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Abstract: In this manuscript, based on nonlinear multi-agent systems (MASs) with full state
constraints and considering security control problem under false data injection (FDI) attacks , the
fixed-time formation control (FTFC) protocol was designed, which can ensure that all agents follow
the required protocol within a fixed time. Fuzzy logic system (FLS) was used to compensate and
approximate the uncertain function, which improved safety and robustness of the formation process.
Finally, the fixed-time theory and Lyapunov stability theory were addressed to prove the effectiveness
of the proposed method, and simulation examples verified the effectiveness of the theory.
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1. Introduction

Recently, with the continuous progress of information technology and the rapid development of
artificial intelligence and swarm intelligence theory, the control technology of multi-agent system
(MASs) has become a hot research direction [1–3]. MASs are networks composed of multiple
cooperating agents, which can jointly solve complex problems and provide innovative solutions. With
the wide application of MASs in various fields, distributed control of MASs has attracted much
attention, mainly including consensus control [4], formation control [5–8], containment
control [9, 10], etc. Nevertheless, in some practical systems, especially in MASs, there are generally
complex nonlinearities and uncertainties that can’t be ignored, so the study of nonlinear MASs is of
great essence. Because of the existence of nonlinear dynamics, the control problem of nonlinear
MASs has become a challenge.

In the field of nonlinear multi-agent control, the key of control is to influence the behavior of the
whole system by adjusting the interaction between each agent, and then achieve the control goal in a
specific time scale. At present, finite-time control [11–13], fast finite-time control [14, 15], fixed-time
control [16–19] and other methods have attracted the attention of many scholars, Cao et al. proposed
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finite-time control protocols in MASs consensus control in [11], and Du et al. designed a fixed-time
consensus control protocol in heterogeneous MASs [17]. Fixed-time control means that the system can
reach the required state or goal within a predetermined fixed time. Compared with traditional control
methods, fixed-time control could keep the stability and performance within a predetermined time
and is not affected by the initial conditions and external disturbances of the system. It was applied in
mechanical control, robot control, power system, etc. In addition, with the increasing requirements and
limitations in the controlled system and the improvement of system modeling, scholars have proposed
various control algorithms and methods, such as sliding mode control [20], adaptive control [21],
reinforcement learning [22, 23], and iterative learning control [24], to cope with the challenges of
complex and nonlinear systems.

Constraint problems in control systems have become one of the hot research directions [25]. These
constraints may involve state constraints [25–27], input constraints [28,29], output constraints [30], etc.
Due to the constraints in actual systems, many scholars hammered at formation control and constraint
problems of MASs, and they certainly made progress in the theoretical research levels. In the research
of MASs formation problem, similar to social networks [31], the relationships between agents are
complex. Agents need to be able to perceive the surrounding environment, including detecting the
presence and position information of other neighbor agents, complete the coordination and control of
complex tasks, and maintain predetermined geometric configurations. However, there are often more
complex external conditions and human factors in practical applications.

At present, the security control problem of the control system under the complex network has been
a concern, and the most typical attacks are the attacks in control system. Common malicious attacks
include FDI attacks [10, 32–34], replay attacks [35], cyber attacks [36], and denial of service (DOS)
attacks [37–40]. Among these, FDI attack is a kind of network attack method with strong damage
ability to system stability where attackers inject false data into the network to change the state and
destroy the stability of the systems. Miao et al. studied the control problem under attack and constraints
in cyber-physical systems in [32], and Jiang et al. studied the tracking control problem under attack
conditions based on MASs [33].

Considering the universality and destructiveness in practical applications, many scholars are
devoted to the study of FDI attacks. Nontheless, there are still few studies on the FDI attacks in the
formation control of nonlinear MASs. Therefore, we realize the FTFC of nonlinear MASs under FDI
attacks is required and it has more practical application reference value. This paper innovates from the
following aspects:

1) Compared with previous control strategies, the FTFC for MASs with full state constraints
proposed in this article takes FDI attacks into account. In dealing with the state constraint problem, a
novel nonlinear transformation method is employed to transform the system state to an unconstrained
state.

2) Integrating backstepping techniques with FTFC strategies, the designed controller can achieve
stability during the attack period, and the attack coefficient can also be effectively compensated.
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2. System descriptions and preliminaries

2.1. Graph theory

Define Ξ = (υ, ε, A) being a weighted-undirected graph in communication network, with a cluster of
nodes υ = {v1, v2, . . . , vN}, a cluster of edges ε ⊆

{(
vi, v j

)
: vi, v j ⊆ υ

}
, and A =

[
ai j

]
∈ Rn×n representing

the adjacency matrix. In the undirected graph Ξ, an edge
(
vi, v j

)
is expressed as vi j =

(
vi, v j

)
, i , j,

and it means that the jth agent is able to deliver the message to the ith agent. The Laplacian matrix
L =

[
li j

]
∈ Rn×n, associated with the undirected graph Ξ, is structured as

L =
[
li j

]
= D − A

where D = diag {d1, . . . , dn} = diag
{∑n

j=1 a1 j, . . . ,
∑n

j=1 an j

}
.

2.2. Problem formulation

Consider the nonlinear MASs as 
ẋi,m = xi,m+1 + fi,m

(
x̄i,m

)
ẋi,q = ui + fi,q

(
x̄i,q

)
yi = xi,1

(2.1)

where x̄i,m =
[
xi,1, . . . , xi,m

]T
∈ Rm and x̄i,q =

[
xi,1, . . . , xi,q

]T
∈ Rq represent state vector of the ith

follower, i = 1, . . . , P, m = 1, . . . , q − 1, ui and yi are the control input and output of the ith follower,
and fi,m

(
x̄i,m

)
and fi,q

(
x̄i,q

)
are both unknown smooth nonlinear functions.

Definition 1: Consider state-dependent parameterized FDI attacks model as
⌢

xi,r=xi,r + ζs
(
xi,r, t

)
(2.2)

where
⌢

xi,r denotes the state destroyed by FDI attacks, ζs
(
xi,r, t

)
represents the FDI attacks into xi,r,

ζs
(
xi,r, t

)
is parameterized as ζs

(
xi,r, t

)
= ςs (t) xi,r, and ςs (t) represents the unknown and time-varying

signals. The transformed state is denoted as xi,r = κs (t)
⌢

xi,r, κs (t) = (1 + ςs (t))−1.
The dynamic of the leader is scaled as 

ẋl,m = xl,m+1

ẋl,q = ul

yl = xl,1

(2.3)

Consider the case of being attacked, which is modeled as

yl = κs (t)
⌢

yl (2.4)

Remark 1: The FDI attacks in this paper targets MASs and occurs in both leader and follower agents.
Definition 2: Given any initial formation tracking errors ∥xi (t0) − xl (t0) − hi∥ ∈ R, one has

lim
t→t0+T

∥xi (t) − xl (t) − ℏi∥ = 0, t ≥ t0 + T (2.5)

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4724–4741.



4727

where T denotes the settling time for secure fixed-time formation tracking control, and
ℏi = [hi,1, · · · , hi,m]T

∈ Rm represents the anticipated position vector between the ith agent and the
leader.
Remark 2: The time-varying structure hi of MASs in the paper is bounded, and its time derivative
exists, that is, there exist ĥi and h̄i such that |hi| < ĥi,

∣∣∣ḣi

∣∣∣ < h̄i. Moreover, when hi = 0, the formation
control in this paper can be transformed into consensus tracking control.
Assumption 1 [32]: For the false data ζs

(
xi,r, t

)
, there exists ζ̄s, satisfying: ζs

(
xi,m, t

)
< ζ̄i, and the

signals ςs (t) are positive and meet the following conditions: ς
− s
< ςs (t) < ς̄s, ς

− s
and ς̄s stand by the

unknown constants, the coefficient of attack κs (t) is bounded, and |κs (t)| ≤ κ̄s.
Assumption 2: There exists an edge at least between each follower and the leader (root).
Lemma 1 [3]: The undirected graph Ξ is connected if, and only if, the Laplacian matrix is irreducible.
Lemma 2 [18]: In continuously normalized and radiationally unconstrained functions V (Z), for any
Z (t) ∈ R, satisfy: V (Z) ≤ −σV ι (Z) − υVτ (Z), where σ > 0,υ > 0, ι > 1, 0 < τ < 1 are constants and
the system can achieve fixed-time stability within T = 1

υ(1−τ) +
1

σ(1−ι) .
Lemma 3 [28]: For any variables ā, b̄ and positive constants ϑ1, ϑ2, and ϑ3, one has

|ā|ϑ1
∣∣∣b̄∣∣∣ϑ2
≤

ϑ1

ϑ1 + ϑ2
ϑ3|ā|ϑ1+ϑ2 +

ϑ2

ϑ1 + ϑ2
ϑ3

ϑ1
ϑ2

∣∣∣b̄∣∣∣ϑ1+ϑ2 (2.6)

Lemma 4 [41]: For any λi ∈ R, the inequalities hold

∑Q

j=1
|λi|

m
≥


(∑Q

j=1 |λi|
)m

0 < m ≤ 1
Q1−m

(∑Q
j=1 |λi|

)m
1 < m < +∞

(2.7)

2.3. Fuzzy logic system

Lemma 5 [12]: ω (x) denotes a continuous but unknown function, and the domain is the compact set
γ. For constant θ > 0, the FLS f (x) = WTΨ (x) satisfy the following:

sup
x∈ν

∣∣∣ω (x) −WTΨ (x)
∣∣∣ ≤ θ (2.8)

where x =
(
x1, x2, . . . , xq

)T
, Ψ (x) = [Ψ1 (x) ,Ψ2 (x) , . . . ,ΨL (x)]T , Ψp (x) is the fuzzy basis function,

and W = [W1, . . . ,WP]T stands by the ideal weight vector.
Control objective: The principal objective of this article is to devise adaptive fuzzy FTFC controllers
such that MASs with full state constraints satisfy the following:

1) Each follower in MASs can achieve fixed-time formation control in the case of FDI attacks.
2) The states of MASs are all bounded by the constraints and the closed-loop signals of the system

are bounded.

3. Main results

3.1. Adaptive controller design

The coordinates are converted as
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zi,m =
xi,m

k2
c − x2

i,m

(3.1)

where kc denotes known smooth constants constraints on xi,m,
∣∣∣xi,m

∣∣∣ < kc and define Φi,m = k2
c − x2

i,m,

µi,m =
(
k2

c + x2
i,m

)
/
(
k2

c − x2
i,m

)2
.

The formation tracking error is determined as

ei,m =

Ni∑
j=1

ai j

((
zi,m − hi

)
−

(
z j,m − h j

))
+ bi

(
zi,m − hi − α0

)
(3.2)

ei,m = zi,m − κs
αi,m−1

Φi,m
(3.3)

α0 =
yl

k2
c − y2

l

(3.4)

Step 1: The constrained system under attack can be constructed as

zi,1 =
xi,1

k2
c − x2

i,1

(3.5)

According to (3.1), take the derivative with respect to zi,1, and one has

żi,1 = µi,1 ẋi,1=µi,1
(
xi,2 + fi,1

(
x̄i,1

))
(3.6)

where µi,1 = k2
c + x2

i,1/
(
k2

c − x2
i,1

)2
.

The formation tracking errors are defined as

ei,1 =

Ni∑
j=1

ai j

((
zi,1 − hi

)
−

(
z j,1 − h j

))
+ bi

(
zi,1 − hi − α0

)
(3.7)

then, one has
E = (L + B)

(
Z f − ℏi − INyl

)
(3.8)

where E =
[
ei,1, · · · , eP,1

]T
∈ RP, Z f =

[
zi,1, . . . , zP,1

]T .
The unknown nonlinear function is defined as

Gi,1
(
Mi,1

)
= µi,1 fi,1

(
x̄i,1

)
− µlẏl (3.9)

From the FLSs, it follows that

Gi,1
(
Mi,1

)
= WT

i,1Ψi,1
(
Mi,1

)
+ εi,1

(
Mi,1

)
(3.10)

where Ψi,1
(
Mi,1

)
∈ Rυm stands by fuzzy basis function vector, υm denotes the numbers of fuzzy rules,∥∥∥Wi,m

∥∥∥ ≤ W̄i,m,
∣∣∣εi,m

(
Mi,m

)∣∣∣ ≤ ε̄i,m, and m = 1, 2, . . . q.
Define

V1 =
1
2

ET (L + B)−1E +
P∑

i=1

1
2υi,1

ω̃2
i,1 +

P∑
i=1

1
2ϖi,1

κ̃2
s (3.11)
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where ω̃i,m = ωi,m − ω̂i,m, ω̂i,m stands by the estimation of ωi,m, κ̃s = κs − κ̂s, κ̂s stands by the estimation
of κs, υi,1 = 2φi,1/

(
2φi,1 − 1

)
, and ϖi,1 = 2ψi,1/

(
2ψi,1 − 1

)
.

Take the derivative of V1, and it obtains

V̇1 =

P∑
i=1

(
ei,1

(
żi,1 − ḣi − µlẏl

)
−

1
υi,1

ω̃i,1 ˙̂ωi,1 −
1
ϖi,1

κ̃s ˙̂κs

)

=

P∑
i=1

(
ei,1

(
µi,1Φi,2ei,2+

1
κs

⌢

µi,1αi,1 − ḣi +WT
i,1Ψi,1 + εi,1

)
−

1
υi,1

ω̃i,1 ˙̂ωi,1 −
1
ϖi,1

κ̃s ˙̂κs

)
(3.12)

According to Young’s inequality,

ei,1WT
i,1Ψi,1 ≤

1
2

d2
i,1 +

1
2d2

i,1

W̄2
i,1Ψ

T
i,1Ψi,1e2

i,1 (3.13)

ei,1εi,1 ≤
1
4

e2
i,1 + ε̄

2
i,1 (3.14)

−eiḣi ≤
1
4

e2
i + h̄2

i (3.15)

where di, j represents the positive design parameter.
The virtual controller is designed as

αi,1 = −
1

⌢

µi,1

⌢

ei,1

2
+
ΨT

i,1Ψi,1

2d2
i,1

⌢

ei,1ω̂i,1 + ci,1
⌢

e
γ1

i,1 + c̄i,1
⌢

e
γ2

i,1

 (3.16)

Substituing (3.13)–(3.16) into (3.12), one has

V̇1 ≤

P∑
i=1

µi,1Φi,2ei,1ei,2 − ci,1eγ1
i,1 − c̄i,1eγ2

i,1 −
1
υi,1

ω̃i,1

 ˙̂ωi,1 −
ΨT

i,1Ψi,1

2d2
i,1

e2
i,1

 + 1
ϖi,1

κ̃i,1 ˙̂κi,1 + ∆i,1

 (3.17)

where ∆i,1 =
1
2d2

i,1 + ε̄
2
i,1 + h̄2

i .
Step p(2 ≤ p ≤ q − 1): The derivative of ei,p is scaled as

ėi,p = żi,p −

(
κs
αi,p−1

Φi,p

)′
(3.18)

The unknown nonlinear function is defined as

Gi,p

(
Mi,p

)
= µi,p fi,p

(
x̄i,p

)
−

(
κs
αi,p−1

Φi,p

)′
(3.19)

From the FLSs, it obtains

Gi,p

(
Mi,p

)
= W∗T

i,pΨi,p

(
Mi,p

)
+ εi,p

(
Mi,p

)
(3.20)

where Mi,p =
[
xi,1, · · · , xi,p, ω̂i,1, · · · , ω̂i,p−1

]T
, Ψi,p

(
Mi,p

)
stands for fuzzy basis function, W∗T

i,p denotes

the optimal weight vector, and εi,p

(
Mi,p

)
denotes the error of approximation.
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The Lyapunov function is chosen as

Vp = Vp−1 +

P∑
i=1

1
2

e2
i,p +

P∑
i=1

1
2υi,p

ω̃2
i,p +

P∑
i=1

1
2ϖi,p

κ̃2
s (3.21)

Take the derivative of (3.21), and it obtains

V̇p = V̇p−1 +

Pp+1∑
i=1

(
µi,pΦi,p+1ei,pei,p+1 + ei,p

(
1
κs

⌢

µi,pαi,p +WT
i,pΨi,p + εi,p

)
−

1
υi,p

ω̃i,p ˙̂ωi,p −
1
ϖi,p

κ̃s ˙̂κs

)
(3.22)

According to Young’s inequality,

ei,pWT
i,pΨi,p ≤

1
2

d2
i,p +

1
2d2

i,p

W̄2
i,pΨ

T
i,pΨi,pe2

i,p (3.23)

ei,pεi,p ≤
1
2

e2
i,p +

1
2
ε̄2

i,p (3.24)

The virtual controller is

αi,p = −
1

⌢

µi,p

⌢µi,p−1

⌢

Φi,p
⌢

ei,p−1+

⌢

ei,p

2
+
ΨT

i,pΨi,p

2d2
i,p

⌢

ei,pω̂i,p + ci,p
⌢

e
γ1

i,p + c̄i,p
⌢

e
γ2

i,p

 (3.25)

V̇p ≤

p−1∑
m=1

P∑
i=1

−ci,me1+γ1
i,m − c̄i,me1+γ2

i,m −
1
υi,p

ω̃i,m

 ˙̂ωi,m −
ΨT

i,mΨi,m

2d2
i,m

e2
i,m

 − 1
ϖi,p

κ̃s ˙̂κs + ∆i,p


+

p∑
m=1

µi,p−1Φi,pei,p−1ei,p (3.26)

Step q: Derivation of ei,q is scaled as

ėi,q = µi,q

(
ui + fi,q

(
x̄i,q

))
−

(
κs
αi,q−1

Φi,q

)′
(3.27)

The unknown nonlinear function is defined as

Gi,q

(
Mi,q

)
= µi,q fi,q

(
x̄i,q

)
−

(
κs
αi,q−1

Φi,q

)′
(3.28)

From the FLSs, it obtains

Gi,q

(
Mi,q

)
= W∗T

i,qΨi,q

(
Mi,q

)
+ εi,q

(
Mi,q

)
(3.29)

where Mi,q =
[
xi,1, · · · , xi,q, ω̂i,1, · · · , ω̂i,q−1

]T
, Ψi,q

(
Mi,q

)
stands for fuzzy basis function, W∗T

i,q denotes

the optimal weight vector, and εi,q

(
Mi,q

)
denotes the error of approximation.
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Choose the Lyapunov function

Vq = Vq−1 +

P∑
i=1

1
2

e2
i,q +

P∑
i=1

1
2υi,q

ω̃2
i,q +

P∑
i=1

1
2ϖi,q

κ̃2
s (3.30)

The actual controller is derived as

ui = −
1

⌢

µi,q

⌢µi,q−1

⌢

Φi,q
⌢

ei,q−1 +

⌢

ei,q

2
+
ΨT

i,qΨi,q

2d2
i,q

⌢

ei,qω̂i,q + ci,q
⌢

e
γ1

i,q + c̄i,q
⌢

e
γ2

i,q

 (3.31)

The adaptive law of design parameters is

˙̂ωi,m = −υi,mσi,mω̂i,m + υi,m
ΨT

i,mΨi,me2
i,m

2d2
i,m

(3.32)

˙̂κs = −ϖi,mri,mκ̂s (3.33)

where σi,m and ri,m are design positive constants.
We then obtain

V̇q ≤

q∑
m=1

P∑
i=1

(
−ci,me1+γ1

i,m − c̄i,me1+γ2
i,m + σi,mω̃i,mω̂i,m + ri,mκ̃sκ̂s

)
+ ∆m (3.34)

where ∆m =
q∑

m=1

P∑
i=1
∆i,m.

3.2. Stability analysis

Theorem 1: For the high order MASs (2.1) with full state constraints under FDI attacks (2.2), with
Assumptions 1–2, design virtual controllers (3.16) and (3.25), actual controllers (3.31), and choosing
adaptation laws (3.32) and (3.33), boundedness of the MASs state can be achieved and the formation
tracking error can fluctuate around zero with FTFC.
Proof of the Theorem 1:

Substituing (3.11), (3.21), and (3.30), we have

Vq =
1
2

ET (L + B)−1E +
q∑

m=2

P∑
i=1

1
2

e2
i,m +

q∑
m=1

P∑
i=1

1
2υi,m

ω̃2
i,m +

q∑
m=1

P∑
i=1

1
2ϖi,m

κ̃2
s (3.35)

From Young’s inequality,

σi,mω̃i,mω̂i,m ≤ −
σi,m

υi,m
ω̃2

i,m +
φi,mσi,m

2
ω2

i,m (3.36)

ri,mκ̃sκ̂s ≤ −
ri,m

ϖi,m
κ̃2

s +
ri,mψi,m

2
κ2

s (3.37)

then we get
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V̇q ≤

q∑
m=1

P∑
i=1

σi,m

 ω̃2
i,m

2υi,m


1+γ1

2

+ a


q∑

m=1

P∑
i=1

 ω̃2
i,m

2υi,m


1+γ2

2

 + ∆̄i,q

− a
q∑

m=1

P∑
i=1

ω̃2
i,m

2υi,m
+

q∑
m=1

P∑
i=1

ri,m

(
κ̃2

s

2ϖi,m

) 1+γ1
2

−

q∑
m=1

P∑
i=1

ri,m

2ϖi,m
κ̃2

s

− a

 q∑
m=1

P∑
i=1

((
e2

i,m

) 1+γ1
2
+

(
ω̃2

i,m

) 1+γ1
2
+

(
κ̃2

s

) 1+γ1
2

)
− b

 q∑
m=1

P∑
i=1

((
e2

i,m

) 1+γ2
2
+

(
ω̃2

i,m

) 1+γ2
2
+

(
κ̃2

s

) 1+γ2
2

)
+ b

q∑
m=1

P∑
i=1

(
κ̃2

s

2ϖi,m

) 1+γ2
2

− b
q∑

m=1

P∑
i=1

ri,m

2ϖi,m
κ̃2

s −

q∑
m=1

P∑
i=1

σi,m

2υi,m
ω̃2

i,m (3.38)

where ∆̄i,q =
q∑

m=1

P∑
i=1

(
ri,mψi,m

2 κ2
s +

φi,mσi,m

2 ω2
i,m

)
.

Thus, one obtains

a = min
{
ci,m, σi,m

(
1/2υi,m

) 1+γ1
2 , ri,m

(
1/2ϖi,m

) 1+γ1
2 , σi,m

}
(3.39)

b = min
{
c̄i,m, σi,m

(
1/2υi,m

) 1+γ2
2 , ri,m

(
1/2ϖi,m

) 1+γ2
2 , ri,m

}
(3.40)

From Lemma 3, we get

q∑
m=1

P∑
i=1

 ω̃2
i,m

2υi,m


1+γ2

2

≤

q∑
m=1

P∑
i=1

 ω̃2
i,m

2υi,m

 + Λ1 (3.41)

q∑
m=1

P∑
i=1

(
κ̃2

s

2ϖi,m

) 1+γ2
2

≤

q∑
m=1

P∑
i=1

(
κ̃2

s

2ϖi,m

)
+ Λ1 (3.42)

where Λ1=
(

1−γ2
2

) (
1+γ2

2

) 1+γ2
1−γ2

Define cr = max
{
λmax

[
(L + B)−1

]
, 1

2 ,
1

2υi,m
, 1

2ϖi,m

}
Vq ≤ cr

 q∑
m=2

P∑
i=1

e2
i,m +

q∑
m=1

P∑
i=1

ω̃2
i,m +

q∑
m=1

P∑
i=1

κ̃2
s

 (3.43)

Vq
1+γ1

2 ≤ cs

 q∑
m=2

P∑
i=1

e1+γ1
i,m +

q∑
m=1

P∑
i=1

ω̃
1+γ1
i,m +

q∑
m=1

P∑
i=1

κ̃1+γ1
s

 (3.44)
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From Lemma 4, one has

Vq
1+γ2

2 ≤ c̄s

 q∑
m=2

P∑
i=1

e1+γ2
i,m +

q∑
m=1

P∑
i=1

ω̃
1+γ2
i,m +

q∑
m=1

P∑
i=1

κ̃1+γ2
s

 (3.45)

where cs = 3
γ1−1

2 c
1+γ1

2
r ,c̄s = c

1+γ2
2

r .
From above, we get

V̇q ≤ − ℓ1Vγ
q − ℓ2V γ̄

q+

q∑
m=1

P∑
i=1

σi,m

 ω̃2
i,m

2υi,m


1+γ1

2

−
σi,m

2υi,m
ω̃2

i,m


+

q∑
m=1

P∑
i=1

ri,m

(
κ̃2

s

2ϖi,m

) 1+γ1
2

−
ri,m

2ϖi,m
κ̃2

s

 + Λ0 (3.46)

where ℓ1 =
a
cs
> 0, ℓ2 =

b
c̄s
> 0, 0 < γ̄ = 1+γ2

2 < 1, γ = 1+γ1
2 > 1, Λ0 = ∆̄i,q + aΛ1 + bΛ1.

Suppose that there are unknown constants Γi,m and Πi,m, which satisfy:
∣∣∣ω̃i,m

∣∣∣ ≤ Γi,m,|κ̃s| ≤ Πi,m

If Γi,m <
√

2υi,m, one has

q∑
m=1

P∑
i=1

σi,m

 ω̃2
i,m

2υi,m


1+γ1

2

−
σi,m

2υi,m
ω̃2

i,m

 < 0 (3.47)

With Γi,m ≥
√

2υi,m, one obtains

q∑
m=1

P∑
i=1

σi,m

 ω̃2
i,m

2υi,m


1+γ1

2

−
σi,m

2υi,m
ω̃2

i,m

 ≤ Ξ1 (3.48)

where Ξ1 =
q∑

m=1

P∑
i=1
σi,m

(
Γ2

i,m

2υi,m

) 1+γ1
2
−

σi,m

2υi,m
Γ2

i,m

If Πi,m <
√

2ϖi,m, it gets

q∑
m=1

P∑
i=1

ri,m

(
κ̃2

s

2ϖi,m

) 1+γ1
2

−
ri,m

2ϖi,m
κ̃2

s

 < 0 (3.49)

If Πi,m ≥
√

2ϖi,m, one obtains

q∑
m=1

P∑
i=1

ri,m

(
κ̃2

s

2ϖi,m

) 1+γ1
2

−
ri,m

2ϖi,m
κ̃2

s

 ≤ Ξ2 (3.50)

where Ξ2 =
q∑

m=1

P∑
i=1

ri,m

(
Π2

i,m

2ϖi,m

) 1+γ1
2
−

ri,m

2ϖi,m
Π2

i,m.
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Through all above, it can be obtained that

V̇q ≤ −ℓ1Vγ
q − ℓ2V γ̄

q + Λ̄0 (3.51)

To sum up, all the states of MASs are bounded within T ≤ 1/ℓ2 (1 − β) (1 − γ̄) + 1/ℓ1 (γ − 1), and β
denotes a constant that satisfies: Λ̄0 ≤ ℓ2βV γ̄

q .
Remark 3: The MASs in this paper are full state constrained, xi,m satisfying −kc < xi,m < kc, and since
zi,m is bounded, the states are all in a compact set.

4. Simulations

In this section, MASs consist of the leader and 4 followers, and the adjacency matrix A represents

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 (4.1)

Figure 1. Communication topology.

The relationships between leader and followers are B = diag {1, 0, 0, 0}, and the Laplacian matrix is
in the form of

L =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 . (4.2)

Figure 1 shows the communication topology of MASs.
The followers are modeled as

ẋi,1 = 0.1 sin
(
xi,1

)
+ xi,2

ẋi,2 = 0.1 sin
(
xi,1

)
xi,2 + ui

yi = xi,1

i = 1, 2, 3, 4 (4.3)

where the state of systems satisfies:
∣∣∣xi,1

∣∣∣ < kc1 = 0.7,
∣∣∣xi,2

∣∣∣ < kc2 = 1.9.
The leader trajectory is xl.1 = 0.8 sin (2.5t), and the formation coefficient is h1 = h2 = h3 = h4 =

2.2 cos (2.5t). The fuzzy membership function is set as µP
Fi1
= exp[−

(
zi,1 + 0.25P

)2
−

(
zi,2 + 0.25P

)2],
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µP
Fi2
= exp[−

(
zi,1 + 0.25P

)2
−
(
zi,2 + 0.25P

)2
−
(
xl,1 + 0.25P

)2
−
(
ẋl,1 + 0.25P

)2
−
(
ẍl,1 + 0.25P

)2], selecting
attack weight ςs (t) = −0.18−0.42 cos (t) and the initial value is xi,1 (0) = 0, xi,2 (0) = 0.45, ωi, j (0) = 0.
κi, j (0) = 0. The design parameters are set as γ1 = 1.3, γ2 = 0.9, di, j = 1.5, σi, j = 2.5, ri, j = 2,
ci,1 = 0.1,ci,2 = 20, c̄1,1 = c̄2,1 = 5, c̄3,1 = c̄4,1 = 0.1, c̄i,2 = 0.1, i = 1, 2, 3, 4, j = 1, 2.

0 5 10 15 20 25 30

Time[s]

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2. The output signal of agents under FDI attacks.

0 5 10 15 20 25 30

Time[s]
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-2

-1

0

1

2

3

Figure 3. The states of agents under FDI attacks.

The simulation results are shown in Figure 2 to Figure 7. The follower agents in Figure 2 can
maintain the predetermined formation trajectory in the constrained state, and the tracking effects meet
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Figure 4. The control inputs of agent 1 and 2.
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Figure 5. The control inputs of agent 3 and 4.
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Figure 6. Tracking error of the agents.
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Figure 7. State error of the agents.
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expectation and conform to the constraint range. The state output of the agents are shown in Figure 3,
which conform to the constraint bound. Figures 4 and 5 illustrate the control inputs of the four groups
of agents. Figure 6 illustrates the tracking error of the agents, and it can be seen that the tracking errors
of the agents stably converge around zero. Figure 7 shows the state error of the formation process, and
the convergence effect reaches the expected standard. During the simulation, the FDI attacks time is
set within 5-15s, and the proposed method can still maintain the stability of MASs formation control
after FDI attacks.

5. Conclusions

In this paper, for the nonlinear MASs with full state constraints, the fixed-time formation strategy
is proposed under FDI attacks conditions, the coordinate transformation is used to deal with the
attacks state and the system state constraints, the nonlinear transformation method is used to remove
the influence between the full state constraints and topological relations, and the FLS is used to
approximate the uncertain function. An adaptive fuzzy fixed-time formation controller is designed
based on backstepping method, and the effectiveness of the controller is verified by simulation
examples. In the following work, we will work on MASs formation control under complex types of
attacks.
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consensus for nonlinear heterogeneous multi-agent systems, Automatica, 113 (2020), 108797.
https://doi.org/10.1016/j.automatica.2019.108797

18. M. Chen, H. Wang, X. Liu, Adaptive fuzzy practical fixed-time tracking
control of nonlinear systems, IEEE Trans. Fuzzy Syst., 29 (2021), 664–673.
https://doi.org/10.1109/TFUZZ.2019.2959972

19. Y. L. Cai, H. Zhang, Y. Wang, Z. Gao, Q. He, Adaptive bipartite fixed-time time-varying output
formation-containment tracking of heterogeneous linear multiagent systems, IEEE Trans. Neural
Networks Learn. Syst., 33 (2021), 4688–4698. https://doi.org/10.1109/TNNLS.2021.3059763

20. J. Qin, G. Zhang, W. X. Zheng, Y. Kang, Adaptive sliding mode consensus tracking for second-
order nonlinear multiagent systems with actuator faults, IEEE Trans. Cybern., 49 (2019), 1605–
1615. https://doi.org/10.1109/TCYB.2018.2805167

21. D. P. Li, D. J. Li, Adaptive neural tracking control for nonlinear time-delay systems
with full state constraints, IEEE Trans. Syst. Man Cybern. Syst., 47 (2017), 1590–1601.
https://doi.org/10.1109/TSMC.2016.2637063

22. T. S. Li, W. W. Bai, Q. Liu, Y. Long, C. L. P. Chen, Distributed fault-tolerant
containment control protocols for the discrete-time multi-agent systems via reinforcement
learning method, IEEE Trans. Neural Networks Learn. Syst., 34 (2021), 3979–3991.
https://doi.org/10.1109/TNNLS.2021.3121403

23. Q. He, Z. Feng, H. Fang, X. W. Wang, L. Zhao, Y. D. Yao, et al., A blockchain-based scheme
for secure data offloading in healthcare with deep reinforcement learning, IEEE/ACM Trans.
Networks, 2023 (2023), 1–16. https://doi.org/10.1109/TNET.2023.3274631

24. P. Lin, W. Ren, Y. Song, Distributed multi-agent optimization subject to
nonidentical constraints and communication delays, Automatica, 65 (2016), 120–131.
https://doi.org/10.1016/j.automatica.2015.11.014

25. K. Zhao, Y. Song, Removing the feasibility conditions imposed on tracking control designs for
state-constrained strict-feedback systems, IEEE Trans. Autom. Control, 64 (2018), 1265–1272.
https://doi.org/10.1109/TAC.2018.2845707

26. W. Zhao, Y. J. Liu, L. Liu, Observer-based adaptive fuzzy tracking control using integral barrier
Lyapunov functionals for a nonlinear system with full state constraints, IEEE /CAA J. Autom. Sin.,
8 (2021), 617–627. https://doi.org/10.1109/JAS.2021.1003877

27. D. P. Li, H. G. Han, J. F. Qiao, Adaptive NN controller of nonlinear state-dependent constrained
systems with unknown control direction, IEEE Trans. Neural Networks Learn. Syst. , 35 (2024),
913–922. https://doi.org/10.1109/TNNLS.2022.3177839

28. M. Chen, S. S. Ge, B. Ren, Adaptive tracking control of uncertain MIMO
nonlinear systems with input constraints, Automatica, 4 (2011), 452–465.
https://doi.org/10.1016/j.automatica.2011.01.025

29. J. J. Fu, G. H. Wen, W. W. Yu, T. W. Huang, X. H. Yu, Consensus of second-order multiagent
systems with both velocity and input constraints, IEEE Trans. Ind. Electron., 66 (2018), 7946–
7955. https://doi.org/10.1109/TIE.2018.2879292

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4724–4741.

http://dx.doi.org/https://doi.org/10.1016/j.automatica.2019.108797
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2019.2959972
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3059763
http://dx.doi.org/https://doi.org/10.1109/TCYB.2018.2805167
http://dx.doi.org/https://doi.org/10.1109/TSMC.2016.2637063
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2021.3121403
http://dx.doi.org/https://doi.org/10.1109/TNET.2023.3274631
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2015.11.014
http://dx.doi.org/https://doi.org/10.1109/TAC.2018.2845707
http://dx.doi.org/https://doi.org/10.1109/JAS.2021.1003877
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2022.3177839
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2011.01.025
http://dx.doi.org/https://doi.org/10.1109/TIE.2018.2879292


4741

30. B. Fan, Q. Yang, S. Jagannathan, Y. Sun, Output-constrained control of nonaffine multiagent
systems with partially unknown control directions, IEEE Trans. Autom. Control, 64 (2019), 3936–
3942. https://doi.org/10.1109/TAC.2019.2892391

31. Q. He, H. Fang, J. Zhang, X. Wang, Dynamic opinion maximization in social networks, IEEE
Trans. Knowl. Data Eng., 35 (2023), 350–361. https://doi.org/10.1109/TKDE.2021.3077491

32. B. Miao, H. Wang, Y. J. Liu, L. Liu, Adaptive security control against false data injection
attacks in cyber-physical systems, IEEE J. Emerging Sel. Top. Circuits Syst., 13 (2023), 743–751.
https://doi.org/10.1109/JETCAS.2023.3253483

33. Y. Jiang, B. Niu, X. Wang, X. Zhao, H. Wang, B. Yan, Distributed finite-time consensus tracking
control for nonlinear multi-agent systems with FDI attacks and application to single-link robots,
IEEE Trans. Circuits II, 70 (2022), 1505–1509. https://doi.org/10.1109/TCSII.2022.3220359

34. A. Mousavi, K. Aryankia, R. R. Selmic, A distributed FDI cyber-attack detection in discrete-
time nonlinear multi-agent systems using neural networks, Eur. J. Control, 66 (2022), 100646.
https://doi.org/10.1016/j.ejcon.2022.100646

35. M. Nadeem, A. Arshad, S. Riaz, A secure architecture to protect the network from
replay attacks during client-to-client data transmission, Appl. Sci., 12 (2022), 8143.
https://doi.org/10.3390/app12168143

36. Z. Gu, P. Shi, D. Yue, S. Yan, X. Xie, Memory-based continuous event-triggered control for
networked T-S fuzzy systems against cyberattacks, IEEE Trans. Fuzzy Syst., 29 (2020), 3118–
3129. https://doi.org/10.1109/TFUZZ.2020.3012771

37. W. Qi, Y. Hou, J. H. Park, G. Zong, J. Cao, J. Cheng, SMC for discrete-time networked semi-
Markovian switching systems with random DoS attacks and applications, IEEE Trans. Syst. Man
Cybern. Syst., 53 (2022), 7504–7520. https://doi.org/10.1109/TSMC.2022.3211322

38. H. Zhang, P. Cheng, L. Shi, J. Chen, Optimal DoS attack scheduling in wireless
networked control system, IEEE Trans. Control Syst. Technol., 24 (2015), 843–852.
https://doi.org/10.1109/TSMC.2022.3211322

39. Y. Zhang, Z. G. Wu, P. Shi, Event/self-triggered control for leader-following consensus over
unreliable network with DoS attacks, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 3137–
3149. https://doi.org/10.1109/TNNLS.2018.2890119

40. Z. Gu, C. K. Ahn, D. Yue, X. Xie, Event-triggered H∞ filtering for T-S fuzzy-model-based
nonlinear networked systems with multisensors against dos attacks, IEEE Trans. Cybern., 52
(2022), 5311–5321. https://doi.org/10.1109/TCYB.2020.3030028

41. B. L. Tian, Z. Y. Zuo, H. Wang, Leader–follower fixed-time consensus of multi-agent
systems with high-order integrator dynamics, Int. J. Control, 90 (2017), 1420–1427.
https://doi.org/10.1080/00207179.2016.1207101

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4724–4741.

http://dx.doi.org/https://doi.org/10.1109/TAC.2019.2892391
http://dx.doi.org/https://doi.org/10.1109/TKDE.2021.3077491
http://dx.doi.org/https://doi.org/10.1109/JETCAS.2023.3253483
http://dx.doi.org/https://doi.org/10.1109/TCSII.2022.3220359
http://dx.doi.org/https://doi.org/10.1016/j.ejcon.2022.100646
http://dx.doi.org/https://doi.org/10.3390/app12168143
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2020.3012771
http://dx.doi.org/https://doi.org/10.1109/TSMC.2022.3211322
http://dx.doi.org/https://doi.org/10.1109/TSMC.2022.3211322
http://dx.doi.org/https://doi.org/10.1109/TNNLS.2018.2890119
http://dx.doi.org/https://doi.org/10.1109/TCYB.2020.3030028
http://dx.doi.org/https://doi.org/10.1080/00207179.2016.1207101
http://creativecommons.org/licenses/by/4.0

	Introduction
	System descriptions and preliminaries
	Graph theory
	Problem formulation
	Fuzzy logic system

	Main results
	Adaptive controller design
	Stability analysis

	Simulations
	Conclusions

