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Abstract: The cotton-picking robot needs to locate the target object in space in the process of picking 

in the field and other outdoor strong light complex environments. The difficulty of this process was 

binocular matching. Therefore, this paper proposes an accurate and fast binocular matching method. 

This method used the deep learning model to obtain the position and shape of the target object, and 

then used the matching equation proposed in this paper to match the target object. Matching precision 

of this method for cotton matching was much higher than that of similar algorithms. It was 54.11, 

45.37, 6.15, and 12.21% higher than block matching (BM), semi global block matching (SGBM), 

pyramid stereo matching network (PSMNet), and geometry and context for deep stereo regression 

(GC-net) respectively, and its speed was also the fastest. Using this new matching method, the cotton 

was matched and located in space. Experimental results show the effectiveness and feasibility of the 

algorithm. 

Keywords: deep learning; binocular ranging; binocular stereo matching; cotton picking robot; cotton 

centroid positioning. 

 

1. Introduction 

Cotton is an important economic crop in China [1]. Selected Xinjiang long staple cotton fibers 

can reach a length of over 40 mm, with high uniformity, and can be spun into ultra-fine yarns. The 

yarn lines are dry and uniform, with high strength and a smooth surface with less fuzz. Large cotton-

picking machines can damage the integrity of cotton fibers and increase the impurity content of cotton 

after picking due to the high-speed rotation of the picking spindle. In order to protect the excellent 

fiber characteristics of long staple cotton, manual picking can only be carried out at present [2].  

The precise cotton-picking robot can effectively alleviate the problem of cotton fiber damage 
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during the machine picking process. However, the precise cotton-picking robot’s spatial positioning of 

cotton before picking has always been a challenge and there is no perfect solution. There are many 

researchers engaged in related research on the spatial positioning of cotton or other crops. In 2014, 

Wang et al. used lasers to scan cotton and then binarize the images to obtain cotton coordinates [3]. 

However, this method was limited to single cotton plants and did not study the situation of multiple 

cotton plants. In 2021, Liu et al. applied monocular ranging technology to the field of agriculture [4]. 

On the premise of finding the average size of grapefruit, they used monocular ranging technology to 

estimate the distance of grapefruit. With the continuous iteration and updating of classic object 

detection algorithms such as Faster R-CNN (region-CNN, convolutional neural networks) and YOLO 

(you only look once) series [5–10], many researchers have applied these algorithms to the spatial 

localization of crops [11]. In 2023, Gharakhani et al. and others applied structured-light cameras to 

robot picking cotton [12]. Liu et al. applied a combination of depth camera and improved YOLOv5 to 

the recognition and localization of chili peppers [13]. However, the complex lighting conditions in 

cotton fields are not conducive to the use of structured light and TOF (time of flight) cameras. 

Considering the complex environment of farmland, this study selected binocular cameras to 

measure the depth information of cotton and then spatially locate it. The key aspect of using binocular 

cameras to perform this entire process on cotton is binocular matching. There are already mature 

algorithms for other aspects, including target detection, calculation of depth information, and 

determination of crop spatial position. Therefore, this article proposes a binocular matching algorithm, 

SFEMM (shape feature extraction matching method). 

The characteristic of SFEMM is that it does not match all pixels in the view and obtain parallax, 

but ignores the background pixels, only matches the parts closely related to the target object, and 

calculates the parallax as the central position of the target object. This can reduce the interference of 

background factors on matching and improve the accuracy. Obtaining the parallax of an object directly 

instead of getting the parallax of the whole picture can reduce the running time. Compared with the 

traditional method, it can reduce the interference of other factors except the target object in the picture, 

and compared with the matching ranging method based on deep learning, it has low requirements for 

data sets. Also, the training pressure of the deep learning model is small. The model only needs the 

function of target detection. It can quickly and accurately match the target object in the picture, which 

is convenient for subsequent work. 

2. Materials and methods 

In this paper, the SFEMM algorithm was proposed and applied to the spatial location of cotton. 

The spatial positioning scheme was generally divided into three parts: target detection of cotton ball, 

binocular matching of cotton balls using SFEMM, and space positioning. The process is shown in 

Figure 1.  
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Figure 1. Scheme process. 

2.1. SFEMM 

 

Figure 2. Scheme of the SFEMM algorithm. 

The SFEMM algorithm used information such as the position of the same object in the field of 

view of two cameras and the characteristics of the object itself to achieve matching. The operation 

process of this method was divided into two parts. One part used the target detection technology based 

on deep learning to extract the position, shape, and color category of crops in the view; The other part 

was to process and screen the obtained crop information to complete the matching. As shown in Figure 

2, the input image was a cotton image that has been detected. The coordinate matching part consists of 

two steps: horizontal coordinate matching and vertical coordinate matching [14–16]. The feature 
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matching part consists of two parts in parallel: the shape features of the target and other features such 

as color and category [16–20]. For this target detection model, this paper selected YOLOv7x [21]. 

SFEMM is an auxiliary module, which can give the model binocular matching ability after connecting 

with the target detection model. 

2.1.1. Determination of column coordinate characteristics of cotton ball 

Vertical coordinate matching can be called column coordinate matching. For the same seed cotton 

ball, its column coordinates in the left camera view are greater than those in the right camera view. It 

is commonly understood that the position of the same object in the left image is larger than in the right 

image. This phenomenon is also the basic condition for obtaining the parallax of objects. The column 

coordinates of the seed cotton ball can be determined by the following equation. 

𝑔 = 𝑥𝑙
𝑗

− 𝑥𝑟
𝑖 , 𝑖, 𝑗 = 1,2 … 𝑛, 𝑔 > 0                           (1) 

where 𝑥𝑙
𝑗
 is the column coordinate of the 𝑗th seed cotton for binocular matching in the left image, 

𝑥𝑟
𝑖  is the column coordinate of the 𝑖th seed cotton in the right image, and 𝑔 is the matching of cotton 

balls in column coordinates. 

2.1.2. Determination of row coordinate characteristics of cotton ball 

Horizontal coordinate matching can be called row coordinate matching. According to the limit 

constraint principle, the row coordinates of the same seed cotton ball in the left and right views are the 

same. However, in actual work, there will be a little error in the coordinates of two view lines due to 

the influence of working conditions and hardware equipment. Therefore, during binocular matching, 

the row coordinate of the same object in the left and right pictures are very close, and the proximity of 

the row coordinates can be expressed by the absolute value of the difference between the two row 

coordinates. In order to make this algorithm meet the binocular images with different resolutions, the 

absolute value is divided by the height of the image, which can intuitively show the proximity of the 

horizontal coordinates of the object in the global. 

𝑘 = 𝑒−|𝑦𝑙
𝑗

−𝑦𝑟
𝑖 |/ℎ, 𝑖, 𝑗 = 1,2 … 𝑛, 𝑘 > 𝐸𝑟𝑜𝑤                      (2) 

where 𝑦𝑙
𝑗
 is the row coordinate of the 𝑗th seed cotton for binocular matching in the left image, 𝑦𝑟

𝑖 is 

the row coordinate of the 𝑖th seed cotton in the right image, ℎ is the height of the image, 𝑘 is the 

matching of cotton balls in row coordinates (the larger the value of 𝑘 , the closer the two row 

coordinates are), and  𝐸𝑟𝑜𝑤 is the threshold of row coordinate matching with a value range of 0.85–

0.95. 

2.1.3. Determination of cotton ball shape and size characteristics 

The idea of object shape feature matching is that the width and height of the same object in the 

left picture and the right picture are very close. By comparing the width and height of the object in the 

left image with the width and height of the object in the right image, the similarity of the shape features 
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of the matched object can be directly expressed as following equation. 

𝑠 =
min(𝑤𝑙

𝑗
,𝑤𝑟

𝑖 )

max(𝑤𝑙
𝑗

,𝑤𝑟
𝑖 )

+
min(ℎ𝑙

𝑗
,ℎ𝑟

𝑖 )

max(ℎ𝑙
𝑗

,ℎ𝑟
𝑖 )

, 𝑖, 𝑗 = 1,2 … 𝑛，𝑠 > 𝑡ℎ_𝑠                (3) 

where 𝑤𝑙
𝑗
, ℎ𝑙

𝑗
 are the width and height of the 𝑗th object in the left image respectively,  𝑤𝑟

𝑖 , ℎ𝑟
𝑖  are 

the width and height of the 𝑖th object in the right image respectively, 𝑠 is the similarity of the objects 

in the left and right views for matching (the larger the 𝑠  value, the more similar the shape 

characteristics of the object), and 𝑡ℎ_𝑠 represents the threshold of crop similarity with a value range 

of 1.5–1.8. 

2.1.4. Characteristics, color, and category of the target 

The characteristics, color, and category of the target can be expressed as following equation. 

𝑐 = 1/𝑛 ∑ 𝑑(𝑙𝑗 , 𝑟𝑗)𝑛
𝑗=1                                 (4) 

 𝑑(𝑙𝑗 , 𝑟𝑗) = {
1, 𝑙𝑗 = 𝑟𝑗

0, 𝑙𝑗 ≠ 𝑟𝑗
                                (5) 

where 𝑙𝑗 , 𝑟𝑗 represent the characteristics of the object in the left view and the characteristics of the 

object in the right view respectively (such as the color of the target, the aspect ratio of the target in the 

image, and category of target, etc), 𝑑(𝑙𝑗 , 𝑟𝑗) is whether the 𝑗-th characteristics of the object in the left 

and right views are the same or similar, and 𝑐 is the similarity of multiple characteristics of the object 

in the left and right views. There are many ways to obtain the characteristics of object, and the 

following are introduced in this paper: using deep learning model to identify the category of objects, 

using the characteristics of RGB (red, green, blue) pictures to judge the color of objects, and using the 

filter to obtain the texture of the object. 

The specific operation process of the cotton ball matching part is as shown in Figure 2: Selecting 

a seed cotton ball in the left camera view as the target, and then find the matching seed cotton ball from 

the right camera view. Each seed cotton ball in the right camera image will be considered as an 

alternative only if it satisfies Eqs (1)–(3) at the same time (there is a certain probability that the target 

in the left camera view and the target in the left camera view are the same seed cotton ball in real 

space), that is, 𝑔 > 0, 𝑘 > 𝑡ℎ_𝑗, 𝑠 > 𝑡ℎ_𝑠. Among all the alternatives, only the target with the closest 

feature, that is, the matching target with the maximum of 𝑠 and 𝑐, will be considered as the final 

matching result. This target is the target most likely to be the same as the seed cotton ball in the left 

camera view in real space. 

2.2. Spatialization 

After matching, parallax could be obtained for ranging and then used for spatial positioning. 

Position cotton in the world coordinate system, with the camera center as the origin, and the coordinate 

axis was shown in Figure 3. To distinguish between the world coordinate system and the image 

coordinate system, in Figure 3, u was used instead of the x-axis of the image coordinate system, and v 

was used to represent the y-axis of the image coordinate system [22]. The positioning equations are 
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shown in Eqs (6)–(8). 

 

Figure 3. Coordinate system setting. 

2.2.1. Z-axis coordinate calculation equation 

𝑧 = 𝑓 × 𝑏/𝑑                                 (6) 

where 𝑧 is the depth information and Z-axis coordinate (mm), 𝑓 is the focal length (pixel), 𝑏 is the 

baseline (mm), and 𝑑 is parallax (pixel). 

2.2.2. X-axis coordinate calculation equation 

𝑥 = (𝑥𝑖𝑚𝑔 − 𝑥0) × 𝑧/𝑓                            (7) 

where 𝑥  is the x-axis coordinate of the object in the world coordinate system (mm), 𝑥𝑖𝑚𝑔  is the 

coordinates of the object in the picture (pixels), and 𝑥0 is the x-axis coordinate of the camera center 

in the picture coordinate system (pixels). 

2.2.3. Y-axis coordinate calculation equation 

𝑦 = (𝑦𝑖𝑚𝑔 − 𝑦0) × 𝑧/𝑓                            (8) 

where 𝑦  is the y-axis coordinate of the object in the world coordinate system (mm), 𝑦𝑖𝑚𝑔  is the 

coordinates of the object in the picture (pixels), and 𝑦0 is the y-axis coordinate of the camera center 

in the picture coordinate system (pixels). 

2.3. Dataset of cotton 

In order to make the model have better detection effect, this study collected cotton photos from 

farmland. When collecting cotton photos, the dataset collection refers to the actual situation in the field 
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and takes photos of cotton from different angles and distances. In order to increase the anti-interference 

ability of the model to the light after training, the cotton was photographed in different light 

environments. Considering that defoliant is needed during cotton picking, this paper takes photos of 

cotton before and after pesticide spraying respectively. The example image of cotton dataset is shown 

in Figure 4. Then, the collected images are filtered and sorted out. Labeling software was used to label 

3000 pictures in total. 

 

Figure 4. Example of cotton dataset. 

2.4. Evaluation index 

2.4.1. Evaluation of target detection model 

Precision (P), recall (R), and mean average precision (mAP) were used as the evaluation criteria 

of the model. Precision was used to evaluate the accuracy of cotton detection. Recall was used to 

evaluate the comprehensiveness of detection. Mean average precision was the mean of the average 

accuracy (AP) under all categories [23]. 

𝑃 =  𝑇𝑃/ (𝑇𝑃 + 𝐹𝑃)                                   (9) 

𝑅 =  𝑇𝑃/ (𝑇𝑃 + 𝐹𝑁)                                  (10) 

𝐴𝑃 =  (𝑇𝑃 + 𝑇𝑁)/ (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃)                           (11) 

𝑚𝐴𝑃 = ∑ 𝐴𝑃𝑖/𝐶𝐶
𝑖=1                                    (12) 

where  

TP(true positives) = positive example which is correctly predicted; 

FP (false positives) = positive example which is falsely predicted; 

FN (false negative) = negative example which is falsely predicted; 

TN (true negative) = negative example which is correctly predicted; 

C = number of target categories. 
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2.4.2. Evaluation of binocular matching algorithm 

Matching precision (MP) and matching recall (MR) were used as the evaluation criteria of the 

binocular matching algorithm. Matching precision was used to evaluate the accuracy of cotton 

matching. Matching recall was used to evaluate the comprehensiveness of cotton matching. 

𝑀𝑃 = 𝑇𝑀/(𝑇𝑀 + 𝐹𝑀)                           (13) 

𝑀𝑅 = 𝑇𝑀/𝐶𝑀                                 (14) 

where 

TM (true matching) = targets which is correctly matched;  

FM (false matching) = targets which is falsely matched; 

CM (can matching) = targets that can be matched. 

2.5. Experimental platform 

The experimental platform used in this research is CPU: i5-12490F; GPU: RTX3070. Platform of 

binocular camera was built with 500W pixels industrial cameras of Ruiertushi company. As shown in 

Table 1, it presents the technical parameters of the binocular camera, including hardware performance 

and calibration parameters. The binocular camera is shown in Figure 5. It is assembled by two 

industrial cameras, and the bracket is made by 3D printing technology. 

 

Figure 5. Assembled binocular camera. 

Table 1. technical parameters of the binocular camera. 

Hardware performance Calibration parameters 

output format MJPEG/YUV focal distance(left) 2043.875 

frame rate 30 FPS focal distance(right) 2064.712 

maximum resolution 2592 * 1944 image center(left) 1151.527 * 925.810 

baseline 5cm image center(right) 1280.002 * 962.588 
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3. Results and discussion 

3.1. Comparison between SFEMM and other matching algorithms 

On this experimental platform, the running time of SFEMM algorithm proposed in this study is 

12 ms. This paper compared the running time of SFEMM with other matching algorithms, using the 

image size of 2311*2087. Under the condition of the same platform and the same size picture, the 

operation time of SFEMM is the shortest, as shown in Table 2. 

Table 2. Comparison of running time of several algorithms. 

Algorithm Running time (s) MP (%) MR (%) 

SFEMM 0.013 87.52 83.73 

BM 0.062 33.41 28.69 

PSMNet 0.41 81.37 78.25 

GC-Net 0.91 75.31 70.12 

SGBM 1.97 42.15 37.82 

As for the matching precision, SFEMM was 54.11, 45.37, 6.15, and 12.21% higher than BM 

(block matching), SGBM (semi global block matching), PSMNet (pyramid stereo matching network), 

and GC-net (geometry and context for deep stereo regression) respectively, and its speed was also 4.8, 

31.5, 70, and 151.5 times faster than BM, PSMNet, GC-net, and SGBM respectively. The matching 

effect of SFEMM was shown in Figure 6. In addition to matching cotton, this article also provided its 

application to matching other types of objects, such as potted plants and marigold. The images of 

cotton and marigold in Figure 6 were taken in the outdoor natural environment, and the images of 

potted plants were taken in the indoor environment. This shows that SFEMM had a matching effect on 

crops in outdoor environment. 

 

Figure 6. Matching effect of SFEMM. 
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3.2. Selection of target detection model 

In this study, a variety of target detection models were used to train the cotton dataset. The dataset 

used for model training is the cotton dataset produced in this article, with 3000 images. The training 

set, test set, and validation set were randomly divided in an 8:1:1 ratio. The performance of the trained 

model is shown in Table 3. In addition to comparing the commonly used precision, recall, and mAP, 

precision of the model for cotton partially covered by leaves and cotton of small size was also listed. 

It can be seen from Table 3 that the mAP of YOLOv7x was 5.98, 8.76, 4.73, 3.4, 3.26 and 1.55% higher 

than that of Faster-RCNN, YOLOv5s, YOLOv5m, YOLOX, YOLOv7, and YOLOv8 respectively. 

From precision of each model for cotton partially covered by leaves and cotton of small size, 

YOLOv7x was better than other models. Therefore, this paper finally selectsYOLOv7x as the target 

detection model for cotton detection.  

Table 3. Comparison of running time of several algorithms. 

Model P (%) R (%) mAP (%) AP (%) 

Partially 

covered 

Small size 

YOLOv7x 87.14 84.73 92.51 91.53 92.62 

Faster-RCNN 80.73 78.32 86.53 82.89 84.37 

YOLOv5s 78.92 76.11 83.75 79.66 80.13 

YOLOv5m 81.35 77.92 87.78 83.75 85.07 

YOLOX 84.16 79.28 89.11 85.91 87.41 

YOLOv7 83.62 80.84 89.25 86.24 87.97 

YOLOv8 86.47 84.01 90.96 89.02 90.14 

3.3. SFEMM computing centroid parallax and locating 

 

(a) Centroid parallax of cotton ball                          (b) Spatial location of cotton ball 

Figure 7. Centroid parallax and spatial location of cotton. 
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SFEMM could accurately match the objects according to their own characteristic information and 

obtain the parallax as the material center. Then, the depth information of crops could be calculated 

according to parallax. Finally, the spatial positioning was carried out. Figure 7 shows the centroid 

parallax map and spatial location map of cotton ball. 

4. Conclusions 

A spatial positioning method is presented in this paper by using the target detection model based 

on YOLOv7x and binocular matching algorithm using SFEMM, then applied it to the space location 

of cotton ball and other types of objects, such as potted plants and marigold. As for the MP, SFEMM 

are 54.11, 6.15, 12.21, and 45.37% higher and its speeds are also 4.8, 31.5, 70, and 151.5 times faster 

than BM, PSMNet, GC-net, and SGBM, respectively. In addition to the above work, this study carried 

out other necessary work such as collecting cotton images in farmland and making cotton dataset. The 

YOLOv7x model for cotton detection was trained, and the mAP of this model was 5.98, 8.76, 4.73, 

3.4, 3.26, and 1.55% higher than other models, respectively. It is gives good results in extracting the 

space position and shape of cotton binocular matching images. This also provides a feasible algorithm 

for the benchmark picking of cotton-picking robots. 

Highlights 

1) A precise and fast binocular matching algorithm has been proposed; 

2) This algorithm has better matching accuracy than other similar algorithms; 

3) It can be applied to spatial positioning of cotton; 

4) Created a dataset on cotton in outdoor farmland environments. 
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