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Abstract: A short–term stochastic model of minute–by–minute food intake is formulated, incorpo-
rating the interaction of appetite, insulinemia, and glycemia in determining the size and frequency of
meals. By assuming a person would maintain his or her eating habit over time, we extend the simulation
period to several years and explore scenarios based on food choices (high–fiber vs. high–carbohydrate)
or appetite suppression. The model coherently predicts increments or decrements in body weight in the
long–term when altering appetite in the short–term. Further, the model shows how food type choice, at
the same appetite drive and habitual proposed meal size, induces macroscopic changes in body weight
over a very few years. The model is innovative in that it connects the minute–by–minute behavior of
the individual with long–term changes in metabolic compensation, in insulin sensitivity, in glycemic
variability, and eventually in body size, thus helping to interpret the long–term development of Type 2
diabetes mellitus resulting from an unhealthy lifestyle.
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1. Introduction

1.1. Overweight and obesity

According to the World Health Organization (WHO) [1], a person is diagnosed as overweight or
obese if body mass index (BMI) exceeds 25 kg/m2 or 30 kg/m2, respectively. In 2022, 2.5 billion
(43%) of adults were overweight, while 890 million (16%) were affected by obesity. The obesity issue
first appeared to be widespread through the USA during the years 1976–1980, subsequently spread-
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ing across Westernized countries [2–4]. The global rise in obesity prevalence has risen to epidemic
proportions and threatens the health of billions, straining healthcare systems worldwide.

One of the main causes that lead to the rapid rise of obesity, at least over the past 20 years or so [2]
is the wide diffusion and availability of cheap ultra–processed foods (UPFs) (i.e., high–calorie foods
containing mostly salt, sugar, and fat) in Western countries, especially the USA. From 1970 to 2005,
the consumption of total sugars and sweeteners in the US increased by a substantial 19%, mostly driven
by the increase in the consumption of corn sweetener, which increased in the same period by 387% [5].
Sugar–loaded beverages have been identified as a major determinant of obesity development [6]: In
Morenga et al. [7], sugar–rich food intake was proved to be linked with increased body weight through
a meta–analysis. It is thus clear that excess consumption of sugar–rich foods may alter energy balance
and lead to overweight and obesity, even in regions with traditionally healthy (vegetable–rich) diets
and active lifestyles, such as the Mediterranean or South–East Asia.

Many severe conditions are caused by or at least linked with obesity, such as non–communicable
diseases including heart disease, stroke [8, 9], and diabetes, which were the major causes of death in
2019 [10]. Obesity is also linked to musculoskeletal disorders, certain cancers (including endometrium,
breast, ovarian, prostate, liver, gallbladder, kidney, and colon cancers) [11, 12], and determines an
overall increased risk of death. The COVID–19 pandemic further highlighted this danger, with severe
obesity linked to higher intensive care unit (ICU) admission rates [13]. Of particularly concern is the
strong association between obesity and Type 2 diabetes mellitus (T2DM) [14,15], which increases the
risk of death even more [16–18]. All this evidence underscores the significant health risks posed by
obesity in our society.

It is generally understood that what we eat affects our body size, and thus body mass index (BMI).
Factors including cultural habits, social norms, and food preferences, which influence eating style,
may indirectly play a major role in controlling body weight and BMI. All of the above factors can
lead to overeating, weight gain, and obesity, with attendant insulin resistance. Although (primary)
reduced muscle sensitivity to insulin is the main culprit behind Type 2 diabetes (T2DM) [19–22],
what we eat can play an important role, since increased body fat deposition can by itself decrease
insulin sensitivity [23, 24]. The exact cause–and–effect relationship between overeating and insulin
resistance is, however, still being debated [24–27].

1.2. Models Predicting Individual Human Weight Change

Several studies have appeared, modeling long–term body weight change by incorporating various
factors, albeit to the exclusion of eating behavior.

One such study is a mathematical model portraying the progression of body weight over time [28]
by considering energy intake and energy expenditure as controlling factors and also incorporating the
law of energy conservation, data on energy expenditure of fat and lean tissues, and the composition
of tissue gained or lost during weight change in building up the model. In 2004, the model was
further expanded by including the physical activity factor (PAF) as a control variable [29]. These
authors found that energy–based relations between the various factors involved in energy balance help
in identifying and quantifying the determinants of energy balance and understanding their interactions
as obesity develops.

In 2008, a mathematical model of macronutrient flux balances (fat, protein, and carbohydrates) was
proposed to represent the long–term dynamics of human weight change [30]. The study found that for
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a fixed food intake rate and physical activity level, the steady state of the body’s weight and composition
would be reached and could be matched with a unique body weight or a continuum of body weights
that were all consistent with the same food intake and energy expenditure rates. Interestingly, existing
data on human body weight are not sufficient to distinguish between these two possibilities.

In the same year, Hall et al. [31] developed a mathematical model for the estimation of the expected
change in steady–state body weight resulting from a specific alteration in dietary energy intake and,
conversely, for the determination of the energy intake adjustments needed to sustain a given body
weight change.

Thomas et al. [32] developed a differential equation model of weight change based on the first law
of thermodynamics, by incorporating the adaptation of resting metabolic rate, non–exercise activity
thermogenesis, and dietary–induced thermogenesis, along with the natural age–related reduction in
resting metabolic rate. They modeled resting metabolic rate with an affine function of a power of body
mass, based on a statistical model developed by Livingston [33]. A one–dimensional mathematical
model of weight change based on the energy balance, along with a relationship between fat–free mass
and fat mass, was proposed two years later by Thomas et al. [34] and was calibrated on a large sample
collected by the Centers for Disease Control.

In Guo et al. [35], two weight management simulation tools, the National Institutes of Health Body
Weight Planner (NIH BWP) and the Pennington Biomedical Research Center Weight Loss Predictor
(PBRC WLP), were studied using data originating from the Comprehensive Assessment of Long–term
Effects of Reducing Intake of Energy (CALERIE) study. According to the study, following prolonged
calorie restriction, the NIH BWP was judged to outperform the PBRC WLP.

Jacquet et al. [36] proposed a mathematical model of weight cycling designed to estimate sur-
plus fat accumulation resulting from repeated dieting, based on principles of body composition’s
auto–regulated control. In the same year, a model–based predictive control approach for body weight
was proposed by other authors [37]. The model determines the energy intake required to reach a
predefined target body weight and, given the age of the children, their height, weight, and BMI were
predicted using historical observations. In a dietary intervention program, Babajide et al. [38] applied
a machine learning method including several machine learning algorithms (linear regression, support
vector machine (SVM), random Forest (RF), and artificial neural networks (ANN)) to predict body
weight and found that the ANN and RF algorithms outperform other models.

Among all the available contributions mentioned above, only some of the models ( [32, 34, 39])
were implemented in the form of web–based applications. These applications are interesting in that
they exemplify how mathematical models may be progressively developed until they are sufficiently
precise to be applied to the real world. The models and web–based applications mentioned above are
all targeted to individual American subjects.

1.3. Population models

Although mathematical models of the evolution of body weight in individual humans are of scien-
tific interest and give us the tools for understanding the relevant physiology, from a policy planning
perspective it is useful to explore another class of models: Instead of looking at weight change in a
single person, we can study the weight distribution changes of an entire target population.

Lin et al. [40] studied the impact of the taxation policies of the US regarding caloric sweetened
beverages on reducing the prevalence of overweight and obesity. The prevalence of obesity predicted
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by using Hall’s dynamic model [39] was compared with the one using the ubiquitous ‘3500 calories
per pound’ static weight loss model, which does not consider changes in energy expenditure over time.
The proposed taxation policies were assessed to be less effective when using the dynamic model than
when using the static model [41].

Church et al. [42] utilized a dynamic model of population weight change developed by Thomas et
al. [32, 34] to study the impact of occupational physical activity on the increase in the prevalence
of obesity in the US. They simulated the body weight changes of adults over the past five decades
corresponding to the decrease in their occupational physical activity. Their results showed that, given
constant energy consumption over time, the model’s predictions closely matched the observed average
weight of male and female populations. They concluded that the obesity pandemic in the US was
indeed almost fully explained by the gradual decline in occupational physical activity. Nonetheless,
Hall [43] questioned the model’s assumptions, since the variations in energy expenditure are positively
correlated with the ones in spontaneous physical activity [32, 34], which may result in overestimating
the predicted weight changes.

In Hall et al. [44], a mathematical model of human weight dynamics was validated and was used to
investigate whether the increase in average US adult body weight since the 1970s results from changes
in the US food supply. They found that the average daily energy intake per capita rose by less than
250 kcal, which was sufficient to generate the obesity pandemic of adults in the US, given that physical
activity remained unchanged. This requirement was easily achievable relative to the growth rate of the
per capita US food supply, which was approximately three times higher than this amount. Moreover,
there has been a steady rise in food waste per capita by 50% since the 1970’s, according to data reported
by the US Environmental Protection Agency.

1.4. Models for energy expenditure and metabolism

Energy expenditure plays a major role in controlling human body weight. In setpoint theory, it is
assumed that every individual possesses a genetically influenced body weight preference, known as the
setpoint weight. In a weight loss scenario, the body adapts by decreasing its energy needs in an effort
to regain its setpoint weight.

In 2001, a setpoint mathematical model for determining daily energy requirements integrating the
metabolic response to human weight loss was proposed by Kozusko et al. [45]. To forecast energy
expenditure during weight loss, the model was built on the basis of the setpoint fat–free mass ratio
and setpoint energy expenditure, disregarding characteristics such as age, gender, and heredity. Sub-
sequently, the same authors [46] studied weight loss dynamics by introducing a setpoint model of
metabolic adjustments in response to diet–driven human weight loss. The model not only incorporates
the consumption of fat versus nonfat of an individual but also employs a uniform energy density asso-
ciated with body weight loss. The simulation results of this model were compared with those obtained
using the Harris–Benedict model.

Thomas et al. [47] proposed a dynamic model of energy balance during pregnancy (http://www.
pbrc.edu/the-research/tools/gwg-predictor/) which helps track weight increases in expec-
tant mothers. Later, Ejima et al. [48] proposed a mathematical model that incorporates both the genetic
and non–genetic effects of obesity and used it to predict the prevalence of obesity in the US and UK in
2030.

Hall [49] constructed a mathematical model using the input data based on dietary macronutrient
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consumption during periods of semistarvation and refeeding for computing full–body caloric expendi-
ture, de novo lipogenesis, and gluconeogenesis, as well as turnover and oxidation of carbohydrates, fat,
and protein. In 2020, a system of time–varying differential equations was employed for modeling the
metabolic regulation of the human body during weight loss through dieting, exercise, or medication,
focusing on changes in three major nutrients and ketone bodies [50]. Supposedly sufficient conditions
for safe weight reduction achieved through diet, physical activity, and pharmacological intervention
were given.

1.4.1. Food intake models

The study of energy metabolism in humans ought reasonably to start from what we actually ingest.
However, while considerable research has been conducted on the mathematical modeling of digestion,
absorption, and metabolism (gastric emptying being a prime example), much less attention has been
given to modeling eating behavior.

In 1975, Barnwell et al. [51] proposed a model with two decision–making circuits for feeding and
satiety. This model considered the interaction between the lateral hypothalamus (stimulating hunger)
and the ventromedial hypothalamus (promoting satiety). Feeding was terminated by feedback mecha-
nisms triggered by increased blood sugar levels, body temperature, or stomach distension.

Much later, in 2008, the rate of food intake during a meal was then modeled as normal distribution
and was used to examine the differences in dietary patterns between healthy individuals and those with
night eating syndrome [52]. In 2009, a system using a Bayesian approach (assuming a uniform prior
probability for each meal) was built by Cameron et al. [53] to detect meals and estimate portion sizes
in order to facilitate patients to input data for computing insulin dosages.

Balakrishnan et al. [54] proposed a personalized model for Type 1 diabetic children that consid-
ered exercise, meals, and insulin interventions. This model aimed to predict adverse events like exer-
cise–induced hypoglycemia. Jacquier et al. [55] developed a model for rats that describes body weight,
fat mass, fat–free mass, energy expenditure, and food intake dynamics. Their model suggests that food
intake is regulated by available food and hunger, with hunger and satiety triggered by ghrelin and lep-
tin levels, respectively. Finally, Murillo et al. [56] explored the influence of cultural and psychological
factors on eating behavior at a population level, even though they did not address the mechanics of how
we initiate and stop eating.

In 2021, we proposed an initial complete mathematical model for food intake incorporating both
physiological internal factors, such as stomach distension, glycemic variations, and ghrelin dynamics;
external factors; cultural habits; and influences on the initiation and continuation of meals, reflecting
a combination of hedonic and appetite components [57]. The model was intended to represent the
initial input for full–scale simulations of food absorption and metabolism, both in health and disease,
considering external (societal) as well as internal (metabolic and psychological) factors.

1.4.2. Models for food digestion and absorption

Clearly, once ingested, food has to undergo digestion and absorption in order for the nutrients to
enter metabolism. Another class of models has addressed this topic.

Several reviews of gastrointestinal tract physiology exist, including on the physiology of the ab-
sorption of metabolic substrates and other nutrients [58–61].
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Strathe et al. [62] described a mathematical model for the digestion and absorption of nutrients in
growing pigs, considering dietary protein, endogenous protein, amino acids, non–amino acid– and non
protein nitrogen, lipids, fatty acids, starch, sugars, and dietary fiber. Salinari et al. [63] dealt with
glucose absorption in the human. Glucose absorption was also a part of models of glucose–insulin
control by our group [64]. Taghipoor et al. [65] developed a model of digestion in the small intestine
focusing on dietary fiber. Several other meal absorption models have been proposed [66–68].

1.4.3. Models of the effect of glycemia on appetite

One important factor affecting our eating behavior is the glucose concentration in the blood. Hy-
perglycemia (high blood glucose concentration) caused by sugar–rich food intake suppresses ghrelin
secretion [69] and raises insulin serum concentration; high insulinemia then inhibits dopamine signal-
ing and deters feeding [70–72]. Hyperglycemia is, in any case, effective in reducing food intake, even
if it is not clear how much of this effect is mediated by the inhibition of ghrelin production [73].

Advances in glycemia control and treatment strategies have been widely treated [74–77]; within
this context, the possible roles of hypo– and hyperglycemia in influencing food intake behavior have
also been discussed [78–81]. It is common consensus that hunger is a symptom of hypoglycemia.
There is also evidence that hyperglycemia by itself may suppress hunger [82–84]. Even though other
contributions [85] doubt the effectiveness of glycemia to regulate hunger, on the whole, it would seem
reasonable to include glycemia in a food intake model as a substantial determinant of appetite, very
possibly as a mere marker of more complex influences mediated by the appearance of food in the
gastrointestinal tract. It should be noted in this regard that hunger due to hypoglycemia is not by itself
suppressed by stomach filling (e.g., by drinking water or assuming a large amount of calorie–poor
fiber) [86].

With the evidence above supporting how glycemia can trigger or suppress feeding, in the present
work, glycemia is assumed to be the representative determinant of appetite. Therefore, in the following,
the amount of ingested carbohydrate intake will be converted to its glucose equivalent [87], and the
consequent rise in glycemia resulting from glucose absorption into the circulation will be considered
as the key determinant of appetite.

1.4.4. Models for glycemic control

Since glycemia plays an important role in our model, it is useful to study glucose homeostasis, i.e.,
how glycemia is regulated. Extensive research has been done in the mathematical modeling of glucose
homostasis, considering different aspects of this complicated physiological control mechanism and
given the fact that adequate control of glycemia is necessary to prevent morbidity and mortality [88].

There are several review articles on the mathematical modeling of glucose control [89–92]. One
of the most widely used of such models is the so–called ‘minimal model’ of Bergman [93, 94], even
though it was shown [95] to suffer from implausible qualitative properties, and it was shown [96, 97]
that the statistical parameter estimation scheme originally proposed by the authors [98] was faulty.

Several other contributions appeared over the years: the ‘minimal model’, notwithstanding its prob-
lems, was extended to include gastrointestinal absorption [99]. Liu et al. [100, 101] worked on a
regulatory system of blood glucose by taking the dynamics of receptors at the molecular level into
account; Wu et al. [102] proposed a two–compartmental model in order to account for the oscillatory
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behavior of the glucose–insulin system; and Lombarte et al. [103] proposed a model including, blood
glucose and insulin concentrations as well as intestinal glucose in rats. Some of these models include
lipids in the description of the metabolic response, like in Pratt et al. [104], where experimental data
for the ingestion of three mixed composition meals over a 24–h period were used to study the response
to a variety of mixed meals in fed and fasted conditions.

The role of other hormones in regulating glucose metabolism has also been studied, particularly re-
garding incretins, gastrointestinal hormones that enhance insulin secretion by the pancreas in response
to a meal. Girard et al. [105] and Holst et al. [106,107] reviewed the concept of incretins and described
the biological effects of GIP and GLP–1 in normal subjects and in patients with Type 2 diabetes mel-
litus; Kazakos et al. [108] and Holst et al. [109] argued in favor of a possible use of incretin therapy
in obesity and diabetes. Zhao et al. [110] proposed a mathematical model to analyze the impact of
pulsatile insulin release on postprandial glucose and lipid control. Finally, Masroor et al. [111] devel-
oped a model for the homeostasis of glucose through the regulating hormones glucagon and insulin,
which could be used for studies on glucagon receptor–targeted therapy as well as on the artificial pan-
creas. Personalized models of glycaemic control focusing on the effects of physical exercise in body
metabolism were studied in [112], while those that account for both food intake and exercise were
discussed in [113–116].

Over the past few years, many research groups, including ours, have been active in the mathemat-
ical modeling of different aspects of the glucose–insulin control system. Models have dealt with the
intravenous glucose tolerance test (IVGTT) [95, 117–119], possibly with delay [96, 120–122]; the oral
glucose tolerance test (OGTT) test [123]; the analysis of mixed meals [99]; model–based control
of plasma glycemia [124]; the euglycemic hyperinsulinemic clamp (EHC) [125, 126]; islet popula-
tion pulsatile insulin secretion [127–129]; long–term development of diabetes [130–134]; the glu-
cose–insulin–incretin system [135]; postprandial glucose excursion in diabetics [136]; renal glucose
reabsorption [137]; glycemia–structured population models [138]; fractional differential approaches
[139, 140]; stochastic gastric emptying and food intake [57, 141]; and reviews [90].

1.5. Goal of the present work

In the quest for a better understanding of the development of obesity in individuals, a mathematical
model of body size evolution in humans would be useful. Modeling the changes in body size would
help us characterize their determinants and would provide a hitherto missing element in the repre-
sentation of population–wide insulin resistance and of the development and management of diabetes
mellitus. It is to be noted that current mathematical models for the progression of diabetes typically
do not consider body habit changes. Conversely, models of weight increase typically assume calorie
imbalance over long periods of time, without linking it to its likely daily determinants. A complete
model could be used to compare the effectiveness of different approaches to the prevention of obesity.

According to the current existing literature, a mathematical model connecting body weight dynam-
ics to actual daily food intake behavior has not yet been proposed. A useful step forward would thus be
to develop such a model, aligned with the clinical, empirical observations [5–7] that indicate how, over
the years, simply changing our food choices ceteris paribus may significantly affect our body weight.

The purpose of the present work was therefore to build and calibrate a mathematical model of the
changes in human body size over several years as determined by daily food intake habits.

Mathematical Biosciences and Engineering Volume 21, Issue 7, 1790–1824.



1797

2. Materials and methods

2.1. The mathematical model

In this section, we present a mathematical model consisting of time–depending five variables in-
cluding stomach food content (S), glycemia (G), insulin plasma concentration (I), body weight (W),
energy expenditure (Y), and appetite (A). The definitions of each variable are provided below.

In the following, the model variables are presented and discussed in turn. Table 1 summarizes their
names, meanings and units of measurement.
t: Time, in minutes (min)

D: Days (days)
D counts the number of whole days since the beginning of the experiment/simulation, starting with
Day 1. When its value increases by one (at midnight, zero hours) the meal times and meal amounts for
the current (upcoming) day are recomputed.

D(t) = ceiling(t/1440), (2.1)

where 1440 is the number of minutes in a day.

τ: Time of the day (min)
τ indicates the time of day in minutes. It is used to determine hour–dependent events (such as food
intake or sleep patterns).

τ = mod(t, 1440). (2.2)

τm: Time of the m–th daily meal (min)
τm indicates the time of day of the m–th meal (1, breakfast; 2, lunch; 3, dinner) in minutes. It varies
randomly from day to day, uniformly between a minimum and a maximum allotted time.

τm = τmin
m + U(τmax

m − τmin
m ) , m ∈ {1, 2, 3}, (2.3)

where U is a uniformly distributed random variable, U ∼ U[0, 1].

Mm: Suggested size of m–th daily meal (kcal)
Mm indicates the suggested size of the m–th meal (1, breakfast; 2, lunch; 3, dinner) in kcal. It varies
randomly from day to day, uniformly between a minimum and a maximum size. The actual amount of
food ingested during the meal depends on the suggested meal size and also on the current appetite of
the subject, and it may be smaller or larger than the suggested meal size.

Mm = Mmin
m + U(Mmax

m − Mmin
m ) , m ∈ {1, 2, 3}, (2.4)

where U is a uniformly distributed random variable, U ∼ U[0, 1].

λCG: Propensity (probability rate) of consuming a snack given the current level of glycemia (/min)
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λCG indicates the probability rate or propensity of consuming a snack, given the current glycemic level.
It is assumed to follow a decaying sigmoid, achieving a maximum at zero glycemia and falling off to
zero with increasing glycemias.

λCG(G) = 1 −
GγCG

GγCG
C50 + GγCG

. (2.5)

S : Stomach food content (kcal)
S is the energy in kcal obtained from food in the stomach, or the stomach food content expressed in
kcal.

dS
dt

= − kOS S (t)

+ A(t)
ND∑

D=1

3∑
m=1

Mm,Dδ(t − tm,D)

+ A(t)(Cmin + U(Cmax −Cmin))χG,

S (0) = S 0,

(2.6)

where

m ∈ {1, 2, 3} indicates the standard meal (1, breakfast; 2, lunch; 3, dinner).

D ∈ {1, . . . ,ND} indicates the day.

Mm,D = Mmin
m + U(Mmax

m − Mmin
m ),U ∼ U[0, 1], indicates the random size of the meal, uniformly

distributed between the limits pertaining to the corresponding standard meal.
This means the offered meal is assumed to be uniformly distributed.

tm,D indicates the time of the meal, uniformly distributed between the interval [6, 9] for m = 1,
[12, 15] for m = 2, and [18, 21] for m = 3. The meal times are also uniformly and randomly distributed
within the usual limits (say, between 6:00 a.m. and 9:00 p.m. for breakfast).

Cmin and Cmax are the standard minimum and maximum snack sizes, U ∼ U[0, 1], so that (Cmin +

U(Cmax −Cmin)) is a uniformly distributed random snack size between Cmin and Cmax kcal.
χG is the characteristic or indicator function indicating the actual consumption of a snack at time t,

depending on its propensity λCG as a function of glycemia. It is defined in terms of the solution NG to
the Poisson process of parameter λCG, as follows:

χG = δ (NG < 1) . (2.7)

In the course of the numerical simulations, with a (small) time discretization step ∆t, we use the
approximation χG ≈ (U 6 λCG ∆t), with U a [0, 1] uniformly distributed random variable sampled at
each discretization time step. In the implementation of the algorithm, therefore, the actual probability
PC(G,∆t) of consuming a food snack over the next discretization time interval, a probability which
depends on the propensity λCG defined above, on glycemia, and on the length of the interval
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PC(G,∆t) = 1 − e−λCG(G)∆t. (2.8)

Notice that we assume that snacking will not happen between 2:00 a.m. and 1 hour after breakfast,
thus setting χG to zero during that time interval.

The submodel that is relevant to gastrointestinal absorption of nutrients has been kept relatively
simple to compensate for the complex representation of the factors influencing food intake.

Z: Relative insulin sensitivity (#)
Z(W) is the level of insulin sensitivity, relative to the baseline value, depending on the current body
weight. On the basis of clinical observations [142–146], we assume that the increase in body weight is
associated with progressively more severe degrees of insulin resistance

Z(W) = 1 −
WγGIW

WγGIW
GI50 + WγGIW

. (2.9)

G: Glycemia (mM)
G is the current glycemia

dG
dt

= −ZkOGI IG + kG +
ρGS

VG
kOS S , G(t0) = G0 (2.10)

where ρGS is the conversion factor between the absorbed glucose–equivalent food, in kcal and mmol
of glucose absorbed into the bloodstream.

I: Insulin plasma concentration (pM)
I is the current insulinemia. Insulin secretion by the pancreas is assumed to depend on glycemia
nonlinearly (higher glycemic peaks determine proportionally greater insulin secretion)

dI
dt

= −kOI I + kIGG2 , I(t0) = I0. (2.11)

W: Body weight (kg)
W is the current body weight determined by the balance between (a fraction of) what is absorbed from
the stomach and current energy expenditure (converted from kcal/day to kcal/min)

dW
dt

= ρWS

(
kOS S −

Y
1440

)
, W(t0) = W0. (2.12)

Y: Energy expenditure (kcal/day)
Y(W) is the daily energy expenditure, as a function of the current body weight. An increase in daily
energy expenditure is assumed to be determined by an increase in body weight, accounting for the fact
that with a heavier mass to move, an increase in metabolism is required

Y(W) = Ymax WγYW

WγYW
Y50 + WγYW

. (2.13)
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A: Appetite (#)
A is the appetite level assumed to depend merely on glycemia, consistent with the purpose of this study

A(G) = Amaxe−λAGG. (2.14)

Figure 1 reveals a schematic diagram of the relationships among the state variables.

Figure 1. Block diagram of the WeightGain model. Labeled circles correspond to the state
variables as defined in the text. Black arrows represent transfer of a substance. Blue arrows
represent stimulation or excitation, while red arrows represent inhibition or repression.

2.2. Software implementation

The model has been implemented in R [147].

2.3. Parameter calibration

Figure 2 shows the assumed relationships between energy expenditure and body weight, between
appetite and glycemia, and between insulin sensitivity and body weight. The assumed propensity to
snack as determined by (hypo)glycemia and the derived probability of snacking within given time
intervals while being kept at 2 mM, 3 mM, 4 mM, and 8 mM glycemia are shown in this figure. All of
these relationships reflect the common understanding and are kept unchanged when studying different
scenarios.
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Figure 2. Assumed overall relationships: These basic relationships reflect common physio-
logical and nutritional understanding and are assumed to be the same for all studied scenarios.

Energy expenditure is assumed to increase (nonlinearly) with increasing body weight due to the
actual work of moving around a heavier body, as well as to the likely parallel increase in metabolically
active muscle mass (Figure 2, upper left panel).
As already mentioned in the Introduction, we take glycemia to be the sole determinant of appetite,
neglecting, for this version of the model, other possible influences (hedonic, psychological, social),
which may also modify food intake. In fact, we summarize such influences in the concept of baseline
appetite (or appetite at zero glycemia), defined as the basic tendency to ingest a given multiple of the
proposed calories at each meal: A glutton would be represented as having a high baseline appetite,
while anorexia would induce a low baseline appetite. In both conditions, higher glycemia would re-
duce current appetite, as represented in Figure 2 (upper right panel). It is a common understanding that
obese individuals, on average, exhibit some degree of insulin resistance. The normal insulin sensitivity
coefficient (kOGI) in the standard min−1pM−1 units is thus multiplied by a correction factor depending
on body weight (Figure 2, center left panel). One possibly important element in the failure to com-
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ply with healthy dietary indications is snacking. For the purpose of this investigation, we represent
snacking as a continuous–time random process, where the probability of ingesting some extra food
depends both on glycemia (the lower the glycemia, the higher the probability rate of having a snack;
Figure 2, center right panel) and on the duration of the considered time interval. Figure 2 (lower left
panel) shows the computed probability of observing a snack to take place during a time interval as the
duration increases for four levels of glycemia maintained during that interval.

Human Energy Requirements Report [148], a meta–analysis of studies that involved a total of 411
men and women from 18 to 64 years of age, showed a modal value for physical activity level (PAL)
of 1.60 (range: 1.55 to 1.65) for both men and women [149]. For the most part, the subjects were
from affluent societies in developed countries. All were healthy, but 13% of the women and 9% of the
men were overweight or obese, with BMI > 30. Typical subpopulations included students, housewives,
white–collar or professional workers, and unemployed or retired individuals; only three persons were
specifically identified as manual workers. Hence, the authors of the meta–analysis defined the study
participants as people with a ‘predominantly sedentary Western lifestyle...’ (we should however note
that ‘... an expert panel of the International Obesity Task Force (IOTF) suggested a somewhat lower
PAL range of 1.50 to 1.55 as being representative of sedentary individuals ...’ [148]).

Taking 1.60 as the modal value for PAL in people with a predominantly (but not exclusively) seden-
tary Western lifestyle, considering a (fit) male individual of 40 years of age, 70 kg body weight and
180 cm height, and applying the coefficients of the simplified Mifflin equations [150]

REE f emale(kcal) = 10 × BodyWeight(kg) + 6.25 × Height(cm) − 5 × Age(yrs) − 161,
REEmale(kcal) = 10 × BodyWeight(kg) + 6.25 × Height(cm) − 5 × Age(yrs) + 5,

we obtain a total daily expenditure (TDEE) of 2608 kcal/day. Clearly, obese individuals, very physi-
cally active individuals, and younger individuals would have a higher TDEE, and vice versa for very
lean, older, and mostly sedentary individuals. These considerations justify the choice of 2600 kcal/day
as the baseline TDEE.

In order to justify the choice of stomach emptying half–lives considered, we use Equation (4) from
Palumbo et al. [113] and consider an ‘average’ meal size of 500 mL containing 500 kcal: this would
be equivalent to a chicken and vegetable soup with 100 g of chicken, 200 g of mixed vegetables, and
a small potato. A calorie–poor, fiber rich meal, such as a lentil and vegetable soup with 50 g of lentils
and 150 g of non–starchy vegetables, would contain approximately 250 kcal in a 500 mL volume.
Conversely, a calorie–rich meal such as a creamy chicken and avocado soup, with 100 g chicken, half
an avocado, and coconut milk would deliver approximately 500 kcal in a volume of 250 mL. All three
meals consist of mostly liquid soups, to which, therefore, Eq. (4) from Palumbo et al. would apply, but
they would differ markedly in caloric density (1, 0.5 and 2 kcal/mL), thus determining the computed
stomach emptying half–lives, respectively, of 36, 23, and 64 minutes. Hence, the choice of portraying a
substantial switch in food preferences as going from 60 to 20 minutes for stomach emptying half–life.

3. Results

We explore two scenarios: Scenario 1 (healthy diet baseline) and Scenario 2 (sugar–rich food pref-
erence). The quantitative effect of merely changing food preferences on the long–term development of
obesity is investigated by conducting simulations over four years.
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In the following, the model has been used to quantitatively investigate the effect of merely changing
food preferences on the long–term development of obesity.

3.1. Scenario 1

In this scenario, a human subject with a weight of 70 kg following a normal (healthy) diet with
a normal baseline appetite is studied. The definition of a healthy diet is the diet consisting of varied
and fiber–rich foods such that the stomach emptying half–life is 60 minutes. All other parameters of
the simulation have been calibrated so as to reflect the common medical consensus and to determine
a stable weight over the course of four years. In this simulation, the offered meal size and meal times
are uniformly, randomly distributed within usual limits (say, between 6:00 a.m. and 9:00 p.m. for
breakfast), and snacking is not assumed to happen between 2.00 a.m. and 1 hour after breakfast.

Figure 3 shows the time course of stomach contents, glycemia, appetite, and daily total food intake
over the course of four years of simulation. Notably, glycemia peaks (postprandially) at around 12 mM,
and total daily food intake averages around 2600 kcal, of which around 400 derive from snacking.

Figure 3. Maintenance of normal body weight: Stomach contents (top left), glycemia (top
right), appetite (bottom left) and daily food intake (bottom right: Daily kcal from snacking
in red, those from regular meals in blue, and the total in black).
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Figure 4 shows the time course of body weight, daily energy expenditure, fasting glycemia, and
relative insulin sensitivity, none of which change appreciably over four years. Weight is maintained
at around 70 kg throughout, while fasting glycemia (the average glycemia in the early hours of the
morning before breakfast) is maintained at values around 3.7 mM (66 mg/dL).

Figure 4. Maintenance of normal body weight:Body weight (top left), daily energy expendi-
ture (top right), fasting glycemia (bottom left), and relative insulin sensitivity (bottom right).

Figure 5 shows the time course of stomach content, glycemia, insulinemia, and appetite over the
course of four days. In this stable situation (at normal body weight), glycemic excursions, the corre-
sponding insulinemic peaks, and appetite oscillations are limited.

3.2. Scenario 2

For the second scenario, we simulate an individual with a body weight of 70 kg with the same
parameter values as in Scenario 1, except for his/her preference for foods richer in carbohydrates,
particularly sugar, such as soft drinks, sweets, and sugary snacks. We assume that with the low level of
fibers, fats, and protein in such foods, the rate of digestion is faster and the half–life time of stomach
emptying is reduced from 60 to 20 minutes.

Notice that the offered caloric content of meals and snacks is exactly the same as before (but if
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Figure 5. Maintenance of normal body weight: Stomach content (top left), glycemia (top
right), insulinemia (bottom left), and appetite levels (bottom right) over the course of four
days.

eating with increased appetite, the subject will partake of a larger fraction of the offered meal, possibly
greater than 1). In other words, nothing changes except the digestion half–life.

The stomach contents, glycemia, appetite, and daily total food intake over the course of four years
for the subject under the second scenario are displayed in Figure 6. Notice that stomach content peaks
are only marginally larger than before. Conversely, the glycemic peaks reach 20 mM, a substantial
increase, due to the more rapid availability of ingested sugars in the circulation. Appetite peaks are
increased, due to the fact that rebound hypoglycemias occur after the rapid elimination of peaking
glucose loads (with persistent insulin concentrations).

This is reflected in the much greater contribution of snacking to the total daily food intake: Initially
approximately 1700 kcal/day out of a total of 3700 kcal/day, and eventually (at the end of the four
years) 1000 kcal/day out of a total of 2900 kcal/day. It should be emphasized that the total caloric
intake of a subject depends not only on the offered caloric content of the diet (presumed to be the
same throughout our simulations) but also on the level of craving or appetite, leading to more frequent
snacking and to larger portions of whatever food is offered at regular meals, hence the variation in total

Mathematical Biosciences and Engineering Volume 21, Issue 7, 1790–1824.



1806

caloric intake with the same caloric content of meals.

Figure 6. Consequences of unhealthy diet choices: Stomach contents (top left), glycemia
(top right), appetite (bottom left), and daily food intake (bottom right: daily kcal from snack-
ing in red, that from regular meals in blue, and the total in black).

In Figure 7, the time course of body weight, daily energy expenditure, fasting glycemia, and relative
insulin sensitivity for the subject with unhealthy food intake habits are shown. The subject’s weight
increases from 70 to about 90 kg within just a couple of years (four years), stabilizing around this higher
level. In fact, weight stabilization is caused both by increased energy expenditure and by decreased
insulin sensitivity, resulting in higher glycemias with lower appetite levels. Notice, however, that
glycemic levels are more variable: Not only are the postprandial glycemic peaks higher (Figure 6 top
right panel) but fasting glycemias range from 3 mM to 4.2 mM. In other words, in this situation, the
subject is potentially exposed to both hyper– and hypoglycemias. While, quantitatively, the clinical
situation depicted in this scenario does not yet reach the severity of overt diabetes, the configuration
of the abnormalities is very clear and coincides with the progressive development of Type 2 diabetes
mellitus.
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Figure 7. Consequences of unhealthy diet choices: Body weight (top left), daily energy
expenditure (top right), fasting glycemia (bottom left), and relative insulin sensitivity (bottom
right).

Figure 8 finally shows the time course of stomach content, glycemia, insulinemia, and appetite over
the course of four days at the stable regimen after four years of unhealthy eating habits. Glycemic
excursions are larger due to the increased proportion of (simple) carbohydrates in the diet, leading
to higher insulinemic peaks hence to rebound (relative) hypoglycemias and more sustained appetite
overall, with the consequence of more frequent, larger snacks and increased calorie intake.

4. Discussion

It is clear that Western and Westernized societies are undergoing an epidemics of obesity, which
represents a major public health concern, with huge economic and human costs. Obesity is a major
driver of healthcare spending, since it is clear from epidemiological surveys that obese people are more
likely to develop chronic conditions, such as Type 2 diabetes mellitus (T2DM), cardiocirculatory dis-
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Figure 8. Consequences of unhealthy diet choices: Stomach content (top left), glycemia
(top right), insulinemia (bottom left), and appetite levels (bottom right) over the course of
four days.

eases, and even some types of cancer, requiring treatment and hospitalization. Furthermore, obesity
can also lead to lost productivity due to absenteeism and presenteeism (being at work but not fully
functional). Obesity has a major impact on quality of life (QoL): It can limit mobility and make it dif-
ficult to participate in daily activities, with attendant feelings of isolation and depression. Among the
social determinants of obesity (such as poverty, with a consequent lack of access to healthy food op-
tions) an important factor is insufficient health education, leading to poor dietary choices, with reliance
on quick–reward foods such as sugary drinks and snacks.

It is generally understood that overeating causes obesity; however, while the effects of obesity are
being extensively studied, much less attention has been paid to its causes. A discussion about the psy-
chological and social determinants of overeating would transcend the scope of the present work (the
model proposed here does, however, take into account the end–effect of such determinants by quanti-
fying ‘appetite’, intended as the proportion between the food offered and the actual food consumed, in
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terms of calories).
Through the simulation of a model incorporating the common consensus, the present work investi-

gates how dietary choices influence the development of obesity. The main effect which emerges from
the numerical implementation of the current model confirms the everyday observation that refined car-
bohydrates cause rapid spikes in glycemia, followed by rebound hypoglycemia (‘crashes’), causing,
in turn, a craving for more (sugary) food, thus repeating the cycle, eventually determining substantial
increases in calorie intake.

The connection between sugary diets and obesity (with the attendant insulin resistance) is well es-
tablished in the medical community. However, building robust, meaningful mathematical models for
this complex relationship is challenging, due to a number of considerations. First of all, the devel-
opment of obesity and insulin resistance is influenced by a multitude of factors beyond just dietary
preferences: Genetics, physical activity levels, gut microbiome, and even sleep patterns all play a
role, and creating a model that accurately captures all these variables is difficult. For these reasons,
different people respond differently to diets, and accounting for individual variability complicates the
mathematical treatment of the problem. Collecting long–term data is impractical: The longest series
of longitudinal observations in (pre–)diabetic patients only span a few years, while we are looking
at developments taking place over decades; this lack of comprehensive datasets makes it difficult to
validate complex models.

As referred to before, the literature contains mathematical models of energy balance determining
weight changes over the years, and models for glycemic control exist. Our group has also contributed
a model for the actual initiation and continuation of meals. However, to the best of our knowledge, no
models as yet connect the minute–by–minute eating mechanisms and glycemic metabolism with the
long–term development of obesity. The present work presents a first attempt to build such a model.
It should be remarked that the significance of the conclusions that can be drawn from simulating this
model goes beyond establishing quantitatively that a preference for sugary foods determines a very
substantial weight increase over the span of a few years. We can, in fact, observe how the repre-
sentation of the interplay of insulin, glucose, and appetite in this situation gives rise to the hallmarks
of prediabetes: Variable glycemias with the possibility of dangerous hypoglycemic episodes, spiking
postprandial hyperglycemias (impaired glucose tolerance, IGT), increased fasting glycemias (impaired
fasting glucose, IFG), and development of insulin resistance. As such, this model represents a first step
towards the quantitative understanding of the development of Type 2 diabetes mellitus on the basis of
an unhealthy lifestyle, which is clearly more dangerous when superimposed on genetic predisposition.

One limitation of the present model is that it does not take into account other ways in which sugary
foods may increase total caloric intake. For example, by not considering the (possible) contribution of
stomach filling to the feeling of satiety, the fact that sugary foods tend to be less filling (packing more
calories into smaller volumes), leading to continued eating even after consuming enough calories, is not
represented in the model. Also, as mentioned above, psychological determinants are not considered,
even though some could actually be modeled: Among these, the fact that sugary foods may activate
the reward system in the brain, leading to feelings of pleasure and satisfaction and possibly developing
cravings.

Another limitation concerns the fact that the current model only considers the effect of insulin on
glycemic control and neglects its role in fat accumulation: Insulin resistance can, in fact, contribute
to weight gain by impairing glycogen synthesis (thus increasing fat deposition in the adipocytes).
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Expanding the present model to include lipid metabolism would also help us understand, for instance,
the consequences of the use of the recently introduced class of anti–obesity drugs: While there is a
lot of excitement surrounding these compounds, their affordability and accessibility are major hurdles
for large segments of the affected population. A plausible model of the link between determinants
of alimentary behavior and long–term weight change effects could help elucidate their mechanism of
action and provide for optimal tailored therapy.

We note that mathematical modeling of metabolism is evolving, with the introduction of different
techniques to address the complications posed by biological systems. A simple nonlinear ordinary
differential equation (ODE) model like the present one assumes well–mixed compartments with de-
terministic behavior. However, metabolism is inherently stochastic (enzyme activity can fluctuate,
hormonal and metabolite concentrations vary), thus making the use of stochastic differential equations
(SDEs) appealing. Furthermore, processes are controlled at a variety of levels (with different orders
of control) and exhibit memory effects, both of which would justify the use of fractional differential
equations (FDEs) and/or delay differential equations (DDEs). While stochastic elements can be intro-
duced in both (FSDE, SDDE), this causes significant estimation problems connected with the inherent
non–locality of these systems and the consequent non–Markovianity of the solution processes. All of
these issues constitute a very interesting field of investigation for the future.

The end result would be to have a model helping us to forecast body weight in the population
over 10–50 years in the future and to comparatively assess the efficacy of possible societal interven-
tions aimed at preventing the obesity epidemics and reducing the attendant healthcare costs. In order
to prove the value of this model’s application in personalized medicine, validation with independent
experimental data should take place in the future.

5. Conclusions

Although it is generally understood that overeating causes obesity (with no need of making recourse
to sophisticated computational techniques), the mathematical model presented here can supply quanti-
tative insights to uncover how and why this happens. This first model of the long–term consequences
of altered food preferences is of interest by itself and paves the way for improved future representations
of overall energy metabolism.
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Tables

The model’s variables and parameters are summarized in Tables 1 and 2.

Table 1. Model Variables.

VarID Variable Units Meaning
0 t min Time in minutes
1 D days Days
2 τ min Time of the day in minutes
3 τ1 min Time of first daily meal (breakfast)
4 τ2 min Time of second daily meal (lunch)
5 τ3 min Time of third daily meal (dinner)
6 M1 kcal Suggested size of first daily meal (breakfast)
7 M2 kcal Suggested size of second daily meal (lunch)
8 M3 kcal Suggested size of third daily meal (dinner)
9 λCG /min Probability rate of assuming a snack given the current glycemia

10 PCG # Probability of assuming a snack during the next time interval
11 S kcal The stomach’s food content
12 Z # Relative insulin sensitivity
13 G mM Glycemia
14 I pM Insulin plasma concentration
15 W kg Body weight
16 Y kcal/day Energy expenditure
17 A # Appetite
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Table 2. Model Parameters.

VarID Parameter Units Meaning Value
0 t0 min Starting time for numerical integration 0
1 tend min Final time for numerical integration 525600
2 t∆ min Time integration step 2
3 t10 min Initial time of first meal (breakfast) 450
4 tmin

1 min Lower bound of random time for first meal 360
5 tmax

1 min Upper bound of random time for first meal 540
6 t20 min Initial time of second meal (lunch) 750
7 tmin

2 min Lower bound of random time for second meal 660
8 tmax

2 min Upper bound of random time for second meal 840
9 t30 min Initial time of third meal (dinner) 1170

10 tmin
3 min Lower bound of random time for third meal 1080

11 tmax
3 min Upper bound of random time for third meal 1260

12 M10 kcal Initial size of first meal (breakfast) 600
13 Mmin

1 kcal Lower bound of random size for first meal 450
14 Mmax

1 kcal Upper bound of random size for first meal 650
15 M20 kcal Initial size of second meal (lunch) 1000
16 Mmin

2 kcal Lower bound of random size for second meal 700
17 Mmax

2 kcal Upper bound of random size for second meal 1300
18 M30 kcal Initial size of third meal (dinner) 1000
19 Mmin

3 kcal Lower bound of random size for third meal 700
20 Mmax

3 kcal Upper bound of random size for third meal 1300
21 γCG # Exponent of the Hill function relating snacking probability rate to glycemia 10
22 GC50 mM Glycemia of half-maximal snacking probability rate 2
23 Cmin kcal Lower bound of random size for snacks 0
24 Cmax kcal Upper bound of random size for snacks 300
25 tlast

C min Time of last allowed snack of the day 120
26 t f irst

C∆
min Time delay after first meal before snacking is allowed 60

27 t1/2
OS min Half-life of stomach contents 60

28 S 0 kcal Initial stomach contents 0
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VarID Parameter Units Meaning Value
29 γZW # Exponent of the Hill function relating daily energy expenditure to body weight 4
30 WZ50 kg Body weight of half-maximal daily relative insulin sensitivity 90
31 kOG /min Glucose elimination rate at baseline insulinemia 0.02
32 ρGS mmol/kcal Conversion factor kcal of absorbed food to mmol absorbed glucose 0.486111
33 G0 mM Baseline glycemia at t0 3.5
34 kOI /min Insulin elimination rate 0.005
35 I0 pM Baseline insulinemia at t0 35
36 ρWS kg/kcal Weight increase in kg per kcal net energy gain 5.55556e-05
37 W0 kg Baseline body weight at t0 70
38 Ymax kcal/day Maximal energy expenditure with increasing body weight 6000
39 γYW # Exponent of the Hill function relating daily energy expenditure to body weight 1
40 WY50 kg Body weight of half-maximal daily energy expenditure 90
41 Y0 kcal/day Baseline energy expenditure at t0 2200
42 Amax # Maximal appetite level (at zero glycemia) 2.66
43 λAG /mM Rate of exponential decrease in appetite with increasing glycemia 0.3
44 h m Height of the subject 1.75
45 Dend days Final simulation day 365
46 VG L Glucose distribution volume 14
47 kOGI /min/pM Insulin sensitivity, insulin-dependent glucose elimination rate 0.000571429
48 kG mM/min Net glycemia increase rate 0.07
49 kOS /min Food absorption rate from gut 0.0115525
50 kIG pM/min/(mM2) Glycemia-dependent insulin secretion rate (nonlinear) 0.0142857
51 A0 # Baseline appetite at t0 0.930834
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