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Abstract: COVID-19 is caused by the SARS-CoV-2 virus, which has produced variants and increasing
concerns about a potential resurgence since the pandemic outbreak in 2019. Predicting infectious
disease outbreaks is crucial for effective prevention and control. This study aims to predict the
transmission patterns of COVID-19 using machine learning, such as support vector machine, random
forest, and XGBoost, using confirmed cases, death cases, and imported cases, respectively. The study
categorizes the transmission trends into the three groups: LO (decrease), L1 (maintain), and L2
(increase). We develop the risk index function to quantify changes in the transmission trends, which
is applied to the classification of machine learning. A high accuracy is achieved when estimating the
transmission trends for the confirmed cases (91.5-95.5%), death cases (85.6-91.8%), and imported
cases (77.7-89.4%). Notably, the confirmed cases exhibit a higher level of accuracy compared to the
data on the deaths and imported cases. L2 predictions outperformed LO and L1 in all cases. Predicting
L2 is important because it can lead to new outbreaks. Thus, this robust L2 prediction is crucial for the
timely implementation of control policies for the management of transmission dynamics.
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1. Introduction

Worldwide, several threats to health and human wellness in the 2000s have been experienced
due to pandemics. Outbreaks of infectious diseases included SARS in 2002, a subtype of influenza
A (HIN1) in 2009, and MERS in 2015 [1,2]. Since the emergence of the novel disease COVID-19
in late 2019, the virus has given rise to several variants, including Delta and Omicron. Notably,
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ongoing mutations in the Omicron variant continue to occur, which raises concerns about the potential
of a resurgence of COVID-19 [3.,4].

Furthermore, a possibility exists of novel viruses or existing infectious diseases that can cause
diseases in the near future. Thus, anticipating and predicting potential outbreaks of infectious diseases
is currently essential to effectively prevent their spread [5,6]. The implementation of effective
measures in advance can be beneficial to minimize societal impacts by reducing the cases of infections
and fatalities.

Mathematical modeling and machine learning methods are widely used to predict or forecast the
transmission dynamics and to analyze effective control interventions [7—12]. Mathematical modeling
requires the development of a sophisticated model that considers numerous parameters to accurately
represent real-world factors, including vaccines, variants, and policies [13,14]. Machine learning has
emerged as an alternative method to predict infectious diseases because it can consider relatively many
features with ease [15,16].

Several studies predicted the number of the confirmed or death cases to investigate the
transmission trends of COVID-19 data using machine learning [17-21]. Chimmula et al. [17]
represented the number of predictions for confirmed cases in Canada with those of the United States
and Italy using long short-term memory. Sardar et al. [18] predicted the number of infections for
various countries in South Asia using XGBoost (XGB). Lastly, Gothai et al. [19] predicted the spread
of COVID-19 using confirmed cases, deaths, and recovery cases in multiple countries through linear
regression (LR) and support vector machine (SVM). Many prior studies exclusively employed
machine learning methods on COVID-19 data and solely focused on either confirmed cases or deaths
to forecast the transmission dynamics over time [7,12,15,17,18,21,22].

We specifically examine the confirmed cases, death cases, and imported cases of COVID-19
data in the Republic of Korea by utilizing interpretable machine learning methods. There is a main
reason to consider the deaths data. An increase in the number of severe patients or deaths can lead
to serious consequences in the event of an infectious disease outbreak. Therefore, predicting severe
patients and deaths can help to utilize medical resources. Moulaei et al. [22] predicted the mortality
rate of COVID-19 by classifying the death and recovery rates based on data for hospitalized patients
using machine learning methods including random forest. Ramazi et al. [21] forecasted the number of
confirmed cases and deaths in the USA in the long range based on the daily confirmed cases.

There have already been numerous previous studies to predict the number of patients or deaths using
simple machine learning methods, which represent an excellent performance in prediction [12,22,23].
However, early warnings which estimate the start time of new outbreak become more important
for the novel infectious diseases. To do so, it is also important to catch an increasing trend within
the disease dynamics. Therefore, our primary objective is to classify changes in the trends rather
than to predict the specific case counts. Furthermore, we aim to develop a machine learning-based
prediction method that can consistently achieve a high accuracy in forecasting the transmission
trends, independent of the dataset employed. The current study proposes a universally applicable
prediction approach.

2. Materials and methods

Machine learning has proved to be an effective tool to generate predictions by analyzing extensive
datasets [24,25]. Meanwhile, methods that address the interpretability of results are lacking. To
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overcome this disadvantage, Cho et al. [6] put forward a novel approach to enhance the interpretability
in machine learning predictions. The authors introduced a mathematical criterion called the risk index,
which plays a role similar to an activation function in classifying groups for the machine learning
method, to estimate the early detection of new outbreaks. Figure 1 shows the outline of the
methodology. The present study extended the previously developed method as follows: (i) while
previous studies focused on predicting the confirmed cases for the early detection of new outbreaks,
the current study extends its application to include predictions for confirmed, death, and imported
cases; and (ii) we developed several risk indexes to classify the groups of transmission trends as
increase, maintain, and decrease.
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Sample data labeled by risk index
M S

Machine Learning
Labeling Classification
Risk Index [

Imported
cases

Data

Random XGBoost

LO L1 L2 Forest
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Figure 1. Outline of the study. A. Confirmed cases, deaths, and imported cases data due to
COVID-19 are labeled for transmission patterns by risk index. A transmission pattern is
divided into three groups, namely, decrease, maintain, and increase. Risk indexes are
developed to quantify changes in transmission patterns. B. A transmission trend is
estimated using machine learning methods based on sample data labeled according to value
of risk index.

2.1. Data description

We analyzed data on the confirmed, death, and imported cases of COVID-19 in South Korea from
February 24, 2020, to August 31, 2023. The cumulative numbers of the three cases are 34,491,410
confirmed cases, 35,931 deaths, and 79,907 imported cases. Data was extracted from an open source
provided by the Korea Disease Control and Prevention Agency (KDCA) [26]. Additionally, we used
the proportions of the Delta and Omicron variants described in [26,27].

2.2. Generation of sample data and linear regression analysis
First, we normalized the number of confirmed cases, deaths, and imported cases of COVID-19

using the min—max normalization (Figure 2A). The sample data were used as the input for the machine
learning classification.
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Figure 2. Construction of the sample data. A. The sample data consists of the fitting and
prediction periods. B. Eight features were selected as input feature from several statistical
values on sample data derived from normalized cases. Some features obtained from results
of linear regression model applied for both periods. C. Sample data was labeled by risk
indexes that are three functions developed from the linear regression model. The
transmission trend is categorized into three groups, namely, decrease (L0), maintain (L1),
and increase (L2). D. Transmission patterns are predicted by three machine learning
classification methods.
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Second, we divided the time period into two, namely the fitting and prediction periods. We
considered the initial 21 and subsequent 14 days as the fitting and prediction periods, respectively, for
the sample data. We initially considered a 21-day fitting period followed by a 14-day prediction period
(i.e., the 21-day fitting and 14-day prediction period). This approach is based on the experience of the
South Korean government, which has either maintained or strengthened social distancing measures for
a period of 2 weeks during the COVID-19 pandemic described in [6,28,29]. d;(t) indicates
normalized cases on day t for the i-th sample data, which is defined as S; = {d;(i),d;(1+
0),...,d;(34 + i)} for i € {1,...,n}. In other words, S; consists of two subgroups (i.e., S; = SF U
SP). Sf and S represent the sample data for both periods, respectively.

SF={d;(0),d;(1 +0),..,d;(19 + ©),d;(20 + D}, S7 ={d;(21 +),...,d;(34 + i)}.

We obtained the total number of sample data as n = 1251 (i.e., § = {5;,S,,...,S1251}). The
time interval for each i-th sample data is defined as T; = Tf U T/, where the fitting T/ = {i,1 +
i,...,20 + i} and prediction Tf = {21 +1i,..,34 + i} periods are described. Thus, S/ and S/ can
be rewritten as S7 = {d;(7)}, T € T} and S¥ = {d;(v)}, T € T/.

We conducted a sensitivity analysis to compare the prediction performance based on various
lengths of the fitting and prediction periods. The other three settings, which were compared to the
baseline of a 21-day fitting and a 14-day prediction period, are represented as follows: (i) 28-day
fitting and 14-day prediction period (28/14), (i) 21-day fitting and 28-day prediction period (21/28),
and (ii1) 21-day fitting and 21-day prediction period (21/21).

Third, we applied an LR model to both periods of the sample data to quantify changes in the
transmission trends. S and Bf indicate the slope and af, af describe the y-intercept of the
LR for both periods, respectively, of the i-th sample data (Figure 2B). The LR models are described
as follows:

S =af +pfrifteTf

S =al +pfrifteTt

where 7 denotes the days of the time period of the i-th sample data.
2.3. Definition of risk index

A risk index plays the role of a criterion used to determine which of the three labels each sample
data corresponds to. The index provides a pivotal factor to categorize the transmission pattern into
three distinct groups, similar to the role of an activation function in machine learning classification.
It consists of two functions, namely f and g, which indicate trends in the transmission patterns.
The f function stands for a change in the average of the normalized cases (i.e., SF and S[), while
g denotes a change between the slopes in the LR model (i.e., Bf and Bf). For each sample data,
the value of the risk index is allocated on the last day of the fitting period (T/), represented by &;
(i.e., 6; = 20+ i)

Risk index (RI) = f(X,)g(X,).
We considered three types of risk indexes: Risk index 1 (RI;), Risk index 2 (RI,), and Risk
[

index 3 (RI3), whose functions consist of X; and X,. When X; and X, are defined as X; = v

i
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and X, = BF — BF, respectively, we defined RI; as follows:

P_ F
Risk index 1 (RIy) = f,(X;)g,(X,) = sinh <c1 <“ d F“ d >> xe2(BF-BD (1)
4

where uf and pf indicate the average of the normalized cases of COVID-19 for S/ and S7,
respectively. RI; was developed by Cho et al. [6] and is expressed as a combination of hyperbolic
and logistic functions. f; represents the hyperbolic function that stands for a sharp increase within
the cases, while g; pertains to the exponential function that denotes a rapidly increasing trend. The
c; and c, indicate the scaling parameters of the functions (f and g) consisting of the risk index.

The two functions can express a rapid increase in the number of cases. Moreover, f, and g,
represent the logistic and exponential functions for R, respectively.

1

Risk index 2 (RLy) = f,(X,)g,(X3) = xec2(BF=BD) )

()
oy (BB
l1+e Ki

RI; is expressed by referring to the safety function used by Usherwood et al. [30], who proposed
the form of RI; to quantify the efficacy of COVID-19 vaccines by examining the impact of human
behavior. We developed RI; by reconstructing the equation of the safety function and applying the
caution and safety factors as X; and X,, respectively. The two functions of f and g for the three
types of risk indexes are compared by varying the input variables, X; and X, (Figure S1).

Risk index 3 (RI3) = f3(X1) + (1 — f3(X1))g5(X2)

) 1 3)
=—t|1——5—F X(_Cz(ﬁf_ﬁilr))

P
1 F 1 F
e Hi e Hi

2.4. Definition of features and classification of transmission trends for machine learning

We used the eight features to classify the transmission patterns into three groups for the fitting
and prediction periods. We calculated the effective reproduction number, which is defined as the
average number of secondary infected people by the first infected persons as described in Cori et al.,
by adhering to the gamma distribution of the serial interval (mean: 4.8; SD: 2.3) [31].

Table 1 summarizes the eight features: the average (uf) and SD (c¥) for the fitting period, the
slope (Bf) of the LR applied to the fitting period, the average of the ratios of the Delta and Omicron
variants (Delta® and Omicron®, respectively) for the fitting period, Week, and the effective
reproduction numbers for the fitting and prediction periods.

Figure 2C depicts the labels for the transmission patterns, which were divided into three groups
(i.e., LO, L1, and L2). The label for each sample data was determined using the values of the risk index
according to the risk index function. The values of the risk indexes of all sample data were ranked
from the minimum to the maximum values. Specifically, the sample data were labeled L0 and L2 when
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the values of the risk index were included in 30% of the smallest (decrease) and largest (increase)
values of the risk index, respectively. The other sample data were labeled as L1 (maintain).

Figure 2D presents that transmission patterns that were predicted using the following machine
learning methods: support vector machine (SVM), random forest (RF), and XGBoost (XGB). These
methods are mainly used to predict trends of COVID-19 and exhibit high levels of performance [10,32].
The total sample data were composed of split training and testing data at a ratio of 7:3. The sizes of
the training and testing data are 875 and 375, respectively. We used the respective sample data of the
confirmed, death, and imported cases for the input data in machine learning. We predicted the
transmission patterns for the fitting period of the sample data. The transmission patterns were
designated into a group based on the values of the risk index. The performances of the machine learning
methods in predicting transmission patterns are represented by the accuracy for the F1-score. The F1-
score represents the harmonic mean of a model’s precision and recall and provides a comprehensive
evaluation of a model’s performance. A higher F1-score indicates a better performance of the model.
Additionally, the confusion matrices and the receiver operating characteristic (ROC) curves were
compared. The hyperparameters were found through a grid search with a 10-fold cross validation.
Table S1 provides the results of the grid search and the ranges of the hyperparameters.

Table 1. Features of machine learning classification.

Features Description

uf Average number of cases for the fitting period of the sample data

of Standard deviation of cases for the fitting period of the sample data

Bf Slope obtained from the linear regression model applied to the fitting period of
the sample data

Week Day of the week at the first day of the fitting period of the sample data

Delta® Average number of ratios of the Delta variant for the fitting period of the sample
data

Omicron® Average number of ratios of the Omicron variant for the fitting period of the
sample data

RE,RE Average number of the effective reproduction number for the fitting and

prediction periods of the sample data

3. Results
3.1. Risk index used to classify the sample data into three labels

Figure 3 presents the numbers of the confirmed, death, and imported cases of COVID-19 from
January 1, 2021, to August 31, 2023, in South Korea.

Figure 4 presents the range of the risk index using the three labels for three risk index functions
using the confirmed cases. We determined the values of ¢; and c, based on achieving a high
correlation between the risk index values and the labels. Table S2 presents the selected values of ¢,
and c, that yielded a high correlation between the risk index and the labels, where ¢; and c, were
predominantly set at 0.01.

Mathematical Biosciences and Engineering Volume 21, Issue 5, 6150-6166.
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When using R and RI3, the value of the risk index for the sample data that exhibited a sharp
increase were identified and categorized as L2, where L2 encompassed values within a wider range
compared to the values from the other labels. In the case of R/, the study observed a consistent upward
trend for the values of the risk index, which indicated that the three labels were classified based on the
characteristics of the risk index functions. We applied a similar calculation to the data on the death and
imported cases. Figures S2 and S3 illustrate the resulting ranges of the risk indexes for the data on the
death and imported cases, respectively.

A Confirmed cases
600000

400000

200000

01-Nov-2021 01-Mar-2022 01-Jul-2022 01-Nov-2022 01-Mar-2023 01-Jul-2023
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c Imported cases
600

400

200

01-Nov-2021 01-Mar-2022 01-Jul-2022 01-Nov-2022 01-Mar-2023 01-Jul-2023

Figure 3. COVID-19 data for confirmed, death, and imported cases. The three types of
COVID-19 data from February 24, 2020, to August 31, 2023, in South Korea was used for
predicting transmission patterns.
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Figure 4. Range and distribution of the values of the three types of risk index for confirmed
cases. The distribution of values (left panel) refers to the values of risk index labeled LO

(blue), L1 (green), and L2 (red). The box plot (right panel) depicts the range of the values
of risk index according to label.

3.2. Classification of transmission trends via machine learning methods

Figures S4-S6 display the results of the feature importance among the eight features to predict
the labels of the transmission trends according to the different risk index functions. We compared the
feature importance by computing for RF and XGB, where both methods produced high levels of
accuracy (Figure 5). Figure S4 (confirmed cases) and Figure S5 (death cases) indicate that the SD for
the fitting period (c¥) and the slope of the LR applied to the fitting period (8;) are important features.
In addition, the effective reproduction number for the fitting and prediction periods (R and RF) were
considered important features. However, Figure S6 indicates that the standard deviation (o), the
average (uf), the average of the ratios of the Delta variant (DeltaF) for the fitting period, and the slope
of the LR applied to the fitting period (/) are important features for the imported cases.

Given the data on the three types of cases, we aim to examine the extent to which it predicts the
transmission trends as LO, L1, and L2 by employing the machine learning methods SVM, RF, and
XGB. Figure 5 describes their accuracy in terms of the F1-score using the three functions of the risk
indexes (i.e., R, R, and R[3) for the data on confirmed (Figure 5A), death (Figure 5B), and imported
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cases (Figure 5C). The three risk indexes demonstrated high levels of accuracy in classifying the
confirmed cases compared to those for the death and imported cases. The accuracy of predicting the
death and imported cases ranged from 85.6% to 91.8% and from 77.7% to 89.4%, respectively. For
the confirmed cases, the accuracy exceeds 91.5% regardless of the machine learning method used,
which reached a maximum of 95.5% for all functions of the risk indexes.

A Confirmed cases

1.00

0.955 p.952 0.952 0.955 0.955 p.952
0.95
0.923 0.915 0.923
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Figure 5. Accuracy according to risk index for confirmed, death, and imported cases.

In summary, the accuracy for the death cases exceeded 85.6% using SVM with R> and
reached a maximum at 91.8% with R/1 or RI3 using RF. Moreover, the accuracy for the imported
case data exceeded 77.7% when obtained through the SVM with R/1 and reached a maximum at 89.4%
using XGB with R[5 (Figure 5B,C). In addition, for the confirmed and death cases, machine learning
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classification techniques indicated that the highest accuracy for R/1 and Rz was produced using RF,
while the highest accuracy for R/> was obtained via XGB. For the imported cases, the highest accuracy
was produced using XGB regardless of the three types of risk indexes. We observed a similar result of
the accuracy for RI1 and R/[3 even if they were differently defined functions. The distribution of R/
and R/3 may be similar, as depicted in Figures 4, S2, and S3, regardless of the type of case.

We demonstrate the results of the ROC curve in Figures S7-S9 for the confirmed, death, and
imported cases, respectively, to evaluate the performance of the prediction in terms of the classification
and the accuracy. An ROC curve is frequently used in binary classifications and medical applications.
The closer the curve is to the upper left, the higher the prediction accuracy. Using an ROC curve, we
found that the performance of the prediction was higher for the confirmed cases compared to the death
or imported cases.

We varied the period of fitting and prediction as a 28-day fitting and a 14-day prediction period,
a 21-day fitting and a 28-day prediction period, and a 21-day fitting and a 21-day prediction period.
Table S3 and Figure S10 present the results of the prediction accuracy across three risk indexes and
different fitting and prediction periods. Here, we found that longer fitting or prediction periods
improved the prediction performance for the deaths and imported cases compared to the 21-day fitting
and 14-day prediction period. The prediction accuracy reached a maximum at 93.5% when R/i and
RI> were used for the imported cases compared to a maximum accuracy of 86.8% for a 21-day fitting
and a 14-day prediction period setting.

The highest accuracy for the death cases showed 93.8% and obtained the best performance in
a 21-day fitting and a 28-day prediction period setting for all three risk indexes. For the confirmed
cases, the prediction accuracy was higher than in the event of the deaths and imported cases, regardless
of the period settings.

3.3. High accuracy in identifying the rising trend of transmission

Figure 6 provides a comparison of the accuracy according to the three labels (i.e., LO, L1, and L2)
to compare the efficiency of the classification when using different machine learning methods and
functions of the risk indexes. The three risk indexes displayed high levels of performance for the
confirmed cases in terms of accuracy according to the label compared with the death and imported cases,
which had the same interpretation as explained in Figure 5. In summary, observing that the accuracy was
higher for L2 (increase) compared with other labels of transmission trends is easy. Figure 6A presents
the results of the comparison of the accuracy according to R/i using confirmed cases. The results
obtained through RF indicated that the accuracy for LO, L1, and L2 was obtained at 95.5%, 94.6%,
and 96.8%, respectively.

Similarly, we obtained a high accuracy regardless of the data and machine learning methods for
L2. It plays a crucial role in detecting early outbreaks because it can accurately capture a rapid increase
in the trends. We investigated the accuracy according to label for the death and imported cases
(Figure S11). All classification techniques represented that the accuracy for L2 was higher than those
for LO and L1 for the death and imported cases. In addition, Rl> showed a higher performance
accuracy of 96.9% for LO for the confirmed cases compared to when using the other two risk indexes.
Table S4 provides the specific values of the accuracy of prediction using the three labels and risk
indexes for the COVID-19 data. We presented confusion matrices to represent the confirmed, death,

Mathematical Biosciences and Engineering Volume 21, Issue 5, 6150-6166.



6161

and imported cases in Figures S12—S14, which directly demonstrate the number of errors of prediction

according to the label.
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Figure 6. Accuracy of classification using machine learning methods to predict
transmission trends according to the three labels and risk indexes for confirmed cases. The
accuracy of prediction for L2 is higher than those for LO and L1 for all types of risk index.
A. For RIi, RF well predicted all labels (LO: 95.5%, L1: 94.6%, L2: 96.8%). B. The
accuracy of prediction according to label is highly represented in overall cases of R/> using
XGB (L0: 96.9%, L1: 94.5%, L2: 95.4%). C. The accuracy of prediction according to label
produced high values using RF (L0: 95.9%, L1: 94.6%, L2: 96.3%).

4. Discussion

The objective of the present study was to utilize machine learning techniques to estimate the
transmission patterns of COVID-19. We developed a mathematical criterion called the risk index to
quantitatively assess changes in the transmission trends. The risk index values were computed for each
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dataset, which encompasses the confirmed, death, and imported cases of COVID-19. We classified the
labels of transmission trends into three categories, namely LO (decrease), L1 (maintain), and L2
(increase), based on the risk index values of each sample.

The findings demonstrated a notable performance in predicting the transmission patterns of
COVID-19. The accuracy for the confirmed, death, and imported cases ranged from 91.5% to 95.5%,
from 85.6% to 91.8%, and from 77.7% to 89.4%, respectively. Notably, machine learning
classification using the three risk indexes exhibited a higher accuracy for the confirmed cases
compared with those for the death and imported cases.

When assessing accuracy based on labels, the prediction accuracy for L2 surpassed that of LO and
L1 in all cases, except for accuracy obtained from R/ for the death cases. Among the three risk indexes,
RI> represented the highest prediction accuracy of 96.9% for LO for confirmed cases. Specifically, the
accuracy of predicting L2 was impressive, which ranged from 95.4% to 96.8% for the confirmed cases,
from 89.1% to 95.6% for the death cases, and from 83.0% to 93.6% for the imported cases. This robust
performance in predicting L2 is particularly crucial in analyzing the transmission dynamics because
the timely identification of new outbreaks enables the implementation of effective control policies to
halt the spread of infection. Several studies have utilized classification methods to predict COVID-19
outcomes, such as the confirmed cases and deaths. Holanda et al. [12] used the various machine
learning algorithms to forecast the number of hospitalized cases and deaths in Brazil, achieving an
accuracy of 83% and an area under the curve (AUC) of 0.89. Keser et al. [32] focused on the number
of deaths in Wuhan using gradient-boosting models, thereby incorporating patient history and
demographic information, which resulted in an accuracy ranged from 74.07% to 84.39% and an AUC
between 86.50% and 87.97%. Our study surpasses these in the predictive accuracy, with a confirmed
case accuracy between 91.5% and 95.5% and death outcomes from 85.6% to 91.8%. Moreover, our
results feature high AUC scores close to 1, demonstrating the effectiveness of using a risk index as a
mathematical criterion for machine learning classification.

We found how differently our prediction method performs on each of the confirmed cases,
imported cases, and deaths. In the present study, we newly suggested the RI, among the three risk
indexes. It has several advantages with respect to the performance: (i) RI,, in conjunction with the
other risk indices, shows the highest predictive accuracy for the increase pattern (L2), achieving an
accuracy of 96.8%; and (ii) in terms of predicting the decrease pattern (L0O) in the confirmed cases, RI,
outperforms the other risk indices, with a maximum prediction accuracy of 96.9%. We suggest the
potential to predict the transmission patterns for data originating from other countries or emerging
infectious diseases in the future.

We conducted a sensitivity analysis by varying the length of the fitting and prediction periods.
The results were compared using a consistent setting of 21 days for the fitting period and 14 days for
the prediction period. Our analysis, as shown in Table S3, indicates that altering the fitting and
prediction periods can enhance the prediction performance for the deaths and imported cases.
Specifically, the prediction accuracy for the deaths using the 21/28 days setting showed a higher
performance compared to other period settings across all the three risk indexes. Therefore, extending
the prediction period improves the prediction performance for the deaths.

This had several limitations. Our objective was to establish a robust methodology to categorize
the transmission trends by devising multiple metrics, such as Risk index 1, Risk index 2, and Risk
index 3, rather than emphasizing public health aspects. We analyzed epidemiological data solely in
Korea. However, previous studies compared the results of predictions for various countries worldwide
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and predicted the trend of transmission globally [17,18,33]. Chumachenko et al. [33] predicted the
number of confirmed cases in Japan, Germany, the Republic of Korea, and Ukraine, which
implemented various control policies, using RF and XGBoost. Their analysis primarily focused on
data of the confirmed cases. However, in the current study, we demonstrated effective predictions not
only for the confirmed cases, but also for the death and imported cases with a high performance.

On the other hand, we didn’t consider the deep learning method to predict the transmission
patterns, although deep learning conducts prediction by performing complex calculations with large
amounts of data. Most studies that used deep learning predicted the number of confirmed cases or
deaths. Ardabili et al. [34] predicted the number of infections based on the confirmed cases data using
artificial Neural Networks such as Multi-Layered Perceptron (MLP) and Adaptive Network-based
Fuzzy Inference System (ANFIS) in five countries, including the USA and Germany. Shahid et al. [35]
compared several deep learning forecast models to estimate the confirmed cases, deaths and recoveries,
focusing on Long Short-Term Memory (LSTM). However, the current study had a different objective
compared to previous studies using deep learning. We proposed a generally applicable prediction
approach that captures the changes of the transmission trends. It does not require complex data and
predicts the trend patterns with a high performance accuracy of over 95%, using only simple daily data
such as confirmed cases, deaths, and imported cases. Additionally, our method has the potential to be
applied regardless of the data set.

Moreover, this study is limited to the estimation of the classification of the transmission trends
without the forecasting transmission trends compared with those of several studies [20,23,36,37].
Srivastava et al. [36] forecasted daily confirmed cases of COVID-19 by pandemic scenarios using
machine learning and compared the performances of the United States, Italy, and Australia in
forecasting. Rustam et al. [23] forecasted the number of confirmed, death, and recovered cases for the
next 10 days in several countries using supervised machine learning methods. This study presented
newly developed activation functions that could capture changes in the transmission trends using LR
models in addition to using data for death and imported cases. We proposed a prediction method to
analyze patterns in the transmission trends of COVID-19 using interpretable machine learning
methods combined with a mathematical criterion. Thus, we predicted the transmission patterns of
COVID-19, regardless of the dataset used, with a high accuracy using the simple machine learning
methods for classification.

Therefore, appropriately implementing policies for Nonpharmaceutical interventions (NPIs) or
vaccination and pharmaceutical treatments in a timely manner could be helpful for policy makers in
the case of the resurgence of COVID-19 or the occurrence of new infectious diseases by novel viruses.
As such, the spread of the disease can be predicted by analyzing data from various regions, as well as
data for cases of the disease.
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