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Abstract: This paper investigates the prescribed-time event-triggered cluster practical consensus
problem for a class of nonlinear multi-agent systems with external disturbances. To begin, to
reach the prescribed-time cluster practical consensus, a new time-varying function is introduced
and a novel distributed continuous algorithm is designed. Based on the Lyapunov stability theory
and inequality techniques, some sufficient conditions are given, ensuring the prescribed-time cluster
practical consensus. Moreover, to avoid different clusters’ final states overlapping, a virtual leader is
considered for each cluster. In this case, an event-triggered distributed protocol is further established
and some related conditions are given for achieving prescribed-time cluster practical consensus.
Additionally, it is proven that the Zeno behavior can be avioded by choosing parameters appropriately.
Finally, some numerical examples are presented to show the effectiveness of the theoretical results.
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1. Introduction

Recently, with the development of unmanned aerial vehicle technology, formation control, and
sensor networks [1–3], the multi-agent systems (MASs) consensus problem has attracted widespread
research from many scholars. Up to the present, a series of consensus problems of MASs have been
reported in the literatures [4–10]. From the perspective of dynamics, existing works can be divided
into integrator systems [4], linear systems [5], and nonlinear systems [6]. Considering different
control methods, the consensus problems of MASs were studied by using continuous control [7, 8]
and event-triggered control [9, 10]. For the consensus states, there are complete consensus and
bipartite consensus. Compared with complete consensus, bipartite consensus means all agents
converge to the common state in modulus but with opposite signs. In [11], the authors studied the
bipartite consensus for a class of nonlinear MASs under switching topologies. Furthermore, the
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distributed containment control based on the event-triggered mechanism was considered in [12], in
which the containment control implies that all followers’ states converge to the convex hull formed by
multiple leaders.

It is important to note that achieving consensus through asymptotic manner is an idealized process
in MASs. Hence, in the aforementioned results [4–12], the asymptotic convergence algorithms may
not be undesirable in some practical situations because of the fact that many production tasks require
being finished in a finite-time. In view of this reason, the finite-time control approach has been widely
used for MASs. Since the finite-time consensus can provide a faster convergence rate and better
robustness than the asymptotic consensus [13], several typical finite-time consensus results have been
published for MASs including complete consensus [14–16], bipartite consensus [17, 18], and
containment consensus [19]. However, one of the drawbacks of finite-time consensus is that the
convergence time estimation of the system is related to the initial conditions.

In fact, because the initial state selection of the system may be arbitrary or impossible to be
obtained, it is challenging to determine the settling time in some practical applications. To overcome
this shortcoming, lots of results about fixed-time consensus have been published [20–24]. For
instance, a novel distributed observer was proposed for each follower agent, then two types of
controllers were designed to study the fixed-time consensus problem for a class of heterogeneous
nonlinear MASs in [20]. Taking into account the control costs, a distributed algorithm based on the
event-triggered control strategy was designed to study the fixed-time time-varying formation tracking
problem for nonlinear MASs in [21]. The fixed-time bipartite consensus problems for integer-order
and fractional-order MASs were investigated in [22, 23], respectively. Moreover, in [24], the
fixed-time containment consensus problem was addressed for nonlinear MASs by using an
event-triggered control protocol. Although the settling time estimation is independent of the initial
values of the system in above results [20–24], the convergence time cannot be set arbitrarily in
advance. Furthermore, in [25, 26], based on the fixed-time theory, an improved prescribed-time
control method was proposed to solve the synchronization issue in networks of piecewise smooth
systems. In addition, by introducing a time-varying function in the control protocol, some
prescribed-time consensus issues have been studied in [27–29]. For example, under the framework of
the event-triggered control mechanism, the prescribed-time practical consensus and bipartite
consensus problems were discussed for first-order MASs in [28, 29], respectively.

In the above research, all agents were treated as one whole group. However, in some complex
tasks, agents are usually divided into multiple subgroups to perform related tasks, and both the
cooperative and competitive relationships exist among different agents, such as intelligent combat of
drone swarms, multi-target encirclement, and so on. In this case, agents typically exhibit cluster
consensus behaviors. Cluster consensus indicates that agents achieve consensus within the same
cluster and they may not achieve consensus between different clusters. Recently, cluster consensus
has received extensive attention from researchers. In [30] and [31], the authors considered the
asymptotical cluster consensus of higher-order MASs. The asymptotical cluster consensus was
studied for linear MASs under a directed graph by the event-triggered method, and the optimal
selection of some parameters was also discussed in [32]. Furthermore, some novel finite-time control
protocols were proposed to solve cluster consensus in [33, 34]. Based on the fixed-time stability
theory, the fixed-time cluster consensus problems for MASs have been considered in [35, 36]. It’s not
difficult to find that all the above researches were focused on asymptotically consensus, finite-time
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consensus, and fixed-time consensus. To the best of our knowledge, few works have been paid to the
prescribed-time cluster consensus for nonlinear MASs based on event-triggered control, which is
motivation of this study.

Inspired by the aforementioned discussion, this paper investigates the prescribed-time
event-triggered cluster practical consensus for nonlinear MASs with external disturbances. The
substantial difficulties of this paper are summarized as two aspects. On the one hand, it is noted that
additional waste of the limited control resource is not advisable in practical. In this case, how to
design an event-triggered mechanism to enable intermittent updates of the control protocol is a
problem worth solving. On the other hand, in existing researches [30–36], the settling time for
achieving cluster consensus cannot be explicitly preselected. Therefore, it’s essential to design a new
control protocol to achieve the prescribed-time cluster consensus.

To solve these problems, this paper studies the prescribed-time cluster practical consensus for
nonlinear MASs based on the event-triggered control method. The main contributions of this paper
can be concluded as follows:

1) The cluster practical consensus is investigated for a class of nonlinear MASs with external
disturbances, in which both the cooperative and competitive relationships are considered. When the
MASs has only one cluster, the cluster consensus can degenerate into traditional consensus.
Therefore, the problem considered in this paper can be regarded as an extension of the existing one.

2) Compared with asymptotic control algorithms [31, 32], finite-time control algorithms [33, 34],
and fixed-time control algorithms [35, 36], a novel distributed control algorithm with time-varying
function is proposed, which can ensure the prescribed-time convergence of the controlled MASs.

3) To further reduce the communication burden and the controller’s update frequency, an improved
prescribed-time control algorithm with an event-triggered communication mechanism is designed, in
which a dynamic event triggering condition is employed.

The rest of this paper is structured as follows. Some preliminaries are given in Section 2. Section 3
provides two distributed prescribed-time control algorithms. Simulation results are given in Section 4.
Section 5 gives a conclusion of this paper.
Notations. Rn and Rn×m represent the real matrices with n × 1 and n × m dimensions, respectively.
R is the set of real numbers. R+ denotes the positive real number set. For a symmetric matrix M,
λmax(M) and λ2(M) represent the maximum and the second smallest eigenvalues ofM, respectively.
MT denotes the transpose of M. For an arbitrary vector x = [x1, x2, . . . , xN]T , sign(x) ≜ [sign(x1),
sign(x2), . . . , sign(xN)]T , where sign(·) represents the sign function. ∥ · ∥p is represented as the p-norm
for vectors or matrices. diag(·) represents the diagonal matrix and ⊗ stands for the Kronecker product.
1N denotes the N dimensional column vector with entries all being 1. ∅ is emptyset. | · | represents the
absolute value.

2. Preliminaries

2.1. Graph theory

Let the communication topology among agents be modeled by an undirected connected graph G =
(V,E,A). V = {1, 2, · · · ,N} and E ⊆ V × V represent the node set and the edge set, respectively.
A communication link (i, j) ∈ E, with i , j, indicates that there is a directed edge from node i to
node j. A = [ai j] ∈ RN×N is the weighted adjacency matrix with ai j , 0 if ( j, i) ∈ E and ai j = 0
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otherwise. The in-degree matrix is D = diag(d1, d2, · · · , dN) with di =
∑N

j=1 ai j. The Laplacian matrix
of graph G is defined as L = D − A = [li j] ∈ RN×N with li j = −ai j for i , j and lii =

∑N
j=1 ai j.

Denote B = diag(b1, b2, · · · , bN) with bi ∈ {0, 1}, where bi = 1 if agent i can receive information from
the leader, otherwise bi = 0. Furthermore, graph G is connected if there is a path between any pair of
distinct nodes.

2.2. Useful Lemma

Before moving on, a time-varying function is constructed as follows [29]:

ν(t) =
 T h

(T+t0−θt)h , t ∈ [t0, t1),
1, t ∈ [t1,∞),

(1)

where h > 0 and 0 < θ < 1 are real numbers. t1 = t0 +T , where T > 0 is a given settling time. Suppose
that the initial time is t0 = 0, then t1 = T . It can be deduced that ν(t)−γ(γ > 0) is monotonically
decreasing during the interval [0,T ), ν(0)−γ = 1 and limt→T− ν(t)−γ = 0. ν̇(T ) is defined by using the
righthand derivative of ν(t) at t = T .
Definition 1. Given the following system{

ẋ(t) = g(x(t), t),
x(0) = x0,

(2)

where x(t) ∈ Rn is the state vector, g(x(t), t) : Rn×R+ → R
n is a nonlinear function, and x0 is the initial

state, the origin of System (2) is globally prescribed-time practical stable if it satisfies that
lim
t→T
∥x(t)∥2 ≤ ψ,

∥x(t)∥2 ≤ ψ, ∀t ≥ T,

lim
t→∞
∥x(t)∥2 = 0,

(3)

for any arbitrary initial values x0, where ψ is a positive constant and the settling time T is a time-
independent constant and can be preselected.
Lemma 1. Given System (2), if there exist two continuous and strictly increasing functions ℏ1(t), ℏ2(t)
satisfying ℏi(t) : R+ → R+, with ℏi(0) = 0 and ℏi(t) → ∞ as t → ∞(i = 1, 2), and exists a Lyapunov
functionW(x(t)) : Rn → R+ such that

ℏ1(t)∥x(t)∥2 ≤ W(x(t)) ≤ ℏ2(t)∥x(t)∥2, (4)

Ẇ(x(t)) ≤ −α
ν̇(t)
ν(t)
W(x(t)) − βW(x(t)), t ∈ [0,T ), (5)

Ẇ(x(t)) ≤ −βW(x(t)), t ∈ [T,∞), (6)

with α > 0, β > 0, then the origin of System (2) is globally prescribed-time practical stable with the
settling time T .
Proof. When t ∈ [0,T ), by multiplying να(t) on both sides of Eq (5), one has

να(t)Ẇ(x(t)) ≤ −αν̇(t)ν(t)α−1W(x(t)) − βνα(t)W(x(t)).
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It follows that

d(να(t)W(x(t)))
dt

= αν̇(t)ν(t)α−1W(x(t)) + να(t)Ẇ(x(t)) ≤ −βνα(t)W(x(t)). (7)

Solving the differential Eq (7), one obtains

να(t)W(x(t)) ≤ να(0)W(x(0)) exp(−βt).

and then

W(x(t)) ≤ ν−α(t)W(x(0)) exp(−βt).

By Eq (4), we can get that lim
t→T
∥x(t)∥2 ≤ ψ, where W(x(0)) exp(−βt)

ℏ1(t) (1 − θ)hα.

Next, when t ∈ [T,∞), we have Ẇ(x(t)) ≤ −βW(x(t)). From the definition of W(x(t)), we get
thatW(x(t)) keeps monotonically decreasing and ∥x(t)∥2 ≤ ψ (t ≥ T ). Combine with Eq (6), one has
∥x(t)∥2 ≤

W(x(T ))
ℏ1(t) exp(−β(t − T )), which implies that lim

t→∞
∥x(t)∥2 = 0. This completes the proof.

Lemma 2. (see [37]) For an undirected connected graph G, the Laplacian matrix L of G has a simple
zero eigenvalue and 1N is the associated eigenvector. The eigenvalue of matrix L satisfies 0 < λ2 ≤

. . . ≤ λN . Moreover, if 1T
N x = 0 with x = [x1, x2, . . . , xN]T , one has xTLx ≥ λ2xT x.

Lemma 3. (see [38]) Let κ1, κ2, · · · , κM ≥ 0 be nonnegative numbers, then M∑
i=1

κi

s ≤ M∑
i=1

κs
i ≤ M1−s

 M∑
i=1

κi

s , 0 < s ≤ 1,

M1−s

 M∑
i=1

κi

s ≤ M∑
i=1

κs
i ≤

 M∑
i=1

κi

s , 1 < s < ∞.

2.3. Problem formulation

Suppose there is a nonlinear MAS with N agents. The dynamics of the agent i is given by

ẋi(t) = f (xi(t), t) + wi(xi(t), t) + ui(t), i = 1, 2, · · ·N, (8)

where xi(t) ∈ Rn is the state, ui(t) ∈ Rn is the control input, and f (·, ·) : Rn × R+ → R
n is the nonlinear

dynamic. wi(xi(t), t) is the external disturbances and satisfies ∥wi(xi(t), t)∥2 ≤ ω̃, in which ω̃ is a positive
constant.

To investigate the cluster consensus problem, we assume the node set V is divided into m cluster
or subgraphs, i.e., G1 = (V1,E1,A1), G2 = (V2,E2,A2), · · · , Gm = (Vm,Em,Am), such that V =
V1∪V2∪· · ·∪Vm, whereV1 = {1, 2, · · · , r1},V2 = {r1+1, r1+2, · · · , r2}, · · · ,Vm = {rm−1+1, rm−1+

2, · · · , rm}, r0 = 0, rm = N, Vk , ∅, Vk ∩ Vk′ = ∅ for k , k′ (k, k′ = 1, 2, · · · ,m). The Laplacian
matrix of G is defined as

L11 L12 · · · L1m

L21 L22 · · · L2m
...

...
. . .

...

Lm1 Lm2 · · · Lmm

 ,
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where Lkk and Lkk′ represent the Laplacian matrix of intra-cluster and intercluster, k , k′(k, k′ =
1, 2, · · · ,m).
Assumption 1. The intercluster coupling strength ai j satisfies that

∑
j∈Vk′

ai j = 0, ∀i ∈ Vk, k , k′, k, k′ =

1, 2, · · · ,m. Furthermore, the communication topological graph Gk in each cluster is connected and
undirected.
Assumption 2. For any xi(t), x j(t) ∈ Rn, the nonlinear dynamic f (·, ·) satisfies

∥ f (xi(t), t) − f (x j(t), t)∥2 ≤ ρ∥xi(t) − x j(t)∥2,

where ρ is a positive constant.
Definition 2. The System (8) reaches prescribed-time cluster practical consensus if there exists a
controller ui(t) such that 

lim
t→T
∥xi(t) − x j(t)∥2 ≤ ψ,

∥xi(t) − x j(t)∥2 ≤ ψ, ∀t ≥ T,

lim
t→∞
∥xi(t) − x j(t)∥2 = 0,

(9)

and xi(t) , x j(t), if i ∈ Vk, j ∈ Vk′ , k , k′, T > 0 is a user-assignable finite positive real number.
Remark 1. In Assumption 1, the information exchange between agents should be balanced in any two
subgraphs. This assumption is always used in the cluster network, which also can be found in existing
publications [32, 34]. Assumption 2 is a Lipschitz condition. In practical applications, many practical
models satisfy this assumption such as Hopfield neural networks, Chua’s circuit system, and so on.
Therefore, in this paper, we assume that f (·, ·) satisfies the Lipschitz condition.

3. Main result

In this section, we will consider the nonlinear MASs (8) to achieve prescribed-time cluster
practical consensus. At first, a continuous prescribed-time control protocol is proposed for
System (8). Moreover, in order to reduce the communication burden, a novel distributed
event-triggered control strategy is adopted to solve the cluster consensus problem in a
prescribed-time interval.

3.1. Continuous control protocol

In this part, a continuous control algorithm is developed to achieve prescribed-time cluster
consensus. The control protocol for agent i is devised as follows

ui(t) = −
(
α + β

ν̇(t)
ν(t)

)(
δ1

∑
j∈Vk

ai j(xi(t) − x j(t)) + δ2

∑
k′,k

∑
j∈Vk′

ai j(xi(t) − x j(t))
)

− ϕ
∑
j∈Vk

ai jsign(xi(t) − x j(t)), i ∈ Vk, k = 1, 2, · · · ,m, (10)

where α, β, δ1, δ2, ϕ > 0 are design parameters.
Remark 2. From control protocol (10), we can see that the terms

∑
j∈Vk

ai j(xi(t) − x j(t)) and
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k′,k
∑

j∈Vk′
ai j(xi(t) − x j(t)) represent the information exchange between agents in the intra- and

interclusters. When removing the term
∑

k′,k
∑

j∈Vk′
ai j(xi(t) − x j(t))), the protocol degenerates into

dealing with a complete consensus problem.
The following gives the main theorems for the prescribed-time cluster practical consensus problem.

Theorem 1. For System (8), if Assumptions 1-2 hold and the control parameters β > 0, δ2 > 0 and
α, δ1, ϕ satisfy

α >
2ρ

2λδ1 − Φδ2(N − N)
, δ1 >

Φδ2(N − N)
2λ

, ϕ ≥
ω̃
√

2Nm
λ
′ , (11)

then the prescribed-time cluster practical consensus problem can be achieved under the controller (10).
Proof. Let ξi(t) = xi(t) − 1

rk−rk−1

∑rk
j=rk−1+1 x j(t), i ∈ Vk. Choose the Lyapunov function as follows

V(t) =
1
2

m∑
k=1

rk∑
i=rk−1+1

ξT
i (t)ξi(t). (12)

The derivative of V(t) is given by

V̇(t) =
m∑

k=1

rk∑
i=rk−1+1

ξT
i (t)ξ̇i(t) =

m∑
k=1

rk∑
i=rk−1+1

ξT
i (t)
(
ẋi(t) −

1
rk − rk−1

rk∑
j=rk−1+1

ẋ j(t)
)
. (13)

Due to
∑m

k=1
∑rk

i=rk−1+1 ξ
T
i (t)
(

1
rk−rk−1

∑rk
j=rk−1+1 ẋ j(t)

)
= 0, Eq (13) can be rewritten as

V̇(t) =
m∑

k=1

rk∑
i=rk−1+1

ξT
i (t)ẋi(t)

=

m∑
k=1

rk∑
i=rk−1+1

ξT
i (t)
(

f (xi(t), t) + wi(xi(t), t) + ui(t)
)

= − δ1

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i, j=rk−1+1

ai jξ
T
i (t)(xi(t) − x j(t))

− δ2

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i=rk−1+1

∑
k′,k

∑
j∈Vk′

ai jξ
T
i (t)(xi(t) − x j(t))

− ϕ

m∑
k=1

rk∑
i, j=rk−1+1

ai jξ
T
i (t)sign(xi(t) − x j(t))

+

m∑
k=1

rk∑
i=rk−1+1

ξT
i (t)
(

f (xi(t), t) + wi(xi(t), t)
)
. (14)

For the first item of Eq (14), we have the following results

− δ1

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i, j=rk−1+1

ai jξ
T
i (t)(xi(t) − x j(t))
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= −
1
2
δ1

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i, j=rk−1+1

ai j(ξi(t) − ξ j(t))T (ξi(t) − ξ j(t))

= − δ1

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

ξ̃T
k (t)(Lkk ⊗ In)ξ̃k(t)

≤ − δ1

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

λ2(Lkk)ξ̃T
k (t)ξ̃k(t)

≤ − 2δ1

(
α + β

ν̇(t)
ν(t)

)
λV(t), (15)

where ξ̃k(t) = [ξT
rk−1+1(t), ξT

rk−1+2(t), · · · , ξT
rk

(t)]T and λ = min
k=1,2,··· ,m

{λ2(Lkk)}.

According to Assumption 1 and Young’s inequality, from the second item of Eq (14), it can be
obtained that

− δ2

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i=rk−1+1

∑
k′,k

∑
j∈Vk′

ai jξ
T
i (t)(xi(t) − x j(t))

=δ2

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i=rk−1+1

∑
k′,k

∑
j∈Vk′

ai jξ
T
i (t)ξ j(t)

≤Φδ2

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i=rk−1+1

∑
k′,k

∑
j∈Vk′

n∑
s=1

|ξs
i (t)||ξs

j(t)|

≤
1
2
Φδ2

(
α + β

ν̇(t)
ν(t)

) n∑
s=1

(∑
i∈V1

∑
k′,1

∑
j∈Vk′

(
|ξs

i (t)|2 + |ξs
j(t)|

2
)

+
∑
i∈V2

∑
k′,2

∑
j∈Vk′

(
|ξs

i (t)|2 + |ξs
j(t)|

2
)
+ · · · +

∑
i∈Vm−1

∑
j∈Vm

(
|ξs

i (t)|2 + |ξs
j(t)|

2
))

≤
1
2
Φδ2

(
α + β

ν̇(t)
ν(t)

) m∑
k=1

rk∑
i=rk−1+1

n∑
s=1

|ξs
i (t)|2
(
N − (rk − rk−1)

)
≤Φδ2

(
α + β

ν̇(t)
ν(t)

)
(N − N)V(t), (16)

where Φ = max
i∈Vk , j∈Vk′ ,k,k′

{|ai j|}, N = min
k=1,2,··· ,m

{rk − rk−1}.

On the basis of Lemmas 2 and 3, one has

− ϕ

m∑
k=1

rk∑
i, j=rk−1+1

ai jξ
T
i (t)sign(xi(t) − x j(t))

= −
1
2
ϕ

m∑
k=1

rk∑
i, j=rk−1+1

ai j(ξi(t) − ξ j(t))T sign(ξi(t) − ξ j(t))

≤ −
1
2
ϕ

m∑
k=1

( rk∑
i, j=rk−1+1

a2
i j∥ξi(t) − ξ j(t)∥22

) 1
2
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≤ −
1
2
ϕ

m∑
k=1

(
2λ2(L2

kk)ξ̃
T
k (t)ξ̃k(t)

) 1
2

≤ − ϕλ
′

V
1
2 (t). (17)

where λ
′

= min
k=1,2,··· ,m

{λ
1
2
2 (L2

kk)}. Note that

m∑
k=1

rk∑
i=rk−1+1

ξT
i (t)wi(xi(t), t) ≤ ω̃

m∑
k=1

rk∑
i=rk−1+1

∥ξi(t)∥2

≤ ω̃

m∑
k=1

(rk − rk−1)
1
2
( rk∑

i=rk−1+1

∥ξi(t)∥22
) 1

2

≤ ω̃(2Nm)
1
2 V

1
2 (t), (18)

where N = max
k=1,2,··· ,m

{rk − rk−1}. According to Eqs (14)-(18) and Condition (11), the following results

can be obtained

V̇(t) ≤ −
((

2λδ1 − Φδ2(N − N)
)
α − 2ρ

)
V(t)

−
(
2λδ1 − Φδ2(N − N)

)
β
ν̇(t)
ν(t)

V(t) − (ϕλ
′

− ω̃(2Nm)
1
2 )V

1
2 (t)

≤ −c1V(t) − c2
ν̇(t)
ν(t)

V(t), (19)

where c1 =
(
2λδ1 − Φδ2(N − N)

)
α − 2ρ, c2 =

(
2λδ1 − Φδ2(N − N)

)
β.

Based on Lemma 1, from Eq (19) we obtain

V(t) ≤ ν−c2(t) exp(−c1t)V(0), t ∈ [0,T ). (20)

Let ξ(t) = (ξT
1 (t), ξT

2 (t), · · · , ξT
N(t))T . Furthermore, we can get that

∥ξ(t)∥2 ≤
√

2V(0)ν−
c2
2 (t), t ∈ [0,T ), (21)

and

lim
t→T
∥ξ(t)∥2 ≤

√
2V(0)(1 − θ)

hc2
2 . (22)

For t ≥ T , we have V̇(t) ≤ −c1V(t). It can be obtained that ∥ξ(t)∥2 ≤
√

2V(0) exp(− c1
2 (t − T )),

which indicates limt→∞ ∥ξ(t)∥2 = 0. Therefore, the prescribed-time cluster practical consensus can be
achieved by the above analysis process.
Remark 3. In [27], a kind of time-varying scaling function µ(t) is utilized in the controller, in which
µ(t) = T h

(T−t)h for t ∈ [0,T ). In this case, when the system state reaches consensus, the boundedness
of the controller ui(t) = −(k + µ̇(t)

µ(t) )ei(t) needs to be further verified. Because the function µ̇(t)
µ(t) grows

to infinity when t approaches T , this may make the controller ui(t) unbounded. In this paper, a new
time-varying function ν(t) = T h

(T−θt)h is introduced to avoid discussing the boundedness of the controller

ui(t), as lim
t→T

ν
1
h (t) is bounded. Specifically, when θ = 1 in function ν(t), the function ν(t) becomes µ(t).

Therefore, this time-varying function ν(t) can be viewed as an improved version of that in [27].
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3.2. Event-triggered control protocol

From the protocol (10), we can clearly find out the controller requires continuous communication,
which may lead to wasting a lot of resources and aggravating the communication burden. To overcome
the above shortcomings, we will design an event-triggered control scheme. It is worth noting that
different clusters may eventually overlap, so we design a leader ẋ0k = f (x0k(t), t) (k = 1, 2, · · · ,m) for
each cluster.

With the above preparation, a novel prescribed-time control protocol is designed as follows

ui(t) = −
(
α + β

ν̇(t)
ν(t)

)(
δ1yi(ti

l) + δ2ỹi(ti
l)
)
− ϕsign(yi(ti

l)), t ∈ [ti
l, t

i
l+1), i ∈ Vk, (23)

where

yi(t) =
∑
j∈Vk

ai j(xi(t) − x j(t)) + bi(xi(t) − x0k(t)),

and

ỹi(t) =
∑
k′,k

∑
j∈Vk′

ai j(xi(t) − x j(t)),

α, β, ϕ are defined as that in Eq (10), and ti
l (ti

0 = 0) is the lth triggering time instant of agent i. The
following notations are given: The communication graph composed of rk − rk−1 followers and one
leader is denoted by G̃k. The communication subgraph among followers is defined as Gk. Define
Hkk = Lkk + Bk, where Bk = diag(bi) and i ∈ Vk.
Assumption 3. The graph G̃k contains a directed spanning tree with the leader as the root node, where
k = 1, 2, · · · ,m.

Next, the triggering mechanism is constructed as

ti
l+1 = inf{t > ti

l : ∥Ei(t)∥2 > η1∥yi(t)∥2 + η2ϱ(t)}, (24)

where the measurement error is

Ei(t) =
(
α + β

ν̇(t)
ν(t)

)(
δ1yi(ti

l) + δ2ỹi(ti
l)
)
+ ϕsign(yi(ti

l))

−
(
α + β

ν̇(t)
ν(t)

)(
δ1yi(t) + δ2ỹi(t)

)
− ϕsign(yi(t)), (25)

and ϱ(t) is defined as ϱ(t) = ν−φ(t) and ϱ(t) = 0 at t ∈ [0,T ) and t ∈ [T,∞), respectively, and η1, η2, φ

are positive constants to be designed.
Theorem 2. For System (8), if Assumptions 1-3 hold and the control parameters β > 0, δ2 > 0, and
α, δ1, ϕ satisfy

α >

ρNλmax(H)
λmin(H) + η1λmax(H)

δ1λmin(H) − 2δ2ΦN
√

nλmax(H)
λmin(H)

, δ1 >
δ2ΦN

√
nλmax(H)
λmin(H)

λmin(H)
, ϕ ≥ η2 + w̃, (26)
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then the prescribed-time cluster practical consensus problem can be achieved under the distributed
event-triggered control protocol (23). Additionally, Zeno behavior can be excluded.
Proof. Define τi(t) = xi(t) − x0k(t) and x̃k(t) = [τT

rk−1+1(t), τT
rk−1+2(t), · · · , τT

rk
(t)]T ,

x̃(t) = [x̃T
1 (t), x̃T

2 (t), · · · , x̃T
m(t)]T . Consider the Lyapunov function as

V(t) =
1
2

m∑
k=1

x̃T
k (t)(Hkk ⊗ In)x̃k(t). (27)

The derivative of V(t) is given by

V̇(t) =
m∑

k=1

∑
i∈Vk

yT
i (t)
(

f (t, xi(t)) + wi(t, xi(t)) − Ei(t)

−
(
α + β

ν̇(t)
ν(t)

)(
δ1yi(t) + δ2ỹi(t)

)
− ϕsign(yi(t)) − f (t, x0k(t))

)
. (28)

Since ∥τi(t)∥2 ≤ ∥x̃(t)∥2 ≤

√
x̃T (t)(H⊗In)(H⊗In)x̃(t)

λmin(H) =

√∑N
i=1 ∥yi(t)∥22
λmin(H) ≤

∑N
i=1 ∥yi(t)∥2
λmin(H) , where

H = diag(H11,H22, · · · ,Hmm), we have

m∑
k=1

∑
i∈Vk

yT
i (t)( f (t, xi(t)) − f (t, x0(t))) ≤

ρN
λmin(H)

N∑
i=1

∥yi(t)∥22. (29)

Based on triggering condition (24) and Eq (29), we have

V̇(t) ≤η1

m∑
k=1

∑
i∈Vk

∥yi∥
2
2 −
(
α + β

ν̇(t)
ν(t)

) m∑
k=1

∑
i∈Vk

yT
i (t)(δ1yi(t) + δ2ỹi(t))

+
ρN

λmin(H)

N∑
i=1

∥yi(t)∥22 −
(
ϕ − η2ϱ(t) − w̃

) m∑
k=1

∑
i∈Vk

∥yi∥2. (30)

According to Lemma 3 and Assumption 1, we can get

m∑
k=1

∑
i∈Vk

yT
i (t)ỹi(t) ≤

m∑
k=1

∑
i∈Vk

n∑
s=1

|ys
i (t)||ỹ

s
i (t)|

≤

m∑
k=1

∑
i∈Vk

n∑
s=1

|ys
i (t)||

∑
j∈N\Vk

ai jxs
j(t)|

≤Φ

m∑
k=1

∑
i∈Vk

n∑
s=1

|ys
i (t)||

∑
j∈N\Vk

τs
j(t)|

≤Φ

m∑
k=1

∑
i∈Vk

∥yi(t)∥2∥x̃(t)∥1

≤2NΦ

√
nλmax(H)
λmin(H)

V(t), (31)
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where Φ = max
i∈Vk , j∈Vk′ ,k,k′

{|ai j|}. Since 2λmin(H)V(t) ≤
∑m

k=1
∑

i∈Vk
yT

i (t)yi(t) ≤ 2λmax(H)V(t), it thus

follows from Eqs (30) and (31) that

V̇(t) ≤ −
((
δ1λmin(H) − δ2ΦN

√
nλmax(H)
λmin(H)

)
2α −

2ρNλmax(H)
λmin(H)

− 2η1λmax(H)
)
V(t)

−

(
δ1λmin(H) − δ2ΦN

√
nλmax(H)
λmin(H)

)
2β
ν̇(t)
ν(t)

V(t) −
(
ϕ − η2ϱ(t) − w̃

) m∑
k=1

∑
i∈Vk

∥yi∥2

≤ −

((
δ1λmin(H) − δ2ΦN

√
nλmax(H)
λmin(H)

)
2α −

2ρNλmax(H)
λmin(H)

− 2η1λmax(H)
)
V(t)

−

(
δ1λmin(H) − δ2ΦN

√
nλmax(H)
λmin(H)

)
2β
ν̇(t)
ν(t)

V(t)

= − c1V(t) − c2
ν̇(t)
ν(t)

V(t), (32)

where c1 = −

((
δ1λmin(H) − δ2ΦN

√
nλmax(H)
λmin(H)

)
2α − 2ρNλmax(H)

λmin(H) − 2η1λmax(H)
)
, and c2 = −

(
δ1λmin(H) −

δ2ΦN
√

nλmax(H)
λmin(H)

)
.

The following proof can refer to Theorem 1, and the detailed proof is omitted here.
Now, we will prove that Zeno behavior does not occur. For the case of t ∈ [0,T ), under the definition

of measurable errors Ei(t), one gets∥∥∥∥Ėi(t)
∥∥∥∥

2
=

∥∥∥∥∥ − (α + βν̇(t)ν(t)

)′(
δ1yi(t) + δ2ỹi(t)

)
−
(
α + β

ν̇(t)
ν(t)

)(
δ1yi(t) + δ2ỹi(t)

)′∥∥∥∥∥
2

≤

∥∥∥∥∥ βhθ2

(T − θt)2

(
δ1yi(t) + δ2ỹi(t)

)∥∥∥∥∥
2
+

∥∥∥∥∥(α + βν̇(t)ν(t)

)(
δ1ẏi(t) + δ2 ˙̃yi(t)

)∥∥∥∥∥
2

≤
δ1βhθ2

(T − θt)2 ∥yi(t)∥2 +
δ2βhθ2

(T − θt)2 ∥ỹi(t)∥2

+ δ1(α + β
ν̇(t)
ν(t)

)∥ẏi(t)∥2 + δ2(α + β
ν̇(t)
ν(t)

)∥ ˙̃yi(t)∥2. (33)

According to Lemma 3, we have

∥yi(t)∥2 ≤
N∑

i=1

∥yi(t)∥2 ≤ N
1
2

( N∑
i=1

yT
i (t)yi(t)

) 1
2

≤ N
1
2

(
2λmax(H)V(0)

) 1
2

, (34)

and

∥ỹi(t)∥2 =
∥∥∥∥ ∑

j∈N\Vk

ai jx j(t)
∥∥∥∥

2

=
∥∥∥∥ ∑

j∈N\Vk

ai j(x j(t) − x0k(t) + x0k(t))
∥∥∥∥

2
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≤ Φ

√
2Nn

λmin(H)
V(0). (35)

Furthermore, based on the definition of yi(t) and ỹi(t), one has

∥ẏi(t)∥2 =
∥∥∥∥∑

j∈Vk

ai j(ẋi(t) − ẋ j(t)) + bi(ẋi(t) − ẋ0k(t))
∥∥∥∥

2

≤

∥∥∥∥∑
j∈Vk

hk
i ju j(t

j
l j
)
∥∥∥∥

2
+ ρ
∑
j∈Vk

ai j

(
∥τi(t)∥2 + ∥τ j(t)∥2

)
+ ρbi∥τi(t)∥2 + w̃

(
2
∑
j∈Vk

ai j + bi

)
, (36)

where hk
i j is the element of matrix Hkk. Combining with Theorem 2, we can easily get that τi(t) is

bounded over the time interval [0,T ), i.e., there exists a positive constant M such as ∥τi(t)∥2 ≤ M.
Then we get

∥ẏi(t)∥2 ≤
∥∥∥∥∑

j∈Vk

hk
i ju j(t

j
l j
)
∥∥∥∥

2
+ (Mρ + w̃)(2

∑
j∈Vk

ai j + bi). (37)

Similar to the analysis of ∥ẏi(t)∥2, we can obtain

∥ ˙̃yi(t)∥2 ≤
∥∥∥∥ ∑

j∈N\Vk

hk
i ju j(t

j
l j
)
∥∥∥∥

2
+ (2ρM + w̃)ΦN. (38)

Substituting Eqs (34), (35), (37), and Eq (38) into Eq (33) yields

∥Ėi(t)∥2 ≤
δ1βhθ2

(T − θt)2 ∥yi(t)∥2 +
δ2βhθ2

(T − θt)2 ∥ỹi(t)∥2

+ δ1

(
α +

βhθ
T
ν

1
h (t)
)
∥ẏi(t)∥2 + δ2

(
α +

βhθ
T
ν

1
h (t)
)
∥ ˙̃yi(t)∥2

≤
δ1βhθ2

(T − θt)2 N
1
2

(
2λmax(H)V(0)

) 1
2

+
δ2βhθ2

(T − θt)2Φ

√
2Nn

λmin(H)
V(0)

+ δ1

(
α +

βhθ
T
ν

1
h (t)
)(∥∥∥∥∑

j∈Vk

hk
i ju j(t

j
l j
)
∥∥∥∥

2
+ (Mρ + w̃)(2

∑
j∈Vk

ai j + bi)
)

+ δ2

(
α +

βhθ
T
ν

1
h (t)
)(∥∥∥∥ ∑

j∈N\Vk

hk
i ju j(t

j
l j
)
∥∥∥∥

2
+ (2ρM + w̃)ΦN

)
=(χ1 + χ2)

βhθ2

T 2 ν
2
h (t) + (χ3 + χ4)

(
α +

βhθ
T
ν

1
h (t)
)
, (39)

where χ1 = δ1N
1
2

(
2λmax(H)V(0)

) 1
2

, χ2 = δ2Φ
√

2Nn
λmin(H)V(0), χ3 = δ1

(∥∥∥∥∑ j∈Vk
hk

i ju j(t
j
l j
)
∥∥∥∥

2
+

(Mρ + w̃)(2
∑

j∈Vk
ai j + bi)

)
, χ4 = δ2

(∥∥∥∥∑ j∈N\Vk
hk

i ju j(t
j
l j
)
∥∥∥∥

2
+ (2ρM + w̃)ΦN

)
. Since Ei(ti

l) = 0, it yields

∥Ei(t)∥2 ≤
∫ t

til

(
(χ1 + χ2)

βhθ2

T 2 ν
2
h (s) + (χ3 + χ4)

(
α +

βhθ
T
ν

1
h (s)
))

ds + ∥Ei(ti
l)∥2
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≤

∫ til+1

til

(
(χ1 + χ2)

βhθ2

T 2 ν
2
h (s) + (χ3 + χ4)

(
α +

βhθ
T
ν

1
h (s)
))

ds. (40)

Since ν(ti
l+1) ≤ 1

(1−θ)h holds, Eq (40) can be rewritten as

∥Ei(t)∥2 ≤ π(ti
l+1 − ti

l), (41)

where π =
(
(χ1 + χ2)βhθ2

T 2
1

(1−θ)2 + (χ3 + χ4)
(
α + βhθ

T
1

(1−θ)

))
> 0.

According to the triggering condition (24), the next triggering instant ti
l+1 must satisfy π(ti

l+1 − ti
l) ≥

η2ϱ(ti
l+1), i.e., (ti

l+1 − ti
l) ≥

η2ϱ(til+1)
π

, where ϱ(ti
l+1) > 0, then Zeno behavior does not occur for t ∈ [0,T ).

Next, for the case of t ∈ [T,∞), we have ν(t) = 1, and the control protocol (23) turns into

ui(t) = −
(
α + β

hθ
T

)(
δ1yi(ti

l) + δ2ỹi(ti
l)
)
− ϕsign(yi(ti

l)), t ∈ [ti
l, t

i
l+1), i ∈ Vk. (42)

Similarly, the triggering mechanism (24) changes into

ti
l+1 = inf{t > ti

l : ∥Ei(t)∥2 > η1∥yi(t)∥2}. (43)

For t ∈ [T,∞), according to Lemma 1, the prescribed-time event-triggered consensus problem
transformed into the asymptotical consensus problem based on the event-triggered mechanism.
Recalling literature [39], the authors analyze a necessary condition of Zeno behavior and further
transform the exclusion problem of Zeno behavior into the nonexistent problem of proving some
finite-time convergence. Exclusion methods for the Zeno phenomenon is similar to the analysis of
Yu et al. [39] in [39] and is omitted here.
Remark 4. Different from the fixed-time cluster consensus result in literature [35], where a
continuous algorithm is designed and the convergence time is related to other system parameters, we
select that the control scheme in this paper has following distinguished features: 1) In order to reduce
the communication burden, an event-triggered algorithm is proposed. The convergence time of the
proposed algorithm is independent of the control parameters and can be preselected. 2) To avoid
overlap of the finial states of different clusters, we design a leader for each cluster.
Remark 5. From the above analysis, it can be seen that when t ≥ T , the consensus is achieved in an
asymptotic manner. In order to further improve the convergence rate in our future work, we will
improve the controller (10) to reach consensus in a finite-time convergence manner for t ≥ T .

4. Numerical simulation

In this section, two numerical examples are conducted to test the performance of
Theorems 1 and 2.
Example 1. (Continuous control algorithm) We consider System (8), where the nonlinear dynamics
are designed by f (xi(t), t) = [0.5xi1(t) + 0.8 sin(t), 0.5xi2(t) + 0.8 sin(t)]T and external disturbances are
given as wi(xi(t), t) = [0.1 cos(xi1(t)), 0.1 cos(xi2(t))]T , i = 1, 2, · · · , 9. It is easy to get that w̃ =

√
0.02.

The initial states are chosen as x1(0) = [14,−24]T , x2(0) = [−13, 22]T , x3(0) = [20, 10]T ,
x4(0) = [15,−25]T , x5(0) = [−28, 20]T , x6(0) = [−25,−20]T , x7(0) = [−28,−26]T , x8(0) = [25,−19]T ,
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x9(0) = [23, 25]T . Consider that the MAS consists of nine agents, and the communication topology
between agents is exhibited in Figure 1 with three clusters, V1 = {1, 2, 3}, V2 = {4, 5}, and
V3 = {6, 7, 8, 9}. Furthermore, the Laplacian matrix of the coupling topologies are given as:

L =


L11 L12 L13

L21 L22 L23

L31 L32 L33

 =



1 0 −1 0.5 −0.5 0 0 0 0
0 1 −1 0 0 0 0 −0.1 0.1
−1 −1 2 −0.5 0.5 0 0 0.1 −0.1
0.5 0 −0.5 1 −1 −0.3 0.3 0 0
−0.5 0 0.5 −1 1 0.3 −0.3 0 0

0 0 0 −0.3 0.3 1 −1 0 0
0 0 0 0.3 −0.3 −1 2 −1 0
0 −0.1 0.1 0 0 0 −1 2 −1
0 0.1 −0.1 0 0 0 0 −1 1



Figure 1. Communication topology.

By calculating, we can get λ = 0.3431, Φ = 0.5, N = 1, N = 2, m = 3. The other parameters are
selected as α = 1.6, β = 2.6, h = 1.8, ϕ = 1.1, δ1 = 1, δ2 = 0.1, θ = 0.9,T = 0.5. Based on the initial
conditions and related parameters designed above, the observed result is shown in Figures 2 and 3.
From Figures 2 and 3, we can get that the cluster consensus is obtained within the prescribed-time T =
0.5. To better illustrate the theoretical results, the responses of the system state are shown in Figures 4
and 5 under initial condition x1(0) = [−7, 5]T , x2(0) = [5,−8]T , x3(0) = [−5,−7]T , x4(0) = [−10, 7]T ,
x5(0) = [0,−4]T , x6(0) = [5, 9]T , x7(0) = [8, 2]T , x8(0) = [−5, 9]T , x9(0) = [−3,−5]T , and x1(0) =
[0, 11]T , x2(0) = [−5, 12]T , x3(0) = [5,−9]T , x4(0) = [10, 5]T , x5(0) = [−6,−4]T , x6(0) = [15,−4]T ,
x7(0) = [−8, 2]T , x8(0) = [6,−2]T , x9(0) = [1,−15]T .
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Figure 2. Trajectories of xi1(t).
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Figure 3. Trajectories of xi2(t).

Remark 6. In order to better verify the theoretical results, we consider the cluster consensus problem
in the case of multiple initial values. It can be seen from Figures 4 and 5 that the final state values
may be different under different initial value conditions, but the cluster consensus can be achieved
within the prescribed-time T = 0.5.

Remark 7. As shown in the Figure 1, we can get that the weighted factors ai j satisfy ai j ≥ 0 for any
i, j ∈ Vk, and ai j ∈ R for any i ∈ Vk, j ∈ N \ Vk. Positive and negative weights mean that agents
have cooperative and competitive relationships between intra- and interclusters. This can be a very
realistic representation of a variety of real-life scenarios, such as basketball games and food chains in
the animal kingdom.
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Figure 4. Trajectories of xi1(t).
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Figure 5. Trajectories of xi2(t).

Example 2. (Event-triggered control algorithm) Consider the MAS consisting of nine agents and three
leaders. The communication topology among agents is described by Figure 6. The functions f (xi(t), t),
and external disturbances wi(xi(t), t) are chosen the same as those in Example 1. Choose the initial state
as x1(0) = [13,−14]T , x2(0) = [−23, 22]T , x3(0) = [20, 20]T , x4(0) = [−18,−11]T , x5(0) = [−30, 15]T ,
x6(0) = [−25,−20]T , x7(0) = [−28,−26]T , x8(0) = [25,−19]T , x9(0) = [23, 25]T , x01(0) = [14,−2]T ,
x02(0) = [3, 22]T , x03(0) = [−4, 11]T . The parameters are selected as α = 5.71, β = 0.1, h = 1.3, ϕ =
0.6, δ1 = 1, δ2 = 0.5, θ = 0.9, η1 = 14, η2 = 0.1,T = 0.5. From Figures 7 and 8, we can observe that the
cluster consensus is obtained within the prescribed time T = 0.5. Figure 9 shows the event-triggering
instants of nine agents, meaning no Zeno behavior occurs.
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Figure 6. Communication topology.
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Figure 7. Trajectories of xi1(t).

It can be obtained from Figure 9 that when the settling time approaches 0.5, the number of
triggering instants of each agent increases rapidly, which may make it difficult to rule out Zeno
behavior. As shown in Figure 10, it can be concluded that the shortest event-triggering interval of nine
agents is 0.002. However, the iteration step size in the numerical simulation is 0.001, which implies
that Zeno behavior can be ruled out.
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Figure 9. The triggering instants of nine agents.
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Figure 10. The triggering instants of agents over [0.49, 0.53].
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5. Conclusions

In this paper, the prescribed-time cluster practical consensus problem has been investigated for
nonlinear MASs with external disturbances. First, a continuous control algorithm was designed such
that all agents in the same cluster reach consensus within the prescribed-time. Moreover, compared to
the proposed continuous control algorithm, the event-triggered control algorithm was designed to
address the prescribed-time cluster consensus issue while reducing the communication cost.
Additionally, it has proven that Zeno behavior did not exhibit in the above consensus issue. In our
future work, we will focus on the prescribed-time cluster consensus problem for nonlinear MASs with
switching directed topologies.
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