularly
when detecting small or obscured objects. Faster R-CNN [43] is a deep super-resolution network
(DSR-NET) that focuses on improving the image resolution. DSRNet [44] enhances scene
understanding by leveraging dynamic spatial reasoning to capture complex object interactions in visual
tasks. RepLKNet [45] enhances feature extraction, particularly for fine-grained details. It combines
CNN and Transformer strengths, achieving superior performance in tasks like image classification and
object detection. DINO [46] uses knowledge distillation between two networks (a student and a teacher)
to optimize feature learning and achieves state-of-the-art results on various vision tasks, especially in
unsupervised pretraining. RepViT [47] divides an image into fixed-size patches, treats each patch as a
sequence, and converts them into vectors through embedding. In TTSNet, based on the empirical
observation of traffic recognition, the invariant cues-aware model has two novel modules: The DLFI
module, which aggregates the multiscale information of the traffic recognition, and the TTS module,
which extracts the core features of traffic recognition. In TTSNet+, based on TTSNet, the max pooling
operation is altered by the DLFI module to further extract core representations in multiple stages. In
this way, the dimension reduction of input vectors and the concentration of important features are
accomplished at the same time.

Road Narrows Sign  No Entry for Vehicles Speed Limit Sign

Figure 7. Partial displays of the T100K and CTSDB datasets. (a) T100K dataset. (b) CTSDB dataset.

The mAP refers to the mean average precision, which measures the detection accuracy of an object
detection model across multiple categories. @0.5 indicates that the IoU threshold is 0.5. If the IoU
between the predicted and the ground truth boxes is greater than or equal to 0.5, then the detection is
considered correct. The formula for IoU is defined as follows:

Mathematical Biosciences and Engineering Volume 23, Issue 3, 722-752.



739

Area of Overla
IoU = f i

Area of Union (23)

The mAP@0.5 calculates the average precision for all categories when IoU > 0.5. mAP is
calculated as the average of the average precision (AP) across all categories:

N
1
mAP@0.5 = NZ AP, (24)
i=1

The formula for mAP@0.5:0.95 is expressed as follows:
1 0.95 1 &
mAP@0.5:0.95 = — ZO;S N; AP,(0). 25)
where t is the IoU threshold, and APi(t) is the AP for the ith category at a given loU threshold i.
mAP@0.5:0.95 is more demanding in terms of model accuracy because it evaluates the model over a
wider range of IoU thresholds.

4.2. Experimental result analysis

Our method was compared with several state-of-the-art methods, and the performance of different
methods was analyzed. The best value is highlighted in bold.

1) Results on the TIO0K dataset: We conducted comparative experiments on the T100K dataset,
evaluating several state-of-the-art object detection models, as shown in Table 2. The quantitative
results in Table 1 highlight the superior performance of our Transformer-based model, TTSNet.
This advantage is largely attributed to its ability to capture long-range semantic dependencies,
refine discriminative features, and enhance spatial-semantic fusion. Several benchmark models
exhibit strong capabilities in specific areas: Deformable DETR efficiently handles complex
scenes with varying object sizes using its deformable attention mechanism, improving speed
and accuracy. DINO leverages an advanced self-supervised learning framework to achieve high
recognition performance, particularly excelling with limited labeled data. SSD prioritizes real-
time performance by detecting objects at multiple scales using feature pyramids, while Salience
DETR integrates saliency maps with Transformers to focus on critical regions in images. Faster
R-CNN balances speed and accuracy with its region proposal network, whereas DSR-Net and
RepViT further optimize efficiency by refining network architectures and training strategies for
real-time applications. TTSNet outperforms all baseline models, achieving an mAP@0.5 of
89.10%, which represents a 2.69% improvement over the best competing method. This superior
performance is attributed to three key innovations in TTSNet; unlike DETR and DINO, which
rely on standard Transformer self-attention, DLFI explicitly integrates long-range contextual
relationships while enhancing discriminative features. This enables better object distinction in
dense and cluttered scenes. Compared to RepLKNet and Deformable DETR, which primarily
refine local receptive fields, ESIR enhances semantic feature interactions, ensuring that key
object attributes are preserved while filtering out irrelevant background noise. This improves
robustness in complex environments. While SSD and Faster R-CNN rely on traditional multi-
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scale feature fusion, SSFM dynamically adapts feature modulation, ensuring that spatial and
semantic representations are optimally aligned. This leads to more precise localization and
better scale adaptability.

Table 2. Performance comparison between our TTSnet and the state-of-the-art models on the T100k.

Methods Year  Foundational = Backbone mAP@.5 (%) mAP@.5:95 (%)
models
DETR [38] 2020 Transfomer  ResNet-50 57.30 40.3
D-DETR [39] 2021 Transfomer  ResNet-50 61.90 41.20
C-DETR [40] 2022 Transfomer  ResNet-50 72.3 64.8
SSD [41] 2016 CNN MobileNet 74.24 58.37
S-DETR [42] 2022 Transfomer  ResNet-50 70.30 62.5
Faster R-CNN [43] 2016 CNN ResNet-101 73.36 66.52
DSR-Net [44] 2022 Transfomer  ResNet-50 81.28 62.97
RepLKNet [45] 2022 CNN ResNet-50 75.1 67.2
DINO [46] 2023 Transfomer Swin 70.70 51.78
Transformer
RepViT [47] 2024 Transfomer ViT 87.79 66.98
YOLOvV5 2020 Transfomer  ResNet-50 87.95 67.83
YOLOvVS 2024  Transfomer  ResNet-50 88.5 70.2
TTSNet 2025 Transfomer  ResNet-50 89.00 73.10
TTSNet+ 2025 Transfomer  ResNet-50 89.10 73.20

2) Results on the CTSDB dataset: The proposed method was also evaluated on the CTSDB dataset.
The corresponding results are shown in Table 3. The CTSDB still achieves an impressive
mAP@.5 (%) of 89.97%. Additionally, RepViT consistently demonstrates exceptional
performance, highlighting the importance of the end-to-end discovery approach to CTSDB tasks.
Our approach, which goes one step further by leveraging multiscale information in CTSDB, is
proven to increase accuracy. TTSNet shows a remarkable improvement of 1.06% over the
dataset, proving the validity of our observation regarding the key differentiators.

3) In the comparison experiments of different loss functions on the T100K dataset, we evaluated
the performance of three loss functions—CloU, EloU, and Inner-CloU—across three different
input resolutions: 224 x 224, 384 x 384, and 448 x 448. The experimental results are presented
for each resolution, focusing on two key performance metrics: m4AP@.5 and mAP@.5:95. At
the 448 x 448 resolution, we compared the performance of the three loss functions from both
metrics. Inner-CloU outperformed the other loss functions significantly, achieving mAP@.5 and
mAP@.5:95 scores of 89.10% and 73.20%, respectively. This indicates that Inner-CloU is
particularly effective in improving object detection accuracy. In contrast, EIoU and CloU
showed slightly lower performance, with mAP@.5:95 scores of 72.20% and 72.10%,
respectively. Despite this, both loss functions still achieved relatively high detection accuracy.
Overall, Inner-CloU demonstrated the best generalization ability and robustness on the T100K
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dataset, making it the most effective choice for enhancing object detection performance among
the three loss functions tested.

Table 3. Performance comparison between our TTSnet and the state-of-the-art models on the CTSDB.

Methods Year Foundational Backbone mAP@.5 mAP@.5:95
models (%) (%)
DETR [38] 2020 Transformer ResNet-50 59.1 41.8
D-DETR [39] 2021 Transformer ResNet-50 63.70 42.20
C-DETR [40] 2022 Transformer ResNet-50 74.5 66.1
SSD [41] 2016 CNN MobileNet 75.21 58.70
S-DETR [42] 2022 Transformer ResNet-50 70.70 63.4
Faster R-CNN [43] 2016 CNN ResNet-101 74.24 69.59
DSR-Net [44] 2022 Transformer ResNet-50 85.36 67.90
RepLKNet [45] 2022 CNN ResNet-50 76.1 69.2
DINO [46] 2023 Transformer Swin 73.69 52.88
Transformer
RepViT [47] 2024 Transformer ViT 88.91 67.98
YOLOvV5S 2020 Transformer ResNet-50 88.98 69.1
YOLOvVS 2024 Transformer ResNet-50 89.2 71.1
TTSNet 2025 Transformer ResNet-50 89.92 74.00
TTSNet+ 2025 Transformer ResNet-50 89.97 74.30

Table 4. Comparison experiments of different loss functions on the T100k dataset.

Resolution ~ Loss function mAP@.5 mAP@.5:95 (%) Recall
(%)

CloU 81.1 63.1 60.5
224 x 224 EloU 81.9 64.3 62.1
Input-CloU 82.10 65.1 62.8
CloU 85.4 67.2 67.5
384 x 384 EloU 85.7 67.5 67.9
Input-CloU 86.3 68.3 68.0
CloU 88.2 72.20 69.2
448 x 448 EloU 88.7 72.10 70.5
Input-CloU 89.10 73.20 70.9

4.3. Parameter sensitivity analysis
Various factors can influence the effectiveness of pattern recognition during model construction and

training. Among these factors, the number of feature decompositions has a direct influence. We conducted
comparative experiments with different numbers of feature decompositions (Figure 8) and used mAP@0.5,
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mAP@0.95, and recall as evaluation metrics. Therefore, the results show that the accuracy peaks when

decomposing three features.
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Figure 8. Feature decomposition number on TTSNet.
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Figure 9. Performance of the different network depths and activation functions in the
TTSNet model on the TIO0K and CTSDB datasets.

Table 5. Comparative experimental graph of the different activation functions.

Datasets

Layer Tanh

Sigmoid

ReLU mAP@.5 (%)

T100K

X

3

CTSDB

W W W W W
XX X XS
X X X <

X

88.30
89.10
88.70
88.95
89.97
89.20

N X X N X
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The results of the TTSNet model running on the T100K dataset are discussed for the activation
functions (Tanh, Sigmoid, and ReLLU) (Figure 9 and Table 5). The different number of network layers
that we can see in the red markings shows that the best results are obtained for three network layers,
as well as for the activation function of the sigmoid. Overall, the results also confirm our previous
experimental results; the network with three layers and using the sigmoid activation function
performed best on the CTSDB dataset.
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>
! ! [ [ I g
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Figure 10. Results of the ablation experiments.

Table 6. Ablation experiments on the T100K and CTSDB datasets.

Dataset DLFI CCFM ESIR Precision mAP@.5 mAP@.5:95
(%) (%)

x v v 88.3 73.5 61.7
T100K v x v 88.8 80.1 65.2

v v x 89.2 85.2 68.1

4 v v 90.1 89.91 73.20

x v v 87.1 74.1 63.0
CTSDB 4 x v 87.2 81.1 66.1

v v x 89.2 86.3 69.9

v v v 91.1 89.97 74.30

4.4. Comparison of the ablation experiments

The effects of the DLFI, SSFM fusion, and ESIR modules were analyzed through ablation studies
on the T100K and CTSDB datasets, as shown in Table 6 and Figure 10. The results indicate that
removing any of these modules leads to a performance drop, demonstrating their critical contributions.
DLFI enhances object distinction by capturing long-range dependencies, SSFM ensures adaptive
feature fusion for better localization and scale awareness, and ESIR improves feature interactions by
preserving key semantic details while reducing noise. The performance gains of 0.9% on T100K and
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1.9% on CTSDB confirm that TTSNet benefits from the synergy of these three modules, leading to
more robust and accurate object detection.
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Figure 11. Confusion matrix of nine different classes of traffic signs. (a) SSD model. (b)
Faster R-CNN model. (¢) RepLKNet model. (d) DETR. (e) RepViT. (f) TTSNet (ours).
Types of traffic signs: PS: prohibition signs; RS: regulatory signs; WS: warning signs; GS:
guidance signs; IS: informational signs; CS: construction signs; PS2: parking signs; CA:
cautionary signs; PS3: priority signs.

4.5. Confusion matrix analysis

A confusion matrix reflects the degree to which an algorithm can make wrong predictions on
similar classes. In this experiment, we have confirmed that the confusion matrix has been normalized.
To ensure data accuracy, we conducted rigorous checks on numerical precision throughout the
computation and rendering processes, preventing any deviation caused by loss of precision. These
measures enable the confusion matrix to accurately reflect the degree to which the algorithm confuses
and misclassifies similar classes, thereby improving the reliability of the analysis results. Nine different
traffic sign classes were selected, namely prohibition signs (PS), regulatory signs (RS), warning signs
(WS), guidance signs (GS), informational signs (IS), construction signs (CS), parking signs (PS2),
cautionary signs (CA), and priority signs (PS3). These categories represent a diverse range of traffic
signs, each requiring fine-grained recognition capabilities. Six methods are used for comparison. As
Figure 11 shows, a lighter color in the confusion matrix denotes a higher percentage of correct
predictions in the corresponding class. Ground truth labels are on the x-axis, while predicted labels are
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on the y-axis.

We observe that CNN-based methods [Figure 11(a)—(c)] are prone to confused predictions,
particularly among visually similar classes such as cautionary signs (CA) and warning signs (WS) or
prohibition signs (PS) and priority signs (PR3). In contrast, Transformer-based methods [Figure 11(d)—
()] demonstrate better performance by leveraging their ability to model long-range dependencies and
capture subtle distinctions in the visual characteristics of traffic signs. Among all methods, our
proposed method [Figure 11(f)] exhibits the best performance, effectively distinguishing similar traffic
signs. This success can be attributed to its ability to learn invariant features (e.g., color and shape
consistency). It also captures subtle differences, such as symbol details or text variations, which helps
minimize confusion among visually similar categories. Additionally, the T100K dataset does not suffer
from class imbalance. The distribution of traffic signs in the dataset is relatively complete, ensuring
that each category has sufficient representation for model training and evaluation. This balanced
distribution allows for a fair comparison of classification performance across different methods. The
confusion matrix in Figure 11 highlights which types of traffic signs are most prone to misclassification.
Specifically, certain visually similar categories, such as cautionary signs (CA) and warning signs (WS)
or prohibition signs (PS) and priority signs (PS3), exhibit higher confusion rates. This suggests that
these classes share common visual elements that challenge recognition models. This balanced
distribution allows for a fair comparison of classification performance across different methods.

Original image DETR DINO TTSNet

Figure 12. Traffic sign visualization heatmap.
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4.6. Visualization analysis

Figure 12 illustrates five groups of traffic scene images [Figure 12(a)—(e)], with each group
showing the original image on the left, followed by attention heatmaps generated by three different
models: DETR, D-DETR, and our proposed TTSNet (from left to right). The attention maps
demonstrate that TTSNet focuses more precisely on the traffic signs, exhibiting stronger target
localization and more concentrated feature activation in the relevant regions.

In contrast, DETR and D-DETR produce more scattered attention, with significant focus on
irrelevant areas such as vehicles, road surfaces, or vegetation. These distractions indicate weaker
discrimination and context understanding in complex scenes. TTSNet not only accurately captures all
traffic signs but also reveals the relationships between different signs, thanks to its enhanced feature
interaction and hierarchical attention mechanism. This highlights TTSNet’s superior capability in
extracting and integrating task-relevant features, leading to more robust and reliable traffic sign recognition.

Original
Challenge image DETR DINO TTSNet
“i§ 0. 81 ‘WS 0. 85
Foggy WS 0.79 i
weather i :]
: : : SOTE —_— - PS0.77
Rainy [ T
weather ! — : -

Shadow
occlusion

Figure 13. Visual comparison of different algorithms on the T100K dataset. Types of traffic
signs: PS: prohibition signs; WS: warning signs; IS: informational signs; CA: cautionary signs.
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Figure 13 showcases the detection results across five real-world traffic scenes under challenging
conditions: (a) heavy fog, (b) rain and reflective night lighting, (c) bright daylight with distant signs,
(d) complex urban intersections, and (e) dense traffic with occlusions. From left to right, each row
displays the outputs from DETR, D-DETR, C-DETR, and our proposed TTSNet. Across all scenarios,
TTSNet consistently detects more traffic signs with higher confidence scores. For example, in foggy
and rainy scenes [Figure 13(a)—(b)], where visibility is significantly reduced, TTSNet is still able to
accurately identify both warning and instruction signs, while other models either fail to detect them or
misclassify unrelated objects as signs. In Figure 13(c), TTSNet successfully detects small, distant signs
missed by the others, and in Figure 13(d), it correctly identifies multiple sign types even against
complex urban backdrops. In Figure 13(e), which contains multiple vehicles and partially occluded
signs, TTSNet achieves accurate localization and classification with confidence scores as high as 0.93,
outperforming the other models that show either missed detections or poor localization. TTSNet’s
advantage lies in its ability to model long-range dependencies and contextual relationships between
different signs, enabling it to handle small-scale, overlapping, or visually ambiguous signs with
precision. These consistent improvements across a wide range of difficult conditions clearly
demonstrate that TTSNet offers superior robustness, generalization, and multi-target discrimination
capabilities compared to DETR, D-DETR, and C-DETR, making it highly suitable for complex real-
world traffic environments.

Table 7 presents the quantitative evaluation of our model under different adverse weather
conditions. For each weather scenario—fog, rain, backlight, and occlusion—we report the mAP@0.5,
mAP@][0.5:0.95], and small-object mAP. The results demonstrate that while overall performance
slightly decreases under more challenging conditions, the model maintains robust detection capabilities
across all adverse-weather scenarios.

Table 7. mAP metrics for different weather scenarios.

Weather mAP@.5 (%) mAP@.5:95 (%) Small-object mAP
Fog 92.3 78.5 70.2
Rain 90.1 76.8 68.9
Backlight 88.7 75.0 66.5
Occlusion 85.2 72.3 63.7

5. Conclusion

In this work, we propose a method for learning core features and uncovering long-term semantic
relationships within internal features for traffic sign recognition. Additionally, we address two
challenges: the complexity of backgrounds and the confusion caused by occlusions in images. We
address these issues by introducing an efficient TTSNet model that leverages the ESIR module to
extract core features, the DLFI module to capture long-term semantic dependencies, and the TTSM-
Fusion module to merge the features. Extensive experiments show that TTSNet achieves state-of-the-
art performance on the T100K (89.1%) and CTSDB (89.97%) datasets. The results on these two
datasets demonstrate that TTSNet performs exceptionally in identifying key features for traffic sign
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recognition tasks. With ongoing advancements in technology, including the development of more
efficient architectures and the integration of self-supervised and reinforcement learning methods, we
expect that TTSNet’s accuracy and speed will continue to improve. Furthermore, as datasets become
more diverse and representative of global traffic signs, the model’s generalization capabilities are
likely to be enhanced. The application scope of TTSNet has the potential to extend beyond traditional
road signs, possibly encompassing intelligent transportation systems, autonomous driving, and
augmented reality in the future.
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