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Abstract: We study an extension of the stochastic SIS (Susceptible-Infectious-Susceptible) model in
continuous time that accounts for variation amongst individuals. By examining its limiting behaviour
as the population size grows we are able to exhibit conditions for the infection to become endemic.

Keywords: Epidemics; Markov processes; SIS Model; limit theorems; quasi stationarity

1. Introduction

The SIS (Susceptible-Infectious-Susceptible) Model was introduced by Weiss and Dishon [1] to
study infections in a closed population of n individuals, infections that do not confer any long lasting
immunity (gonorrhea, or the common cold, for example). If Y(t) is the number of infectives at time t,
then (Y(t), t ≥ 0) is a continuous-time Markov chain taking values in {0, 1, . . . , n} with transitions

Y → Y + 1 at rate
λ

n
Y(n − Y) (infection)

Y → Y − 1 at rate µY (recovery).

The large-n behaviour of this model is well understood, because the proportion of infectives Y(t)/n
obeys the following law of large numbers, which is an application of Theorem 3.1 of [2]; to the best of
my knowledge, this result has not been stated explicitly elsewhere.

Theorem 1. If Y(0)/n → y0 as n → ∞, then (Y(t)/n) converges in probability, uniformly over finite
time intervals, to the solution of the ODE

dy
dt

= λy(1 − ρ − y), (1.1)

where ρ = µ/λ, namely

y(t) =
(1 − ρ)y0

y0 + (1 − ρ − y0)e−λ(1−ρ)t , y(0) = y0.
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We see immediately that if λ > µ then (1.1) has a globally stable equilibrium at y∗ = 1 − ρ, while if
λ < µ the disease-free state 0 is globally stable. The two behaviours are illustrated in Figure 1: quasi
stationarity (the infection becomes endemic) versus evanescence (the infection dies out). Notice how
the sample paths of the process (Y(t)/n) (blue) “track” the limiting deterministic path y(t) (green).
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Figure 1. Simulation of the SIS model with n = 50 individuals, and with infection and
recovery rates (a) λ = 10, µ = 2 (ρ < 1, y∗ = 0.8), and (b) λ = 2, µ = 10 (ρ > 1).

Several elaborations of the basic SIS model have been proposed where the assumption of homo-
geneity among individuals is relaxed. Perhaps the most is extensive is the study of epidemics where
transmission occurs within households [3–8]. Another [9] assumes that individuals encounter one
another in a communal meeting place. We incorporate heterogeneity by assuming that individuals
have their own, possibly different, infection and recovery rates. In particular, we assume that individ-
ual i (i = 1, . . . , n) has an exponentially distributed recovery period with mean µ−1

i and a resistance
level λ−1

i (both finite). Let X(n)
i be 1 or 0 according to whether individual i is infected or not, and let

X(n) = (X(n)

1 , . . . , X
(n)
n ) be the state of the population. Suppose that (X(n)(t), t ≥ 0) is a continuous-time

Markov chain taking values in {0, 1}n with transitions

(. . . , 0, . . . )→ (. . . , 1, . . . ) at rate λiX̄(n) (1.2)
(. . . , 1, . . . )→ (. . . , 0, . . . ) at rate µi,

↑ ↑

Position i (i = 1, . . . , n)

where X̄(n) = 1
n

∑n
j=1 X(n)

j is the proportion of the population that is infected. So we assume here that each
infected individual makes the same contribution to the infection potential of the group of infectives.
The model in described in [9] has µi = 0 and λi to be interpreted as the proportion of time individual i
spends in the communal meeting place. Daley et al. [13] also consider the case where µi = 0 for all i
and study the mean duration of the epidemic.

Notice that the disease free state 0 = (0, 0, . . . , 0) is the sole absorbing state and, since (λi) and (µi)
are strictly positive, the remaining states form a communicating class from which 0 is accessible, and
indeed reached with probability 1. None-the-less, the process may exhibit quasi stationarity. By inves-
tigating the large-n behaviour of the model, we can determine conditions for such a quasi equilibrium
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to be achieved. We will see that accounting for variation amongst individuals can lead to different
conclusions about equilibrium behaviour to those reached for the standard SIS model. Several exam-
ples are given to show a range of behaviour. For example, the model presented here may predict quasi
stationarity in cases where the standard model predicts evanescence.

2. Large-n behaviour

Because the population is now heterogeneous, a quite different approach is needed. We will follow
McVinish and Pollett [10], who considered a setup that also encapsulates metapopulation models, and
other population models. Think of the individual characteristics θi := (λi, µi) as (random) points in a
subset S of R2

+, and define sequences of random measures (σ(n)) and random-measure-valued processes
(m(n)

t , t ≥ 0) by

σ(n)(B) = #{θi ∈ B}/n and m(n)
t (B) = #{θi ∈ B : X(n)

i,t = 1}/n,

where B is any Borel subset of S . We will suppose that σ(n) d
→ σ (weak convergence) for some non-

random (probability) measure σ, and then hope to establish that m(n)
t

d
→ m(n) , so that properties of X(n)

t

can be approximated for large n. In particular, if the individual characteristics were chosen from some

non-negative bivariate distribution, then σ(n) d
→ σ would follow as a consequence of the law of large

numbers.
The sequences (σ(n)) and (m(n)

t ) may be defined, equivalently, by∫
h(θ)σ(n)(dθ) =

1
n

n∑
i=1

h(θi) and
∫

h(θ)m(n)
t (dθ) =

1
n

n∑
i=1

X(n)

i,t h(θi), (2.1)

for h in Cb(S ), the class of bounded continuous functions that map S to R. For example if (h ≡ 1) then
m(n)

t (S ) =
∫

m(n)
t (dθ) = 1

n

∑n
i=1 X(n)

i,t , the proportion of population that is infected at time t.
Our main result is a consequence of Theorem 1 of [10].

Theorem 2. Suppose thatσ(n) d
→ σ and m(n)

0

d
→ m0 for some non-random measuresσ and m0 . Then, the

sequence of measure-valued processes (m(n)
t , t ≥ 0) converges weakly to the unique solution (mt, t ≥ 0)

of

(h,mt) = (h,m0 ) +

∫ t

0
L(h,ms) ds, h ∈ Cb(S ), (2.2)

where (notation) (h,m) =
∫

h(θ)m(dθ), and

L(h,mt) := mt(S )
(∫

λh(θ)σ(dθ) −
∫

λh(θ)mt(dθ)
)
−

∫
µh(θ)mt(dθ).

Lemma 5 of [10] implies that mt(B) ≤ σ(B), for all Borel sets B, and in particular that mt is absolutely
continuous with respect to σ. It follows that mt has a (uniquely determined σ-a.e.) Radon-Nikodym
derivative φt (≥ 0) with respect to σ: mt(B) =

∫
B
φt(θ)σ(dθ). And further it implies that φt ≤ 1.

Now we may differentiate both sides of (2.2) with respect to σ to show that φt(λ, µ) must satisfy

φt = φ0 +

∫ t

0

(
λ(1 − φs)

∫
φs(θ)σ(dθ) − µφs

)
ds,
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or equivalently,
dφ
dt

= λ(1 − φt)
∫

φt(θ)σ(dθ) − µφt. (2.3)

Note that φt(θ) can be interpreted as the limiting probability that an individual with characteristics
θ = (λ, µ) is infected at time t.

3. Long-term behaviour

Equation (2.3) can be used to study the long-term (t → ∞) behaviour of our model. For ex-
ample, any equilibrium φeq of (2.3) must satisfy 0 = λ(1 − φeq)

∫
φeq(θ)σ(dθ) − µφeq. On setting

ψ =
∫
φeq(θ)σ(dθ), we see that

φeq(λ, µ) ( = φeq(θ) ) =
λψ

λψ + µ
,

and so, on integrating this over (λ, µ) ∈ S , we find that ψ must solve the equation

ψ = R(ψ) :=
∫

λψ

λψ + µ
σ(dλ, dµ). (3.1)

The following result characterizes the large-n equilibrium behaviour of our model in terms of r0 :=
R ′(0+) (≤ ∞). It follows from Theorems 2, 3 and 4 of [10], noting that their Condition D ′ holds in the
present setting. Note also that since the integrand in (3.1) is less that 1, and σ is a probability measure,
we can differentiate under the integral to obtain

R ′(ψ) =

∫
λµ

(λψ + µ)2 σ(dλ, dµ),

which implies that r0 =
∫

(λ/µ)σ(dλ, dµ).

Theorem 3. (a) If r0 ≤ 1, then ψ = 0 is the only fixed point of R, and φeq = 0 is globally stable, that
is, for all φ0 , φt → 0 on S . The latter entails mt(B) → 0, for all B, and hence the disease free state is
globally stable.

(b) If r0 > 1, then R has two fixed points, 0 and a positive fixed point ψ∗, and if (m0(S ) =) (φ0 , σ) > 0,
then

φt → φ∗ :=
λψ∗

λψ∗ + µ
.

The latter entails mt(B)→ m∗(B), for all B, where

m∗(B) =

∫
B
φ∗(θ)σ(dθ) =

∫
B

λψ∗
λψ∗ + µ

σ(dλ, dµ),

in particular m∗(S ) = ψ∗, thus implying quasi stationarity.

Example 1. Suppose that the individual characteristics are chosen independently from Γ(aλ, rλ) and
Γ(aµ, rµ) distributions, respectively. Notation: rλ and rµ are rate parameters. We have that

r0 =
aλ
rλ
·

rµ
aµ − 1

.
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Figure 2 illustrates (a) quasi-stationary behaviour, and (b) evanescence. In (a), the green line is at
ψ∗ = 0.8035, very close to 0.8 (dashed red), which is the equilibrium of the homogeneous model using
λ = 10 and µ = 2. Figure 3 also illustrates quasi-stationary behaviour, now with ψ∗ = 0.2435, but
the corresponding homogeneous model (λ = 1.4 and µ = 1.5) predicts evanescence. This disparity
between the two models happens when

aµ − 1
rµ

<
aλ
rλ
<

aµ
rµ
.

Note that ψ∗ was evaluated by way of fixed point iteration of (3.1) using Matlab’s integral2, which
evaluates double integrals numerically.
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Figure 2. Simulation of the SIS model with n = 50 individuals, and with independent
Gamma distributed infection and recovery rates.
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Figure 3. Simulation of the SIS model with n = 50 individuals, and with independent
Gamma distributed infection and recovery rates.

Example 2. Suppose that the individual characteristics are chosen from a bivariate Gamma distribution
of the form given in Theorem 2 of [11]. The marginals are Gamma distributions with a common
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rate parameter, which we denote by r, and shape parameters aλ and aµ, respectively, and correlation
ρ =
√aλaµ/c, where c > 0. Using the representation Eq.3 on Page 768 of [11], we find that

r0 =
aλ
r
·

r
aµ − 1

=
aλ

aµ − 1
.

The simplest case has r = 1, and bλ = bµ = 1 (which necessitates aλ = aµ = c − 1, and c > 1), and
σ(dλ, dµ) = f (λ, µ) dλ dµ, with

f (x, y) =

C(xy)c−2Γ(2 − c, x) if y ≤ x

C(xy)c−2Γ(2 − c, y) if y > x,

where C−1 = Γ(c)/(c − 1)2, and Γ(a, x) =
∫ ∞

x
ta−1e−t dt is the complementary incomplete gamma

function. Figure 4 illustrates quasi-stationary behaviour with ψ∗ = 0.1941, noting the corresponding
homogeneous model (λ = µ = 1.5) predicts evanescence.
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Figure 4. Simulation of the SIS model with n = 50 individuals, and with positively correlated
(ρ = 0.6) Gamma distributed infection and recovery rates.

4. Moments

We can get a handle on various statistics associated with the process by way of the moment gener-
ating function (MGF) of mt:

Mt(a, b) =

∫
eaλ+bµmt(dλ, dµ),

which will be defined for (a, b) in a region containing the origin. On setting h(θ) (= h(λ, µ)) = exp(aλ+

bµ) in (2.2) we obtain an integral equation for Mt:

Mt(a, b) = M0(a, b) +

∫ t

0

(
ms(S )

(
∂

∂a
Σ(a, b) −

∂

∂a
Ms(a, b)

)
−
∂

∂b
Ms(a, b)

)
ds,
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where Σ(a, b) =
∫

eaλ+bµσ(dλ, dµ) is the MGF of σ. This can be differentiated to obtain the PDE

∂

∂t
Mt(a, b) + Mt(0, 0)

∂

∂a
Mt(a, b) +

∂

∂b
Mt(a, b) = Mt(0, 0)Φ(a, b), (4.1)

where
Φ(a, b) =

∂

∂a
Σ(a, b) =

∫
λ eaλ+bµσ(dλ, dµ).

On setting (∂/∂t)Mt(a, b) = 0, we see that any equilibrium Meq of (4.1) must satisfy

ψ
∂

∂a
Meq(a, b) +

∂

∂b
Meq(a, b) = ψΦ(a, b), (4.2)

where ψ = Meq(0, 0). This PDE is easily solved using the method of characteristics. We find that

Meq(a, b) = Meq(0, 0) +

∫
ψλ

µ + ψλ
(eaλ+bµ − 1)σ(dλ, dµ).

Under the conditions of Theorem 3 (b), namely that r0 > 1 and (m0(S ) =) (φ0 , σ) > 0, we will have
that Mt(a, b)→ Meq(a, b), Meq being the MGF of m∗:

Meq(a, b) =

∫
eaλ+bµm∗(dλ, dµ).

We will necessarily have Meq(0, 0) = ψ∗, and, since R(ψ∗) = ψ∗,

Meq(a, b) =

∫
ψ∗λ

µ + ψ∗λ
eaλ+bµσ(dλ, dµ).

Example 3. Suppose that the individual characteristics are chosen from independent exponential distri-
butions with rate parameters l and m: σ(dλ, dµ) = le−lλ me−mµ dλ dµ. With this choice we can perform
some explicit calculations. For example,

R(ψ) =


ρψ

(ρ−ψ)2 log
(
ρ

ψ

)
−

ψ

ρ−ψ
if 0 < ψ , ρ

1
2 if 0 < ψ = ρ

0 if ψ = 0,

where ρ = l/m. Therefore,

R ′(ψ) =

ρ(ρ+ψ)
(ρ−ψ)3 log

(
ρ

ψ

)
−

2ρ
(ρ−ψ)2 if 0 < ψ , ρ

1
6ρ if 0 < ψ = ρ.

So, we have R ′(0+) = ∞. This implies a stable equilibrium. In particular, R has two fixed points, 0
and a positive fixed point ψ∗. Again, a simple calculation yields

Meq(a, b) =
lmψ∗

(l − a − ψ∗(m − b))2 log
(

l − a
ψ∗(m − b)

)
−

lmψ∗
(l − a)(l − a − ψ∗(m − b))

, a < l, b < m.
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Notice that Meq(0, 0) = R(ψ∗) = ψ∗. For example,∫
µm∗(dλ, dµ) =

∂Meq

∂b
(0, 0) =

ψ∗(l + mψ∗)
(l − mψ∗)2 −

2lmψ2
∗

(l − mψ∗)3 log
(

l
mψ∗

)
,

a quantity which approximates the large-n long-term behaviour of (refer to (2.1))∫
µm(n)

t (dλ, dµ) =
1
n

n∑
i=1

µiX
(n)

i,t , (4.3)

being the average recovery rate of infected individuals. This is illustrated in Figure 5, where the average
recovery rate of infected individuals (cyan) is plotted along with the value of (4.3) (yellow).

0 5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4
0

0.5

1

0 1 2
0

1

2

Figure 5. Simulation of the SIS model with n = 50 individuals, and with independent
exponentially distributed infection and recovery rates.

5. Conclusion

We have presented a model for an SIS infection that incorporates variation of individual character-
istics. By imagining that these characteristics follow a point process on a subset of R2

+, we are able to
exploit existing results on random measures, and random measure-valued processes, to obtain large-
population limits, and then predict long-term behaviour. These results provide a means of studying
various statistics associated with the process, including the proportion of individuals infected. Several
examples demonstrate a range of behaviour that cannot be gleaned from the standard stochastic SIS
model based on mean values of the characteristics. Explicit results on the moment generating function
of the (large-n) limiting process allow us to estimate additional quantities such as the average infection
rates and average recovery rates.

The methods described here do not provide explicit results on the quality of the approximations
presented, and in particular how large n would need to be for our approximations to be faithful. It might
be possible to adapt the results in Chapter 4 of [12], based on their discrete-time counterparts [13], to
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provide explicit rates of convergence by attempting to bound weighted sums of differences:

1
n

n∑
i=1

h(θi)|X
(n)

i,t − pi,t|,

where pt = (pi,t, i = 1 . . . n) is some suitable deterministic law of motion; this is the subject of ongoing
research. A simple extension to the model presented would be to replace the upward transition rate in
(1.2) by a + λiX̄(n) , where a > 0, thus incorporating an external source of infection as in [14]. Now the
disease-free state 0 would no longer be an absorbing state, but the methods employed here could be
brought to bear, thus providing a means of estimating equilibrium behaviour.
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