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Abstract: In response to the issues of low efficiency and high cost in traditional manual methods for 

road surface crack detection, an improved YOLOv5s (you only look once version 5 small) algorithm 

was proposed. Based on this improvement, a road surface crack object recognition model was 

established using YOLOv5s. First, based on the Res2Net (a new multi-scale backbone architecture) 

network, an improved multi-scale Res2-C3 (a new multi-scale backbone architecture of C3) module 

was suggested to enhance feature extraction performance. Second, the feature fusion network and 

backbone of YOLOv5 were merged with the GAM (global attention mechanism) attention 

mechanism, reducing information dispersion and enhancing the interaction of global dimensions 

features. We incorporated dynamic snake convolution into the feature fusion network section to 

enhance the model’s ability to handle irregular shapes and deformation problems. Experimental 

results showed that the final revision of the model dramatically increased both the detection speed 

and the accuracy of road surface identification. The mean average precision (mAP) reached 93.9%, 

with an average precision improvement of 12.6% compared to the YOLOv5s model. The frames per 

second (FPS) value was 49.97. The difficulties of low accuracy and slow speed in road surface 

fracture identification were effectively addressed by the modified model, demonstrating that the 

enhanced model achieved relatively high accuracy while maintaining inference speed. 

Keywords: road surface crack detection; deep learning; YOLOv5s; Res2-C3 module; attention 

mechanism 

 

1. Introduction 

In recent years, China has maintained a relatively stable development trend in its highway 
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transportation, with significant improvements in its level of development. As of the end of 2022, the 

total length of highways in China has approached 5.2 million kilometers, and the mileage of the 

expressway network has reached 161,000 kilometers [1]. Given the swift advancement of highway 

construction in China, the country has now entered the phase of highway maintenance [2]. Therefore, 

it is crucial to timely detect and repair issues on the road surface. Road surface cracks are the most 

common type of pavement distress. If they can be detected promptly in their early stages and 

repaired, it not only effectively prevents them from evolving into more severe pavement issues but 

also extends the lifespan of expressways. Hence, a fast, convenient, and safe road surface crack 

detection method holds significant importance for road maintenance. 

There are many problems in the traditional road crack detection algorithm. For instance, the 

road mileage is often too extensive, leading to high human resource costs. Human detection 

involves complex human factors and is not conducive to objectively evaluating road defect 

detection accuracy, which cannot be guaranteed. Additionally, the traditional manual road detection 

method is adverse to inspector safety. In recent years, with the rapid development of various new 

technologies, including computers, target detection, GPS (global position system), digital CCD 

(charge-coupled device), etc. [3–5], computer vision based on deep learning has gained wide 

acceptance and application in our daily lives. These issues can be addressed by adopting deep 

learning object detection algorithms. The YOLO (you only look once) series of algorithms is a 

neural network algorithm used for real-time object detection. Unlike traditional two-stage object 

detection methods, the YOLO series is a one-stage detector [6]. It directly predicts the position and 

category of targets through a single feed forward neural network without the need for candidate 

box generation and filtering steps, resulting in higher detection accuracy and faster inference speed. 

Currently, there is a substantial amount of research conducted both domestically and 

internationally on road surface crack detection and recognition using YOLO algorithms. 

Researchers such as Park [7] have established a network model that combines segmentation and 

detection. During the segmentation process, only a part of the road surface is extracted, and road 

surface damage is detected based on that portion, which improves accuracy but reduces detection 

efficiency. X. Su [8] used MobileNetv2 as the backbone network for YOLOv4 and replaced 

conventional convolutions with depth-wise separable convolutions. Furthermore, the backbone and 

neck components of the original model also embedded coordinate attention processes and spatial 

attention mechanisms. These attention mechanisms significantly enhance the detection accuracy and 

speed for road surface cracks, but the model's final mean average precision (mAP) value is relatively 

low. M. Wang [9] proposed a method that replaces the GIoU (generalized intersection over union) 

loss function with EIoU (exponential intersection over union), resolving the issue of large GIoU 

errors while improving convergence speed and regression accuracy. However, the improved model's 

inference speed has decreased compared to the original model. A comprehensive analysis of the 

development from YOLOv1 to YOLOv8 is presented by J. R. Terven et al. [10]. The authors 

conclude that starting from YOLOv5 and moving onward, all official YOLO models have been 

fine-tuned to strike a balance between speed and accuracy, aiming to better adapt to specific 

applications and hardware requirements [11]. Classic YOLOv5 employs a simple convolutional 

neural network (CNN) architecture, while the latest YOLOv8 employs a more complex network 

structure comprising multiple residual units and branches [12]. Consequently, YOLOv5’s detection 

accuracy is not on par with that of YOLOv8 when processing road crack images. Although YOLOv8 

enhances the model’s structure and training effectiveness, it sacrifices detection speed and has a 
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larger parameter count. Therefore, YOLOv5 has been selected for improvement. 

These aforementioned detection models each have their advantages and disadvantages, and 

cannot achieve a balance between detection accuracy and speed, limiting their practical application 

in engineering [8]. To achieve efficient and accurate road surface crack recognition, this paper 

introduces a road surface crack detection model that combines attention mechanisms. The main 

contributions of this paper can be summarized as follows:  

1) Based on the Res2Net (a new multi-scale backbone architecture) network, an improved 

multi-scale Res2-C3 (a new multi-scale backbone architecture of C3) module is suggested to 

enhance the feature extraction performance. 

2) The feature fusion network and backbone of YOLOv5 are combined with the GAM (global 

attention mechanism) attention mechanism to enhance the model’s ability to perceive fracture 

information. 

3) Integrating dynamic serpentine convolution into the feature fusion network, the improved 

network enhances the model’s ability to address irregular shape and deformation problems, 

which is beneficial for improving the accuracy of road crack identification. 

2. Improvement of the YOLOv5s model 

2.1. Model overall structure 

YOLOv5s is a variant of the YOLOv5 series, which is an object detection deep learning 

algorithm. Compared to other versions of YOLOv5, YOLOv5s is a lightweight model that preserves 

strong detection performance while decreasing the model's size and computational complexity. The 

YOLOv5s algorithm network structure consists of the head, neck, and backbone. CSPDarknet53 

(cross stage paritial network) serves as the backbone network for YOLOv5s and it effectively 

extracts image features. Using feature maps with multi-scale information created by combining 

feature maps from various levels, the neck network integrates these feature maps with the features 

produced by the backbone network to increase object detection accuracy [13]. The head network is 

responsible for the final detection steps, constructing a neural network that determines the bounding 

box positions and recognition types, forming the ultimate output vector 2. Figure 1 represents the 

improved YOLOv5s network structure. 

https://link.zhihu.com/?target=https://arxiv.org/pdf/2112.05561.pdf
https://link.zhihu.com/?target=https://arxiv.org/pdf/2112.05561.pdf
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Figure 1. Improved YOLOv5s network structure. 

2.2. Enhancing the multi-scale C3 structure 

2.2.1. C3 module 

As seen in Figure 2, the C3 module, which consists of two parallel branches, is the central 

component of the backbone network. After going through one of the branches’ Conv modules, the 

input feature map is stacked with n bottleneck modules to extract high-level semantic information [14]. 

The output of the other branch, after passing through a Conv layer, is concatenated with the output of 

the first branch. Subsequently, feature fusion is performed through another Conv layer before the final 

output. 
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Figure 2. C3 module. 

The C3 module of YOLOv5s mainly leverages the idea of extracting diversion using the 

CSPNet [15] and combines the concept of residual structures. It is designed with C3Block, and the 

bottleNeck module is the CSPNet main branch gradient module. The number of stacked modules is 

influenced by the parameter ‘n’, and the value of ‘n’ changes with the model’s size. The bottleneck 

module is integrated multiple times within the C3 module, to capture higher-level semantic 

information from the image. 

2.2.2. Res2-C3 module 

Drawing inspiration from the design concepts of VGG (visual geometry group) [16], 

GoogleNet [17], and CSPNet [15], the C3 module processes input information through two 

branches. One branch stacks n bottleneck structures to extract high-level semantic features, while 

the other branch maintains the original image features through a shortcut connection of the Conv 

module. Finally, two parallel convolution branches are used to merge the image features, 

enhancing the feature information within the image. Therefore, the core of feature extraction lies in 

the design of the bottleneck structure. 

In order to improve the model’s capacity to extract feature information [18] and acquire richer 

feature information, deeper network architectures or a higher number of convolutional kernels are 

frequently used. A Res2-Bottleneck module is proposed by merging the bottleneck structure with 

the Res2Net module in order to improve the model's feature information extraction capability [19]. 

The primary idea is to decompose the feature maps from the 3 × 3 convolution layer in the original 

residual convolution, which receives feature maps from the 1 × 1 convolution layer of the input, 

into four parts [20]. The first part remains unchanged, the second part passes through a 3 × 3 

convolution layer, the third part adds its features to those of the second part before passing through 

another 3 × 3 convolution layer, and the fourth part adds its features to those of the third part before 

passing through another 3 × 3 convolution layer. The parallel technique improves the model's 

capacity to extract characteristics across several scales. In the end, the feature maps from these four 

parts are concatenated to form feature maps with the same number of layers as the input layer, and 

are then sent to the output layer for 1 × 1 convolution to perform feature fusion. This structure is 

referred to as the enhanced multi-scale bottleneck (Res2-Bottleneck), as shown in Figure 3. The 
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Res2-Bottleneck not only increases the multi-scale feature information, but also maximally preserves 

the original feature information through the residual structure, reducing the loss of shallow features. 

As a result, more information about pavement cracks may be stored, which is highly advantageous 

for raising the model’s detection accuracy. 

In the original C3 module, one branch performs feature extraction by stacking multiple 

bottleneck modules. To improve the feature extraction performance, the original bottleneck structure 

is replaced with the improved Res2-Bottleneck structure, resulting in the improved Res2-C3 module, 

as shown in Figure 4. 

Conv 1×1

x1

x2

x3

x4

Conv 3×3

Conv 3×3

Conv 3×3

y1

y2

y3

y4

Conv 1×1

Input Output

 

Figure 3. Enhance the multi-scale bottleneck structure. 
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Figure 4. Res2-C3 module. 
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2.2.3. Multi-scale extraction module C3-RFEM 

The C3 module is the heart of the YOLOv5 backbone network, and the bottleneck structure’s 

design is essential to the C3 module. Building upon the bottleneck structure, the multi-scale 

extraction module C3-RFEM (receptive field enhancement module) is proposed based on the RFE 

(receptive field enhancement) module [21]. The main principle of the RFE module is to use four 

different scale expansion convolution branches to capture multi-scale information and different 

receptive ranges. These branches share weights, with the only difference being their receptive fields. 

This approach reduces model parameters and potential overfitting risks. Additionally, it allows for 

operations of different sizes, making full use of each feature’s information. The RFE module can be 

divided into two parts: one is the multi-branch based on expansion convolution, and the other is the 

weighted layer, as shown in Figure 5. The multi-branch part uses different expansion convolutions 

with rates 1, 2, and 3; all these convolutions, however, employ a fixed 3 × 3 convolution kernel size. 

Residual connections are employed to prevent gradient explosion and vanishing during training. This 

structure can improve the model’s detection accuracy and lessen feature loss during feature 

extraction. 

Replacing the original bottleneck module with the RFE module results in C3RFEM, as 

illustrated in Figure 6. To ensure that the improved model exhibits better performance, comparative 

experiments are conducted between the C3RFEM module, which extracts multi-scale feature 

information based on the RFE module and the Res2-C3 module. This comparison aims to select a 

model with higher accuracy and faster speed. 
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Figure 5. RFE module. 
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Figure 6. C3RFE module 

2.3. Adaptive mechanism 

The attention mechanism enables the model to selectively concentrate more on target 

information [22]. Separating the relevance of several channels and using it as a focus is the 

fundamental component of channel attention, thus weakening the role of uninterested channels. 

Hybrid attention combines channel attention with spatial attention, with these two parts being 

consecutive or parallel, forming an attention model for channel features and spatial features. 

The SE (squeeze and excitation) [23] attention module is a channel attention module that 

enhances channel features in input feature maps. However, the SE attention mechanism neglects 

spatial information, failing to comprehensively extract the feature map information. CBAM 

(convolutional block attention module) [24] is a spatial attention mechanism that effectively 

overcomes the shortcomings of SE by utilizing channel information while considering spatial 

information. However, the CBAM attention mechanism loses cross-dimensional information by 

ignoring the relationship between channels and space. Recognizing the significance of interactions 

across dimensions, the GAM [25] attention mechanism is employed, which can lessen information 

dispersion and enhance global dimensions interaction features. 

Though their approaches to channel attention and spatial attention are different, overall, the 

GAM and CBAM attention mechanisms are comparable. Figure 7 shows the full process, with Mc 

and Ms standing for channel attention maps and spatial attention maps, respectively. 

Channel 

Attention

Mc

Spatial 

Attention

Ms

Input features F1 Output features F3

 

Figure 7. The overview of GAM. 
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Three-dimensional arrangements are used by the channel attention sub-module (CAM) to store 

information in three dimensions. Subsequently, a two-layer multilayer perceptron (MLP) is utilized 

to enhance the cross-dimensional interdependence across spatial channels. The channel attention 

sub-module is shown in Figure 8, where the input feature map undergoes dimension transformation, 

and the transformed feature map is processed through the MLP to restore its original dimensions, 

resulting in a Sigmoid output. 

Two convolutional layers are employed for spatial information fusion in the spatial attention 

sub-module (SAM) in order to pay attention to spatial input [26]. For SAM, similar to the SE 

attention mechanism, it first reduces the quantity of channels before increasing them. A SAM is 

depicted in Figure 9, where channel reduction is achieved by a convolutional kernel with a size of 7, 

reducing computational load, followed by a convolution operation with a 7-sized kernel to boost the 

number of channels while preserving channel count consistency. Finally, a Sigmoid output is 

obtained. 
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Figure 8. CAM. 

Input features F2

C×W×H 

7×7

Conv
7×7

Conv

C/r×H×W C×W×H 

Ms(F2)

sigmoid

 

Figure 9. SAM. 

2.4. Incorporate dynamic snake convolution 

The receptive field of the traditional convolutional kernel is regular, but the shape of road 

cracks is irregular, causing some receptive fields not to be on the target. Additionally, the receptive 

field size of the convolutional kernel is fixed, but the size and extent of road cracks vary. If the target 

is too large, only local features can be extracted, and if the target is too small, interference from 

irrelevant information occurs. To address the limitation of traditional convolution in effectively 

adapting to geometric changes in objects, which makes it difficult to recognize objects undergoing 

rotation, symmetry, and scaling, dynamic snake convolution can be employed [27]. 

Inspired by deformable convolution [28], the model, in the process of learning features, obtains 

dynamic snake convolution by changing the shape of the convolutional kernel. Deformable 

convolution predicts offsets for sampling points, adaptively changes the sampling positions, and 

focuses on semantic feature points and geometric keypoints of the target. The sampling process of 

the convolutional kernel is illustrated in Figure 10. The input image first passes through the 

convolutional branch to calculate the offset. The output feature map has the same size as the input 
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image, with dimensions of 2N. Then, based on the offset, the adaptive sampling points of the 

backbone network are obtained. Next, using bilinear interpolation, the feature values of the sampling 

points are obtained. However, the learning of the offset for sampling points is highly free, which may 

lead to positions far from the target. Moreover, each sampling point has the same weight for the 

output, and poor-quality sampling points can interfere with feature extraction. Dynamic snake 

convolution introduces continuity constraints into the design of the convolutional kernel. Each 

convolutional position is based on its previous position as a reference, freely choosing the oscillation 

direction and ensuring continuity of perception while allowing for free selection. This enables the 

convolutional kernel to fit structures and learn features freely on one hand, and on the other hand, it 

ensures that the convolutional kernel does not deviate too far from the target structure under 

constraint conditions. By adding dynamic snake convolution to the feature fusion network section of 

YOLOv5s, the improved network enhances the model's ability to handle irregular shapes and 

deformation problems. The adaptive changes in the receptive field size based on the target size are 

beneficial for improving the accuracy of road crack recognition. 

conv

2N

offset field

offsets

input feature map output feature map

deformable convolution

 

Figure 10. Deformable convolution sampling process. 

3. Experimental data 

3.1. Dataset introduction 

The data collection device for the experiment is a multipurpose road inspection vehicle. On the 

inspection vehicle, there are two cameras arranged in parallel for capturing road information. The 

images are processed in grayscale to reduce the original data volume and enhance image information. 

There are 3000 pictures in the dataset that were utilized for this experiment. Training, validation, and 

test sets of these photos are split into 8:1:1 ratios at random. A portion of the photos is used as the 

test set, a portion as the validation set, and a portion as the training set. The dataset’s pictures used in 

the experiment are in JPG format with a size of 500 × 500 pixels. 
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3.2. Experimental environment 

The experiments in this paper’s software environment are built using PyTorch 1.8.0, a deep 

learning framework. It utilizes the GPU (graphics processing unit) of the NVIDIA GeForce RTX 

3060 model for accelerated processing. The code is written in Python version 3.8, and it runs on the 

Windows 10 operating system. The hardware includes an Intel Xeon W-3225 processor, and the 

acceleration library is CUDA 10.0. There shall be 200 training batches in all [29], and the batch size 

is configured as 8. The weight file used is YOLOv5s.pt, with an initial learning rate of 0.001, a 

momentum of 0.9, a weight decay rate of 0.0005, and label smoothing set to 0.1. 

4. Experimental results and analysis 

4.1. Evaluation metrics 

The mAP, recall (R), frames per second (FPS), and computational complexity are frequently 

employed in deep learning to assess the efficacy of models. These are their formulas: 

 




TP
Precision

TP FP   
(1)

 

 




TP
Recall

TP FN   
(2)

 

where: TP represents the number of true positive detections of positive samples; FP represents the 

number of false detections of negative samples; TN represents the number of false detections of 

positive samples; and FN represents the number of true negative detections of negative samples. 

mAP, which is the average of average precision (AP), is a key metric for object detection 

algorithms [30]. In object detection models, a higher mAP indicates better detection results on a 

specific dataset. FPS, which gauges the model detection speed, is employed to evaluate the fracture 

detection speed; a higher FPS value indicates faster detection and better model performance. The 

computational complexity of a convolutional neural network model is represented by the number of 

floating-point operations, known as FLOPs. FLOPs are used as an indirect measure of the speed of 

neural network models. A smaller FLOPs value indicates lower model complexity and faster target 

recognition and is calculated as follows: 

 

2_ 2 in outFLOPs C C K HWC
  

(3)
 

where: Cin represents the number of input channels; K represents the convolutional kernel size; HW 

represents the size of the output feature map; and Cout represents the number of output feature map 

channels [31]. 

4.2. Comparative experiments 

To illustrate the appropriateness and efficacy of selecting the Res2-C3 module as a multi-scale 

extraction module, a horizontal comparison of the performance of Res2-C3 and C3RFEM as 

multi-scale feature extraction modules is presented. The outcomes of the comparative experiments 
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are displayed in Table 1. 

Table 1. Comparative experimental results of multi-scale extraction modules. 

module mAP/50% AP/%(groove) Recall/%(groove) FPS/(frame/s) FLOPs 

YOLOv5s 0.838 0.816 0.766 76.324 15.8 

Res2-C3 0.897 0.872 0.83 53.16 14.4 

C3RFEM 0.873 0.85 0.798 41.308 10.1 

Table 1 illustrates how the Res2-C3 module model strikes a balance between speed and 

accuracy of detection. Regarding detection accuracy, compared to the original model and the model 

using the C3RFEM module, the model using the Res2-C3 module improved mAP by 5.9 and 2.4%, 

respectively. The model with the Res2-C3 module reduced the risk of overfitting because of a 

decrease in parameters, but it also exhibited a modest decrease in FPS when compared to the original 

model in terms of detecting speed. In comparison to the model using the C3RFEM module, the FPS 

increased by 11.852 frames/s, significantly improving the detection speed. Therefore, the Res2-C3 

module was chosen as the multi-scale module for the final improved model. 

4.3. Ablation experiments 

To fully validate the effectiveness of the proposed improvements in this paper, ablation 

experiments were conducted on the road crack dataset. The label smoothing for all models was set to 

0.1 to prevent model overfitting. Each improvement module was embedded into the YOLOv5s 

model one by one, and the same training parameters and environmental conditions were used in each 

experiment. Table 2 displays the outcomes of the experiment. In terms of detection accuracy, the 

model with the highest mAP is the YOLOv5s+Res2-C3+GAM+DSConv model, which improved 

mAP by 10.1% compared to the YOLOv5s model. When Res2-C3, GAM, and DSConv (dynamic 

snake convolution) act individually, the highest mAP value is achieved by the YOLOv5s+Res2-C3 

model, with an mAP value of 89.7%, which is 5.9% higher than the YOLOv5s model. This indicates 

that by stacking numerous bottleneck modules, the Res2-C3 module improves the model’s feature 

extraction capabilities and enhances the road fracture detection accuracy. When any two modules are 

combined, the model’s detection accuracy is improved to varying degrees. This suggests the 

possibility of a synergistic effect between the modules where they complement and enhance each 

other’s capabilities, contributing to improved accuracy and robustness. 

In terms of the detection speed, FPS represents the model’s speed in terms of detection speed, 

with higher FPS indicating faster detection. According to the experimental results, the fastest 

detection model is YOLOv5s, with the FPS value as 72.324. Compared to the original model, all 

improved models experienced a decrease in detection speed. Among these, the largest decrease in 

detection speed was observed in the YOLOv5s+Res2-C3+GAM+DSConv model with an FPS value 

of 49.97 FPS. This is mainly because obtaining more feature information leads to an increase in the 

model's parameter count. The model requires more computations and weight updates, which 

increases the time cost of training and reduces detection speed. 
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Table 2. Improved module ablation experimental results. 

module mAP/50% AP/%(groove) Recall/%(groove) FPS/(frame/s) 

YOLOv5s 0.838 0.816 0.766 72.324 

YOLOv5s+Res2-C3 0.897 0.872 0.83 53.16 

YOLOv5s+GAM 0.885 0.876 0.815 62.449 

YOLOv5s+DSConv 0.859 0.828 0.782 51.944 

YOLOv5s+Res2-C3+GAM 0.934 0.927 0.863 53.985 

YOLOv5s+Res2-C3+DSConv 0.917 0.905 0.842 50.917 

YOLOv5s+GAM+DSConv 0.922 0.913 0.851 51.869 

YOLOv5s+Res2-C3+GAM+DSConv 0.939 0.942 0.871 49.97 

In terms of recall rate, the best-performing model is the YOLOv5s+Res2-C3+GAM+DSConv 

model, achieving a recall rate of 87.1%, which is a 10.5% improvement over the original model. 

In summary, through the comparison of multiple indicators, the improved 

YOLOv5s+Res2-C3+GAM+DSConv model performs the best, with a 12.6% increase in AP for road 

crack detection and a 10.1% increase in mAP. Since the final improvement model adds three 

modules relative to the YOLOv5s network, the complexity of the model increases, and it is 

reasonable that the speed will decrease. The final improved model strikes a balance between mAP 

and FPS, maintaining high accuracy while achieving relatively fast speed.  

4.4. Model Comparison 

Tests were conducted on the YOLOv5s and the final improved model on the above-mentioned 

dataset, and their various parameters were compared with the newer YOLOv7 and YOLOv8 

networks. Table 3 shows that, compared to other networks, the final improved model 

YOLOv5s+Res2-C3+GAM+DSConv has better parameters in terms of mAP and AP. 

Table 3. Comparison of different models. 

module mAP/50% AP/%(groove) Recall/%(groove) FPS/(frame/s) FLOPs 

YOLOv5s 0.838 0.816 0.766 76.324 15.8 

YOLOv5s+Res2-C3+GAM+DSConv 0.939 0.942 0.871 49.97 18.4 

YOLOv7 0.891 0.903 0.862 54.62 16.3 

YOLOv8 0.924 0.915 0.892 50.479 17.9 

Compared to YOLOv7 and YOLOv8, YOLOv5 has the lowest accuracy, with mAP values for 

YOLOv7 and YOLOv8 models being 5.3 and 8.6% higher than YOLOv5, respectively. However, 

YOLOv8's FPS significantly decreases, leading to slower detection speed. Due to the larger model 
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parameters and more complex network structures of YOLOv7 and YOLOv8, the detection speed 

becomes slower. 

Compared to YOLOv7 and YOLOv8 models, the final improved model 

YOLOv5s+Res2-C3+GAM+DSConv has the highest detection accuracy, with mAP values 4.8 and 

1.5% higher than the YOLOv7 and YOLOv8 models, respectively. In terms of detection speed, the 

YOLOv5s+Res2-C3+GAM+DSConv model has an FPS value only 0.509 FPS lower than YOLOv8. 

Although the YOLOv5s+Res2-C3+GAM+DSConv model exhibits a slight decrease in detection 

speed compared to YOLOv8, it achieves a 2.7% increase in detection accuracy over YOLOv8. 

Overall, the YOLOv5s+Res2-C3+GAM+DSConv model strikes a balance between detection 

accuracy and speed. 

4.5. Analysis of detection results 

The enhanced model’s detection results are shown in Figure 11. The numbers represent 

confidence scores, indicating the model’s confidence level in its predictions. High confidence scores 

indicate that the model is very confident in its predictions, while low confidence scores indicate that 

the model is less certain about the results [32]. From the detection results of road cracks in the 

images, it is evident that not only were small cracks successfully detected, but these cracks also 

exhibited relatively high confidence scores. This observation strongly validates the feasibility and 

effectiveness of the improved algorithm, demonstrating its outstanding performance in crack 

detection tasks and providing robust support for road maintenance and safety. 

 

Figure 11. Detection result. 
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5. Conclusions 

In reaction to the shortcomings of conventional techniques for detecting road cracks, such as 

their poor speed and low accuracy, this paper proposes a method to improve the YOLOv5s model. 

The method involves using the proposed Res2-C3 module as the core of the backbone network to 

replace the original C3 module, enabling the extraction of more feature information from input 

images to reduce the omission of valuable information and increase detection accuracy. Furthermore, 

the GAM attention mechanism is added to both the YOLOv5s backbone network and the feature 

fusion network to increase the model’s focus on crack information and reduce the false-negative rate 

for small cracks. Adding dynamic snake convolution to the feature fusion network enables the 

model's receptive field to adaptively change with the size of road cracks, which is advantageous for 

improving the accuracy of road crack detection. The paper also introduces label smoothing, setting 

the label smoothing value to 0.1, to enhance the model's generalization. This model achieves a 

balance between detection accuracy and speed while controlling the model's parameter size.  

To enhance the model’s accuracy and robustness, future research should consider collecting 

more samples of different types of road cracks and using data augmentation techniques to increase 

dataset diversity. Furthermore, considering real-time road crack detection and application on mobile 

devices would enhance the algorithm's practicality. 
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