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Abstract: With the widespread integration of deep learning in intelligent transportation and various
industrial sectors, target detection technology is gradually becoming one of the key research areas.
Accurately detecting road vehicles and pedestrians is of great significance for the development of
autonomous driving technology. Road object detection faces problems such as complex backgrounds,
significant scale changes, and occlusion. To accurately identify traffic targets in complex environments,
this paper proposes a road target detection algorithm based on the enhanced YOLOVS5s. This algorithm
introduces the weighted enhanced polarization self attention (WEPSA) self-attention mechanism,
which uses spatial attention and channel attention to strengthen the important features extracted by the
feature extraction network and suppress insignificant background information. In the neck network,
we designed a weighted feature fusion network (CBiFPN) to enhance neck feature representation and
enrich semantic information. This strategic feature fusion not only boosts the algorithm's adaptability
to intricate scenes, but also contributes to its robust performance. Then, the bounding box regression
loss function uses EloU to accelerate model convergence and reduce losses. Finally, a large number of
experiments have shown that the improved YOLOvS5s algorithm achieves mAP@0.5 scores of 92.8%
and 53.5% on the open-source datasets KITTI and Cityscapes. On the self-built dataset, the mAP@0.5
reaches 88.7%, which is 1.7%, 3.8%, and 3.3% higher than YOLOVS5s, respectively, ensuring real-time
performance while improving detection accuracy. In addition, compared to the latest YOLOvV7 and
YOLOVS, the improved YOLOvVS shows good overall performance on the open-source datasets.
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1. Introduction

Traffic target detection in road scenes is an important research area in traffic monitoring and
intelligent driving systems, as well as a key technology for achieving autonomous driving. Accurate
and real-time traffic target detection algorithms are particularly important for environmental perception
in road scenes. The current common object detection algorithms can be divided into traditional
methods and deep learning-based methods.

Traditional object detection methods mainly consist of three parts: region selection, feature
extraction, and classification. To locate the target position in the image, sliding windows with different
scales and aspect ratios are set to traverse the possible positions of the target and obtain candidate
regions. Then, manually designed features are used to extract features within candidate regions. Finally,
a classifier is used to classify the extracted features. Guzman et al. [1] proposed an outdoor vehicle
detection method based on the directed gradient histogram (HOG) and support vector machine (SVM).
Guo et al. [2] proposed a classifier combining Adaboost and support vector machines for pedestrian
detection in intelligent transportation systems. Razali et al. [3] proposed a visual analysis technique
that combines hue saturation and value HSV color segmentation with support vector machines to detect
emergency vehicles in images captured by traffic surveillance cameras. Zhu et al. [4] used Haar-like
features to extract vehicle contours and texture features, and used Adaboost classifiers for classification
and identification, improving the detection of vehicles in the longitudinal dimension ahead. However,
the above methods often select manually designed feature representations. When facing complex and
ever-changing targets, traditional shallow feature learning has relatively poor robustness and weak
generalization ability.

With the development of deep learning, the accuracy of object detection algorithms based on
computer vision technology and deep learning fusion is constantly improving, gradually becoming the
mainstream method in this field. The object detection algorithm based on deep learning automatically
learns the features of the target through convolutional neural networks, which can better adapt to
different detection task requirements. This method can be divided into two categories: the first category
is two-stage object detection algorithms, such as R-CNN [5], fast R-CNN [6], and faster R-CNN [7],
etc. This type of method uses a region proposal network (RPN) to generate several candidate region
proposals, and then detects the targets in the region proposals within the candidate regions to complete
classification recognition. The generation of complex and redundant candidate regions is very time-
consuming and cannot achieve real-time target detection. Another type are single-stage object
detection algorithms, such as SSD [8], EfficientDet [9], RetinaNet [10], and the YOLO series, etc. This
type of method directly obtains the position and category information of the target from the input image,
transforming the detection problem into a regression problem, having a faster detection speed.

Before the emergence of the YOLO algorithm, two-stage object detection methods were the
mainstream in the field of object detection, gaining widespread attention and application. Shi et al. [11]
employed an object detection model based on incremental learning and fast R-CNN to detect vehicles.
Yin et al. [12] proposed an improved domain-adaptive faster R-CNN model, adding three domain-
adaptive components and enhancing the PRN network to improve the detection accuracy of small
target vehicles on highways. However, the issue of model computational time persisted. Consequently,
many researchers shifted their focus to one-stage object detection algorithms. The YOLO model,
balancing the advantages of accuracy and speed, has found extensive applications in various domains.
Zhao et al. [13] introduced an RDD-YOLO algorithm based on the improved YOLOvVS model for
detecting defects on steel surfaces. Cai et al. [14] proposed a NAM-YOLOv7 model for detecting
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SVCV-infected fish, enhancing the detection accuracy of abnormal fish by introducing the NAM-
Attention mechanism and MPDIoU. Roy et al. [15] enhanced the disease detection performance in
tomato plants by adding a DenseNet structure to YOLOv4, improving the path-aggregation network,
and using the Hard-Swish activation function for enhanced nonlinear feature learning.

YOLOVS5, known for its fast detection speed, high accuracy, and strong adaptability, is considered
an advanced object detection model. Therefore, this study will use YOLOVS5s as the baseline model for
road object detection. In recent research, Kasper-Eulaers et al. [16] used the YOLOvS model to detect
heavy trucks in rest areas under winter conditions and predict occupancy rates, but faced challenges in
handling occlusion, leading to instances of missed detections. Shi et al. [17] improved detection
accuracy by adding new detection heads and integrating them with an attention mechanism. Zhang et
al. [18] proposed a vehicle detection method based on YOLOVS, introducing the OSA aggregation
module and utilizing non-local attention mechanisms and weighted non-maximum suppression to filter
detection boxes, improving performance but increasing model complexity. Gao et al. [19] increased
the model’s attention to small targets by introducing a receptive field module, an attention mechanism,
and adding a small target detection head in the YOLOVS feature extraction network.

Although the above methods are of great significance for road target detection, there are still the
following problems: (1) Small target objects are easily confused with the background, making it
difficult to extract the feature information of the objects, making them difficult to detect. (2) Under
complex background conditions, in scenes with dense traffic targets, varying degrees of occlusion
between targets can result in the loss of target features, leading to missed and false detections of
occluded targets. (3) Although the detection accuracy of the model has been improved, there are issues
such as high computational complexity and slow detection speed.

In order to achieve accurate and efficient detection of road targets, our work contributes in the
following ways:

(1) We propose an improved WEPSA module, which is integrated into the backbone network to
adaptively balance channel attention and spatial attention, enhance useful target features, and enhance
model perception ability.

(2) CBIiFPN is used instead of PANet in the neck network, and cross-layer features are fused in a
weighted form to enrich semantic information.

(3) Replace the original CloU bounding box loss function of YOLOvVS with the EloU [20] loss
function to alleviate the occlusion problem between targets.

The rest of this paper is organized as follows. Section II introduces the YOLOvS5s model and the
new method. Section III presents an experimental study of the proposed method. Section [V discusses
the experimental results. Section V concludes the work in this paper.

2. Methods
2.1. YOLOvS5s network structure

Figure 1 shows the network structure of the YOLOvS5s algorithm, which comprises four main
parts: input, backbone, neck, and head. In the input module, operations such as Mosaic data
augmentation and adaptive scaling are applied to preprocess the input images. The backbone consists
of CBS modules, C3 modules, and spatial pyramid pooling fusion (SPPF) modules for feature
extraction from the input images. The CBS module consists of a standard convolutional layer, a batch
normalization layer, and a nonlinear activation function Silu, which is used for downsampling the input.
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The C3 module comprises multiple bottleneck modules and three CBS modules, which extract, fuse,
and enrich semantic information from the input. The SPPF module further enriches feature semantic
information through pooling and feature fusion. The neck module employs a feature pyramid network
(FPN) to transmit top-level features to the bottom, obtaining more global semantic information and
enhancing the network’s perception of large-scale targets. Additionally, it utilizes a path aggregation
network (PAN) to transmit bottom-level features to the top, fully integrating information from different
scale feature maps, enhancing the network’s detection capability for small-scale targets. As the
detection module, the head uses the Conv module to adjust the number of feature channels in the three
feature layers, and predicts the final feature map, outputting target categories, and bounding box
position information.
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Figure 1. YOLOVS5s network structure.
2.2. Improved YOLOVS5s algorithm

The modified architecture of the YOLOVSs network is illustrated in Figure 2. Following the C3
module in the backbone network, the WEPSA mechanism is introduced, operating in both spatial and
channel dimensions to enable the model to focus on regions of interest and suppress irrelevant
information [21]. This contributes to the accurate capture of target features. To reinforce connections
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between feature information, the CBiFPN is proposed, assigning weights to each input feature for
comprehensive integration and utilization of multi-scale target features. Finally, the EIoU loss function
is introduced to expedite network convergence.
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Figure 2. The network structure of improved YOLOvVS5s.
2.2.1. The improved polarized self-attention module (WEPSA)

The attention mechanism originates from the study of human vision, where the visual attention
mechanism will help people quickly search for the region of interest in the whole image and obtain
important information from it. In the field of target detection, the attention mechanism is used to
acquire global and local features of an image, thereby enhancing overall information extraction. The
polarized self-attention (PSA) mechanism [22] employs the polarized filtering idea of completely
collapsing features in one direction when dealing with pixel-level regression tasks. However, it is not
compressed to a great extent in both the spatial and channel dimensions. The benefit of this design
decision is significantly reduced information loss while retaining more global image information.
Additionally, its computational complexity is maintained at a relatively low level. Therefore, this paper
integrates it into the improved model.

As shown in Figure 3, the PSA module can be divided into two parts: spatial self-attention and
channel self-attention. Specifically, in the spatial self-attention module, the input features X are passed
through two 1 x 1 convolutions to obtain W,2(C/2*H*W) and qu (C/2*H*W), reducing the channel
number by a half. The spatial dimensions are maintained at high-resolution H*W. For W2, it is
reshaped into (C/2*HW), and for W2, global average pooling (GAP) is applied, causing full
compression in spatial dimensions, inevitably leading to information loss. Subsequently, the Softmax
function is employed to enhance the information of qu. Next, the reshaped W,? and the augmented
qu are cross-multiplied to obtain W,?. After reshaping, it is fed into the Sigmoid function, keeping
all the parameter values between 0 and 1. It is dot-multiplied with the input feature X to obtain the
spatial attention output W,.

In the channel self-attention module, the same 1 X 1 convolutions are employed to obtain
Wt (C/2*¥H*W) and qu (1*H*W). qu undergoes complete channel compression, reducing the

channel number by a half for W,!. After feature reshaping and applying the Softmax function, the
reshaped W' (C/2¥*HW) and enhanced W' (HW*1) are cross-multiplied to yield W,'(C/2*1*1).
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Following a 1 X 1 convolution and layer normalization, the result is input to the Sigmoid function,
ensuring that all parameters are constrained between 0 and 1. Finally, the obtained values are multiplied
element-wise with the input features X to produce the output W,,.

W11y
Reshape

—» Convlxl ——» —» Convixl LayerNorm Sigmoid —»

VV»I (C/2*HW) (C*1*1)

l— 3 Convixl — Reshape Softmax

1 *
W, (1mew) Wy (WD L

'Global Pooling Reshape I Softmax IW2
(C*H*W)  —» Convixl —» > > i e

2 [ | 1%C/2
’W,, ( )
(C2*¥H*W)
Reshape Reshape
— Convix]l —» > > > Sigmoid ——»
WZ
2 2 €
w; W, (C/2¥*HW) (1*HW) (1*H*W)

Figure 3. The improved polarization self-attention module.

From Figure 3, we observe that, in this PSA mechanism, the GAP operation is employed in the
spatial self-attention part to obtain global information from each channel feature map. While
significantly reducing the size of the feature map, using GAP may lead to information loss for small
objects with fewer feature details. This is because merging all spatial information into a single point
using GAP could result in the loss of information, making it challenging for the model to capture
precise object locations, edges, and other detailed information. Additionally, the polarized filtering
mechanism involves folding or compressing image features, which may lead to information loss in
feature dimensions, thereby reducing the model’s comprehensive understanding and expression of the
original features. In response to the issues in the PSA module, we have made further improvements to
better balance the relative importance of channel self-attention and spatial self-attention. We enhanced
the module’s adaptability and named it WEPSA. Specifically, we retained the original input features
and introduced two weight parameters, w;, and w,, for the outputs of the two branches. This enables
the model to automatically find an appropriate balance between the channel and spatial attention during
training, thereby better-expressing image features. Denoting the original input as X, the original output
as W, the output from the channel branch as Wy, and the output from the spatial branch as W, the
original output and the improved output W,,; can be calculated using the following formulas:

W =W+ VVsq (1)
Wout=X+Wch'Wl+M/sq'W2 (2)

2.2.2. Feature fusion module (CBiFPN)
In object detection tasks, to comprehensively capture target features of different scale sizes, FPN

is introduced to aggregate feature information of different dimensions [23]. Common feature pyramid
structures include FPN [24], PANet [25], and BiFPN [26]. FPN establishes a top-down pathway,
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progressively upsampling high-level information layer by layer and fusing it with shallow-level
information. However, after multiple upsampling operations, high-level semantic information may be
compromised. Considering the limitations of the unidirectional transmission of FPN, Liu et al.
proposed the PANet structure, which adds a bottom-up pathway to FPN, conveying low-level semantic
information to high-level layers, further enhancing the fusion capability of features. Based on PANet,
the BiFPN structure removes nodes with only one input edge and introduces an additional skip
connection line from the same-level input node directly to the same-level output node (indicated by
the dashed line), thereby fusing more features without adding excessive computational complexity.
Finally, different weights are assigned to each input undergoing feature fusion, enabling the network
to gradually learn the importance of varying feature maps during subsequent training processes. As
shown in Figure 4, the diagrams represent the network structures of FPN, PANet, and BiFPN,
respectively.

P7 Q—» - 7 ©—> > > 7 -
v v oo Y, |

Bé Q—» > e O——» >@> @—» @)
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(a) FPN (b)PANet (¢)BiFPN

Figure 4. Three types of FPN structures.

In the feature fusion process of BiFPN, the Add operation is utilized to aggregate the feature maps,
requiring the input feature maps to have consistent sizes and channel numbers. Adjustments to the
contribution of each input are made through learnable weight parameters. While this approach can to
some extent learn important information from different feature maps, it still has limitations, specifically
information loss while maintaining consistent channels. To overcome this limitation, this paper
proposes the CBiFPN module to improve the effectiveness of feature fusion. As shown in Figure 5,
specifically, we assign different weights to the feature layers P3, P4, PS5, and other feature inputs for
fusion that are output from the backbone network, and then perform the Concat connection operation
directly without adjusting the number of channels of the feature map when performing feature fusion
at different scales. Here, C represents the Concatenation operation, and w represents the weight
coefficient. Compared to the previous method, CBiFPN preserves the channel features of each feature
map, avoiding potential total information loss caused by multiple adjustments to feature channels. In
summary, the CBiFPN module, by maintaining the consistency of channel features and allowing the
concatenation of features at different scales, more effectively capture multi-scale information in images.
This improvement enhances the effectiveness of feature fusion and contributes to the performance
improvements of the object detection models.
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Figure 5. The improved feature fusion module.

For example, the calculation formula for P4" and P4’ can be expressed as follows:
P4’ = Concat(Upsmple(Conv(P5)) * wy,P4 * w,) (3)

P4" = Concat(Downsample(Conv(PB”)) * W, Conv(P4") x wg, Conv(P4) * W3) 4)
2.2.3.  Optimization of the loss function

The loss function is commonly used to measure the difference between the predicted results and
true annotated values, and it is utilized to optimize the model’s training. The loss function of the
YOLOVS5s object detection algorithm consists of three parts: confidence loss, classification loss, and
localization loss. Confidence loss and classification loss are computed using the binary cross-entropy
loss (BCELoss), while the localization loss employs the CloU loss. IoU represents the overlap between
the predicted box and the actual box, where a higher IoU indicates higher prediction accuracy and vice
versa. The formulas for IoU and CioU are as follows:

ANB

loU = =& %)

CioU = IoU — @ —av (6)
a= o (7)

v = 7% (arctan%]: — arctan %)2 (8)

In the formulas, 4 and B represent the predicted and actual boxes, respectively. a is the weight
function, v is a parameter measuring aspect ratio consistency, and w, w9t h, and h9¢ are the
width and height of the predicted box and the actual box.

Compared to IoU, CloU considers factors such as the distance and scale similarity between the
predicted box and the actual box. However, when faced with target boxes with the same center point
and aspect ratio, the penalty term v becomes 0, leading to inaccuracies in describing the differences
in the width and height of the target boxes and hindering further refinement of the algorithm. To address
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this issue, EIoU calculates the losses for width and height separately, effectively resolving the
ambiguous definition of the aspect ratio in the CloU loss function. This reduces errors in the horizontal
and vertical directions, making the predicted box dimensions closer to the actual scale, thereby
accelerating model convergence and precision regression. Therefore, this paper adopts EloU as the
regression loss function for target boxes. The formula is as follows:

2 gt 2 gt 2 gt
EloU = IoU — 2 (ﬁf ) _pPwwd) _p (’C‘; ) 9)

Cw

In this formula, p?(b, b9%) is the Euclidean distance between the center points of the predicted
box and the actual box, c¢ is the diagonal distance of the minimum bounding rectangle enclosing A
and B, ¢, and ¢, are the width and height of the minimum bounding rectangle, and p?(w, w9t)
and p?(h, h9%) are the Euclidean distances between the differences in width and height between the
predicted box and the actual box.

3. Experiment and analysis
3.1. Datasets

To verify the effectiveness of the improved model, this paper conducted experimental research
using the KITTI and Cityscapes datasets and supplemented the validation on a self-built dataset.

1) KITTI dataset

The KITTI dataset, collected in Karlsruhe, Germany, comprises 7481 images. This study this data
originates from focused on the detection of vehicles and pedestrians, merging categories such as “Van”,
“Truck”, and “Tram” into “Car”. Additionally, the class “Person sitting” is consolidated into
“Pedestrian”. The final dataset consists of three detection categories: “Car”, “Pedestrian”, and
“Cyclist”. The dataset is divided into 6058 training images, 674 validation images, and 749 test images.

2) Cityscapes dataset

The Cityscapes dataset was obtained by the DAI Lab team using in-car cameras in over 50
German cities. This dataset contains rich real-world scenes such as urban streets, buildings, vehicles,
and pedestrians. In the data preprocessing stage, we selected five common categories: car, bus, bicycle,
rider, and person. The dataset is divided into 2780 training images, 347 validation images, and 348
testing images.

3) Self-built dataset

A total of 3455 images in JPG format with different scenes and densities are obtained by
downloading the car driving recorder videos from the internet and intercepting them frame by frame.
These images include four common targets: car, bus, person, and truck. Annotated with the help of the
Labellmg tool in VOC format, 2790 images were obtained for the training set, 310 images for the
validation set, and 345 images for the test set. Figure 6 shows some of the images in the dataset.
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Figure 6. Partial self-built dataset samples.

3.2. Experimental environment and parameter configuration

The experimental setup for this study employed a system running Windows 10, equipped with an
Intel(R) Core (TM) i7-6700K CPU @ 4.00 GHz and an Nvidia GeForce RTX 2060 GPU with 6 GB
of VRAM. The deep learning framework used was PyTorch, accelerated with CUDA 10.2. The code
was developed using Python 3.6 in the PyCharm Community Edition 2022.3 IDE. The training of the
neural network model utilized the Adam optimizer with an initial learning rate of 0.001, a batch size
of 16, and was executed for 300 epochs.

We employed common evaluation metrics in object detection as the criteria for our experiments,
namely recall, precision, average precision (AP), and mean average precision (mAP). The formulas
for these metrics are as follows:

Recall = —= (10)
TP+FN
Precision = — (11)
TP+FP
AP = [/ PdR (12)
mAP = ~YIL, AP, (13)

In the formulas, TP represents the count of true positive samples predicted as positive, TN
represents the count of true negative samples predicted as negative, FP represents the count of false
positive samples indicated as positive, and FN represents the count of false negative samples
predicted as negative. AP; represents the area enclosed by the precision-recall (P-R) curve for class
i. mAP represents the average value of class N samples AP. mAP@0.5 represents the average
AP value for each class when IoU is 0.5. mAP@0.5: 0.95 represents the average mAP value at
different IoU thresholds.
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3.3. Experimental results and analysis
3.3.1. Comparative experiment of improving attention mechanism

In order to further explore the effectiveness of the improved PSA attention module in enhancing
the effect of the target detection model, this paper conducts ablation experiments on the KITTI dataset,
aiming to evaluate the impact of different PSA configuration modules on the model performance. The
results are shown in Table 1. In Table 1, PSA-1 is the model after embedding the original PSA module,
PSA-2 is the model that adds initial features to the PSA output, PSA-3 is the model that sets different
weights for the two output branches; and PSA-4 is the model after adding the initial features to the
PSA output and assigning different weights to the two branches.

Table 1. The influence of the improved PSA attention module on algorithm performance.

Model Precision (%) Recall (%) mAP@0.5 (%) Parameters (M)
YOLOV5s 93.6 84.0 91.1 7.03
PSA-1 94.4 84.5 91.6(+0.5) 7.20
PSA-2 94.6 85.1 91.9(+0.8) 7.20
PSA-3 94.2 84.7 91.7(+0.6) 7.20
PSA-4 94.8 86.0 92.0(+0.9) 7.20

The experimental findings reveal that integrating the attention module into the backbone network
helps the model concentrate more on crucial target information, thereby effectively enhancing the
model’s detection accuracy. Specifically, upon incorporating the original PSA module, the model’s
parameter count increased by 0.17 M, while the detection accuracy improved by 0.5 percentage points,
suggesting a significant performance enhancement with the PSA module’s inclusion. Compared to the
original YOLOv5s, PSA-2 achieved a 0.8% improvement in detection accuracy. This is because PSA-
2 retains the original input features, avoiding complete compression of spatial or channel information
in the self-attention module, thereby reducing information loss. PSA-3, by assigning different weights
to channel branches and spatial branches based on the importance of varying channel or spatial position
information, allows the model to selectively focus on specific information, resulting in a 0.6%
improvement in detection accuracy. PSA-4 combines the advantages of PSA-2 and PSA-3, obtaining
more diverse contextual information and further refining the importance of information. The model
achieved a detection accuracy of 92.0%, showcasing the adaptive nature of this approach and
effectively enhancing the model’s generalization capability.

In addition, to further validate the superiority of the WEPSA attention module proposed in this
paper, comparative experiments were conducted with classic attention modules such as CA (channel
attention), CBAM (convolutional block attention module), and SE (squeeze-and-excitation). The
experimental results are presented in Table 2.
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Table 2. The detection performance of different attention mechanisms.

Model Precision (%) Recall (%) mAP@0.5 (%) Parameters (M)
YOLOvVS5s-CA 94.4 84.7 91.6 7.05
YOLOvVS5s-CBAM 94.1 84.6 91.4 7.04
YOLOvV5s-SE 94.7 84.5 91.5 7.08
YOLOVS5s-WEPSA 94.8 86.0 92.0 7.20

The experiments showed that embedding CA, CBAM, and SE attention modules into the
backbone network resulted in accuracy improvements of 0.5, 0.3, and 0.4 percentage points,
respectively, for the object detection model. These different attention mechanisms focus on distinct
aspects: CA and SE emphasize channel attention, neglecting spatial relationships between pixels;
CBAM combines channel attention and spatial attention, primarily focusing on local feature
relationships, whereas WEPSA emphasizes global features. Through comprehensive analysis, WEPSA,
by preserving high-resolution in both image space and channel dimensions, significantly reduces
information loss. Compared to other attention mechanisms, the model achieves higher accuracy and is
better suited for road object detection tasks.

3.3.2. Comparative experiment of feature fusion module

Three sets of comparative experiments were conducted on the KITTI dataset in this study to
validate the impact of the improved weighted feature fusion module on network performance in the
neck section. The neck sections include the original FPN + PAN structure, the original BiFPN, and the

proposed CBiFPN. The experimental results are presented in Table 3.

Table 3. The influence of different feature fusion modules on algorithm performance.

Model Precision (%) Recall (%) mAP@0.5 (%) Parameters (M)
YOLOVS5s 93.6 84.0 91.1 7.03
YOLOV5s-BiFPN 94.5 83.3 91.4 5.23
YOLOvV5s-CBiFPN 95.0 85.7 92.1 7.10

From the experimental results in Table 3, it can be observed that the feature fusion using BiFPN
and CBIiFPN structures demonstrates better performance compared to the PANet structure, with
detection accuracy improvements of 0.3% and 1.0%, respectively. This reflects the significant impact
of feature fusion methods on the performance of object detection models. BiFPN and CBiFPN
introduce learnable weight parameters for dynamically weighting different-scale feature maps,
enabling the model to learn the importance of features at different scales automatically. This adaptive
feature fusion effectively handles multi-scale objects in images, contributing to improved model
performance. Additionally, CBiFPN benefits from the Concatenation operation, which concatenates
image information from different channels. Despite a potential increase in parameter count, this
approach reduces information loss, thereby further enhancing the model's detection performance.
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3.3.3. Comparative experiment of different loss functions

The original YOLOVS5s used CloU as the loss function between the target box and the actual box.
To verify the effectiveness of the EIoU loss function while ensuring that other modules remain
unchanged, this experiment analyzed the impact of different loss functions on model performance on
the KITTI dataset by comparing them. The experimental results are shown in Table 4, and the loss
decrease curves of different loss functions during the training process are shown in Figure 7.

Table 4. The influence of different loss functions on algorithm performance.

Loss Precision (%) Recall (%) mAP@0.5 (%) Parameters (M)
CloU 93.6 84.0 91.1 7.03
EloU 94.5 84.4 91.5 7.03
0.12 5
0.11
0.10
0.09
]
3
= 0.08 -
E
& 0.07 1
0.06
0.05
004 I s I g I E I = I " I 2 I
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Figure7. The training loss value of different loss functions.

Overall, the original CloU achieved a mAP@0.5 of 91.1%, while adopting the EloU loss function
resulted in an improvement of 91.5%. The model's average detection accuracy increased by 0.4%.
Examining the training curve in Figure 6, it is evident that when using the EloU loss function, the
descent of the loss is faster, gradually plateauing after 250 epochs and ultimately converging.
Compared to the original CloU loss function, the EloU loss function achieves a final convergence
value of approximately 0.048, lower than the original CIoU loss function’s convergence value of about
0.050. Moreover, the EloU loss function achieved higher detection accuracy, enhancing the model's
detection performance effectively. Therefore, based on the experimental results, EloU is selected as
the loss function for training the object detection model in this study.
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3.4. Ablation experiment

In order to better verify the influence of each improvement strategy on the detection performance
of the algorithm, this paper conducts the following ablation experimental studies on the KITTI dataset,
Cityscapes dataset, and the self-built dataset. The experimental results are shown in Tables 5-7.

Table 5. Ablation experimental results of the improved algorithm on the KITTI dataset.

Model EloU CBIiFPN WEPSA mAP@0.5 (%) mAP@0.5:0.95 (%) Parameters (M)
1 91.1 55.4 7.03
2 \ 91.5 56.1 7.03
3 \ 92.1 57.4 7.10
4 \ 92.0 56.5 7.20
5 \ \ 92.5 58.5 727
6 \ \ \ 92.8 60.2 727

Table 6. Ablation experimental results of the improved algorithm on the Cityscapes dataset.

Model EloU CBiFPN WEPSA mAP@0.5 (%) mAP@0.5:0.95 (%)
1 49.7 27.8
2 \ 50.3 27.5
3 \ 52.1 28.6
4 V 51.9 28.4
5 \ \ 52.8 293
6 \ \ V 53.5 29.5

Table7. Ablation experimental results of the improved algorithm on the self-built dataset.

Model EloU CBiFPN WEPSA mAP@0.5 (%) mAP@0.5:0.95 (%)
1 85.4 57.4
2 \ 86.4 57.6
3 \ 86.7 58.2
4 \ 87.4 59.2
5 \ \ 87.9 58.9
6 \ \ \ 88.7 59.8

Model 1 represents the original YOLOVS5s. In model 2, the adoption the EIOU loss results in an
increase in mAP@0.5 by 0.4%, 0.6%, and 1%, respectively. Model 3 uses the CBiFPN weighted
feature fusion module to assign a weight to each input for feature fusion, allowing the model to
gradually learn the importance of different scale features in the training process and effectively transmit
information. mAP@0.5 is increased by 1%, 2.4%, and 1.3%, respectively. Model 4 introduces the
WEPSA attention mechanism to help the network better capture the feature information of image
objects and effectively improve the model detection performance; mAP@0.5 increased by 0.9%, 2.2%,
and 2%, respectively. Model 5 uses the CBiFPN module based on Model 4; the number of parameters
is increased by 3.4%, and the accuracy of the model is improved by 1.4%, 3.1%, and 2.5%, respectively.
It is proved that the introduction of the WEPSA attention module in the backbone network and the
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weighted CBiFPN module in the neck network are effective for feature extraction and feature fusion.
Model 6 integrates all improvement strategies, and mAP@0.5 is improved by 1.7%, 3.8%, and 3.3%
to 92.8%, 53.5%, and 88.7%, respectively. In general, this paper significantly enhances the model
performance without substantially increasing parameters, demonstrating the practicality of the
improved modules.

3.5. Visualization results and analysis

In order to illustrate the performance differences between the improved model and the original
model visually, this paper selected partial test set images from the KITTI dataset and the self built
dataset for testing. The experimental results are shown in Figure 8, where the left images represent
detections from the original model, and the right images depict detections from the improved model.

(e) Detection in Nighttime Scenes

Figure 8. Visualization results of target detection in different scenarios.
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The detection of vehicle targets in the roadway, as depicted in Figure 8(a), reveals that vehicles
are distributed on both sides of the lane. In the left picture of Figure 8(a), the distant black car is missed;
however, it is accurately detected in the right picture. Moving on to Figure 8(b), under high-intensity
illumination, cars on both sides of the road are heavily occluded; nevertheless, these occluded targets
can be accurately detected in the right figure. Regarding Figure 8(c), which represents object detection
in a sparse scene, the right image successfully detects a pedestrian leaning toward the right. In Figure
8(d), under blurry scenes caused by low resolution and pixel blurring, the edges and texture
information of the target become unclear, posing a challenge to the network’s feature learning. This
difficulty in feature extraction leads to missed detections. The improved YOLOvVSs algorithm
addresses this issue by enhancing the network’s focus on target features, improving the network’s
ability to extract features, and thereby mitigating the problem of missed detections. Figure 8(e) shows
the detection performance of different models in nighttime environments. Due to the influence of light
sources such as streetlights and headlights on nighttime images, the distribution of light may be uneven,
resulting in certain areas being too bright or too dark, which affects the model’s perception of the target.
The rear of the white vehicle on the left side was illuminated by light and reflected, resulting in missed
detection. However, the improved model successfully detected this situation. However, it can be seen
that the improved model failed to detect black vehicles, resulting in missed detections. Based on
comprehensive analysis and evaluation, we firmly believe that, when faced with target occlusion
challenges, employing an attention mechanism aids in capturing partial target features by intensifying
focus on areas likely to contain targets. Moreover, weighted feature fusion retains original features to
facilitate accurate determination of target location and category even amidst occlusion scenarios while
enhancing model robustness.

3.6. Comparison of different detection algorithms

To further verify the superiority of the improved detection algorithm in this paper, under the same
experimental conditions, the experimental comparison and analysis are carried out on the KITTI
dataset and Cityscapes dataset with common mainstream detection algorithms such as YOLOvV3[27],
YOLOvV4-tiny, YOLOx [28], YOLOvV7 [29], YOLOvV7-tiny, YOLOv8n, SSD, and Faster R-CNN. The
experimental results are shown in Tables 8 and 9.

Table 8. The detection performance of different target detection algorithms on the KITTI dataset.

Algorithm AP (%) mAP@0.5 (%) FPS  Parameters (M) FLOPs (G)
Car Pedestrian ~ Cyclist
YOLOVSs 96.32  84.01 92.93 91.1 72 7.03 15.97
YOLOvV4-tiny 78.43  33.98 42.92 51.8 145  5.88 6.84
YOLOv3 87.52 53.92 60.08 67.2 40 61.95 66.17
SSD 71.70  26.25 36.95 45.0 62 23.88 60.96
Faster R-CNN 88.90  68.82 77.62 78.5 10 137.1 370.21
YOLOx-s 96.67  86.52 95.83 93.0 73 8.97 26.97
YOLOvV7 96.20  87.98 96.02 93.1 27 37.62 106.47
YOLOV7-tiny 9226  73.12 86.43 83.9 91 6.23 13.86
YOLOVS8n 96.63 8291 85.93 88.5 114 3.16 8.9
Proposed method 96.45 85.45 96.47 92.8 63 7.27 17.13
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Table 9. The detection performance of different target detection algorithms on the
Cityscapes dataset.

Algorithm AP (%) mAP@0.5 (%) FPS  Weight (M)
Car Bus Bicycle Rider  Person
YOLOVSs 67.90 3441 46.36 51.39  48.57 49.7 90 27.9
YOLOvV4-tiny 6125 2580  32.70 35.80  44.83 40.1 135 224
YOLOV3 4480 3740 36.30 40.23 4691 41.1 40 236
SSD 23.80 3040 26.70 29.90  39.60 30.1 38 91.6
Faster R-CNN 46.90 3890 4030 39.80  45.12 4222 15 110
YOLOx-s 7327  42.00 46.15 51.73  51.20 52.9 62 34.3
YOLOV7 72.80 4190 41.40 5240  49.30 51.6 30 143
YOLOV7-tiny 68.93  36.84  47.50 5123 49.81 50.9 92 23.1
YOLOv8&n 69.77 3597  44.08 48.38  52.18 50.1 104 11.6
Proposed Method 7293  41.83  49.08 51.17  52.29 53.5 87 29

From the above ten sets of experimental comparisons, it can be observed that, compared to the
lightweight object detection models YOLOv4-tiny, YOLOv7-tiny, and YOLOVS8n, although the
improved model in this paper has a slightly higher number of parameters and greater computational
requirements, its overall detection performance is superior on the Cityscapes dataset; the proposed
algorithm outperforms the state-of-the-art object detection algorithms YOLOvV7 and YOLOvS8n, with
an increase of 1.9% and 3.4% in mAP@0.5, ranking first in precision. On the KITTI dataset, the
detection accuracy of this paper reaches 92.8%, comparable to YOLOx and YOLOV7, but with a lower
parameter count and network complexity, significantly improving training efficiency. The improved
algorithm’s mAP@0.5 increased by 41%, 25.6%, 47.8%, 14.3%, and 8.9% compared to YOLOv4-tiny,
YOLOv3, SSD, Faster R-CNN, and YOLOvV7-tiny, respectively. The detection accuracy for each
category has been enhanced, with the detection accuracy for the Cyclist category reaching an optimal
96.47%. Overall, the average detection accuracy of the improved algorithm in this paper has been
increased compared to the original algorithm. And, the detection speeds have maintained good real-
time performance. The experiments validate the effectiveness of the model improvements proposed in
this paper, meeting the detection requirements for road targets in complex environments.

3.7. Comparison of existing algorithm performance

Table 10 presents the results of different studies on the KITTI dataset. To ensure fairness, we
adopt the same evaluation criteria for comparison. In this paper, our main focus lies on two crucial
metrics: mAP@0.5 and FPS. Analyzing Table 9 reveals that, in terms of detection accuracy, our method
performs exceptionally well on the KITTI dataset, trailing only behind Lightweight YOLOv3-promote
by 0.5%. Concerning the mAP@0.5 metric, our method surpasses ORNet by 1.79%, outperforms
YOLOx-s by 3.1%, and leads CenterNet-DHRNet by 5.7%. This indicates a significant competitive
advantage of our algorithm in terms of accuracy for object detection tasks.

Regarding detection speed, our method ranks first in detection speed (FPS), significantly
outperforming other methods. This implies that the algorithm proposed in this paper can achieve rapid
object detection tasks while maintaining high efficiency. Such efficiency is particularly crucial for real-
world applications that demand high real-time performance.
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Table10. Comparison of detection by different studies on the KITTI dataset.

Models mAP@0.5 (%) FPS
CenterNet [30] 86.1 30
CenterNet-DHRNet [31] 87.1 18
Gaussian YOLOV3 [32] 86.79 2491
Lightweight YOLOv3-promote [33] 933 25.5
YOLOx-s [34] 89.7 315
ORNet [35] 91.01 —
Proposed method 92.8 63

4. Discussion

This article explores a road object detection algorithm based on YOLOVSs for detecting vehicles
and pedestrians on the road, which is of great significance for achieving intelligent monitoring and Al-
assisted driving systems. To test the detection performance of the proposed model in complex
backgrounds, we conducted a series of ablation experiments on the KITTI dataset, Cityscapes dataset,
and on a self-built dataset. Tables 5—7 respectively show the experimental results of each improvement
strategy on different experimental datasets. It can be seen that these improvements effectively improve
the detection performance of the model while increasing a small number of parameters. The reason
behind this is that, by improving the model’s feature extraction ability for input feature images and
strengthening the model’s attention to key feature points, the performance of the model has been
improved. And, the overall performance of the proposed method is superior to the original YOLOvVSs.
Tables 8 and 9 show the comparison of experimental results between the improved algorithm and
current mainstream detection algorithms. Compared with advanced algorithms such as YOLOv7 and
YOLOVS, the improved YOLOVSs algorithm achieved the best overall performance on multiple
datasets and maintained good detection efficiency.

Furthermore, Figure 8 illustrates the comparison of detection performance before and after model
improvements across different scenarios. It is evident that under well-lit sunny environments, the
improvement of YOLOVSs achieved good results, but there were still missed detections in the night
environment. Therefore, we analyze that the detection performance of the model is still limited in more
complex situations such as night, rainy days, and heavy fog. How to maximize the robustness of the
model under various conditions and enhance its generalization ability to better adapt to challenging
scenarios in practical applications will be a key research focus in the future.

5. Conclusions

In summary, this paper proposes an object detection based on improved YOLOVSs for vehicle
and pedestrian detection, providing solutions to the shortcomings of traditional YOLOvSs object
detection. The main conclusions are as follows:

(1) Introducing the WEPSA module into the backbone network of YOLOVS5s effectively enhances
the model’s feature extraction capability and suppresses interference from irrelevant target information
in complex backgrounds.

(2) The adoption of the CBiFPN feature fusion module optimizes the fusion of multi-scale
information in feature maps, significantly improving the algorithm’s detection performance.
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(3) Using EloU as the bounding box regression loss function greatly accelerates model
convergence and improves localization accuracy.

(4) Compared to current state-of-the-art algorithms, the proposed algorithm continues to
demonstrate outstanding overall detection performance.

The proposed algorithm exhibits strong versatility, achieving average precision mAP values of
92.8%, 53.5%, and 88.7% on the KITTI dataset, the Cityscapes dataset, and on a self-built dataset,
respectively. The improved model shows significant enhancement in detection accuracy on each
dataset. In the future, the model will be deployed on mobile devices for real-time road object detection,
and the proposed algorithm will be continuously refined in practical applications.
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