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Abstract: Current research confirms abnormalities in resting-state electroencephalogram (EEQG)
power and functional connectivity (FC) patterns in specific brain regions of individuals with
depression. To study changes in the flow of information between cortical regions of the brain in patients
with depression, we used 64-channel EEG to record neural oscillatory activity in 68 relevant cortical
regions in 22 depressed patients and 22 healthy adolescents using source-space EEG. The direction
and strength of information flow between brain regions was investigated using directional phase
transfer entropy (PTE). Compared to healthy controls, we observed an increased intensity of PTE
information flow between the left and right hemispheres in the theta and alpha frequency bands in
depressed subjects. The intensity of information flow between anterior and posterior regions within
each hemisphere was reduced. Significant differences were found in the left supramarginal gyrus, right
delta in the theta frequency band and bilateral lateral occipital lobe, and paracentral gyrus and
parahippocampal gyrus in the alpha frequency band. The accuracy of cross-classification of directed
PTE values with significant differences between groups was 91%. These findings suggest that altered
information flow in the brains of depressed patients is related to the pathogenesis of depression,
providing insights for patient identification and pathological studies.
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1. Introduction

Depression is a serious mental health problem that can be very harmful to individuals and society.
Depression can seriously affect the emotional and psychological state of patients, causing them to feel
sad, hopeless, and disinterested for long periods of time. This persistent low mood can cause a person
to lose enthusiasm and motivation for life, affecting work, school and relationships. The World Health
Organization (WHO) [1] highlights that depression is one of the most common mental illnesses in the
world, with approximately 340 million people worldwide suffering from depression. This means that
about one in 20 people are affected by depression. Early and accurate diagnosis and timely and
effective treatment are essential to minimizing the harm caused by depression.

The treatment of depression continues to pose challenges despite years of development.
Antidepressant drugs exert their therapeutic effects by modulating the interaction of neurotransmitter
systems across multiple brain regions. Different types of antidepressants use different principles and
mechanisms to treat depression. Healthy subjects receiving venlafaxine showed a decrease in theta-
band rhythms in the midline-and-right-frontal (MRF) region at 48 hours and at 1 week after
randomization [2]. Selective serotonin reuptake inhibitors may restore abnormal brain activity in the
inferior frontal cortex of patients [3]. However, successive empirical attempts to identify initial
resistance to antidepressant treatment can complicate clinical drug therapy progressively [4]. Thus, the
exact medication regimen to be used needs to be carefully considered.

Like medication, transcranial magnetic stimulation (TMS) is a commonly used clinical treatment
for depression. TMS is a non-invasive technique that utilizes a magnetic field to induce electrical
currents that stimulate specific areas of the brain under an applied coil. Noda et al. used TMS to
repetitively stimulate the right prefrontal cortex of depressed patients. This resulted in rapid
modulation of EEG activity in depressed patients [5]. Hutton et al. found that stimulation of the left
dorsolateral prefrontal lobe of the brain using high-frequency TMS was effective in alleviating
depressive symptoms [6]. They concluded that different TMS stimulation programs have different
therapeutic effects on depressed patients. Therefore, studying the functional abnormalities of brain
regions in patients with depression is crucial for the development and improvement of clinical
treatment programs. Neuroimaging techniques are widely used in depression research.
Electroencephalography and functional magnetic resonance imaging (fMRI) techniques have been
shown to be effective and reliable in studying functional brain abnormalities in patients.

Functional connectivity is the statistical correlation between different regions within the brain,
which reflects the functional collaboration and communication between brain regions. Changes in
functional connectivity may indicate the neurobiological basis of disease and can serve as a biomarker
for diagnosis and assessment of therapeutic efficacy. Naho et al. [7] found that antidepressants had a
heterogeneous effect on the identified FCs of 25 melancholic MDDs. They suggested that regions with
abnormal functional connectivity such as the left dorsolateral prefrontal cortex, inferior frontal gyrus,
and others could be targets for future optimization of depression treatment regimens. Hui et al. [8]
found that mindfulness-based cognitive therapy strengthened functional connections between the
amygdala and middle frontal gyrus, and this increase in communication correlated with improvements
in clinical symptomes.

Effective connectivity is one of the common EEG indicators of functional networks. It describes
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the causal relationships between different brain regions and the way information is transmitted and
interacts in the brain [9]. By inferring the directionality and strength of information transfer,
researchers can construct a more accurate brain connectivity map that reveals the functional
connectivity patterns between different brain regions. For instance, Alena et al. utilized partial directed
coherence (PDC) to evaluate the overall efficiency of the entire brain and graph-theoretic metrics of
specific structures, identifying the significant role of the amygdala in depression [10]. In another study,
Olejarczyk et al. employed direct transfer function (DTF) to assess the therapeutic effects of
transcranial magnetic stimulation and determine the most suitable stimulation protocol [11].

However, the prediction models based on PDC and DTF have certain limitations and lack
flexibility in capturing the frequency domain characteristics of nonlinear systems. These models are
applicable to lengthy low-latitude data series. Otherwise, the problem of data interference and
dimension explosion will occur. Thus, it is difficult to handle multivariate systems like EEG signals.

PTE is an information-theoretic method that provides insights into the direction of information
transfer, indicating which variable exerts a greater influence on another variable [12]. This is crucial
for understanding causality and information flow within complex systems. Unlike other methods, PTE
can detect nonlinear causality and information transfer without relying on a specific model of the input
data. It is particularly well-suited for estimating directional connectivity in brain networks based on
phase information. In the context of resting-state functional networks, the directional changes in
preferred information flow between sources can be effectively studied using directional phase transfer
entropy (dPTE) [13]. As a result, PTE offers significant advantages in analyzing information flow
within brain networks and resting-state functional networks. It not only indicates the strength of
connectivity between brain regions in the same way as conventional functional connectivity metrics,
but also indicates the directionality of that connectivity in the same way as the PDC predictive model.

We used standard low-resolution electromagnetic tomography (sSLORETA) [14] to calculate
current density distributions in various regions of the brain. In this way, an adaptive spatial model of
the scalp source was constructed. EEG signals based on lead orientation can be converted to
anatomically based time series so that the time series correspond to the scalp spatial model signal
sources. Compared to the lead position method, the signal source localization method is more suitable
for brain partitioning. This makes the processed data more interpretable.

We also calculated the partial transfer entropy (PTE) index between each pair of time series and
considered not only the strength of functional connectivity, but also the ability to determine the specific
direction of information flow. dPTE requires no input model data and is well suited to estimating the
connectivity of large-scale human brain networks. Statistical analyses of dPTE feature matrices of
different dimensions were performed for depressed and healthy individuals. We analyzed depression
EEG in different frequency bands, lobes, brain regions with abnormal connectivity and characteristics
of information flow between brain regions. These findings can provide excellent support and a reliable
basis for the implementation of clinical treatment protocols for depression.

The organization of the paper is as follows: In the second section, we describe our research
methodology and experimental design as well as demographic data statistics of the subjects. In the
third section, we present the results of the experiment, including the statistical analysis of the data and
the analysis of the indicators. In the fourth section, we provide an in-depth discussion of these results,
explore their additions to the literature and their implications at the theoretical and applied levels,
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summarize our major findings, and propose directions for future research.
2. Materials and methods
2.1. Environment and participants

We recruited 22 depressed adolescents and 22 healthy adolescents, and the difference in age
between the two groups was not statistically significant (p>0.05). The subjects were right-handed, with
normal or corrected vision, no history of mental illness, drug addiction, or alcoholism, and were all
tested and diagnosed by a professional doctor using the Hamilton Depression Scale in a hospital in
Changzhou City. Normal subjects had HAMD scores around 3, while depressed subjects had scores as
high as around 20.

Before the experiment, all were informed of the details of the experiment and signed an informed
consent form with the subjects and their guardians to participate in this experiment voluntarily. EEG
signals were collected from subjects in the resting state with eyes open for 5 minutes and eyes closed
for 5 minutes. The experimental environment was quiet, had a comfortable temperature, there was no
noise and visual interference, and the subjects were asked to sit still and stay awake, avoiding large
movements as much as possible.

Table 1. Demographic and clinical data for patients with depression and controls groups.

Variables Healthy group Depressed patients P-value
Sex ratio , male/female 11/11 12/10 NA
Age (years) 16.25+1.4 16.17+0.96 0.91
Education(years) 9.2+1.52 9+1.71 0.54
Observer-rated depression scale (HAMD-17)  3.2+1.64 20.3+4.7 <0.001
Handedness (left/right) 0/22 0/22 NA

The Mann-Whitney U test was used for age, age at education, and HAME scale scores.
2.2. Acquisition system and settings
EEG data acquisition was performed using a 64-lead EEG acquisition system from EGI with Net
Station software, with the electrode position distribution based on the 10-10 international standard, the
reference electrode being the Cz electrode, the sampling frequency being 500 Hz, and the upper limit
of the electrode impedance being set to 50 kQ.

2.3. EEG data preprocessing

The raw data collected were processed to make it compatible with MATLAB software by
converting it into a raw format using Net Station software. Subsequently, the data underwent
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preprocessing using the EEGLAB toolbox (version 2022), following these specific steps: band-pass
filtering from 0.5 Hz to 45 Hz, reconversion of the reference point to an average reference, removal of
artifacts such as blinks and head movements using independent component analysis (ICA), and
replacement of bad leads with signal drift by averaging the data overlay with neighboring leads. Finally,
a 3-minute clean data segment was selected for further analysis.

2.4. EEG analysis
2.4.1. Source estimation

We employed a rigorous approach to map cortical current source density (CSD) utilizing a
distributed model comprising 15,000 current dipoles. The spatial distribution and orientations of these
dipoles were determined based on cortical regions defined in the brain neurological institute (MNI)
standard brain model [15]. To ensure compatibility with the sensor network's geometry, the MNI model
was suitably adapted. The cortical model for EEG analysis was generated using the openMEEG
boundary element method [16], which calculated a source space model of the cortical surface in a
block-by-block fashion. In order to mitigate the impact of slow bias in the data, the noise covariance
was diligently computed.

The standard MNLS solution is given by the following equation:

j=argmin | m—Lj Il +A [l j II= Tm with T = LT[LLT + A1]T (1)

where j is the unknown current density vector, m is the measured data vector, L is the leading
field matrix, 1 denotes the Moore-Penrose pseudo-inverse matrix, and 1 is the unit matrix.

In the Bayesian view, the potential variance Sy, is a function of the noise variance S~ .. =

Al and the prior source variance Sjprior = 1:

Sm = LSjpriorL” + S =LLT + 21 (2)

m, noise
The variance S;of the estimated current density j is given by the following equation:

= t
S; = TS TT=LT[LS; priorLT + A1] (3)

The sLORETA metric of the source location k is computed as based on its corresponding 3-
dimensional subvector jk and the 3 x 3 block diagonal elements S;y of the covariance matrix S; :

i [Six —1jk (4)

sLORETA can be written as a linear operator applied to the data vector
-0.5, -0.5
[Six] ik =[Sj] " Tem (5)
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where Tk denotes the row in T associated with k. The activation of 15,000 dipoles was computed
from the EEG time series using a weighted minimum-paradigm estimator.

Finally, according to the Desikan-Killiany (DK) Brain Atlas [17], dipoles were categorized into
68 regions of interest (ROIs). The activity of each ROI was generated by averaging the CSDs of all
voxels within that region. The 68 ROIs were further categorized into 14 regions based on their
anatomical location on the cortex: LPF, RPF, LF, RF, LC, RC, LP, RP, LO, RO, LT, RT, LL, and RL.
2.4.2 Directed connectivity: directed phase transfer entropy

PTE is a transfer entropy of signal phase time series based on the transfer entropy (TE) principle,
which is suitable to study information transfer in high-lead EEG signals.

TE is a metric that measures the transfer of information between stochastic processes. It is based
on the comparison of conditional and joint probabilities and is used to describe the degree of causal
influence of one random variable on another. Transfer entropy measures the flow of information from
one random variable X to another random variable Y. The formula for transfer entropy is:

TE(X > Y) = H(Y|Y") — H(Y|Y', X") (6)

where H(Y|Y") is the conditional entropy of the Y value at the current moment given the Y value
Y' at the past moment; H(Y|Y", X') is the conditional entropy of the Y value at the current moment
given the Y value Y' and X value X' at the past moment. A positive transfer entropy indicates that X
has a causal effect on Y, and a zero or negative entropy indicates that X has no causal effect on Y.

PTE estimates the strength of the causal relationship between two signals based on the
instantaneous phase difference computed using the Hilbert transform and controls for possible causal
effects of other signals. It is often used to assess causal relationships between a wider range of variables:

PTE(X - ¥) = 1(6,(®), Hx(t’)|0y(t’)) (7)

where 0x(t") and Oy(t") are the past states of the instantaneous phase time series of X(t) and Y(t)
at t' =t - 0t , respectively. There is no specific upper limit on the PTE; thus, we normalize the PTE
using the dPTE:

dPTE,_,, = PTE,_,/(PTE,_, + PTE,_,) (8)

The value of dPTExy ranges from 0 to 1. For dPTExy>0.5, the signal flows preferentially from
X to Y, and for dPTExy<0.5, the signal flows from Y to X. Subtracting 0.5 for all dPTExy, the
information flow direction is defined in terms of positive and negative.

We apply dPTE to high-lead EEG and using dPTE in the 0.5-48 Hz frequency range to estimate
the directional FC between all combinations of the corresponding source time series and extracting
significant network connections using alignment tests. In order to ascertain the clear directionality of
information flow between two regions of interest (ROIs), a nonparametric alignment test was
employed. To validate the strength of the information flow, 5,000 random permutations were
conducted for each dPTE value. This procedure determined whether the observed information flow
was significantly different from zero. The null distribution was symmetrically generated around the
mean of the null hypothesis. Subsequently, p-values were obtained for each state of consciousness, and
these p-values were adjusted for multiple comparisons using the tmax method to effectively control
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for family-wise error rates.

In this study, a second-order Butterworth bandpass filter was used to divide the signal into four
frequency bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). For each band,
we split the backtracked time series into smaller windows (5 seconds long) to generate the dPTE matrix
and average it.

2.5. Statistical analysis

To assess the differences between groups, Friedman's test was employed to determine the number
of information flows exhibiting significant disparities across various brain regions. Regions of interest
(ROIs) displaying significant differences between groups were further analyzed, and their
corresponding directed Partial Transfer Entropy (dPTE) values were extracted as feature datasets for
classification validation. To investigate the discriminative capacity of the depression detection indices
under investigation, a SVM classifier was selected for 5-fold cross-validation. The performance of the
classifier was evaluated based on criteria such as specificity, sensitivity, and accuracy.

Preprocessing - Source analysis

Calculate

Function

Connection

\ Average
Partition

Significance
analysis

Figure 1. Flow chart of depression brain information flow analysis technique.
3. Results

The PTE data were subjected to normalization, resulting in a dPTE matrix with values ranging
from O to 1. Since the distribution of dPTE values did not conform to a normal distribution, we use the
nonparametric permutation test to confirm that the information flow between two ROIs has a clear
directionality. The permutation test involved creating a dataset comprising information flow intensities
from all subjects, followed by 5,000 random permutations to assess whether the information flow
intensities significantly deviated from zero. The null distribution was symmetrically centered around
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the mean of the null hypothesis. A p-value was obtained for each state of consciousness, and multiple
corrections using the "tmax" method were applied to control for family-wise error rates.
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Figure 2. Significant directional connectivity matrices in four frequency bands for depressed
patients and controls. The color blocks in the xth row and yth column of each connection matrix

indicate the dPTE values of the xth ROI flowing to the yth ROI: dPTExy.

The dPTExy value is between 0 and 1. When 0.5< dPTExy <I, it means that the information flow
1s prioritized from x to y; When 0< dPTExy <0.5, it means that the information flow is from y to x;
When dPTE.y, = 0 it indicates that the information flow between signal x and signal y is in equilibrium.

Among them, delta and theta frequency bands had less significant information flow, and alpha
and beta significant information flow was more. Moreover, in all frequency bands, the intensity of
information flow was higher in the healthy group of subjects than in the depressed group.

The 68 time series were reordered according to brain partitioning and a Friedman test was
performed between groups. As shown in Figure 3, the between-group differences between the
depressed and subject groups were concentrated in the theta and alpha bands, and the regions
presenting differences were relatively concentrated. For this reason, the amount of information flow
from each region to the other regions was counted. Brain regions were divided into LPF, RPF, LF, RF,
LC, RC, LP, RP, LO, RO, LT, RT, LL, and RL according to the DK partitioning. The number of
information streams generated by ROIs within each region was averaged after summation, and the
results are shown in Figure 4.

Significant differences in brain connectivity were observed between the depressed and healthy
groups. Specifically, these differences were found to be more prominent in the right hemisphere
regions compared to the left hemisphere regions. The occipital regions exhibited greater disparities in
connectivity compared to other brain regions. Notably, the differences in connectivity within the right
central hook region were particularly pronounced in the alpha frequency band.
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Figure 3. Results of Friedman's test between groups.
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Figure 4. Number of information flows in brain regions.
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There was a significant increase in information flow between the two halves of the brain in
depressed subjects, but there is a lack of information flow between more distant brain regions. The
brain regions corresponding to the DK template are shown in Table 2. Using the values of information
flow with significant differences between alpha and theta in Figure 5 as a dataset, the model
performance achieves 91% correctness using an SVM classifier with a five-fold cross-validation.

Table 2. Brain regions showing significant differences in information flow.

Delta Theta Alpha Beta
LO 0.037* LP 0.029%* RC 0.007** LF 0.14*
cuneus supramarginal paracentral caudal middle frontal
RPF 0.009** RF 0.005** RT 0.004** RT 0.17*
frontal pole Pars triangularis parahippocampal  entorhinal
RT 0.025* RL 0.036* RO 0.004** T0.43*
entorhinal rostral anterior cingulate Lateral occipital ~ middle temporal
LT 0.046* LF 0.028* LT 0.004**
superior temporal superior frontal parahippocampal
RP 0.041* RT 0.045* RO 0.007**
supramarginal middle temporal ~ pericalcarine
RPF 0.014* RC 0.002**
pars orbitalis precentral
LO 0.038** RP 0.006**
lateral occipital inferior parietal
RT 0.029*

temporal pole

LOY
OIS

Theta Alpha Beta

Figure 5. Information flow loops. The solid lines indicate significant directed information
flow between the two ROIs (permutation test, P<0.05), blue lines indicate stronger
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information flow in the healthy group than in the depressed group, and green lines indicate
stronger information flow in the depressed group than in the healthy group.

4. Discussion

To mitigate the negative effects of depression on patients and to aid in the development of a drug
or TMS programs, it would be useful to study abnormalities in the areas of brain function associated
with depression and abnormalities in the connections between brain regions. Researchers using
functional magnetic resonance imaging have successfully identified different areas of the brain with
impaired function in patients with different subtypes of depression [18]. Although fMRI provides
valuable information, the equipment is expensive and not easy to use. In contrast, EEG technology is
inexpensive, easy to administer, and is an important tool for clinical assessment and community
screening.

Most EEG studies rely to some extent on graph theory to categorize and identify subjects through
functional connectivity matrices. Hasanzadeh et al. [12] reported that depressed individuals have
stronger than normal brain functional connectivity and a more randomized brain network structure.
Although these biomarkers achieved high classification accuracy, graph theoretic results are difficult
to interpret physiologically. However, Orgo et al. [19] found that the inclusion of graph theory metrics
did not significantly improve the accuracy of functional connectivity metrics in distinguishing between
depressed and control groups. Therefore, it remains a challenge to study the effects between depressive
foci and brain regions to complement clinical medication and therapeutic modalities such as
transcranial magnetic stimulation.

In this study, we investigated whether the functional connectivity between certain brain regions
in the EEG signals of depressed patients is abnormal in the resting state and whether there are
differences in the direction of information flow compared to the healthy group. We tracked EEG signals
using SLORETA and then calculated the PTE effective connectivity matrix. By performing a
permutation test on the data from all subjects, we found that the overall information flow in resting-
state EEG occurs predominantly in the alpha and beta frequency bands. Notably, the healthy group
showed a higher intensity of overall information flow compared to the depressed group. This
observation may be due to the inverse relationship between alpha power and cortical activity. That is,
a decrease in alpha power in the posterior regions of the brain may indicate an increase in neuronal
excitability.

We performed Friedman's test on the PTE matrix to compare the healthy and depressed groups
and found significant differences in the alpha and beta frequency bands. Specifically, the depressed
group showed increased interhemispheric connectivity and decreased teleconnection. This increased
interhemispheric functional connectivity may be due to the disruption of corpus callosum integrity
[20], resulting in imbalances in hemispheric functional coordination. In addition, depressed patients
showed reduced grey matter volume in the left precentral gyrus and increased grey matter volume in
the right thalamus [21]. These abnormal grey matter volumes and connectivity patterns reflect
abnormal intrinsic wiring costs of brain structures, resulting in atypical topological properties of
functional connectivity.

Comparing the two groups of subjects, we observed greater differences in the right than in the left
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brain regions, especially in the right central lobe region, where the differences in the alpha band were
most pronounced. theta and beta bands in the left occipital and right frontal lobes showed similar
characteristics. In addition, the intensity of information flow was consistent with depression scores.
Similarly, Carola et al. found increased functional connectivity in the right frontal and central regions
of the brain in depressed patients [22]. A study of transcranial magnetic stimulation targeting isolated
cerebral hemispheres showed the potential to alleviate cerebral hemispheric imbalances and was
effective in improving core depressive factors and anxiety symptoms in patients [23].

Other researchers looked at lesions in the occipital and right frontal lobes and found that occipital
curvature was more common in depressed people than in healthy people. Occipital asymmetry and
occipital curvature, although different phenomena, may be due to incomplete neural pruning, limited
cranial space for brain growth, or ventricular enlargement exacerbating the natural occipital curvature
pattern, resulting in brain compression and the need to 'wrap' the other occipital lobe [24]. A recent
meta-analysis showed that hyperconnectivity in the prefrontal and anterior cingulate regions of the
default mode network (DMN) is primarily associated with rumination, highlighting the critical role of
prefrontal regions in this process [25]. In contrast, hemodynamic activation in the right dorsolateral
prefrontal cortex (DLPFC) and right frontal pole cortex (FPC) was significantly increased in the
anxious-depressed group compared to the non-anxious-depressed and healthy groups [26].

There was also a significant increase in the strength of information flow from the
parahippocampal gyrus and middle temporal gyrus in the temporal lobe. Researchers using functional
magnetic resonance imaging found a higher prevalence of hippocampal structural abnormalities in
depressed patients, accompanied by increased activity within the brain's default mode network and
increased extratemporal activation compared to the non-depressed group [27]. In particular, abnormal
and excessive functional connectivity was observed in the right parietal lobe across both the delta and
beta frequency bands, particularly in relation to the left central hook. Hou et al. targeted the parietal
lobe and observed significant rehabilitative outcomes following four weeks of neurofeedback training
[28].

In summary, extensive research has consistently shown significant inter-individual variability in
the neurophysiological features associated with depressive symptoms. Rather than being limited to
specific local changes, pathophysiological changes in depression appear to involve multiple brain
regions [29]. We found that depression is associated with abnormalities in information flow within
regions such as the occipital lobe, right frontal lobe, right temporal lobe and central sulcus. The
depressed patients generally showed a decrease in long-range information flow between the ipsilateral
anterior and posterior regions of the brain, and an increase in information flow between hemispheres.
Notably, these connectivity differences were more pronounced in the right side of the brain compared
to the left side. The data set used in this study consisted of dPTE values representing information flow
and showed statistically significant differences in the alpha and theta bands, with a classification
accuracy of 91%. These findings suggest that these abnormalities may contribute to depressive
episodes. Given the variability between patients and the potential differences in underlying
pathogenesis, future treatment protocols for depression should take these factors into account. Our
approach may help clinicians to develop individualized treatment plans tailored to the specific needs
of each depressed individual.
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