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Abstract: A new network-based SIR epidemic model with saturated incidence rate and nonlinear
recovery rate is proposed. We adopt an edge-compartmental approach to rewrite the system as a degree-
edge-mixed model. The explicit formula of the basic reproduction number R0 is obtained by renewal
equation and Laplace transformation. We find that R0 < 1 is not enough to ensure global asymptotic
stability of the disease-free equilibrium, and when R0 > 1, the system can exist multiple endemic
equilibria. When the number of hospital beds is small enough, the system will undergo backward
bifurcation at R0 = 1. Moreover, it is proved that the stability of feasible endemic equilibrium is
determined by signs of tangent slopes of the epidemic curve. Finally, the theoretical results are verified
by numerical simulations. This study suggests that maintaining sufficient hospital beds is crucial for
the control of infectious diseases.

Keywords: edge-compartmental approach; network; SIR model; backward bifurcation; saturated
incidence rate; nonlinear recovery rate

1. Introduction

In the modeling of infectious diseases, incidence rate and recovery rate are two important factors
that affect the dynamical behavior of the models. The bilinear incidence rate βS I are frequently used
to describe the epidemic transmission process, where β is the transmission rate, S and I represent the
numbers of susceptible and infective respectively. But, it is unrealistic when the number of infective
individuals is large. To study the cholera epidemic spread in Bari in 1973, Capasso and Serio [1]
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proposed a saturated incidence rate:

βS I
1 + αI

, (1.1)

where βI describes the infection force of the disease, 1
1+αI measures the inhibition effect from the

behavioral change of the susceptible individuals as the number of infected gradually increases.
In classical epidemic models, the recovery rate is usually assumed to be proportional to the number

of infected, which means that medical resources are plentiful for the infectious diseases [2]. In fact,
when diseases break out, medical resources tend to be scarce [3–5]. In order to study the influence of
hospital beds on infectious diseases, the following nonlinear recovery rate function [5] is proposed by
Shan and Zhu:

γ(b, I) = γ0 +
b(γ1 − γ0)

b + I
, (1.2)

where γ0 and γ1 are the minimum and maximum per-capita recovery rates respectively, b denotes the
number of hospital beds. An SIR model with (1.2) is studied, and it is found that backward
bifurcation, saddle-node bifurcation, Hopf bifurcation and cusp type of Bogdanov-Takens bifurcation
of codimension 3 will happen with different values of b [5].

Cui et al. studied an SIR epidemic model (system (1.3)) with saturate incidence rate and nonlinear
recovery rate [6]. It is proved that when the number of hospital beds is small enough, system (1.3) can
take place backward bifurcation, saddle-node bifurcation and Hopf bifurcation.

S ′(t) =Λ −
βS I

1 + αI
− µS ,

I′(t) =
βS I

1 + αI
− µI − ϵI − γ(b, I)I,

R′(t) =γ(b, I)I − µR,

(1.3)

where S (t), I(t),R(t) are the numbers of susceptible, infected, recovered at time t respectively, γ(b, I)
is defined in (1.2). Besides, Λ is the birth rate; the interpretations of β and α are the same as in [1]; µ
denotes the natural death rate; ϵ represents the disease-induced death rate.

To describe the heterogeneity of contact, complex networks are therefore incorporated into the
epidemic models. Li and Yousef studied a network-based SIR epidemic model with saturated
treatment function [7]. Huang and Li studied the complex dynamical properties of a network-based
SIS epidemic model with saturated treatment function [8]. A condition which can determine the
direction of bifurcation at R0 = 1 is derived in [7, 8]. Wang and Yang [9] employed an
edge-compartmental approach which can reduce the dimension of a mean-field vector-borne model to
research the global dynamics of the system. Wang and Yang [10] proposed a degree-edge-mixed SIS
model and used a novel geometric method to completely investigate the stability of feasible
equilibrium. Based on the SIR model [7], Yang et al. adopted the edge-compartmental approach to
prove the existence of backward bifurcation and deeply analyzed the local stability of each endemic
equilibrium [11].

To our knowledge, few people combined saturated incidence rate and nonlinear recovery rate to
discuss the dynamics of network-based epidemic models. So the research of this paper is still valuable,
the highlights are summarized as follows:

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5430–5445.



5432

•A new network-based SIR epidemic model is established and then reduced to a degree-edge-mixed
model by an edge-compartmental approach;
• A necessary and sufficient condition which determines the existence of backward bifurcation at

R0 = 1 is derived;
• The stability of the feasible endemic equilibrium is proved by a geometric approach.
We know that time delay exists in the epidemic spreading, Jiang and Zhou [12] studied the influence

of time delay on epidemic spreading under limited resources. They found that time delay can induce
first-order, continuous and hybrid phases and a small resources amount can effectively control the
spread of infectious diseases if the delay exceeds a threshold. The stability of nonlinear systems with
time delay has been studied in the literature [13–17]. Yang et al. obtained the existence of a positive
periodic solution for neutral-type integral differential equation arising in epidemic model with time-
varying delay [18]. Of course, we do not consider the delay factor in our paper, which will be a worthy
of attention and research work.

The structure of this paper is as follows. In Section 2, a new SIR epidemic model is proposed on
complex networks. Besides, the dimension of the system is reduced by the edge-compartmental
method. In Section 3, the existence and stability of the disease-free equilibrium and endemic
equilibrium are studied. The results of numerical simulations are given in Section 4. Lastly,
conclusions and discussions are presented in Section 5.

2. Model description

In this section, we extend model (1.3) to the network. Furthermore, disease-induced death rate is not
considered and the susceptible individuals will not be infected once vaccinated. The other parameters
are exactly the same as in system (1.3) and we show the interpretation of the parameters in Table 1 for
better visualization. All the nodes are classified into n groups and the nodes in the same group have
the same degree. Suppose that S k(t), Ik(t),Rk(t) be the densities of susceptible, infected, recovered with
degree k at time t respectively. So, the specific mean-field equations of network-based SIR model are
as follows:

S ′k(t) =Λ −
βkS k(t)θ(t)
1 + αθ(t)

− µS k(t) − ηS k(t),

I′k(t) =
βkS k(t)θ(t)
1 + αθ(t)

− µIk(t) −
(
γ0 +

b(γ1 − γ0)
b + θ(t)

)
Ik(t),

R′k(t) =
(
γ0 +

b(γ1 − γ0)
b + θ(t)

)
Ik(t) − µRk(t) + ηS k(t),

(2.1)

with θ(t) is the probability that any given edge is connected to an infected node, assume the network is
uncorrelated, then

θ(t) =
1
⟨k⟩

n∑
k=1

kp(k)Ik(t),

where p(k) is the probability that a node is connected to k other nodes and ⟨k⟩ =
n∑

k=1
kp(k) denotes the

mean degree of the network. It is supposed that newborns are balanced by deaths, that is Λ = µ.
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Inspired by the edge-compartmental method [9–11], we can rewrite system (2.1) as the following
degree-edge-mixed model:

S ′k(t) =µ −
βkS k(t)θ(t)
1 + αθ(t)

− µS k(t) − ηS k(t),

θ′(t) =
β

⟨k⟩
θ(t)

1 + αθ(t)

n∑
k=1

k2 p(k)S k(t) − µθ(t) −
(
γ0 +

b(γ1 − γ0)
b + θ(t)

)
θ(t).

(2.2)

Remark 1. The dimension of degree-edge-mixed model (2.2) is much lower than system (2.1). So the
process of analysis presented in this paper will be relatively concise.

Table 1. Definition of parameters.

Parameter Definition

µ The birth rate / The death rate
β Transmission rate of infected individuals
α The saturated coefficient
b The number of hospital beds
γ0 The minimum per-capita recovery rate
γ1 The maximum per-capita recovery rate
η Proportion that has been vaccinated

Lemma 1. If θ(0) > 0, S k(0) > 0, then for all k ∈ N and t ∈ R+, we have S k(t) > 0, θ(t) > 0.
Proof. Firstly, we prove that θ(t) > 0 for all t > 0. From the (n+1)th equation of system (2.2), we have

θ(t) = θ(0)e
∫ t

0 z(τ)dτ, z(t) = β

⟨k⟩(1+αθ(t))

n∑
k=1

k2 p(k)S k(t) − µ − γ0 −
b(γ1−γ0)

b+θ(t) . Since θ(0) > 0, we can deduce

θ(t) > 0 for all t > 0.
Note that S k(0) > 0, in view of the continuity of S k(t), we can find a small δ > 0, such that S k(t) > 0

for t ∈ (0, δ). Now we demonstrate that S k(t) > 0 for all t > 0. If not, we may assume that there exists
t0 ≥ δ > 0, s.t. S k(t0) = 0 and S k(t) > 0 for t ∈ (0, t0). Thus, from the first n equation of system
(2.2), we can obtain S ′k(t0) = µ > 0. This leads to S k(t) < 0 for some t ∈ (0, t0), which is apparently a
contradiction. Therefore, S k(t) > 0 for all t > 0.
Remark 2. From the result of Lemma 1 and the fact S k(t) + Ik(t) + Rk(t) = 1, we can assert that
Ω := {(S 1, S 2, · · · , S n, θ) | 0 < S k(t) ≤ 1, 0 ≤ θ(t) < 1} is a positive invariant set of system (2.2).

3. Existence and stability of equilibrium

System (2.2) has a unique disease-free equilibrium given by E0 = ( µ
µ+η
, µ
µ+η
, · · · , µ

µ+η
, 0) ∈ Rn+1.

Linearizing the (n + 1)th equation of system (2.2) at E0 yields

θ′(t) =
( βµ⟨k2⟩

(µ + η)⟨k⟩
− µ − γ1

)
θ(t). (3.1)

Solving Eq (3.1) by a constant variation method, we can build the following equation:

θ(t) = θ(0)e−(µ+γ1)t +
βµ⟨k2⟩

(µ + η)⟨k⟩

∫ t

0
e(µ+γ1)(s−t)θ(s)ds.
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Using the approach introduced in [19], we can calculate the basic reproduction number R0 by taking
Laplace transform:

R0 =
βµ⟨k2⟩

(µ + η)⟨k⟩

∫ +∞

0
e−(µ+γ1)tdt =

βµ⟨k2⟩

(µ + η)(µ + γ1)⟨k⟩
,

where ⟨k2⟩ =
n∑

k=1
k2 p(k).

3.1. Stability of the disease-free equilibrium

The local and global stability of the disease-free equilibrium E0 will be proved in this subsection.
Theorem 1. If R0 < 1, the disease-free equilibrium E0 of system (2.2) is locally asymptotically stable,
whereas if R0 > 1, E0 is unstable.
Proof. Linearizing system (2.2) at E0 yields to

S ′k(t) =(−µ − η)S k(t) −
βkµ
µ + η

θ(t),

θ′(t) =
( βµ⟨k2⟩

(µ + η)⟨k⟩
− µ − γ1

)
θ(t).

(3.2)

Furthermore, the Jacobian matrix of Eq (3.2) is

J(E0) =



−µ − η 0 · · · 0 −βµ

µ+η

0 −µ − η · · · 0 −2βµ
µ+η

...
...

. . .
...

...

0 0 · · · −µ − η −nβµ
µ+η

0 0 · · · 0 βµ⟨k2⟩

(µ+η)⟨k⟩ − µ − γ1


(n+1)×(n+1)

.

Obviously, λ = −(µ + η) is n-multiple negative eigenvalue. So, the stability of E0 is determined by the
following eigenvalue:

λ =
βµ⟨k2⟩

(µ + η)⟨k⟩
− µ − γ1 = (µ + γ1)(R0 − 1).

Therefore, all eigenvalues of the Jacobian matrix J(E0) are negative when R0 < 1, and hence, E0 is
locally asymptotically stable. By contrast, if R0 > 1, E0 is unstable.

Next, we will prove the global stability of the disease-free equilibrium E0.
Theorem 2. Denote R̂0 =

β(b+1)⟨k2⟩

(µ+bµ+γ0+bγ1)⟨k⟩ , if R̂0 ≤ 1, then E0 is globally asymptotically stable.
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Proof. Let a Lyapunov function V(t) = θ(t), then

V ′(t) =
βθ(t)

⟨k⟩
(
1 + αθ(t)

) n∑
k=1

k2 p(k)S k(t) − µθ(t) −
(
γ0 +

b(γ1 − γ0)
b + θ(t)

)
θ(t)

≤
β⟨k2⟩

⟨k⟩
θ(t) − µθ(t) −

(
γ0 +

b(γ1 − γ0)
b + θ(t)

)
θ(t)

=
[β⟨k2⟩

⟨k⟩
− µ − γ0 −

b(γ1 − γ0)
b + 1

−
b(γ1 − γ0)

(
1 − θ(t)

)
(b + 1)

(
b + θ(t)

) ]θ(t)
≤
[
β
⟨k2⟩

⟨k⟩
− µ − γ0 −

b(γ1 − γ0)
b + 1

]
θ(t)

=
[
µ + γ0 +

b(γ1 − γ0)
b + 1

]
(R̂0 − 1)θ(t),

if R̂0 < 1, V ′(t) ≤ 0; if R̂0 = 1, then V ′(t) ≤ − b(γ1−γ0)(1−θ(t))
(b+1)(b+θ(t)) θ(t) ≤ 0. The equality holds if and only if

θ(t) = 0. Hence, we can conclude that the disease-free equilibrium E0 is globally asymptotically stable
if R̂0 ≤ 1.
Remark 3. Because γ0 < γ1, so R0 =

µ(µ+bµ+γ0+bγ1)
(µ+η)(µ+bµ+γ1+bγ1) R̂0 < R̂0.

Remark 4. If R̂0 < 1, that is R0 <
µ(µ+bµ+γ0+bγ1)

(µ+η)(µ+bµ+γ1+bγ1) < 1, then E0 is globally asymptotically stable.
Remark 5. It seems that the condition R0 < 1 is not sufficient to ensure the global asymptotic stability
of E0. So system (2.2) may exist backward bifurcation at R0 = 1 which will be proved later.

3.2. Existence of endemic equilibrium

The existence of feasible positive equilibrium will be proved in this subsection.
Theorem 3. If R0 > 1, system (2.2) admits at least an endemic equilibrium.
Proof. Assume that E∗ = (S ∗k, θ

∗), k = 1, 2, . . . , n, is an endemic equilibrium of system (2.2), then E∗

should satisfy

0 =µ −
βkS ∗kθ

∗

1 + αθ∗
− µS ∗k − ηS

∗
k,

0 =
βθ∗

⟨k⟩(1 + αθ∗)

n∑
k=1

k2 p(k)S ∗k − µθ
∗ −
(
γ0 +

b(γ1 − γ0)
b + θ∗

)
θ∗.

(3.3)

Then we can obtain S ∗k =
µ(1+αθ∗)

βkθ∗+(µ+η)(1+αθ∗) , k = 1, 2, . . . , n. Substituting S ∗k into the (n + 1)th equation of
(3.3), then we can get a self-consistency equation:

F(θ∗) := µ + γ0 +
b(γ1 − γ0)

b + θ∗
−
β

⟨k⟩

n∑
k=1

k2 p(k)
µ

βkθ∗ + (µ + η)(1 + αθ∗)
= 0. (3.4)

Since R0 > 1, F(0) < 0, F(1) > 0, using the Immediate Value Theorem, we can conclude that Eq
(3.4) has at least one positive root in (0, 1). This implies that system (2.2) admits at least an endemic
equilibrium.
Remark 6. If R0 ≤ 1, then F(0) ≥ 0, F(1) > 0, we can not conclude whether system (2.2) exists
endemic equilibrium by the method of the Immediate Value Theorem. However, we already know
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that E0 is not globally asymptotically stable, so system (2.2) may also exist endemic equilibrium when
R0 ≤ 1. In other words, the system may take place backward bifurcation at R0 = 1 which will be
proved in Theorem 4.

Next, we will derive a necessary and sufficient condition which determines the existence of
backward bifurcation at R0 = 1.
Theorem 4. System (2.2) exists backward bifurcation at R0 = 1 if and only if b < b̂; the system
undergoes forward bifurcation if and only if b > b̂, where

b̂ =
µ(γ1 − γ0)⟨k2⟩

2

(µ + γ1)[µα⟨k2⟩
2
+ (µ + γ1)⟨k⟩⟨k3⟩]

, ⟨k3⟩ =

n∑
k=1

k3 p(k).

Proof. The endemic equilibrium should satisfy Eq (3.4). Replacing β by (µ+η)(µ+γ1)⟨k⟩R0
µ⟨k2⟩

and we can
obtain the following equation:

µ + γ0 +
b(γ1 − γ0)

b + θ∗
− (µ + η)(µ + γ1)R0

n∑
k=1

k2 p(k)
µ

Q0
= 0, (3.5)

where Q0 = (µ + η)(µ + γ1)⟨k⟩kθ∗R0 + (µ + η)(1 + αθ∗)µ⟨k2⟩.

If we keep in mind that θ∗ is a function of R0, then the direction of bifurcation is depended on the
sign of ∂θ

∗

∂R0

∣∣∣
(R0,θ∗)=(1,0)

. More exactly, if ∂θ
∗

∂R0

∣∣∣
(R0,θ∗)=(1,0)

< 0, then backward bifurcation occurs at R0 = 1.
Conversely, the forward bifurcation happens.

Next, taking the derivative of Eq (3.5) associated with R0 by the implicit function theorem, then
yields to the following equation:

−b(γ1 − γ0) ∂θ
∗

∂R0

(b + θ∗)2 + (µ + η)(µ + γ1)
[ n∑

k=1

k2 p(k)(R0Q1 − µQ0)
Q2

0

]
= 0, (3.6)

where Q1 = µ(µ + η)
[
(µ + γ1)⟨k⟩kθ∗ + (µ + γ1)⟨k⟩k ∂θ

∗

∂R0
R0 + µα⟨k2⟩ ∂θ

∗

∂R0

]
.

Substituting (R0, θ
∗) = (1, 0) into Eq (3.6), we can obtain the following equation by simple

calculation and arrangement:

∂θ∗

∂R0

∣∣∣∣
(R0,θ∗)=(1,0)

=
bµ(µ + γ1)⟨k2⟩

2

b(µ + γ1)2⟨k⟩⟨k3⟩ + bµα(µ + γ1)⟨k2⟩
2
− µ(γ1 − γ0)⟨k2⟩

2 .

Thus if
∂θ∗

∂R0

∣∣∣∣
(R0,θ∗)=(1,0)

< 0⇔ b <
µ(γ1 − γ0)⟨k2⟩

2

(µ + γ1)[µα⟨k2⟩
2
+ (µ + γ1)⟨k⟩⟨k3⟩]

.

The same holds true also for the other proposition.
Remark 7. It is a fact that the number of hospital beds does play a key role in determining whether
there is a backward bifurcation at R0 = 1. More precisely, if b is small enough to satisfy the result of
Theorem 4, backward bifurcation will occur. In this case, there will also exist endemic equilibrium
even if R0 < 1 (see Figure 2(b)). That is to say, R0 < 1 is not sufficient to eradicate the diseases from
the population, which is unfavorable to the control of infectious diseases.
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Otherwise, when b is big enough, forward bifurcation will take place at R0 = 1. In this case, E0 will
be globally asymptotically stable when R0 < 1. This also shows the existence of the threshold for the
number of hospital beds. When the relevant departments provide enough hospital beds such that b > b̂,
infectious diseases can be completely eliminated if R0 < 1.

From the above discussions, we can summarize the following results.
Corollary 1. For system (2.2),
(1) if R0 < 1 and

(a) b < b̂, there exists two endemic equilibria;
(b) b > b̂, there is no endemic equilibrium.

(2) when R0 = 1, if b < b̂, then there exists a unique endemic equilibrium; otherwise, there is no
endemic equilibrium.
(3) if R0 > 1, the endemic equilibrium always exist (see Theorem 3) and the number of endemic
equilibrium is associated with the value of b (see Figure 3).

3.3. Stability of endemic equilibrium

In this subsection, we will use a geometric approach to prove the local stability of the endemic
equilibrium. Linearizing system (2.2) at E∗ yields

S ′k(t) =
(
− µ − η −

βkθ∗

1 + αθ∗
)
S k(t) −

βkS ∗k
(1 + αθ∗)2 θ(t),

θ′(t) =
βθ∗

⟨k⟩(1 + αθ∗)

n∑
k=1

k2 p(k)S k(t) +
( β

⟨k⟩(1 + αθ∗)2

n∑
k=1

k2 p(k)S ∗k − µ − γ0 −
b2(γ1 − γ0)
(b + θ∗)2

)
θ(t).

(3.7)

And hence the characteristic equation can be expressed as follows:

(
λ + µ + η +

βkθ∗

1 + αθ∗
)
xk +

βkS ∗k
(1 + αθ∗)2 y = 0,

−
βθ∗

⟨k⟩(1 + αθ∗)

n∑
k=1

k2 p(k)xk +
(
λ + µ + γ0 +

b2(γ1 − γ0)
(b + θ∗)2 −

β

⟨k⟩(1 + αθ∗)2

n∑
k=1

k2 p(k)S ∗k
)
y = 0,

(3.8)

where (xk, y) is the eigenvector that correspond to eigenvalue λ. From the first equation of (3.8), we
can obtain

xk =
−βkS ∗ky

βkθ∗(1 + αθ∗) + (λ + µ + η)(1 + αθ∗)2 , k = 1, 2, . . . , n.

Substituting xk into the second equation of (3.8) leads to

H(λ)y = 0,

where H(λ) = β

⟨k⟩

n∑
k=1

k3 p(k)βS ∗kθ
∗

βkθ∗(1+αθ∗)2+(λ+µ+η)(1+αθ∗)3 + λ + µ + γ0 +
b2(γ1−γ0)

(b+θ∗)2 −
β

⟨k⟩

n∑
k=1

k2 p(k)S ∗k
(1+αθ∗)2 .
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If y = 0, then λ = −µ − η − βkθ∗

1+αθ∗ < 0. Otherwise, when y , 0, then H(λ) = 0. Since

βkS ∗kθ
∗

1 + αθ∗
= µ − µS ∗k − ηS

∗
k,

S ∗k =
µ(1 + αθ∗)

βkθ∗ + (µ + η)(1 + αθ∗)
,

β

⟨k⟩

n∑
k=1

k2 p(k)
S ∗k

1 + αθ∗
= µ + γ0 +

b(γ1 − γ0)
b + θ∗

,

(3.9)

and hence

H(λ) =
β

⟨k⟩

n∑
k=1

k2 p(k)(µ − µS ∗k − ηS
∗
k)

βkθ∗(1 + αθ∗) + (λ + µ + η)(1 + αθ∗)2 + λ +
β

⟨k⟩

n∑
k=1

k2 p(k)S ∗k
1 + αθ∗

−
b(γ1 − γ0)θ∗

(b + θ∗)2 −
β

⟨k⟩

n∑
k=1

k2 p(k)µ
βkθ∗(1 + αθ∗) + (µ + η)(1 + αθ∗)2

=
β

⟨k⟩

n∑
k=1

k2 p(k)(µ − µS ∗k − ηS
∗
k)

βkθ∗(1 + αθ∗) + (λ + µ + η)(1 + αθ∗)2 + λ −
b(γ1 − γ0)θ∗

(b + θ∗)2

+
β

⟨k⟩

n∑
k=1

k2 p(k)µ
βkθ∗ + (µ + η)(1 + αθ∗)

−
β

⟨k⟩

n∑
k=1

k2 p(k)µ
βkθ∗(1 + αθ∗) + (µ + η)(1 + αθ∗)2

=
β

⟨k⟩

n∑
k=1

k2 p(k)(µ − µS ∗k − ηS
∗
k)

βkθ∗(1 + αθ∗) + (λ + µ + η)(1 + αθ∗)2 + λ −
b(γ1 − γ0)θ∗

(b + θ∗)2

+
β

⟨k⟩

n∑
k=1

k2 p(k)µαθ∗

βkθ∗(1 + αθ∗) + (µ + η)(1 + αθ∗)2 .

(3.10)

Besides, taking the derivative of F associated with θ∗, we can have:

F′(θ∗) = −
b(γ1 − γ0)
(b + θ∗)2 +

β

⟨k⟩

n∑
k=1

k2 p(k)
µ
(
βk + (µ + η)α

)(
βkθ∗ + (µ + η)(1 + αθ∗)

)2
=
β

⟨k⟩

n∑
k=1

k2 p(k)
µ
(βkS ∗kθ

∗

1+αθ∗ + (µ + η)α S ∗kθ
∗

1+αθ∗
)(

βkθ∗ + (µ + η)(1 + αθ∗)
)2 S ∗kθ

∗

1+αθ∗

−
b(γ1 − γ0)
(b + θ∗)2

=
β

⟨k⟩

n∑
k=1

k2 p(k)
µ − µS ∗k − ηS

∗
k + (µ + η)α S ∗kθ

∗

1+αθ∗

θ∗
(
βkθ∗ + (µ + η)(1 + αθ∗)

) − b(γ1 − γ0)
(b + θ∗)2

=
β

⟨k⟩

n∑
k=1

k2 p(k)
(µ − µS ∗k − ηS

∗
k)(1 + αθ∗) + (µ + η)αS ∗kθ

∗

θ∗
(
βkθ∗(1 + αθ∗) + (µ + η)(1 + αθ∗)2) − b(γ1 − γ0)

(b + θ∗)2

=
β

⟨k⟩

n∑
k=1

k2 p(k)
µ − µS ∗k − ηS

∗
k + µαθ

∗

θ∗
(
βkθ∗(1 + αθ∗) + (µ + η)(1 + αθ∗)2) − b(γ1 − γ0)

(b + θ∗)2 .

(3.11)

Therefore, we can obtain that

H(0) =
β

⟨k⟩

n∑
k=1

k2 p(k)
µ − µS ∗k − ηS

∗
k + µαθ

∗

βkθ∗(1 + αθ∗) + (µ + η)(1 + αθ∗)2 −
b(γ1 − γ0)θ∗

(b + θ∗)2 = θ∗F′(θ∗). (3.12)
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Theorem 5.When F′(θ∗) < 0, then E∗ is unstable; when F′(θ∗) > 0, then E∗ is locally asymptotically
stable.
Proof. When F′(θ∗) < 0, since H(0) = θ∗F′(θ∗) < 0, lim

λ→+∞
H(λ) = +∞, by the Intermediate Value

Theorem, we can conclude that the equation H(λ) = 0 has at least one positive real solution, so E∗ is
unstable.

When F′(θ∗) > 0, we rewrite the equation H(λ) = 0 as the following equation:

Ĥ(λ) =
β

⟨k⟩

n∑
k=1

k2 p(k)(µ − µS ∗k − ηS
∗
k)

n∏
i,k

L(λ, i, θ∗)

+
β

⟨k⟩

n∑
k=1

k2 p(k)
µαθ∗

βkθ∗(1 + αθ∗) + (µ + η)(1 + αθ∗)2

n∏
k=1

L(λ, k, θ∗)

+
(
λ −

b(γ1 − γ0)θ∗

(b + θ∗)2

) n∏
k=1

L(λ, k, θ∗) = 0,

(3.13)

where L(λ, k, θ∗) = βkθ∗(1 + αθ∗) + (λ + µ + η)(1 + αθ∗)2. Suppose Eq (3.13) has a solution λ∗ with
Reλ∗ ≥ 0, then since

|Ĥ(λ∗)| ≥ Ĥ(Reλ∗) ≥ Ĥ(0) =
n∏

k=1

L(0, k, θ∗)H(0) =
n∏

k=1

L(0, k, θ∗)θ∗F′(θ∗),

if F′(θ∗) > 0, we can conclude that |Ĥ(λ∗)| > 0, this contradicts with the fact Ĥ(λ∗) = 0. So Eq (3.13)
has no solution with nonnegative real parts. Therefore, when F′(θ∗) > 0, E∗ is locally asymptotically
stable.
Corollary 2. If R0 < 1 and b < b̂, system (2.2) exists two endemic equilibria, the one with smaller
value is unstable; the other one with larger value is locally asymptotically stable.
Proof. If R0 < 1 and b < b̂, there exists two endemic equilibria (see Corollary 1). For the endemic
equilibrium with smaller value, since F′(θ∗) < 0 (see Figure 2(b)), then E∗ is unstable; and for the
endemic equilibrium with larger value, since F′(θ∗) > 0, so E∗ is locally asymptotically stable.

4. Simulations

Next, numerical simulations will be presented to validate the previous theoretical results. Our
simulations are based on the scale-free network with p(k) = ξk−2.5, k = 1, 2, . . . , 100, and the constant

ξ is chosen so that the equation
100∑
k=1

p(k) = 1 holds. For better visualization, we present the values of

the parameters in Table 2.
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Figure 1. The time evolutions of θ(t) with different initial conditions θ(0) = 0.001 × i, i =
1, 2, . . . , 20. (a) R̂0 = 0.8933 < 1. (b) R0 = 1.5008 > 1.

Table 2. Parameter values of numerical simulations.

Parameter Figure 1(a) Figure 1(b) Figure 2(a) Figure 2(b) Figure 3 Figure 4(a) Figure 4(b)

µ 0.02 0.02 0.01 0.01 0.01 0.02 0.02
β 0.006 0.03 0.009 — — 0.03 0.03
α 10 10 10 10 10 0/3/6/9/12 10

b 0.03 0.03 0.003
0.003/0.005/0.007
/0.009/0.011

0.0165/0.017
/0.0175/0.018

0.03
0/0.003/0.006
/0.009/0.012

γ0 0.03 0.03 0.005 0.005 0.005 0.03 0.03
γ1 0.09 0.09 0.08 0.08 0.08 0.09 0.09
η 0.008 0.008 0.008 0.008 0.008 0.008 0.008

Firstly, we verify the stability of the disease-free equilibrium E0. According to the selected
parameter values, we can calculate R0 = 0.3002, R̂0 = 0.8933. It is known that E0 is globally
asymptotically stable from the result of Theorem 2. As seen in Figure 1(a), lim

t→+∞
θ(t) = 0. Therefore,

this does support the global stability of E0.
In Figure 1(b), we can obtain R0 = 1.5008 > 1 and hence model (2.2) exists endemic equilibrium.

Observing the simulation results, we can see that all trajectories move towards to a positive constant
and the unique endemic equilibrium could be stable. However, when R0 > 1, model (2.2) can exhibit
more complex dynamics (see Figure 3).

Secondly, we will verify that system (2.2) may exist endemic equilibrium when R0 < 1. The
parameter values as shown in Table 2, since R0 = 0.4280 < 1, R̂0 = 4.5545 > 1, therefore E0 is not
globally asymptotically stable from the result of Theorem 2. From Figure 2(a), it can be observed that
the trajectories partially converge to zero or partially move towards to a positive level which
corresponds to different initial conditions. Therefore, the initial infectious density must be controlled
to a lower level for the control of the diseases. The result of the co-existence of two locally
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Figure 2. (a) The time evolutions of θ(t) with different initial conditions θ(0) = 0.001× i, i =
1, 2, . . . , 20. (b) The backward bifurcation diagrams in the R0θ-plane with different values of
b.

asymptotically stable equilibria is named as the bistable phenomenon.
Different values of b are taken to show the bifurcation diagrams. In Figure 2(b), backward

bifurcation occurs at R0 = 1 when b < b̂ = 0.016. Besides, the larger the value of b, the smaller the
depth of backward bifurcation. In Figure 3, the parameters are the same as those given in Figure 2,
except for the value of b. It can be seen that forward bifurcation occurs at R0 = 1 for each subgraph.
The reason is that although the values of b are different, they are all bigger than b̂. Hence, the
numerical simulation results are consistent with the theoretical results of Theorem 4.

At the same time, we can observe that the shapes of the bifurcation curves are different from Figure
3. For example, the endemic equilibrium curve has an “S shape” when b = 0.017. That is to say,
backward bifurcation takes place at a certain value of R0. And the situation results in the existence of
three endemic equilibria. So, the number of endemic equilibrium is uncertain when R0 > 1.

Lastly, we will investigate the effect of α and b on diseases transmission through numerical
simulations. The parameters in Figure 4 are the same as those in Figure 1(b) and R0 = 1.5008 > 1.
From Figure 4, we can observe that the larger α or b, the value of θ(t) at steady state will be smaller,
which means that the final density of infected individuals will also be smaller. This indicates that the
behavioral change of individuals can indeed suppress the spread of the diseases. Besides, enriching
the adequate hospital beds is also important for the control of the diseases.

5. Conclusions and discussion

Many scholars proved that the number of hospital beds plays an important role in the occurrence
of bifurcation [5, 6, 20–22], but most of them studied the homogeneously mixed models. In [6], Cui
et al. obtained a quadratic equation with respect to I and discussed the existence and classification of
equilibrium from the algebraic perspective. The condition for the existence of backward bifurcation is
proved by reducing system (1.3) into the center manifold. In this paper, a network-based SIR epidemic
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Figure 3. Bifurcation diagrams in the R0θ-plane with different values of b. Forward
bifurcation takes place at R0 = 1 for each subgraph.
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Figure 4. The time evolutions of θ(t) with initial condition θ(0) = 0.01. (a) α = 3 × (i − 1),
(b) b = 0.003 × (i − 1), i = 1, 2, . . . , 5.

Mathematical Biosciences and Engineering Volume 21, Issue 4, 5430–5445.



5443

model which is the extension of model (1.3) is proposed. Using the edge-compartmental approach, we
reduced the dimension of the system. It is proved that when ∂θ∗

∂R0

∣∣∣∣
(R0,θ∗)=(1,0)

< 0 ⇔ b < b̂, backward
bifurcation will occur at R0 = 1. The method is different from the approach in [6]. Moreover, the
condition which determines the direction of bifurcation at R0 = 1 is related to the network structure.

It is also possible that system (2.2) exists multiple endemic equilibria when R0 > 1 (see Figure 3).
In conclusion, the condition R0 < 1 is not enough to guarantee the global asymptotic stability of E0,

and R0 > 1 does not confirm the uniqueness of endemic equilibrium. In addition, we established a
relationship between the local stability of endemic equilibrium and the tangent slope of the epidemic
curve. It is observed that the larger α or b can reduce the endemic level (see Figure 4). Therefore,
the effect from the individual behavioral change should not be ignored and the hospital beds should be
adequately provided in the process of controlling the infectious diseases.

However, whether system (2.2) can exhibit more complex dynamical behavior such as Hopf, saddle-
node, transcritical and Bogdanov-Takens bifurcation are not discussed. At present, the bifurcation
theory on networks is still less. It will be interesting and important to solve the problem and we leave
this for future work.
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