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Abstract: With the widespread adoption of electronic health records, the amount of stored medical
data has been increasing. Clinical data, often in the form of semi-structured or unstructured electronic
medical records (EMRs), contains rich patient information. However, due to the use of natural lan-
guage by physicians when composing these records, the effectiveness of traditional methods such as
dictionaries, rule matching, and machine learning in the extraction of information from these unstruc-
tured texts falls short of clinical standards. In this paper, a novel deep-learning-based natural language
extraction method is proposed to overcome current shortcomings in data governance and Gensini score
automatic calculation in coronary angiography. A pre-trained model called bidirectional encoder repre-
sentation from transformers (BERT) with strong text feature representation capabilities is employed as
the feature representation layer. It is combined with bidirectional long short-term memory (BiLSTM)
and conditional random field (CRF) models to extract both global and local features from the text. The
study included an evaluation of the model on a dataset from a hospital in China and it was compared
with another model to validate its practical advantages. Hence, the BiLSTM-CRF model was employed
to automatically extract relevant coronary angiogram information from EMR texts. The achieved F1
score was 91.19, which is approximately 0.87 higher than the BERT-BiLSTM-CRF model.
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1. Introduction

Named entity recognition (NER) refers to the identification of specific entities in the text, such as the
names of individuals, locations and organizations. This constitutes a significant aspect of information
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extraction [1]. The current studies show that medical information provided by electronic medical
records (EMRs) is more complete and faster to retrieve than traditional paper records [2]. Nowdays,
EMRs are becoming the main source of medical information about patients [3]. Concurrently, the
value of medical information has become increasingly significant. Due to the unstructured nature
of these records, extracting information from clinical notes is quite challenging. Entity extraction
from electronic health records forms the foundation for studying patient conditions. For healthcare
professionals, the deep exploration of clinical data for research purposes is not straightforward, and
there is a need for tools to facilitate this process. Deep learning can be employed for the automated
analysis of coronary angiographic images, reducing manual interventions and subjective judgments.
By training deep learning models, the automated identification and quantitative assessment of coronary
artery lesions, degrees of narrowing, and hemodynamics can be determined, offering rapid and accurate
diagnostic results.

Surgical information constitutes an essential component of clinical data, often stored in unstruc-
tured form within electronic health records (EHRs) [4]. Deep learning models can serve as assistive
tools for physicians, providing interpretation suggestions and diagnostic opinions for coronary an-
giographic images [5]. These models can automatically identify and label abnormal areas, assisting
physicians in the determination of lesion locations, severity, as well as suggesting potential treatment
strategies. By training on a large dataset of coronary angiographic images and clinical data, predictive
models can be established to assess a patient’s risk of coronary heart disease. Such models aid in the
early identification of high-risk patients, enabling preventative measures and reducing the occurrence
of cardiovascular events. Deep learning models can uncover previously neglected or hard-to-discern
features and patterns when analyzing coronary angiographic images. These new insights deepen the
understanding of coronary artery disease, drive medical research progress, and offer new leads for
disease diagnosis and treatment [6].

In summary, the roles of deep learning in the extraction of coronary angiographic images include
automated analysis, diagnostic assistance, risk assessment, and knowledge discovery. This can enhance
early diagnosis rates, treatment accuracy, and patient management efficiency for coronary heart disease.
However, the clinical application of deep learning models requires thorough validation and further
research to ensure accuracy, reliability, and safety.

The purpose of this study was to design a system for the extraction of coronary angiography results
based on EMR text. Several machine learning models were compared, and the model combining bidi-
rectional long short-term memory (BiLSTM) and conditional random field (CRF) algorithms yielded
the best performance on the task of identifying risk factors. Considering the performance of existing
risk factor extraction systems, our solution provides an efficient way to extract coronary angiography
risk factors from EMRs. Our model achieved an accuracy of 91.19%, and it was obtained within 200 ms
when applied. We have applied deep learning methods for coronary angiography surgery-related ex-
traction for the first time and compared the results with those of traditional methods; we have achieved
both accuracy and speed improvements. And the datasets we used were all real data from hospitals,
allowing the models we ran to be applied in the medical field.

The Gensini score was used to assess the severity of coronary artery disease in patients. By eval-
uating scores and analyzing data from a large number of patients, the effectiveness and safety of new
treatments, drugs, or interventions, as well as factors related to patient selection and outcomes, can be
assessed. After implementing deep learning algorithms, automated calculation of the Gensini score can
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be realized. As compared to previous manual calculations, where doctors had to process each patient’s
data and perform calculations, our automated process significantly reduces the workload for medical
professionals and provides more accurate results.

2. Related work

NER is commonly regarded as a sequence labeling task in machine learning, and it can be real-
ized through the application of various methods, including rule-based and dictionary-based methods,
statistical machine learning methods, and deep learning methods. Rule-based and dictionary-based
approaches involve the construction of templates or dictionaries by experts and utilization of matching
techniques to process the text. These methods are limited in terms of their labor-intensiveness, scala-
bility to other domains, and adaptation to changing data. Machine learning methods for NER include
hidden Markov models [7], support vector machines [8], CRFs [9], and more. Deep learning meth-
ods leverage large datasets to automatically learn features. These methods optimize model parameters
during training to enhance learning efficiency and accuracy, avoiding the subjectivity and randomness
associated with manual feature selection. Long short-term memory (LSTM), proposed by Hochreiter
and others [10], is a widely used type of deep learning model that addresses the long-term dependency
issue of traditional recurrent neural networks (RNNs) through the use of “gates” and cell concepts. In
2018, significant advancements were made in natural language processing (NLP) with the introduction
of models like bidirectional encoder representations from transformers (BERT) [11], ELMo [12], and
OpenAI GPT. BERT, a pre-trained language model, achieved state-of-the-art results on various NLP
subtasks and improved the performance of 11 downstream NLP tasks [13].

CRF and BiLSTM networks with CRFs (BiLSTM-CRFs) are widely used methods for Chinese
NER tasks. While these methods exhibit reliability, they mostly focus on English electronic health
record (EHR) environments. Recognizing named entities in Chinese text remains challenging due to
the lack of clear word boundaries and the complexity of Chinese language structure.

For Chinese NER, Ouyang et al. proposed the concept of NER based on the BiLSTM neural net-
work with additional features [14]. However, they did not incorporate CRF or consider the character
information in words. Xiang proposed a Chinese NER method based on character-word mixed embed-
ding [15]. They averaged the word embedding and character embedding when the word contains only
one character. Yang and Gao proposed deep neural networks for medical entity recognition in Chinese
online health consultations [16]. They utilized a BI-LSTM-CRF network as the basic architecture and
concatenated character embedding and context word embedding to learn effective features.

Zhang et al. compared the efficiency of entity recognition models by using different feature tem-
plates and context windows in CRF learning and training, seeking the optimal electronic health record
feature templates and context windows [17]. They found that the BiLSTM-CRF model outperformed
traditional CRF-based methods on multiple datasets. Various researchers have experimented with the
BiLSTM-CRF model on Chinese medical texts and electronic health records. Zhang et al. utilized
CRFs and the BiLSTM-CRF to extract disease, body part, and treatment information from electronic
health record datasets, finding that the latter performed better. Qiu et al. proposed the residual con-
volutional neural network CRF model to improve the training speed while achieving higher F1 scores
than the BiLSTM-CRF model [18]. In conclusion, NER methods range from rule-based approaches to
deep learning models based on the BiLSTM-CRF, which have demonstrated significant advancements
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on various tasks, especially when applied to medical texts and electronic health records [19–23].

3. Materials and methods

In this section, we will provide a detailed description for the sources and composition of our dataset,
as well as the deep learning models we choose to use.

3.1. Dataset

The experimental data used in this study was mainly taken from clinical records of nearly 20,000
patients from a famous hospital in Liaoning Province, China, primarily from the Department of Car-
diology. After organizing the data, we selected one thousand cases for analysis. For each patient, the
emergency room recorded a series of clinical notes. These records include the patient’s outpatient num-
ber, surgery date, surgery start time, surgery end time, and coronary angiogram results. We extracted
information specifically related to patients’ coronary angiography procedures.

To extract information from the EMRs, we employed the BIO tagging method and deployed a
medical annotation website by using the text annotation tool “doccano” [24]. Doccano supports three
types of NLP tasks for text annotation: text classification, sequence labeling, and sequence-to-sequence
tasks (such as text translation).

We categorized the results of patients’ coronary angiography procedures into five labels: left an-
terior descending (LAD) artery, left circumflex (LCX) artery, right coronary artery (RCA), left main
coronary artery (LMCA) and SupportBrand, which correspond to a support stent. We eventually ob-
tained approximately nine hundred and seventy processed cases.

Among the 970 subsets of data used, we processed 717 subsets for the LAD, 650 subsets for the
LCX, 102 subsets for the LMCA, 681 subsets for the RCA, and subsets for the SupportBrand. And we
set the ratio of training, testing, and validation sets for the dataset to 8:1:1.

Table 1 illustrates examples of extracted coronary angiography procedural results from the original
EMR text shown in Figure 1. The entities in Table 1 correspond to annotations in the text of Figure 1.

In Table 1, the entities are associated with their corresponding entity types, starting positions, and
ending positions.

The left coronary artery originates from the left coronary sinus of the aortic root and travels ap-
proximately 0.5–2 cm; it is referred to as the LMCA. It then branches into the LAD and LCX arteries.
The LAD courses through the anterior interventricular groove, located at the front of the heart. The
circumflex artery runs along the lateral aspect of the heart. In some individuals, an intermediate branch
may arise between the LAD and the LCX artery. The LAD gives rise to branches including septal
branches and diagonal branches. The LCX artery’s branches include obtuse marginal branches and left
atrial branches. In individuals with a left dominant circulation, the LCX artery may also give rise to a
left posterior descending branch.

The RCA originates from the right coronary sinus of the aortic root and courses within the atrioven-
tricular groove, situated on the right side of the heart. It wraps around the inferior surface of the heart
and reaches the diaphragmatic surface. The RCA gives rise to the conus branches, right atrial branches,
right ventricular branches, acute marginal branches, left posterior ventricular branches, and posterior
descending branches. Through these vessels and their branches, the heart receives blood supply to
various regions.
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Table 1. Examples of coronary angiography procedural results as extracted from EMR text.

Character entity Starting Position Ending Position Entity Type
Left main trunk: 40% stenosis
in the middle to far segment

113 126 LMCA

Anterior descending branch:
50% stenosis in the proximal
to middle segment, blood flow
TIMI3 level

127 150 LAD

Circumflex branch: Middle
segment 80% stenosis (small),
blood flow TIMI3 level

150 174 LCX

Right coronary artery: Middle
segment 100% occlusion, vis-
ible thrombus shadow, blood
flow TIMI0 level

175 201 RCA

Implantation of 3.0mm ×

10mm/10–12 atm Aili stent
and Lepu stent

308 336 SupportBrand

The extracted data holds significant clinical research value and greatly assist in determination of the
presence of cardiovascular diseases in patients.

3.2. Methods

NER [25] can be framed as a sequence labeling task that targets entities within clinical texts. The
conversion of JSON-format annotations into the BIO format is a prerequisite for subsequent operations.
In Chinese language corpora, character-based NER methods tend to be more effective than word-
based approaches. Sentence labels were marked by following the BIO standard. Each character in the
sentence was assigned a tag from the set including O, B-PER, I-PER, B-LOC, I-LOC, B-ORG and I-
ORG. Here, “O” indicates no entity association, “B” signifies the start of an element in a fragment, and
“I” denotes the middle position of an element within a fragment. Entities are represented as “B-X” and
“I-X”, while non-entities are represented as “O”. For this task, there were five entity types, resulting in
eleven labels: B-LAD, I-LAD, B-LCA, I-LCA, B-RCA, I-RCA, B-LMCA, I-LMCA, B-SupportBrand,
I-SupportBrand, and O.

This study explored three medical NER methods: traditional string extraction, the BiLSTM-
CRF model, and the pre-trained BERT character embedding combined with BiLSTM-CRF (BERT-
BiLSTM-CRF) model. After annotating Chinese EMRs in JSON format and converting it to BIO
format, features such as part of speech, radical, document type (DOC type), and character position
(CHAR index) were selected as the CRF features. Character embeddings serve as input features for
both the BiLSTM-CRF model and the BERT-BiLSTM-CRF model, and a dictionary was constructed.
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Figure 1. An example of the original text of coronary angiography procedural results.
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3.2.1. Dictionary-based method

For dictionary-based methods, the adoption of a forward maximal matching algorithm is common.
This algorithm consists of two main steps: it typically starts from the beginning of the string; then,
the network selects the longest segment with a word length. If the sequence does not exceed the
maximum word length, choose all sequences. First, check if this segment is in the dictionary. If it is,
consider a separated word. If not, start reducing one character from the right. Then, check if there
are shorter segments in the dictionary and repeat until only one word remains. After the segmentation,
the sequence becomes the remaining part of the sequence. The “forward” in the method of forward
maximum matching implies that the matching proceeds from front to back. The maximal means that
the longer the word length we match, the better the result we can obtain, i.e., fewer words separated in
this sentence means a better outcome.. We can treat terms like LMCA or LAD as our matching fields
and automatically extract the desired content. However, we found that after attempting this approach,
the accuracy is not very high. If there are texts that do not align with our string matches, it can lead
to incorrect results. As a result, this method may introduce numerous errors. Nevertheless, in certain
ordinary medical contexts, the extraction method based on string matching can still be applicable.

3.2.2. The CRF model

A CRF is a statistical modeling method commonly employed for sequence labeling tasks such as
NER, part-of-speech tagging, and semantic role labeling. It is a discriminative model that builds a joint
probability model of given input sequences and the corresponding label sequences to perform sequence
labeling. The fundamental idea behind the CRF model is to establish a Markov random field model
for label sequences (output sequences) given an observed sequence (input sequence). The CRF model
defines feature functions to represent the relationships between input and label sequences, utilizing
weight parameters associated with these feature functions for learning.

Specifically, the CRF model transforms sequence labeling problems into an optimization problem
to allow the model to find a set of parameters. During the training phase, the model’s parameters are
estimated by maximizing the log-likelihood function of the training data. This is typically achieved
by using iterative methods such as stochastic gradient descent or quasi-Newton methods. During the
predictive phase, the learned parameters are used to choose the optimal label sequence as the output
through the use of decoding algorithms.

In summary, the CRF model is a commonly used approach for sequence labeling tasks, effectively
capturing correlations between input and output sequences. It has demonstrated strong performance
on various NLP tasks.

Suppose that we have an observation sequence (input sequence) X = {x1, x2, · · · , xn}, along with the
corresponding label sequence (output sequence) Y = {y1, y2, · · · , yn}. Given the observation sequence
X, the probability of a CRF can be represented as follows:

P(Y |X) =
1

Z(x)
exp(

n∑
i=1

K∑
k=1

λk ∗ ϕk(yi−1, yi, x, i)) (3.1)

where X is the normalization factor, defined as the sum of probabilities of all possible label sequences:
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Z(X) =
∑

yexp(
n∑

i=1

K∑
k=1

λk ∗ ϕk(yi−1, yi, x, i)) (3.2)

where λk represents the weight parameter associated with the feature function ϕk, which needs to be
learned during the training process.

During the predictive phase, we aim to find the optimal sequence of labels Ŷ , which maximizes
the probability of the CRF. An efficient optimal label sequence decoding technique entails the use of
dynamic programming algorithms, such as the Viterbi algorithm.

3.2.3. The BiLSTM-CRF model

In Table 2, batch size represents the number of data samples passed to the program for training in a
single iteration, hidden dim denotes the number of nodes in the hidden layer, embedding dim indicates
the number of nodes in the embedding layer, lr stands for the learning rate, and the Adam optimizer
was chosen. The term dropout results signified a dropout rate of 0.5.

The BiLSTM-CRF model is a commonly used deep learning model for sequence labeling tasks. It
combines the components of BiLSTM and the CRF to enhance the performance of sequence labeling
tasks.

BiLSTM is a variant of RNNs that is suitable for processing sequential data. Unlike traditional
RNNs, BiLSTM considers contextual information from both directions by incorporating two sets of
LSTM units: one processes the sequence in the forward direction and the other in the reverse direction.
This allows the model to capture information from both the preceding and subsequent elements at each
time step.

During the predictive phase, the softmax layer is typically used to address multi-class classification
problems, but it does not consider the dependencies in the relationships between labels during sequence
labeling tasks. This can lead to syntactically incorrect label sequences. To address this, the CRF layer
is utilized. In the CRF model’s output, label types like I-X do not appear after O-labels, as I-X labels
must follow B-X labels. By inputting the features learned by the BiLSTM network into the CRF layer,
syntactic issues are avoided; also, recognition accuracy is enhanced due to feature diversity.

The BiLSTM-CRF model combines BiLSTM and CRF components. It employs BiLSTM to extract
sequence features and then utilizes the CRF layer for labeling. Specifically, BiLSTM maps the input
sequence at each time step into a high-dimensional feature space, and the CRF layer assigns labels to
these features. The CRF layer utilizes the Viterbi algorithm to decode and identify the most probable
label sequence.

In summary, the BiLSTM-CRF model is a deep learning architecture that integrates BiLSTM and
CRF characteristics. It is used for sequence labeling tasks and effectively handles relationships between
sequential data and labels.

Each word in the sentence is represented by a word vector containing both word embeddings and
character embeddings. Word embeddings are usually pre-trained, while character embeddings are
randomly initialized. All embeddings are adjusted throughout the training iterations. The input for
the BiLSTM-CRF model consists of word embedding vectors, and the output is the predicted label for
each word. The scores outputted by the BiLSTM layer for all labels are used as input for the CRF
layer, where the label with the highest score in the sequence becomes our final predicted result.
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Table 2. Information about the parameters of the BiLSTM-CRF model.

Parameter names Parameter information
batch size 32
hidden dim 300
embedding dim 300
lr 0.001
clip 5.0
optimizer Adam
dropout 0.5

Figure 2 shows a BiLSTM+CRF layer model, wherein the BiLSTM, after adding the CRF layer
to the output, can capture contextual information, enhancing the correlation between textual informa-
tion. For sequence annotation problems, each word in each sentence has an annotation result. High-
dimensional features are extracted for the ith word in a sentence. By learning the mapping from fea-
tures to annotation results, probabilities for any label can be obtained. Based on these probabilities, the
optimal sequence structure can be determined. The algorithm proceeds with the forward propagation
of the BiLSTM+CRF model, followed by the forward and backward propagation of the CRF layer,
and finally, the backward propagation of the BiLSTM+CRF model updates parameters to conclude the
loop.

3.2.4. The BERT-BiLSTM-CRF model

The BERT-BiLSTM-CRF model is similar to the BiLSTM-CRF model, with the key difference
lying in the input word vectors. The distinction is that the BERT model is incorporated as a feature
representation layer within the BiLSTM model. This integration is utilized to generate word vectors
that are input into the LSTM structure.

As shown in Figure 3, the model is basically consistent with the content shown in Figure 2, ex-
cept that all of the BERT layers have been added in front of it. The features learned by each layer
of the BERT model are not entirely the same. The lower layers of the BERT model mainly acquire
phrase-level feature information, the middle layers primarily learn syntactic structural feature infor-
mation, and the top layers capture the semantic information of the entire sentence. After undergoing
BERT processing, contextualized word vectors are obtained, which is key in the handling of long-range
dependency information in sentences.

3.2.5. Automated Gensini rating calculation

The Gensini score plays a role in the evaluation of the severity of coronary artery lesions in patients.
The Gensini score for coronary arteries divides the coronary artery system into 15 segments based

on the segmental criteria recommended by the American Heart Association, as per the World Health
Organization standards. It includes 1 segment for the LMCA with a coefficient of 5. The RCA was
divided into 4 segments (proximal segment coefficient of 2.5, middle segment coefficient of 1.5, distal
segment coefficient of 1.0, and right posterior descending branch coefficient of 1.0). The LAD artery
was divided into 5 segments (proximal segment coefficient of 2.5, middle segment coefficient of 1.5,
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Figure 2. BiLSTM-CRF model diagram.

Figure 3. BERT-BiLSTM-CRF model diagram.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4085–4103.



4095

Figure 4. Gensini rating.

distal segment coefficient of 1.0, first diagonal branch coefficient of 1.0, and second diagonal branch
coefficient of 0.5). The LCX artery was divided into 5 segments (proximal segment coefficient of
2.5, middle segment coefficient of 1.5, distal segment coefficient of 1.0, first obtuse marginal branch
coefficient of 0.5, and second obtuse marginal branch coefficient of 0.5). The degree of stenosis is
defined as follows: 0–25% stenosis scores 1 point; 26%–50% stenosis scores 2 points; 51%–75%
stenosis scores 4 points; 76%–90% stenosis scores 8 points; 91%–99% stenosis scores 16 points; 100%
stenosis scores 32 points. The Gensini score for each patient is calculated by summing the product of
stenosis degree points and the respective coefficients. The highest score is realized when the LMCA
is completely occluded (32 * 5 = 160), and a score of 0 is yielded when there is no coronary artery
disease.

We can ascertain from Figure 4 that, after inputting the original data into our model, we can au-
tomatically extract the degree of narrowing and blood flow information from different parts of the
text. Subsequently, by processing the obtained results through steps like string manipulation, we can
automatically calculate the Gensini score that we need.

In Figure 4, the original data shows that the patient was placed in a supine position, with routine
disinfection of the skin on the right upper limb and bilateral inguinal areas, sterile wipes applied, and
local infiltration anesthesia with 2% lidocaine. The Seldinger technique was used to puncture the right
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Table 3. The results of the BERT-BiLSTM-CRF model.

Tag Name/Result Precision Recall F1 score
LAD 89.71% 93.85% 91.73
LCX 85.61% 90.15% 87.82
LMCA 70.37% 82.61% 76.00
RCA 86.33% 93.02% 89.55
SupportBrand 88.83% 98.87% 93.58
Total 86.99% 93.91% 90.32

radial artery, and a 6F arterial sheath was successfully inserted. JL3.5 was inserted through the sheath,
and a right dominant coronary artery was observed in the imaging of the JR3.5 catheter. The left
main artery was normal, with 99% stenosis in the proximal segment of the anterior descending branch
and visible thrombus shadows. The blood flow was TIMI level 1–2, while the main branch of the
circumflex branch was generally normal at a TIMI grade 3. The RCA had 80% stenosis in the middle
segment, 80% stenosis in the distal segment, and 80% stenosis in the opening to the proximal segment
of the posterior descending branch and a TIMI grade 3. The LAD artery exhibited 99% stenosis in the
proximal segment of the anterior descending branch, with visible thrombus shadows and TIMI grade
1–2 blood flow. The LCX artery is the main branch of the circumflex branch, which is generally normal
with blood flow at a TIMI 3. RCA exhibited 80% stenosis in the middle segment, 80% stenosis in the
far segment, and TIMI grade 3 blood flow from the opening of the posterior descending branch to 80%
stenosis in the near segment. The final Gensini score obtained was 68.

4. Experimental results

In this section, we will analyze the various results we have obtained through the model, as well as
the time complexity and other information regarding the model.

4.1. Result of our models

The F1 score metric ranges from 0 to 1, with a higher value indicating better classification perfor-
mance of the model. The F1 score model metric combines precision and recall, allowing for a more
comprehensive assessment of the model’s classification performance. When the F1 score model metric
is close to 1, it indicates excellent classification performance, particularly that the model can accurately
predict positive instances while capturing the majority of them. Conversely, when the FB1 is close to
0, it suggests poorer classification performance, potentially involving more false positives and false
negatives. Model metrics have widespread applications in practical scenarios. For instance, in case of
text classification tasks, the F1 score can be used to evaluate the model’s performance on the task of
classifying different categories, aiding in the selection of the most suitable model. In recommendation
systems, the F1 score model metric can assess the accuracy and comprehensiveness of the model’s
recommendations for different users, optimizing the recommendation algorithm. In medical diagnosis,
the FB1 can be employed to evaluate the accuracy and comprehensiveness of the model in diagnosis
of various medical conditions, assisting doctors in making precise diagnoses.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4085–4103.
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Table 4. The results of the BiLSTM-CRF model

Tag Name/Result Precision Recall F1 score
LAD 90.37% 93.85% 92.08
LCX 90.30% 91.67% 90.98
LMCA 70.83% 73.91% 72.34
RCA 90.37% 94.57% 92.42
SupportBrand 87.76% 97.18% 92.23
Total 88.78% 93.74% 91.19

Precision =
T P

T P + FP
(4.1)

Recall =
T P

T P + FN
(4.2)

F1 =
2Precision ∗ Recall
Precision + Recall

(4.3)

Here, TP, FP, and FN represent true positives, false positives, and false negatives, respectively. For
multi-class classification, there are macro- and micro-average precision (P), recall (R), and F1-score
(F) evaluation methods. In the macro-average method, each entity type is evaluated as positive, while
other entity types are considered negative; then, the average score across all types is calculated. On
the other hand, the micro-average method treats the evaluation of all entity types equally. It has been
widely applied in the assessment of risk factor extraction systems in the i2b2 2014 challenge. The
micro-average evaluation is believed to consider all possible error types and overlooks the imbalance
in type distribution. In this context, we utilized the micro-average evaluation metrics, and the P, R, and
F1 score values in the experiments were all calculated by using this method.

4.2. Comparison of CPU/GPU time complexity

The results are shown in Figure 5, where the horizontal axis represents the training epochs and the
vertical axis represents the training time in seconds. As observed, when training with both a CPU
and GPU, we can clearly see the difference in the time consumption. The time spent when training
with a GPU is significantly less than when training with a CPU. The processor was a 12th Gen Intel(R)

Core(T M) i7-12700H 2.70 GHz, with a built-in RAM of 16.0 GB based on an x64 processor and an
RTX 3060 GPU.

4.3. Comparison of F-measure result

The combination of BERT+BiLSTM+CRF provides an additional layer that is not in the BiLSTM-
CRF model, as it includes BERT for initialization of word embeddings. This extra layer of BERT
initialization is undoubtedly an advantage over random initialization. BERT+BiLSTM+CRF perfor-
mance was found to surpass that of BERT+CRF. First, BERT employs the transformer, which is based
on self-attention. In this computation process, position information is weakened (relying solely on

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4085–4103.



4098

Figure 5. CPU/GPU time complexity.
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Figure 6. Comparison of F statistics results.
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position embedding to inform the model about the position of input tokens). However, in the case of
sequence labeling tasks, positional information is crucial, and even directional information is neces-
sary. Therefore, we need to use LSTM to learn dependencies on the observed sequence, as well as to
ultimately use a CRF model to learn the relationships between state sequences and obtain the answer.
If the CRF is used directly, the model’s learning capability on the observed sequence will decrease,
leading to suboptimal performance.

The advantages of the BiLSTM-CRF model include the ability of the BiLSTM network to capture
contextual information in the text, facilitating a better understanding of the context. When combined
with the CRF layer, it can jointly model the entire sequence, taking into account dependencies between
labels. Compared to some complex pre-trained models, BiLSTM-CRF is relatively simple, making
training and understanding more intuitive. However, its drawback lies in BiLSTM’s hyperfocus on
capturing local information as it can, potentially fail to effectively capture global semantics. It requires
a substantial amount of annotated data for supervised learning, and it may perform poorly in scenarios
with scarce data for certain tasks.

On the other hand, the advantages of BiLSTM-BERT-CRF lie in BERT providing powerful con-
textual representations. The contextual information learned through pre-training contributes to a better
understanding of the text. BERT excels on various NLP tasks, so BiLSTM-BERT-CRF might exhibit
better generalization performance on specific tasks. Pre-trained models often achieved good results
with relatively less annotated data. However, its disadvantages include the relatively large size of the
BERT model, which demands significant computational resources and memory for training and infer-
ence. Pre-trained models may not be suitable for certain domain-specific tasks as they are trained on
general corpora.

The results, as shown in Figure 6, present the F1 scores obtained by the three models for different
labels. It is evident from this bar chart that, considering our dataset, the overall performance in terms of
F1 score was the best for the BiLSTM-CRF model. The difference in F1 scores between the BiLSTM-
CRF model and the BERT-BiLSTM-CRF model is not significant. However, when compared, the CRF
model appears to have the least effective performance among the three models.

The LMCA label may not have performed as well due to the limited dataset from the EMRs that
we used. This could have resulted in suboptimal training results for this specific label. However, it is
worth noting that this label may not be extensively utilized in the medical context of focus here, so the
results are within an acceptable range for our purposes.

Furthermore, from the figure, we can observe that the overall F1 score achieved by training with
BiLSTM-CRF reached 91.19%. This result meets our expectations and is highly promising for appli-
cation in our subsequent medical tasks.

5. Conclusions

In this study, we focused on the extraction of clinical information related to coronary angiography
from Chinese EMRs. We employed three different models for clinical NER in coronary angiography.
Our experiments demonstrate that deep learning methods can automatically extract clinical entities
from EMRs. Among the three models, the BiLSTM-CRF model performed the best on our dataset.
EMRs contain rich diagnostic information, which holds significant potential for our medical appli-
cations. We utilized machine learning methods to automatically retrieve coronary artery intervention
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information from a large dataset of electronic health records of Chinese individuals. We have auto-
mated the extraction of coronary artery anatomy and lesion information, and calculated the Gensini
score automatically. This approach facilitates clinical data research and provides a new technological
tool for medical decision support.

In our future work, we address the limitations of our current models, which were mainly tailored for
training on Chinese data. We recognize that achieving optimal results in English may pose challenges.
Therefore, we will strive to obtain diverse surgical information from multiple hospitals and train our
model accordingly. Our aim is to alleviate the burden on medical professionals. Furthermore, delving
into the modification of medical entities and understanding entity relationships is a crucial objective
for our next steps. Building upon our current work, we plan to further study similar medical records
and conduct predictive analysis on the obtained results.
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