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Abstract: A predator—prey dynamic reaction model is investigated in a two-layered water body where
only the prey is subjected to harvesting. The surface layer (Layer-1) provides food for both species,
while the prey migrates to deeper layer (Layer-2) as a refuge from predation. Although the prey is
the preferred food for the predator, the predator can also consume alternative food resources that are
abundantly available. The availability of alternative food resources plays a crucial role in species’
coexistence by mitigating the risk of extinction. The main objective of the work was to explore the
effect of different harvesting strategies (nonlinear and linear harvesting) on a predator—prey model with
effort dynamics in a heterogeneous habitat. The analysis incorporates a dual timescale approach: the
prey species migrate between the layers on a fast timescale, whereas the growth of resource biomass,
prey—predator interactions, and harvesting dynamics evolve on a slow timescale. The complete model
involving both slow and fast timescales has been investigated by using aggregated model. The reduced
aggregated model is analyzed analytically as well as numerically. Moreover, it is demonstrated that the
reduced system exhibits the bifurcations (transcritical and Hopf point) by setting the additional food
parameter as a bifurcation parameter. A comparative study using different harvesting strategies found
that there is chaos in the system when using linear harvesting in the predator—prey model. However,
nonlinear harvesting gives only stable or periodic solutions. This concludes that nonlinear harvesting
can control the chaos in the system. Additionally, a one-dimensional parametric bifurcation, phase
portraits, and time series plots are also explored in the numerical simulation.
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1. Introduction

The study of ecology is a captivating field of research that focuses on the biological processes oc-
curring among various living organisms. It explores the interactions between different species and their
physical environments. In an ecological system, species rely on one another for essential functions, as
they do not always exist in isolation. A particularly intriguing aspect of ecology is the predator—prey
model, which highlights the dynamic interactions between two populations.

Interactions between species can affect population size in various ways, including competition for
limited resources, predation, food scarcity, unregulated harvesting, and environmental factors such as
climate change and pollution. Consequently, changes in the population of one species can impact oth-
ers within the same ecosystem, potentially leading to species extinction. To prevent species extinction,
numerous strategies have been proposed and implemented, such as improving the conditions of nat-
ural habitats, limiting harvesting, establishing natural reserves, and creating protected areas. These
strategies have been incorporated into various mathematical formulations of ecological systems.

Researchers [1-3] have shown that refugia can stabilize predator—prey models and may reduce the
risk of extinction for prey. The incorporation of prey refuges into mathematical models enhances the
accuracy of analyzing predator—prey dynamics. A “prey refuge” refers to habitats that are inaccessible
or difficult for predators to reach. The prey population uses these refuges to reduce the predation risk
and increase their chances of survival. The concept of prey refuges is well established in ecological
studies, as many aquatic prey species, such as fish, seek shelter in deeper water to escape from preda-
tors like seabirds. This behavior has significant implications for fishery management, as it influences
predator—prey dynamics and the sustainability of fish populations. One study [4] investigated how prey
refuges can modulate the chaotic behavior caused by time delays and contribute to a population’s per-
sistence within the system. In [5], the researcher demonstrated the effectiveness of refuges in reducing
predation as the prey population evolved.

In many ecological systems, predators typically do not rely on a single prey species for sustenance.
Instead, they depend on alternative food sources, including other prey species. The availability of
additional food sources can prevent predator extinction. The role of supplementary food in sustaining
predator populations has been widely explored in the literatures [6—10]. The author of [6] examined
the effects of providing additional food to predators on the dynamics of a predator—prey model with
prey refuges, using the framework proposed in [7]. Their analysis revealed that while high levels of
prey refuges could lead to predator extinction, survival could be ensured with the support of additional
food. Building on the model from [6], Samaddar et al. [8] introduced the concept of fear effects and
investigated their influence on system’s dynamics in the presence of prey refuges and additional food,
considering both its quality and quantity. The researcher of [11] examined how the additional food
affects the stability of the three-species food chain model combining prey refuges and harvesting.

On the contrary, it is essential to acknowledge that harvesting is an unavoidable aspect of human
activity aimed at obtaining economic resources. Many researchers have investigated systems with har-
vesting functions to enhance the realism of their models. Within the framework of dynamical systems,
various types of harvesting functions have been employed to study the effects of harvesting efforts [12].
For instance, in [13, 14], the authors analyzed a system with linear harvesting. Researchers [15, 16]
investigated a system with linear or constant harvesting and demonstrated that it exhibits significantly
more intricate and complex dynamics compared with the system without harvesting, while Chen et
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al. [17] explored a model proposed in [18] by incorporating nonlinear harvesting and delay, demon-
strating that nonlinear harvesting induces more complex dynamical behavior. Research by [19, 20]
further emphasized the significant influence of nonlinear harvesting terms on dynamical systems. Ad-
ditionally, in [21], the author analyzed a system with nonlinear harvesting due to its greater realism.
This present paper aimed to integrate both linear and nonlinear harvesting functions into the proposed
predator—prey system, highlighting their realistic features.

Several investigations [22,23] have considered the effects of refuges within a heterogeneous envi-
ronment consisting of interconnected patches. This spatial heterogeneity necessitates an examination
of two distinct dynamics: Local interactions among species on the one hand, and their migration be-
tween different patches on the other. Researchers have extensively studied the density-dependent nature
of dispersal in the literature [24-26]. One author [24] examined how prey’s dispersal behavior, influ-
enced by predator density, affects the stability of the predator—prey system in the presence of refuges.
Furthermore, the study in [25] explored the impact of dispersal behavior by both predators and prey on
the dynamical system, demonstrating that the dispersal of both species can significantly influence the
stability of predator—prey interactions.

In an open-access fishery, fishing effort adjusts in response to the perceived rent—whether positive
or negative—reflecting the net economic revenue for fishermen. A model that captures this dynamic
interaction between perceived rent and fishing effort is known as a dynamic reaction model.

The current study investigated a dynamic reaction model within a predator—prey fishery system
situated in a heterogeneous patchy habitat, where only the prey species is subject to harvesting. The
model considers a water body with two layers: The surface layer (Layer-1) and the deeper layer (Layer-
2). In this system, food is available only in Layer-1, supporting both predator and prey species. The
prey species migrate between these two layers. Due to limited food resources in Layer-2, the prey
move to Layer-1, where food is abundant, and it is assumed that their population grows exponentially
in this region. The predator species depends on prey for their survival and is assumed to always remain
in Layer-1 only. However, to avoid predation, the prey species hide themselves in the safest place in
the deeper layer, which is known as a prey refuge where predators cannot reach them. For instance,
consider seabirds as predators that feed on fish (prey) for survival, while the fish migrate from Layer-1
to Layer-2 to hide from the predators. This migration of prey from Layer-1 to Layer-2 is influenced by
predator density: Higher predator numbers in Layer-1 lead to increased prey movement into the deeper
layer. Although the prey is the predator’s preferred food, the predator can also consume an alternative
food source that is abundantly available. To counteract this, an additional food source is introduced
for predators, which is an ecologically relevant aspect observed in marine ecosystems where predators
can switch to other available food even when their primary prey is abundant. Harvesting plays a
significant role in population dynamics, balancing both ecological and economic stability. This study
incorporates both linear and nonlinear harvesting functions, acknowledging that prey are harvested
at different rates in each layer due to practical fishing constraints. Some prey that seeks refuge in
Layer-2 can still be harvested, though at a lower rate than in Layer-1, since fishing nets cover the
entire water body but do not reach deep into the ocean. This study primarily examined the impact of
linear and nonlinear harvesting on the prey population across both layers. The model further includes
economic considerations such as harvesting effort, which evolves dynamically in response to costs and
revenues, making it relevant for fishery management. The system exhibits two distinct timescales: a
fast timescale and a slow timescale. The migration of the prey population between layers occurs on the
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fast timescale, while species growth, species interactions, and changes in fleet size occur on the slow
timescale. Incorporating these timescales facilitates the simplification of the complex system using
aggregation methods [22,27-29], which are based on perturbation techniques and the center manifold
theorem [30-33].

The subsequent sections of this paper are structured as follows: In Section 2, we formulate the com-
plete model and provide a contextual overview of the model. In Section 3, we examine the dynamics of
a predator—prey model incorporating alternate food and linear harvesting, while Section 4 extends this
analysis in the case of nonlinear harvesting. Lastly, Section 5 summarizes our findings and discusses
their implications.

2. The complete (slow—fast) system

In a heterogeneous patchy environment, the density of the prey in Layer-i (i = 1,2) is denoted
by n;(t), where Layer-1 serves as a resource layer where the prey gather for feeding despite facing
predation, and Layer-2 acts as a refuge for the prey. The predator density in Layer-1 at time ¢ is
denoted by p(#), while E represents the harvesting effort, such as number of boats or nets used for
harvesting. A schematic representation of the model (2.1) is shown in Figure 1.
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Figure 1. Visual overview of the model (2.1).

It is assumed that the migration of species between two layers occurs much faster than the
biological interactions of the system such as the growth of the species population, interactions between
the prey and predators, and harvesting effort. To make the system more realistic, the two timescales
are introduced: a slow timescale ¢, which governs the growth, predation, and harvesting processes,
and a fast timescale 7, which governs the movement of species between layers. To address the two
timescales, a small dimensionless parameter ¢ is introduced, and the slow timescale is defined as
t = et, where (0 < &€ << 1). This scaling allows us to separate the fast dynamics from the slow
dynamics, enabling a simplified analysis that focuses on the system’s slow evolution while accounting
for the rapid migration of species [19,25-27].

Mathematical Biosciences and Engineering Volume 22, Issue 4, 810-845.



814

According to these assumptions, the complete system (slow—fast system) of the predator—prey
system, considering an alternate food source for the predators and harvesting at both layers is presented
below:

dn o

d_Tl = (kny — k(p)ny) + &(riny — Aan,p — H,(n;,ny, E))
di’lz A

e (k(p)n) — kny) + e(=ryny — Hy(ny, ny, E))

T 2.1)
dp (2.
i &(—up + Abn p + B(1 — A)p)
dE
o &(—cE + poH\(ny,ny, E) + poHy(ny, ny, E))

n(0) >0, ny(0)>0, pO)>0, EQO)>O0.

The constant r; > 0 indicates the prey’s intrinsic growth rate in the surface layer. The term ryn;
represents the growth rate of the prey in Layer-1, which is assumed to be follow exponential growth,
while the term —r,n, represents the mortality rate of the prey due to the lack of food in Layer 2.
Additionally, there is a negative term Aan; p accounting for prey loss due to predation in Layer 1, where
the predation rate is given by a for the prey. The functions H,(ny, ny, E) and H,(ny, n,, E) represent the
harvesting terms in Layer-1 and Layer-2, respectively. The constant u is the natural mortality rate for
the predators, while b signifies the food conversion rate by the predators with respect to the prey n;(z).
Thus, the growth of the predator population is directly proportional to the density of captured prey. The
dependence of predators on alternate food resources [10] is considered in predator dynamics through
the term (1 — A)p, (0 < A < 1). When A = 1, predators rely solely on prey species in Layer 1.
When A = 0, the predators depend exclusively on alternate food resources. The parameters ¢ and py
are assumed to be the cost and price per unit of harvesting, respectively. The term —cE represents the
natural reduction in harvesting effort over time due to costs. The harvesting functions poH,(ny, n,, E)
and poH,(ny, ny, E) represent the revenue or benefit from harvesting.

The parameter k indicates the migration rate of the prey from Layer 2 to Layer 1, which is assumed
to be constant. The main motivating factors for this movement of the prey are food and light. The
movement of prey from the surface layer to the deeper layer is assumed to be dependent on the density
of predators [34] and is denoted by k:

s o Jap for p>0
k(p)_{O for p=0.

To study the model (2.1), the system is reduced to one timescale (the slow timescale) by substituting
fast equilibrium, which is investigated as follows.

2.1. The fast system

To study the fast dispersal model, we neglect the slow part of the system (2.1) by taking £ = 0:

dl’l]

= kny — k(p)n
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d )
== kpm (2.2)
-

dp

2z _- 0

dr

dE

= -0

dr

The fast equilibria for the fast system (2.2) are obtained as follows:

. k _ o __k
mo= T l%(p)n = f(pn =vin; f(p) i)
n, = fc(—{))n = -f(p)n=vin

k + k(p)

The equilibrium frequencies v} and v} take the following form:

vi=f(p) = - and v, =(1-f(p)) = - (2.3)
From the expression above (2.3), it is observed that the equilibrium densities (n], n;) for the fast system
are proportional to the total population. The equilibrium frequencies, denoted as v} and v3, represent
the proportion of prey in each layer under fast equilibrium. The total frequencies across layers always
sum to one, with the sum of their rates of change equating to zero. These equilibrium frequencies vary
as functions of the slow variable p, which is assumed to be constant at the fast timescale. For every
combination of the slow variable values n, p, and E, the fast system tends towards an equilibrium state.
The addition of the first two equations of the system (2.2) gives n() = n;(t) + n,(f) as a constant for the
fast part of (2.1).

The dynamic behavior of the system (2.1) is explored with linear and nonlinear harvesting functions
in Sections 3 and 4.

3. Mathematical model 1 with linear harvesting

The dynamics of the corresponding complete predator—prey system, incorporating linear harvest-
ing and an alternate food source for the predators is derived in this section. Here, the harvesting rate
remains constant, regardless of the prey’s population size. This means that the same number of individ-
uals, or a constant proportion of the population, is harvested at each time step. The harvesting functions
in the system (2.1) can be taken as H,(n, ny, E) = g1 En; and Hy(n;.ny, E) = g, En,. It follows that

dn A
d_Tl = (kny — k(p)ny) + &(rin; — Aan,p — qEny)
dn A
d_z = (k(p)n; — kny) + e(—rny — g2 Eny)
-
o 3.1
- =&(—up + Abnp +B(1 — A)p)
dE
= &(—cE + pog1En, + pog2Ens)
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m(0) >0, ny(0)>0, p@O)>0, EO)>O0.

The parameters g; and g, represent the catchability coefficient in Layer-1 and Layer-2, respectively,
in which ¢, En; and g, En, represent the linear harvesting terms in Layer-1 and Layer-2, respectively.
The aggregated model is further elaborated for the complete system (3.1) in the subsequent section.

3.1. The aggregated model

Applying the aggregation method, the complete system (3.1) is reduced to a system of three ordinary
differential equations. Let n(f) = n(¥) + n,(¢) be the aggregated variable. Further, we introduce r(p),
q(p), and m(p) as given below:

Hp) = rik — rap a(p) = g1k + grap
k+ap ’ k+ap
The aggregated system presented below is obtained by summing the two prey equations and substi-
tuting the fast equilibrium into the complete system (3.1)

d

= = n(r(p) = Aaf(p)p = 4(p)E) = n - F(p. E)

P = p(—ut+ Abf(pn + B(1 = A)) = p - G(n, p) (3.2)
dE

— = EC=c+pog(p)n) = E - H(n, p)

n(0) >0, p@0)>0, EQ©)>0.

The aggregated model (3.2) provides an approximation of the complete system (3.1) derived us-
ing perturbation theory and the center manifold theorem. The aggregated model (3.2) includes new
and different terms with respect to the slow part of the slow—fast system. This is due to the density
dependence of the equilibrium frequencies. This process is called functional emergence within the
approximated aggregated system.

3.2. Existence of equilibrium points in the aggregated model (3.2)
The system (3.2) possesses four positive equilibrium points:

1) The trivial point Py(0, 0, 0) is always exists.

2) Pi(n,0, E ) = P1( ,0, ﬂ), the predator-free boundary’s fixed point in the positive nE-plane.

poq1 41
3) The harvesting-free boundary equilibrium point

kB(A — Ag)(ria + ra + Aak) rk ol: A—1- I
(Abk)(Aak + rrq) "Adk+ra’ ] T B

PZ(ﬁ,ﬁa O) = (

exists in the positive np-plane and is positive for the critical value of the alternate food resource as
follows:

A > Ap. (3.3)
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4) The unique interior fixed point Ps(n*, p*, E*) of (3.2) exists, where n*, p*, and E* are obtained as
shown below:

. c(k+ap”)
Poqik + pograp*
b= k(=bc + poq1B)(Az — A) A, = B—u
afpoga(A —Ag) _ b
Poq1
o r(p") = Aaf(p)p* _ rik = (na + Aak)p”
q(p*) q1k + gap*
The interior point P3(n*, p*, E*) is feasible for the condition
A < A< A2
where
_ B—u _ B-u
A= b and A, = b
po(rqi + r1q2) Pod1

It is noted that the dependence of the predators on alternate food (A) is critical for the existence of
various equilibrium points. Therefore, the following cases can be investigated:

0<A<A 3.4)
Ag <A <A 3.5
Al <A<A, (3.6)

Ay <A<l 3.7

It can be observed that the equilibrium points Py and P; may exist irrespective of A. However, the
boundary equilibrium point P, exists for the condition (3.5). There is coexistence of all the species
for the conditions in (3.6). The predators may or may not survive under the conditions in (3.4) and
(3.7). However, the predators can survive for a suitable range of alternate food, as given in (3.5) and
(3.6). Accordingly, the prey and predator populations will not go extinct for the cases of (3.5) and
(3.6). It can be observed that for the case of (3.5), no harvesting of prey species is possible because
of the nonavailability of a sufficient amount of prey.

3.3. Stability analysis of the equilibrium points of the model (3.2)

This subsection explores the local stability criteria for the feasible equilibrium points of the dynamic
system (3.2).
The Jacobian matrix at (n, p, E) for the system described in (3.2) is provided as follows:

F n(r'(p) = Aa(f"(p)p + f(p)) = ¢'(P)E)  —nq(p)

J(n,p,E) =| Abf(p)p Abf'(p)pn + G 0
Epoq(p) Epoq'(p)n H
where
.o~ —ak .o —ak(ry + 1) .o\ k(g —q1) )
f(p) = Grap)? 0, r(p= krap? - 0. q¢(p= tap? 0; 2> (3.9
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3.3.1. Stability of Py(0,0,0)

The Jacobian matrix, when calculated at the equilibrium point Py (0, 0, 0), takes the following form:

r 0 0
J6(0,0,00=| 0 —u+B(1-A4) 0
0 0 —c

The eigenvalues of J, are
/101:r1>0,/102:—,u+,8(l—A) and Agz3 =-c<0

Hence, the origin point P(0, 0, 0) consistently manifests as a saddle point, featuring an unstable man-
ifold in the n-direction and a stable manifold in the E-direction. Furthermore, it has a stable manifold
in the p-direction for the following condition:

u
A>1-==A 3.9
> B 0 (3.9)

If the condition in (3.9) is violated, then P, has an unstable manifold in the p direction. Accordingly,
the trajectories along p = 0, starting in neighborhood of P,, may be attracted to P; when the condition
in (3.9) is violated.

3.3.2. Stability of P,(#,0, E)

At the point P,(11, 0, E), the Jacobian matrix is given by

. Eka(q: — q1) .
A 0 ¢ cis 0 n(r1 —Aa — T) —nq,
Ji,0,Ey= 0 ¢p 0 |= 0 —u+ Abin + B(1 — A) 0
3 ¢ 0 A Epokia(q, — q1)
Epoq, 0

k2

The characteristic equation derived from the Jacobian matrix about the point P;(#, 0, E) is provided as
follows:

B +C A2 +Cpl+C3=0 (3.10)

where  Cy; = —cy, Cio=-ci3c31, Ciz = c13¢3100, and C1Ciy — Ci3 = ¢25¢13¢31 — €13¢31¢2 = 0
Since C1;Cy, = Cy3, Eq (3.10) may be rewritten as

(P +Cp)A+Ci) =0
This gives
Al =cpn and A3 = +iCpy

This confirms the periodic solutions around the equilibrium point P;(#, 0, E) in the nE-plane. This
indicates that in the absence of predators, the prey population and harvesting effort exhibit cyclic
fluctuations instead of reaching a stable equilibrium. These oscillations result from the continuous
interaction between the prey’s growth and harvesting intensity.
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Figure 2. For the aggregated model (3.2), a time series plot and a phase portrait of three
populations has been drawn for A = 0.8 around P, (7, 0, E ).

3.3.3. Stability of P>, B, 0)

The following Jacobian matrix is obtained for the point P;(, p, 0)

0 dp di 0 n(r'(p) — Aa(f'(p)p + f(p))) —nq(p)
JHo(n,p,0)=| dy dn O Abf(p)p Abf'(p)pn 0
0 0 dx3 0 0 —c + ponq(p)

The characteristic equation associated with the matrix J,(n, p, 0) is given by
(1= (= + poaBD | = (ABBS G + AVBF B ) - Aa(f GBI + FFI)) =

One eigenvalue is Ay; = —c + pong(p), while the other two eigenvalues can be determined from the
following characteristic equation,

2 = (Abpf'(pym)A + Abpf(p)u(r' (p) — Aa(f'(P)p + f(P))) = 0 (3.11)
The trace(J,) and det(J,) of Eq (3.11) are computed as follows:
—arfu —p(1 - A))

Aak + ra + na
rnpu - B — A))(Aak + na) 20

Aak + ra + na

trace(J»)

det(J,) =

Accordingly, the point P,(n, p, 0) is locally asymptotically stable for 4,; < O which gives the condition

< —< (3.12)

Poq(p)

If the condition of (3.12) is violated, P,(7, p,0) transitions into a saddle point. This indicates the
instability along the z-axis.
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3.3.4. Stability of Ps(n*, p*, E*)

The Jacobian matrix computed at the interior point P3(n*, p*, E*) is given by

€11 €12 €13

* * *
Js(n',p*,E)=| es exn exn
€31 €3 €33

0 n*(r'(p*) — Aa(f"(p")p* + f(p") —q¢'(pHE*) —n"q(p*)
J(n*,p",E*) = | Abf(p")p* Abf'(p*)p*n* 0
E" pog(p*) E* poq' (p*)n* 0

The following characteristic equation is determined from the Jacobian matrix above about the point
(n*, p*, E"):

2B +DiA>+D,A+D;=0 (3.13)
with
Abkp*n*
D - _ — —Ab ’ * AL >
D, = -—epzes —epey = —(—ve)(+ve) — (—ve)(+ve) > 0
ak(qy — q1) | ak(qik + gaap”)
D; = - = Abpon™2p E" ( i )>0
3 €13€31€22 — €13€31€2] pon” " p Eq(p”) k+ap)? k+ap)?
Moreover,
DD, — D3 = epeyexn +epezer
Abk %2 s
_ #(kazAb(rl +r)p* + AabiRap” + (qs — q)a(RAbp*
k + ap)*
-0 (@ik + gzap))) > 0 (3.14)

By applying the Routh—Hurwitz criterion, the interior point (n*, p*, E*) is locally asymptotically stable
(LAS) if and only if the condition in (3.14) is satisfied. If (3.14) is violated, the point (n*, p*, E*) may
become unstable. It should be noted that the condition of (3.14) is always satisfied when ¢; = ¢,. In
this case, the point P; is always locally asymptotically stable. In general, it is difficult to analyze the
condition in (3.14) to determine the stability. Therefore, it is analyzed for a particular set of data (see
Subsection 3.5). The numerical results show that for the given data-set, the system exhibits complex
and chaotic dynamics.

3.4. Bifurcation analysis
3.4.1. Transcritical analysis

Theorem 3.1. The system (3.2) undergoes a transcritical bifurcation around the planar equilibrium
point P,(7, p, 0) as the bifurcation parameter A crosses a critical value such that

A=Ay (3.15)

Mathematical Biosciences and Engineering Volume 22, Issue 4, 810-845.



821

Example 3.1. For a particular dataset k = 0.5,r; = 3,1, = l,a = 2, = 25,91 = 1,qo = 1.5,u =
2,b=4,8=3,c =4,and py = 10, the Jacobian matrix J, of P,(0.293797,0.521937,0) is confirmed
to have a zero eigenvalue at the threshold value of A,., = 0.373911. The Jacobian matrix JJ is given
below.

0 -0.4678 -0.4
J5(Py,Ay,) =10.2163 —0.0880 0 (3.16)
0 0 0
The eigenvectors corresponding to the zero eigenvalue (e, dy3 = 0) are V, =

(-0.2557,-0.5283,0.7348)" and W,, = (0,0,1)". This analysis confirms that all the conditions of
Sotomayar’s theorem for a transcritical bifurcation at the point P, are verified.

Theorem 3.2. The system (3.2) undergoes a transcritical bifurcation around the planar equilibrium
point Py(71, 0, E ) as the bifurcation parameter A crosses a critical value such that

A=A, (3.17)

Example 3.2. For a particular dataset k = 0.5,r; = 3,r, = l,a = 2, = 25,91 = 1,qo = 1.5,u =
2,b=4,B=3,c=4,and py, = 10, the Jacobian matrix J; of P;(0.4,0,0.3) is confirmed to have a zero
eigenvalue at the threshold value of A,., = 0.714286. The Jacobian matrix J is given below.

0 -23714 -04
Ji(P1,Aw,) =10 0 0 (3.18)
30 30 0
The eigenvectors corresponding to the zero eigenvalue (e, c¢»p = 0) are V,, =

(—0.1641,0.1641,-0.9727)" and W,, = (0,1,0)". This analysis confirms that all the conditions of
Sotomayar’s theorem for a transcritical bifurcation at the point P; are verified.

3.4.2. Hopf bifurcation analysis

Let us validate the Hopf bifurcation around an interior equilibrium point with respect to the bifurca-
tion parameter A. Due to the complexity of determining the Hopf point analytically, we will solve this
with the help of a numerical example by evaluating the characteristic equation of the Jacobian matrix
J3 according to Liu’s criterion [35-37].

Liu’s criterion: The characteristic equation of the Jacobian matrix at an interior equilibrium point is

B +EAP +EAA+E =0.

It should also satisfy the following conditions for some critical value Ay.

D) &1(Ap) >0, &(An) >0,  ®(Ap) = &i(Ap) * &(An) — &3(An) =0

dO(Ap)
dAy

Example 3.3. The system (3.2) undergoes a Hopf bifurcation around an interior point
P3(0.301964,0.370331, 0.227896) for the following particular data: k = 0.5,r, =3, = 1l,a=2,a =

2) #0
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25,1 =1, o =15,u=2,b=4,6=3,c =4, and py = 10. This Hopf point occurs when the param-
eter A crosses a threshold value Ay = 0.388133. It can be obtained by determining the conditions of

Liu’s criterion as follows:

£(Ay) =0.1067 >0 and &(Ay) = 0.1459 > 0
D(Ay) = &(Ap) * Ex(Ap) — &(Ay) = 0.1067 % 1.3673 = 0.1459 =0 and

dO(Ap)
dAy

=-1.4190 # 0

Since the conditions required by Liu’s criterion are satisfied, the Hopf bifurcation occurs around an

interior point Pj.

05

0.2

0.4 0.5
A

BP2

07

Effot (E)

25

0.5 0.6 0.7 0.8
A

Figure 3. A parametric bifurcation diagram for the system (3.2) with respect to A for the

dataset (3.19).
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3.5. Numerical simulation of the model (3.2)

Consider the following data for the system (3.2) with linear harvesting:

k=05r=3,n=1ha=2,a=25,q, =1,
G =15u=2,b=4,=3,c=4,py =10 (3.19)

The critical values of A are computed as follows:
Ay =0333, A, =037, A,=0.714

For the aggregated system (3.2), the boundary equilibrium P, = (4,0, 0.3) is obtained. If we choose
A = 035 (A > Ajp), another boundary equilibrium point P, = (0.1297,0.5263, 0) exists. Next, for
A =0.38 (A > A)), the interior equilibrium point P = (0.29967804, 0.43207403, 0.029233241) exists.

The dynamics of the system were additionally examined through the utilization of the MATLAB
software package [38—41] alongside MATCONT. MATCONT is a toolbox implemented in MATLAB,
consisting of numerical algorithms aimed at detecting, continuing, and identifying limit cycles, also
referred to as periodic orbits.

In the continuation of the coexistence point P3, some bifurcation points of codimension-1 are de-
tected in the Figure 3 with respect to the bifurcation parameter A. There is a branch point BP; (transcrit-
ical bifurcation) at A = A,,, = 0.373911 around the equilibrium point P, = (0.293797,0.521937,0).
One Hopf point is obtained at A = Ay = 0.388133 in the interior R? around the equilibrium point
P; = (0.301964,0.370331,0.227896). For this Hopf point, the corresponding first Lyapunov coeffi-
cient is (=2.912374e — 002) < 0, indicating a supercritical Hopf bifurcation. Thus, a stable limit cycle
exists, bifurcating from the equilibrium. Another branch point BP, occurs at A = A,,, = 0.714286
around the equilibrium point P; = (0.4, 0, 3). Figure 3 shows that as the value of A increases close to
the branch point BP, around A = 0.714, the solutions in the interior R? vanish and will appear in the
nE-plane. The bifurcation diagram with respect to the parameter A for the system (3.2) is shown in
Figure 4 for A in the interval (0.37,0.714). The complex dynamics are evident from this diagram. To
confirm the complexity and chaotic dynamics of the system (3.2), the Lyapunov exponents and their
corresponding dimensions are computed and presented in Figures 5 and 6.

The Lyapunov exponents for A = 0.39 and A = 0.4 are computed in Figure 5(a),(b), with their
corresponding dimensions Dy = 2.4305 and D, = 2.0952, respectively. Figure 6 shows the Lyapunov
exponents for A = 0.47 and A = 0.6, with the computed dimensions D; = 2.25545 and D; = 2.4157,
respectively. The presence of positive Lyapunov exponents confirms the complex dynamical behavior
of the system for certain values of the parameter A.

The different dynamic behaviors observed in Figure 3 are confirmed by drawing phase portraits
with respect to different values of A in Figures 7-9 and Figure 2. In particular, Figure 7A shows the
local asymptotic stability of the boundary equilibrium point P,(7, p,0) for A = 0.368. Due to the
availability of some alternate food, the predator survives and also takes food from the prey. However,
the harvesting effort diminishes to zero. If we increase A beyond BP;, at A = 0.374, the interior point
P5 is locally asymptotically stable (see Figure 7B). Considering A > Ay, the system destabilizes, and
strange attractors are obtained in Figures 8 and 9. It can be observed that as the value of A increases
close to the branch point BP, around A = (0.714, the chaotic solution in the interior R? vanishes, and
periodic solutions appear in the nE-plane. The analytical result in (3.3.2) regarding the stability of the
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point (#, 0, £) also confirms the periodic solutions in the nE-plane. The change in the behavior of the
solution can be seen in Figure 2.

Further, the bifurcation of codimension-1 are also explored with respect to the mortality rate of the
predators u in Figure 10. The branch point BP; at 4 = 1.983924 around P, ~ (0.293843,0.520833, 0)
is computed. The Hopf points H; and H, are detected, where the Hopf point H1 at u = 2.019724
around P; = (0.301694,0.374208, 0.221869) and the Hopf point H, at u = 2.468001 around P; =
(0.4,0,3.000001) are obtained. For these Hopf points, the corresponding first Lyapunov coefficients
are computed as (—2.964738 x 1072) < 0 and 8.841215 x 10~ > 0, respectively. Accordingly, H, is a
supercritical and H, is a subcritical Hopf bifurcation point.

Next, the numerical simulations of the system (3.2) are discussed when the migration rate is not
dependent on the predator density (i.e., lAc(p) = constant). In this case, the functions r(p), g(p), and
f(p) will assume constant values. Let these values be chosen as follows:

r=5¢=2,v, =04 (3.20)

The dynamic behavior of this system using the datasets in (3.19) and (3.20) is illustrated in Figures
11-13. These figures shows the complex dynamics even with constant migration rates. This complexity
occurs due to effort dynamics. Figure 14 considers the case for A = 0, i.e., when the predators have no
interaction with the prey and it depend only on alternative food. This shows that predators can sustain
themselves even in the absence of prey because of availability of alternate food resources. Also, for
the case A = 1, (i.e., when predators have no dependence on alternate food and the predators interact
with prey species only). Due to the refuges and harvesting of prey, there is a scarcity of food (prey) for
predators. Therefore, this can lead to the extinction of predators, and this can be seen in Figure 15.

The different bifurcation diagrams for this system are drawn in Figure 16 with respect to the bifur-
cation parameter A in the interval (0.3357, 0.35) for different values of the catchability coefficient ¢g. In
Figure 16 A-D, different kinds of complexity can be observed for different values of g.
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Figure 4. Bifurcation diagram for the model (3.2) with respect to parameter A for A €

(0.37,0.714).
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Dynamics of Lyapunov exponents for A=0.47

Dynamics of Lyapunov exponents for A=0.6
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Figure 6. Dynamics of the Lyponouv exponent for the aggregated model (3.2) for (a) A

0.47 and (b) A = 0.6.
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Figure 7. Phase portrait for the aggregated model (3.2) at (A) A = 0.368 and (B) A = 0.374.
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80

BP1

Figure 10. A parametric bifurcation diagram for the system (3.2) with respect to u for the
given dataset (3.19).

(a) (b)

Figure 11. Phase portrait for the aggregated model (3.2) with a constant migration rate at (a)
A =0.365 and (b) A = 0.37 using the dataset in (3.19) and (3.20).
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(©)

(d)
10

0.6

Figure 12. Phase portrait for the aggregated model (3.2) with a constant migration rate at (c)
A = 0.4 and (d) A = 0.5 using the dataset in (3.19) and (3.20).

(e) )

0.8

P n

Figure 13. Phase portrait for the aggregated model (3.2) with a constant migration rate at (e)
A = 0.6 and (f) A = 0.8 using the dataset in (3.19) and (3.20).
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Figure 14. Time series plot and phase portrait diagram for the aggregated model (3.2) with
a constant migration rate at A = 0 using the dataset in (3.19) and (3.20).
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Mathematical Biosciences and Engineering

Volume 22, Issue 4, 810-845.



830

Previously, the model has been studied with linear harvesting, where chaotic behavior is observed
within the system. To control this, the model will be analyzed with nonlinear harvesting, which may
provide a more effective approach to regulating these dynamics. The following analysis will examine
how nonlinear harvesting influences the stability of the system.

4. Mathematical model 2 with nonlinear harvesting
The dynamics of the corresponding complete predator—prey system, incorporating nonlinear har-

vesting and an alternate food source for the predators are illustrated in this section. Here, the harvest-
ing rate depends on the prey’s population size. Thus, the harvesting functions in (2.1) can be taken as

E E
Hi(ny,ny, E) = L) and Hy(ny,n,, E) = bl , and the model is described as
1+mn; +mony 1+mn; +mony
follows:
dn, A q1Eny
— = (kny — k(p)ny) + €| rin; — Aanp —
dr (kn;y (p)ny) ( 1 1p 1+ mun; + mans
d N E
R (k(p)ny — kny) + &\ —rany — P22
dr 1+mn; +mon, @.1)
y .
=E = & (-up + Abmip + B - A)p)
dE E E
| cE+ Poq1L£1, n Pog2L1,
dr 1+mn +mn, 1+ mn; +nmon,
E E
The nonlinear terms Pog1 = and Pog2 =12 represent the revenue or benefit from har-
+ mn; + mony 1+ mn; +mony

vesting in Layer-1 and Layer-2, respectively, with the denominator capturing the effect of ecological
saturation, while m; and m, are positive constants. The last equation means that if the earnings from
harvesting are higher than costs, more effort is put into harvesting, using additional boats or nets. If
the costs are too high, the harvesting effort decreases because harvesting is no longer profitable.

4.1. The aggregated model

The aggregated model for the system mentioned above is as follows:

n B _ _49pE \
i n(r(p) Aaf(p)p Tem(om +m(p)n) =n-F(n,p,E)
2 = p(—u+ Abf(pn + B(1 ~ 4)) = p-G(n. p) (4.2)
de._(  pog(p)n \
" —E( c+—l +m(p)n)_E H(n, p)

n(0) >0, p@O)>0, EQO) >0,

k +
where m(p) = WTZZQP
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4.2. Existence of equilibrium points of aggregated model (4.2)

The system described by (4.2) possesses four positive steady states, enumerated as follows:

1) The trivial fixed point Py(0, 0, 0) is exists and the boundary equilibrium point P,(7, p, 0) is feasible
for the condition (3.3).
c r1Po

2) The predator-free boundary equilibrium point P, (2,0, E) = ( ,0,
Poqr —cmy - poqi — ¢my

) exists in
the positive nE-plane for the condition pyg; > cm;.

3) The unique interior equilibrium point Pi(n*, p*, E”) of (4.2) exists, where n*, p*, and E* are obtained
as follows:
ctk + ap®)
po(qik + grap*) — c(mk + myap*)

k(—bc + - A, - A - - -
aB(poga — cma)(A — Ag) _ bc
Poqr — cmy
_— (rik — p*(ra + Aak))po
po(qik + gap*) — c(mik + myap*)
It can be observed that
M B-u
B bc
Poq1 — cmy
Accordingly, n* and p* are positive for
Ay <A< ANZ (43)
The value of E* is positive for
. o rk rk R Abck — pogi1k(u — B(1 — A)) + cmik(u — B(1 — A)) - rk
na+Aak  na @(pog2 — cmp)(u — B(1 — A)) ra
which gives
- - b
asBE iy 1= T2 (4.4)
B-To ra(poq1 — cmy) + ri(poga — cmy)
Since Ay < A, the point Ps(n*, p*, E*) is feasible for the following condition:
Bk 4o P-H 4.5)
ﬁ - To bc
ﬁ e
Poq1 — cmy
That is,
Al <A<A,
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4.3. Stability analysis of the equilibrium points of the model (4.2)

The local stability conditions for feasible equilibrium points of the system described by the equa-
tions in (4.2) are achieved by assessing the characteristics of the eigenvalues derived from the Jacobian
matrix calculated at the corresponding equilibrium points.

The Jacobian matrix corresponding to the system (4.2) at (n, p, E) is expressed as:

g(p)m(p)En , , g(p)E  q(p)m’(p)En\  -nq(p)
) A+ mpp 5" (r (D)= AT D)+ TP = o * (1 m(p)n)Z) T+ m(pn
J(n,p,E) = Abf(p)p Abf (p)pn + G 0
Poq(p)E poq (P)En _ pog(p)m’(p)En’ "
(1 + m(p)n)* 1 +m(p)n (1 +m(p)n)?

For the value of f'(p), ' (p) and ¢’(p), refer to (3.8). Moreover,

_ ak(my —my)

m'(p) = Gt an) >0; my>m

4.3.1. Stability of Py(0,0,0)
This is as discussed in Subsubsection (3.3.1).

4.3.2. Stability of P,(#1,0, E)

At the point P, (1,0, E), the Jacobian matrix assumes the following configuration:

qm En A(—a/(rz‘i"’l) CAg— Ea(gr — q1) . Eﬁéhaf(mz—ml)) —nq

) an an an (1 + ma)? k kA rmn) k(A +maE ) 1+ma
J,0,E)y=| 0 a»n 0 |= 0 —1+ Abh + B(1 — A) 0
a1 an 0 Epogq: poEna(g: = q1)  poER*qia(my —my) 0
(1 + myi)? k(1 + myn) k(1 + myn)?
miric c (—a(rz +71) Ag— (g2 — q)r . a(my — ml)rlc) =]
Pod Poq1 — cmy k kg, kpogi Po
Abc
= 0 —u+ ————+B(1 - A) 0
) Poq1 — cmy )
ri(poq: — cmy) pocria(ga — q1) — ria(my — my)c 0
q1 k(poq1 — cm)q .
The characteristic equation of the matrix J, about the point P, is given by
¢ 2
A+ — (/l — asd — a31a22) =0
Po
. . —c .. . .
One eigenvalue is 4;; = — < 0 and the remaining two eigenvalues can be obtained from the charac-
Po
teristic equation
/12 - (132/1 —dsz|dy = 0 (46)
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The stability of the point P, can be obtained by evaluating trace(J)) = az, < 0 and det(J,) = azaxp > 0
from Eq (4.6) for the following condition:

mp; —m
92— q1

Po < and Abc + Bpog; + cm(BA + u) > Bemy + pog(BA + u) 4.7)

Therefore, the point P, is locally asymptotically stable. However, if the condition (4.7) is violated,
then the point P, becomes a saddle point. Therefore, bifurcation may occur around P, provided that

my — ny
Do =
92— q1

and Abc + Bpog; + cm(BA + u) = Bemy + pog(BA + u) 4.8)

4.3.3. Stability of P,(7, p, 0)

The Jacobian matrix computed at the point P,(7, p, 0) is given by

0 by b 0 W) - Aa(f@) + [ BP) %

L@, p,0) = l by, by, 0 |=| Abf(p)p Abf'(p)pn o
0 0 b 0 0 —c+ pog(p)n
1+m(p)n

The characteristic equation associated with the matrix J,(7, p, 0) is given by

(a - ( . l”+L(”_)”_)) (4% ~ (Abf' @GP — AbfBYPT (r' (B) — Aa(f(B) + f'(B)P))) = O
m(p)n

. . pn . . .
One eigenvalue is Ay = —c + ﬁL(?l)_ and the remaining two eigenvalues can be derived from the
m(p)n
following characteristic equation:

A~ (Abf'(PYpr)A — Abf(P)pn (' (P) — Aa(f(P) + f(P)P)) = O (4.9)

The trace(J,) and det(J>) of Eq (4.9) are same as those mentioned in Subsubsection (3.3.3). Due to
existence condition for the point P,, it can be observed that trace(J,) < 0 and det(J,) > 0. Accordingly
we have the following:

1) The point P,(7, p, 0) is locally asymptotically stable for 1,; < 0, which gives the condition

> —clk + ap) _ (4.10)
c(mk + myap) + po(q1k + grap)

2) Moreover, the point P,(7, p,0) transforms into a saddle point when (4.10) is violated. Therefore,
bifurcation may occur around P,(7, p, 0) for

_ k 7Y
7= clk + ap) _ @.11)
c(mik + myap) + po(qik + g2ap)
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4.3.4. Stability of P3(n*, p*, E*)

The Jacobian matrix for the interior point Pi(n*, p*, E*) is as follows:

q(p )m(p )E*n" (| . by q (p"E" q(p*)m’'(p*)E*n* -n"q(p")
Qrmpyrg " 7P AP + F PP = e Y 2 | T mpr
Jin*, p* E") = Abf(p*)p* Abf'(p*)p*n* 0
poq(p*)E” pog' (pHER" Poq(p*)m’ (p*)E*n*? 0
(1 + m(p*)n*)? 1 + m(p*)n* (1 + m(p*)n*)?

The characteristic equation for the given Jacobian matrix centered at the point (n*, p*, E*) can be
expressed as

/l3+Bll/12+Blz/l+Bl3 =0 (412)

with
B = Abakn’p®  (qik + gpap”)(mik + myap*)E*n’

= (k + ap*)? (k + ap* + (mik + myap*)n*)?
B. = Abf (pg(p"Im(p"In**p*E* — Abf(p*)q(p")m' (p)In>p*E*  Abf(p*)q' (pIn*p*E*  poq(p*)*n"E*

12 = + + ,

(1 + m(p*)n*)? 1 + m(p*)n* (1 + m(p*)n*)?
—Abf(p ) (pn'p* + A’abf(p*n* p*(f(p*) + f'(p")p)
Aakbpog(p")n**p*E* , , . e s

By = G T (a2 + £+ m a2 = a1) = 1 a0 Yam = m)

By applying the Routh—Hurwitz criterion, the interior equilibrium point P3(n*, p*, E*) is locally asymp-
totically stable if the following conditions are met:

B >0, B3>0 and BB, > By

Example 4.1. In general, to determine the stability of the point P, it is difficult to analyze the
signs By, B, and Bj; to verify all the conditions above. Therefore, the stability analysis of the point
Py(n*, p*, E™) is conducted for the particular choice of data, namely k = 0.8,r; =2, = 1l,a =2,a =
35,1 =L, =15,u=4,b=4,=5,c=0.03,pp = 0.1,m; = 0.6,m, = 0.8, and A = 0.22. It can
be observed that the interior point (n*, p*, E*) occurs at (0.2778,0.3301, 0.1555). It also satisfies all the
conditions of the Routh— Hurwitz criterion such that B;; = 0.0312 > 0, B;; = 0.00028961 > 0, and
BB = 0.0312%0.0789 = 0.0025 > B,3. Consequently, the interior point Ps is locally asymptotically
stable.

4.4. Bifurcation analysis
4.4.1. Transcritical analysis

Theorem 4.1. The system (4.2) undergoes a transcritical bifurcation around the planar equilibrium
point P, (7,0, £) as the bifurcation parameter A crosses a critical value such that

A=A, (4.13)
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Proof. The Jacobian matrix J; of the system (4.2) at the equilibrium point P, has a zero eigenvalue
for the condition (4.13), then the matrix J; becomes J; i (which indicates a matrix when the condition
(4.13) is satisfied, i.e., a;, = 0). Therefore, the Jacobian matrix f]‘ and the transpose of the Jacobian
matrix J; T have the following eigenvectors corresponding to a zero eigenvalue:

V. =iva,vs=1D" and W, = (w;,wy,w3)" =(0,1,0),
where

611(17000’(612 —q1) —a(my — ml)cz)

V1 =
mir (poca(cn - q1) — a(m; - ml)cz) + (cmy — poql)z(a(rz + r)poq1 + Aakpogi + a(q2 — q1)r1po — a(my — ml)rlc)

kqi(cmy — poq1)®

Vy =
miri (POCOZ(CIZ —q1) —a(my — ml)Cz) + (cmy — POCII)Z(CV(Vz + r1)poqi + Aakpogi + a(qx — qi1)ripo — a(my — ml)rlc)

The computation for the conditions of Sotomayar’s theorem is stated as follows:

Ay = W Wa(P1,Ap) =0, ¥ =(nF,pG,EH)"

~ X - bc
M = W ID¥A(Pr A Ve ] = (———— = B2 %0
Poq1 — cmy
- S 2Abk?
Az = WeTl [D*Pu(P1, AV, V)] = mvlvz #0

Since, all the conditions required by Sotomayar’s theorem for a transcritical bifurcation are satisfied,
the system (4.2) undergoes a transcritical bifurcation around the point P;. O

Example 4.2. For a particular dataset k = 0.8,y = 2,r, = l,a = 2,0 = 35,9 = l,q» =
1.5u =4,b =48 =5,c =003,p) = 0.1, m; = 0.6, and m, = 0.8, the Jacobian matrix J; of
P1(0.365854,0,2.439024) is confirmed to have a zero eigenvalue at Atcl = 0.282759. The Jacobian
matrix J | is given below:
0.3600 -6.4173 -0.3
Ji(PLA)=| O 0 0 (4.14)
0.0134 0.1409 0

The eigenvectors corresponding to the zero eigenvalue (e, a» = 0) are V, =
(=0.2946,0.0281, —0.9552)" and Wel = (0,1,0)". This analysis confirms that all the conditions of
Sotomayar’s theorem for a transcritical bifurcation at the point P, are verified such that A;; = 0,

A12 * O, and A13 # 0.

Theorem 4.2. The system (4.2) admits a transcrtical bifurcation around the point P,(7, p,0) when the
bifurcation parameter A varies such that

A=A, (4.15)
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Proof. The Jacobian matrix J,(7, p, 0) of the system (4.2) at the equilibrium point P, has a zero eigen-
value for the condition (4.15), then the matrix J, becomes f; (which indicates a matrix when the
condition (4.15) is satisfied, i.e., b33 = 0). Therefore, the Jacobian matrix f; and the transpose of the
Jacobian matrix f;T have the following eigenvectors corresponding to the zero eigenvalue:

Vez = (V4, Vs, V6 = 1)T and Wez = (W4,W5,W6)T = (0,0, 1)T,
where,

—an(qik + g2ap)(k + ap)
(k +aP + (mk + mza/]_y)ﬁ)(ak(rz T )+ AakZ)

V4 =

—(q1k + g2ap)(k + ap)’
(k -+ (mk + mza/]_))ﬁ)(ak(rz Fr)+ AakZ)

V5 =
The computation for the conditions of Sotomayar’s theorem is stated as follows:

Aoy = WL Wu(Py,Ar) =0, W = (nF, pG,EH)"
dbs;
dA
Ay = W [D*Wa(P2, Aey)(Ve,, V)]
_ 2( (k + ap + mikn + myapn)(poqik + pog2ap) — npo(qik + gap)(mik + myap) )V4V6
(k + ap + mkn + myapn)?
N 2((k + ap + mikn + myapn)(q2anpo) — npo(qik + gap)(a + myan)
(k + ap + mkn + myapn)?

Ay = WL IDYA(P2, Are,)Ve,] = ve # 0

)v5v6 #0

Since, all the conditions required by Sotomayar’s theorem for a transcritical bifurcation are satisfied,
the system (4.2) undergoes a transcritical bifurcation around the point P, (7, p, 0). m|

Example 4.3. For a particular dataset k = 0.8,r; = 2,r, = l,a = 2, = 35,q1 = 1,q» =
1.5,u = 4,b = 4, =5,c =0.03,py = 0.1,m; = 0.6, and m, = 0.8, the Jacobian matrix J, of
P»(0.271750,0.415937,0) is confirmed to have a zero eigenvalue at Atcz = 0.216708. The Jacobian
matrix f; is given below:

0 -0.4634 -0.3
J5(Py, A) = [0.1279 -0.0539 0 (4.16)
0 0 0
The eigenvectors corresponding to the zero eigenvalue (i.e., byz; = 0) are V,, =
(-0.2233,-0.5297,0.8182)" and Wez = (0,0,1)". This analysis confirms that all the conditions of
Sotomayar’s theorem for a transcritical bifurcation at the point P, are verified such that A,; = 0,

A22 * O, and A23 # 0.
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4.4.2. Hopf bifurcation analysis

Example 4.4. For the parameter values k = 0.8,r; = 2,r, = l,a =2, =3.5,q1 = 1,qo = 1.5,u =
4,b=4,=5,c=0.03, py = 0.1,m; = 0.6, and m, = 0.8, the system (4.2) exhibits Hopf bifurcation
around the interior equilibrium point (0.284223,0.263246,0.321669) when the critical value of A =
Ay = 0.223632 are met. The conditions for the Liu’s criterion at the bifurcation parameter Ay are as
follows:

E(A) =0.0064 >0 and &(Ay) = 0.00064 > 0

. ~ _ N dD(A
D(Ay) = &(Ay) * E(Ay) — E(Ay) = 0.0064 + 0.0995 — 0.00064 = 0 and d} 1) _ 0.0280 £ 0
H
05 2
" B,
045
05 2
04
BP
035 &P 04 : 15
c 2 0_03 1]
03 ' H 1
051, B h2
05
02 0.1 H
8P B,
‘ ‘ ‘ 0 p—— ‘ —+ —
02 025 03 035 02 025 03 035 015 02 0% 03 0% 04 045
A A A

Figure 17. A parametric bifurcation for the system (4.2) with respect to A for the parametric
values (4.17).

4.5. Numerical solutions for model 2
Consider the following choice of hypothetical data for the system (4.2) with nonlinear harvesting in
appropriate units:
k=08,r=2n=1La=2,a=35,q=1,g,=15u=4,
b=4,=5,c=0.03,pp =0.1,m; =0.6,m, = 0.8 (4.17)

The critical value of A are computed as follows:
Ap=0.2,A, =0.2155,4, = 0.2828

The aggregated system reaches its equilibrium boundary at P; ~ (0.3659,0,2.4390). A is cho-
sen as A = 021 (Ap < A < A)), then another equilibrium point on the boundary, denoted as
P5(0.1681,0.4171,0), is identified and presented in Figure 19. Following that, with A = 0.22, an
interior equilibrium point is obtained P3(0.2778,0.3301,0.1555) as shown in Figure 20. (see the ex-
ample in (4.1)).
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Following the interior point Ps, several codimension-1 bifurcation points are identified in Figure 17
with respect to the bifurcation parameter A. These are as follows:

1) One such branch point BP; (also known as transcritical bifurcation), occurs at A = A,Cl =0.216708
around P, = (0.271750,0.415937,0).

2) Additionally, a Hopf point emerges at A = Ay = 0.223632 within the interior R? around the
point P; = (0.284223,0.263246,0.321669). This Hopf point has a first Lyapunov coefficient of
(—3.835306e — 01) < 0, indicating a supercritical Hopf bifurcation and implying the presence of a
stable limit cycle.

3) Another branch point BP, is obtained at A = A~tc2 = 0.282759 around the point P, =
(0.365854,0,2.439024).

Figure 18 illustrates the bifurcation diagram with respect to the parameter A for the system (4.2)
in the interval (0.21,0.3). Figures 19-23 represent the phase portraits and time series plots of the
system (4.2) and are generated with different values of A to validate the diverse dynamic behaviors
of the system, which have been observed in Figure 17. For instance, Figure 19 highlights the locally
asymptotically stable boundary equilibrium point around P,(0.1681,0.4171,0) at A = 0.21. Mean-
while, for A = 0.22, Figure 20 showcases the locally asymptotically stable behavior around the point
P3(0.2778,0.3301,0.1555). When A > Ay = 0.223632, the system becomes destabilized, resulting in
the appearance of strange attractors, as illustrated in Figures 21-23.

| . L L . . .
0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3
A

Figure 18. Bifurcation diagram with respect to parameter A for A € (0.21,0.3).
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Figure 19. For the model (4.2), the time series and phase diagrams have been drawn at
A = 0.21 about the point (0.1681,0.4171, 0).

0.35 T T T 0.35

0.3 1 T

c0.25 1 a 0.3

0.2

0.15

0 500 1000 1500 2000 0 500 1000 1500 2000
t t

0.3

0.25

0.2

015, 035

500 1000 1500 2000
t

Figure 20. For the model (4.2), the time series and phase diagrams have been drawn at
A = 0.22 about the point (0.2778,0.3301, 0.1555).
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Figure 21. For the model (4.2), teh time series and phase diagrams have been drawn when
A = 0.224 around an interior point gives periodic solutions for the specific dataset (4.17).
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Figure 22. For the model (4.2), the time series and phase diagrams have been drawn when
A = 0.25 around an interior point gives periodic solutions for the specific dataset (4.17).
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Figure 23. For the model (4.2), the time series and phase diagrams have been drawn at
A = 0.27 around an interior point gives periodic solutions for the specific dataset (4.17).

5. Conclusions and discussion

This article examined the dynamic interactions between predators and prey in an ecosystem where
the prey have access to a refuge and there is an alternate food source for the predators. The model
consists of two layers: Layer 1 for predator dynamics and Layer 2 for prey population dynamics. While
the prey are capable of migrating between both layers, the predators remain confined to Layer 1. The
migration rate of the prey is assumed to be density-dependent on the predator population. Additionally,
the model incorporated the presence of alternate food sources for the predators, which support their
survival when the availability of prey is reduced due to the refuge or harvesting. Both linear and
nonlinear harvesting strategies were applied to the prey population in both layers, with effort dynamics
considered in each case. Two distinct timescales are introduced: a fast scale describing the inter-layer
migration and a slow scale governing the growth of the population, the predator—prey interactions, and
harvesting efforts. By exploiting these timescales, aggregation techniques are employed to reduce the
dimensionality of the system. This study highlights the significant impact of both linear and nonlinear
harvesting effort on the dynamic behavior of the predator—prey system.

The initial analysis focuses on the linear harvesting dynamics in the predator—prey system described
by (3.2). Four distinct feasible equilibrium points are computed: the trivial equilibrium point (P),
the predator-free boundary equilibrium (P;), the boundary equilibrium in the absence of harvesting
(P,), and the interior equilibrium point (P3). The dynamic behavior of the aggregated system is then
discussed in detail. It is found that with A acting as the bifurcation parameter, the system displays two
transcritical bifurcation points and one Hopf bifurcation point. The system shows local asymptotic
stability at the equilibrium points P, and P; when A < A, and A,., < A < Ay, respectively. For values
of A within the range Ay < A < A,,, the system exhibits chaotic behavior. Beyond A,,, periodic
solutions are observed. Additionally, the dynamics of the Lyapunov exponents and their corresponding
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dimensions are calculated, confirming the chaotic dynamics of the system. The presence of positive
Lyapunov exponents indicate the complex dynamical behavior of the system for certain ranges of the
parameter A.

The study of the dynamic behavior of predator—prey system with linear harvesting can lead to
chaotic behavior in the system. To address this, the dynamics of the system with nonlinear harvesting
(4.2) are examined. Theoretical analysis reveals that by choosing the additional food parameter A as
the bifurcation parameter, the model undergoes a Hopf bifurcation near P (the interior equilibrium
point), as well as two transcritical bifurcations around the equilibrium points P, (the predator-free
equilibrium point) and P, (the harvesting-free equilibrium point). Numerical simulations are con-
ducted for various values of A to validate the theoretical results. The simulations indicated that the
system reaches the point P, point when Ay < A < A;, which implies no harvesting of prey species is
possible due to an insufficient amount of prey, and the system stabilizes at P; for the range A; < A < A,.
The coexistence of prey and predator populations occurs within this suitable range of additional food
(A, < A < A,). Moreover, the study demonstrated that the system exhibits local asymptotic stability at
P, when A < A,Cl and at P; when A,Cl <A<Ay.

The study demonstrated that linear harvesting causes chaotic behavior in the system. This means
that population levels become unpredictable, fluctuating in an irregular way, which can lead to instabil-
ity or even extinction in some cases. However, nonlinear harvesting maintains stability. In biological
terms, this is similar to natural population control mechanisms, such as predators consuming more
prey when prey populations are high and consuming less when prey populations are low. This kind of
adaptive response helps regulate the ecosystem, preventing extreme fluctuations. Therefore, the study
concludes that nonlinear harvesting strategies can effectively regulate chaos, ensuring long-term popu-
lation stability. Ecologically, these findings highlight the necessity of integrating nonlinear harvesting
approaches into sustainable harvesting practices to prevent population declines and preserve ecosystem
balance.
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