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Abstract: Research on functional changes in the brain of inflammatory bowel disease (IBD) patients 

is emerging around the world, which brings new perspectives to medical research. In this paper, the 

methods of canonical correlation analysis (CCA), kernel canonical correlation analysis (KCCA), and 

sparsity preserving canonical correlation analysis (SPCCA) were applied to the fusion of simultaneous 

EEG-fMRI data from 25 IBD patients and 15 healthy individuals. The CCA, KCCA and SPCCA fusion 

methods were used for data processing to compare the results obtained by the three methods. The 

results clearly show that there is a significant difference in the activation intensity between IBD and 

healthy control (HC), not only in the frontal lobe (p < 0.01) and temporal lobe (p < 0.01) regions, but 

also in the posterior cingulate gyrus (p < 0.01), gyrus rectus (p < 0.01), and amygdala (p < 0.01) regions, 

which are usually neglected. The mean difference in the SPCCA activation intensity was 60.1. 

However, the mean difference in activation intensity was only 36.9 and 49.8 by using CCA and KCCA. 

In addition, the correlation of the relevant components selected during the SPCCA calculation was 
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high, with correlation components of up to 0.955; alternatively, the correlations obtained from CCA 

and KCCA calculations were only 0.917 and 0.926, respectively. It can be seen that SPCCA is indeed 

superior to CCA and KCCA in processing high-dimensional multimodal data. This work reveals the 

process of analyzing the brain activation state in IBD disease, provides a further perspective for the 

study of brain function, and opens up a new avenue for studying the SPCCA method and the change 

in the intensity of brain activation in IBD disease. 

Keywords: simultaneous EEG–fMRI; sparsity preserving canonical correlation analysis (SPCCA); 

IBD; data fusion 

 

1. Introduction 

IBD, which includes Crohn’s disease (CD) and ulcerative colitis (UC), characterized by chronic 

inflammation of the gastrointestinal tract and is on the rise worldwide [1]. Symptoms of CD include 

abdominal pain, diarrhea, etc. [2], while those of UC include hemorrhagic diarrhea, faecal incontinence, 

and abdominal discomfort [3]. Many studies noted that IBD is not only an immune-mediated disease, but 

also a psychiatric disorder, where mood disorders, depression, and anxiety are more common in patients 

with IBD compared to the general population [4–9]. It has been reported that 16 to 30% of patients with 

IBD suffer from depression in remission, and 34 to 60% of patients had active depression [10,11]. The 

above mentioned physical and psychological symptoms seriously affect the daily life and social 

communication of each patient, decreasing the quality of life and resulting in huge medical costs. 

Bidirectional interactions between the gut and the nervous system include the central nervous 

system (CNS; brain, and spinal cord), the autonomic nervous system (ANS), the enteric nervous 

system (ENS), and the hypothalamic-pituitary-adrenal (HPA) pathway [12], which comprise the brain-

gut axis. Environmental stress activates the hypothalamic corticotropin-releasing factor (CRF), which 

stimulates pituitary adrenocorticotropin (ACTH) secretion. This, in turn, leads to the release of the 

major stress hormone, cortisol, which affects many human organs, including the brain [13]. It is 

particularly important to note that the connection between the human gastrointestinal tract and the 

CNS is not only physiological, but also active through endocrine, humoral, metabolic, and immune 

communication pathways [14] (see Figure 1 below). The role of the brain-gut axis in IBD has received 

increasing attention, as it allows for a further interpretation of brain structure and function in IBD [15]. 

Recent studies have found more pronounced differences between IBD and healthy control (HC), with 

variations in gray matter volume in the middle frontal and temporal regions, and variations in the 

function of the supra-frontal, middle frontal, infra-frontal, inferotemporal, rectus and inferior frontal 

gyrus regions [16].  
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Figure 1. Pathways of the brain-gut axis. Schematic diagram of the bidirectional axis and 

its major afferent and efferent connections that can be activated or modulated by stress. The 

diagram depicts the afferent, efferent and localized systems and their best-known effectors. 

As the role of the brain-gut axis in IBD has been increasingly emphasized [17,18], it has become 

more important to study the functional changes in the brains of patients with IBD. The differences 

between IBD and HC brain function are centered on the middle frontal and temporal regions, as well 

as the left superior frontal gyrus. In addition, patients who suffer from major depressive disorder (MDD) 

have abnormal function in the frontal cortex (PFC), anterior cingulate cortex (ACC), and limbic system 

(amygdala) [19]. Many researchers worldwide have focused their attention on the two belligerent 

subtypes of IBD. On the one hand, they studied the functional differences between the brains of 

individuals with CD and HC [20–29], where the brain function of the paracentral lobule, the 

cingulate gyrus, and the medial frontal gyrus were partially altered in patients with CD as compared 

to those with HC [30]. On the other hand, they focused on the study of UC [31–34], but there was 

little consensus on the conclusions [35]. It is essential to investigate changes in the brain function of 

patients with IBD. 

Electroencephalography (EEG) recordings are capable of assessing brain activity during various 

experiments with a millisecond precision and high temporal resolution. Functional magnetic resonance 

imaging (fMRI) typically images the brain using blood-oxygen level-dependent (BOLD) contrast and 

has an excellent spatial resolution (millimeters). These are two of the most popular, non-invasive brain 

imaging techniques in cognitive neuroscience. Therefore, an orderly fusion of the two becomes an 

even better neurobiological technique, and it becomes especially important to find a suitable and 

accurate fusion method. Several EEG-fMRI fusion multimodal data methods exist, including those 

based on independent component analysis (ICA), CCA and a parallel factor analysis (PARAFAC) [36]. 

There are three mainstream simultaneous EEG-fMRI fusion methods, namely, symmetric fusion of 

two modalities of EEG and fMRI data [37], source localization fusion using fMRI data as a constraint 

on the traceability of the EEG data [38,39], and predictive fusion using EEG data as a constraint on 
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the traceability of the fMRI data [40]. This paper adopts symmetric fusion of multimodal data, which has 

been used in a wide range of areas, including the coupling and decoupling mechanisms between EEG and 

fMRI [41,42], prediction of epileptic disease lesions [43], brain activity during mood swings in individuals 

with depression [44], and changes in the brain regions involved in emotional processing [45–47]. 

The symmetric fusion method has achieved remarkable success in different areas. The technical 

core of symmetric fusion is mainly the use of joint decomposition methods to separate the sources of 

EEG and fMRI data. Among them, the brightest method belongs to the typical tool for unlocking 

complex relationships between multiple variables, and can be used to identify links between sets of 

variables from different modalities. The main mechanism of action is to identify linear associations 

between two random variables in order to maximize the correlation between the variables [48], which 

is particularly suitable for obtaining activation maps at various locations in the brain. CCA was first 

applied in the field of neuroimaging data to filter spatial signals [49–52]; later on, it was used to classify 

data [53]. Recently, researchers have attempted to use CCA to combine imaging data from different 

modalities for computation [54]. The data from different modalities include but are not limited to, fMRI, 

EEG, and gray and white matter [55]. 

Moreover, CCA has some limitations. Generally, CCA is only applicable when two different sets 

of modal data are treated as linear. However, in practical applications, most of the relationships between 

multiple random variables are nonlinear. Therefore, KCCA has been developed to map the low-

dimensional data to a high-dimensional kernel function space (feature space), and to perform a 

correlation analysis in the feature space through the kernel function. As the research progressed, it was 

found that a part of high-dimensional datasets had much larger dimensions than the sample size, and 

the use of classical CCA to process the data would crash the system [56–58]. Therefore, attempts were 

made to introduce a sparse retention term on the basis of the original CCA, which is called SPCCA [59]. 

First the sparse reconstruction coefficients among samples in each feature set are learned by sparse 

representation, and the sparse reconstruction weight matrix is constructed. Then, it is necessary for the 

two groups of features extracted by the algorithm to not only meet the requirement of maximum 

correlation but to also ensure that the sparse reconstruction relationship in each feature set can be 

maintained as a kind of structural information, so as to improve the stability and robustness of the 

algorithm in complex environments. In SPCCA, in addition to the correlation between two modal 

datasets from the same sample, cross-correlations between two datasets from different in-class samples 

are also utilized, which are automatically determined by performing sparse representations for good 

performance [60]. Rosa et al. [61] adopted CCA, KCCA, and other algorithms to verify the utility of 

multivariate linear relationships among high-dimensional, intra-modal, neuroimage datasets obtained 

by the same group of subjects to find meaningful multivariable image-to-image correspondence in the 

intra-modal study. Yang et al. [62] compared whether CCA and KCCA algorithms could provide useful 

technical means for fusing brain region localization, ERP induction time determination, and brain 

imaging feature extraction in the field of brain-human interfaces in an neural activity analysis under 

cognitive reassessment. However, the existing literature has not applied SPCCA algorithm to EEG-

fMRI fusion research. 

In this paper, CCA, KCCA, and SPCCA were used in the fusion step to combine different modal data, 

and to explore the functional brain changes in IBD disease, which is the first instance this has been 

performed. Differences in activation intensity between IBD and HC were compared and further interpreted 

and analyzed. This method allows us to discover structural changes that occur in different brain regions of 

individuals with IBD, which have been neglected in medical research. Meanwhile, the application of the 
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SPCCA algorithm can also promote the sustainable development of CCA series algorithms. 

2. Materials and methods 

Simultaneous EEG-fMRI data from IBD patients and healthy individuals were collected for 

analysis. After preprocessing and feature extraction, the extracted features were fused using the CCA, 

KCCA, and SPCCA methods, and the differential activation intensities were calculated for 90 brain 

regions divided by anatomical automatic labeling (AAL). The mean difference in activation intensity 

between patients with IBD and healthy individuals was calculated separately, and the differences 

between patients with IBD and healthy individuals were summarized by analyzing relevant medical 

conclusions. Figure 2 depicts the complete process, from data preprocessing to results. 

 

Figure 2. Simultaneous EEG-fMRI data were jointly decomposed using the CCA family 

of algorithms in symmetric fusion to obtain the activation intensity of different brain 

regions in IBD and HC. The acquired data were pre-processed, feature extracted, fused 

with three methods (CCA, KCCA, SPCCA), and reconstructed to obtain the final 

activation intensity for each of the 90 brain regions. 

2.1. Participants 

The following exclusion criteria were applied: (1) use of corticosteroids and psychotropic 
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medications within the past 30 days; (2) current or previous history of neurologic, medical, or psychiatric 

disorders; (3) current or previous history of neurosurgery, head injury, cerebral vascular injury, or 

traumatic brain injury involving loss of consciousness; (4) presence of a learning disability; (5) presence 

of claustrophobia; (6) refusal to give informed consent; (7) the presence of magnetic implants in the 

body; and (8) a under 18 years or over 70 years. 

This study involved a total of 40 participants with a mean age of 36 years (age range 19–63 years; 

SD ± 14.01). The Ethics Committee (Changzhou University, Changzhou, China) approved the 

experiment, and all participants signed an informed consent form before the experiment. The study 

was conducted in accordance with the Declaration of Helsinki. They received comprehensive 

instructions related to the experimental process, and each subject was given a one-on-one introduction 

and explanation to avoid unnecessary errors during the experiment. 

2.2. Data acquisition 

The simultaneous EEG-fMRI experiment was performed in the imaging department of Changzhou 

Hospital. The experiment was a resting-state experiment with an eye-closing task and 240 time-points 

of fMRI scanning. The EEG equipment was a 64-lead nuclear magnetic resonance (NMR) EEG 

acquisition system from EGI, and the electrode positions followed the international 10–10 electrode 

system spatial distribution, in which the midline central (Cz) electrode was utilized as the experiment 

reference electrode. The EEG acquisition software was adopted from EGI, which could display the 

acquired EEG signals in real time; therefore, the quality of the acquired EEG signals could be observed 

in real time. Among them, the sampling frequency was set to 1000 Hz. 

The MRI equipment was a 3.0T superconducting functional magnetic resonance imaging system 

from Philips. The fMRI scanning parameters were ae follows: repetition time (TR) 2000 ms, echo 

time (TE) 35 ms, field angle (FOV) 230 mm, turning angle (FA) 90◦, matrix size 128  128, layer 

thickness of 4mm, and consecutive scanning of 24 layers. The experiment was performed using the 

scanning method of sequential scanning without an interval. A clock synchronization box was used in 

the fusion experiment to synchronize the time of the EEG and FMRI data acquisitions. 

2.3. Data preprocessing 

All experiments were performed in an magnetic resonance (MR) environment, which is very noisy, 

thus resulting in a high likelihood that the quality of the EEG data would be impaired [63]. Therefore, 

the quality of data preprocessing must be very high. In this paper, EEGLAB [64,65], the Functional 

MRI Center for the Brain (FMRIB) [66], and customized codes were used for processing. First, 

gradient field denoising with impulse artifact removal was performed using a plug-in for EEGLAB, 

which was freely available from the FMRIB at the University of Oxford [67,68]. Then, a bandpass 

filter with cutoff frequencies of 0.01 and 40 Hz was applied for denoising to remove DC drift and high-

frequency artifacts unrelated to neuronal oscillations. At the same time, a 50 Hz bandpass filter was 

used to remove noise from the device wires. Next, the EEG data was segmented using the laboratory’s 

immediate “TREV” scan markers as a reference, and the baseline was corrected so that the number of 

EEG segments was equal to the fMRI volume. Then the EEG data was averaged for reference. Finally, 

an independent component analysis (ICA) was selected to remove components related to blinks and 

movements and components not related to neural data [69]. 
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In this paper, the DPABI toolbox [70] in MATLAB was used for fMRI data processing. First, the 

fMRI data was converted from the Digital Imaging and Communications in Medicine (DICOM) format 

to the Neuroimaging Information Technology Initiative (NIfTI) format. Then, the fMRI images were 

slice-time corrected, motion corrected, normalized to the Montreal Neurological Institute (MNI) space, 

and resampled to a voxel size of 3  3  3 mm3. Next, smoothing was performed using an 8 mm half-

peak full width (FWHM) Gaussian kernel. Additionally, bandpass filters with cutoff frequencies of 0.01 

and 0.08 Hz were applied for filtering. In particular, it should be noted that, fMRI data with a head 

motion amplitude of more than 2 mm of horizontal motion or 2 degrees of rotation angle were regarded 

as poor-quality data and were discarded. 

2.4. EEG feature extraction 

Feature extraction was performed on the pre-processed and normalized EEG signals. First, the 

resting-state wave amplitude at 40 TR times was extracted as the EEG features for the subsequent 

fusion analysis. Next, the E9 electrode was selected as the baseline EEG signal. However, after extracting 

the wave amplitude for 40 TR times, the current EEG data lost synchronization with the fMRI data. 

Therefore, in order to be consistent with the time course of the fMRI data, the 40 trails of EEG data were 

subjected to the zero-completion operation, which turned one trail of the EEG data into 5 trails, and the 

number of trails was 40  5. Finally, the resting state information and the hemodynamic response 

function (HRF) function of each TR time were convolved to obtain the final required EEG 

characteristics, which were recorded as _ EEGY . 

2.5. fMRI feature extraction 

Preprocessed fMRI data are usually delayed by 4–8 s due to the blood-oxygen-level-dependent 

(BOLD) signal; therefore, in this paper, the fMRI data of five time-points (10 s) after each trail 

corresponding to the EEG signal were selected as the data involved in the calculation. Meanwhile, in 

order to extract more accurate regions of interest, k-means clustering was performed on all voxel time 

series, and a mask was created. Next, the data was simplified and streamlined according to the created 

mask. Finally, using the SPM8 software [71], the mean of 90 regions of interest in the whole brain was 

calculated for each time-point according to the AAL90 template to represent each region of interest, 

denoted as _ fMRIY . Figure 3 shows the schematic diagram of the fMRI feature extraction process. 

 

Figure 3. Further elaboration of the feature extraction of fMRI data in the form of a 

flowchart. The flowchart details the exact shape of the data flow after each step of processing. 
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2.6. Introduction to the CCA algorithm 

The theory of the CCA algorithm [49–52] is briefly described below. 

The two sample sets X   and Y   obtained in the same experiment both contain N   samples. 

Assume that the dimension of the X  sample set is p and theY sample set is q , as shown in Eq (1). 

 
11 1p 11 1q

N1 Np N1 Nq

x x y y

X Y

x x y y

   
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   
   

 (1) 

On the other hand, the purpose of CCA is to find some linear combination of X  and Y  that can 

maximize the degree of correlation, which can be translated into calculating the maximum value of the 

correlation function of Eq (2): 

 
T

x XY yT T

x y x y
T T

x XX x y YY y
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where xw  and yw  denote the linear combination coefficients of X  and Y , respectively, and 
XXS , 

XYS  and 
YYS  denote the variance and covariance matrices of X  and Y , respectively. 

2.7. Introduction to the KCCA algorithm 

Since CCA cannot handle nonlinear data, kernel canonical correlation algorithms can solve this 

problem by mapping data to high-dimensional feature spaces [72,73], a kernel   for all ,X Y R  

is defined as Eq (3): 

 (X,Y) (X), (Y)  =  (3) 

where   is a mapping from the original data space R  to a new feature space F .Based on kernel, 

the directions Xk  and Yk  can be represented as Eq (4): 

 
'' ' ' '
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where XK  and 
YK  represent the RBF kernel matrices. 

2.8. Introduction to the SPCCA algorithm 

SPCCA utilizes the method of solving the sparse weight matrix in the Sparsity preserving 

projections (SPP) algorithm to obtain the global sparse reconstruction weights between samples [59] 

and uses an optimization strategy to introduce the theory of CCA as a kind of discriminatory 

information of the data. 

Foe the two sample sets,  1 2, , , p N

NX x x x R =    and  1 2, , , q N

NY y y y R =   , in the same 
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model, N  denotes the number of samples, p  denotes the feature dimension of the X  sample set, q  

denotes the feature dimension of the Y  sample set, and each column of X  and Y  denotes a sample. 

Construct the sparse reconstruction weight matrices  1 2, , , N N

NR r r r R =   , and 

 1 2, , , N N

NS s s s R =   for the two sets of sample sets X  and Y . The objective functions of Eqs (5) 

and (6) are defined to seek the projections xw  and yw  that are able to maintain the optimal sparse 

weight vectors ir  and is , namely. 

 
x

N
2

T T

x i x i
w

i 1

min w x w Xr
=

−  (5) 
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where ir  and is  denote the optimal solution for the solution of the 1L  minimization problem on 

X  and Y , respectively. 

Combined with the core thrust of the CCA–maximization of mutual covariance, the objective 

function can be obtained as shown in Eq (7): 

 
, 0

max
x y

T

x xy y

T TW W
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where ( )( )T T

xxS X I R I R X= − −   and ( )( )T T

yyS Y I S I S Y= − −   denote the sparse holding scatter 

matrices of X  and Y , respectively, and both of them satisfy the positive definiteness of the matrix. 

If a singularity occurs, a small perturbation is added to the matrix to eliminate the singularity. 

2.9. Data fusion and reconfiguration 

The features of the EEG and fMRI data after feature extraction were performed as superposition 

averaging, after which they were used as input signals for fusion of the data in two modalities. The 

typical variable matrix M   was calculated by CCA, KCCA, and SPCCA. Finally, the data was 

reconstructed according to Eq (8), and the correlation components C  in the time and spatial domains 

were obtained from the typical variable matrix M . 

 k k kY M C=  (8) 

Then, the IBD and HC data were analyzed separately to obtain the activation intensity required 

for the final study of this paper. Figure 4 shows the flow of data fusion and reconstruction.  
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Figure 4. Fusion and reconstruction of EEG and fMRI data after feature extraction in the 

form of a flowchart. The flowchart details the specific shape of the data flow after each 

step of processing. 

2.10. Activation intensity difference calculation method 

The fMRI-related components obtained after remodeling were written as 
'C  . The activation 

intensity difference were written as J . Then, the average fMRI-related components after analysis in 

the IBD patient group were recorded as 
'

IBDC , and the average fMRI-related components after analysis 

in the healthy participant group were recorded as 
'

HCC  . The difference in activation intensity was 

calculated as shown in Eq (9): 

 
' '

IBD HCJ C C= −  (9) 

3. Results 

3.1. CCA processing results 

The group analysis of IBD and HC data was performed. CCA fusion was used to obtain different 

activation intensity differences in 90 brain regions. As shown in Table 1, the top 10 brain regions with 

large activation intensity differences and the six brain regions known to have large activation intensity 

differences are listed with ROIs, ROIs numbers, automated anatomical labelling (AAL) and their 

specific activation intensity differences. 
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Table 1. Enumeration of the top ten brain regions with large activation intensity differences 

and six brain regions known to have large activation intensity differences using CCA 

fusion method. 

ROIs ROIs number AAL labels 𝐽 

Posterior cingulate gyrus 35 Cingulum_Post_L 60 

Amygdala 41 Amygdala_L 64 

Temporal pole: superior temporal gyrus 83 Temporal_Pole_Sup_L 50 

Temporal pole: middle temporal gyrus 87 Temporal_Pole_Mid_L 47 

Middle frontal gyrus, orbital part 9 Frontal_Mid_Orb_L 43 

Thalamus 77 Thalamus_L 26 

Cuneus 45 Cuneus_L 21 

Precuneus 68 Precuneus_R 20 

Caudate nucleus 71 Caudate_L 18 

cuneate 46 Cuneus_R 20 

Superior frontal gyrus, medial 23 Frontal_Sup_Medial_L 1 

Middle frontal gyrus 7 Frontal_Mid_L 6 

Superior temporal gyrus 81 Temporal_Sup_L 3 

Middle temporal gyrus 86 Temporal_Mid_R 4 

Inferior temporal gyrus 90 Temporal_Inf_R 12 

Heschl gyrus 79 Thalamus_L 11 

As can be seen from the table, those that meet expectations were as follows: the Temporal pole: 

superior temporal gyrus, temporal pole: middle temporal gyrus, and Middle frontal gyrus, orbital part. 

Changes in the activation intensity of these brain regions have been previously mentioned in the 

literature. In contrast, the Posterior cingulate gyrus, Amygdala, Thalamus, Cuneus, Precuneus, and 

Caudate nucleus were not mentioned as being involved in IBD disorders. Additionally, in this paper, 

the brain regions mentioned in the medical literature have been divided according to AAL90. Six brain 

regions with known large activation differences were randomly selected for analysis and are presented 

in the bottom half of the table. According to the analysis of CCA calculations, the activation differences 

in the Superior frontal gyrus, medial, Middle frontal gyrus, Superior temporal gyrus, and Middle 

temporal gyrus were very small, which is inconsistent with the known conclusions. This shows that 

CCA does not process simultaneous EEG-fMRI data well. 

3.2. KCCA processing results  

Similarly, IBD and HC data were analysed separately by using KCCA fusion. Differences in 

activation intensity were obtained for 90 brain regions. As shown in Table 2, the top 10 brain regions 

with large activation intensity differences and the six brain regions with known large activation 

intensity differences are listed with ROIs, ROIs numbers, AAL labels, and their specific activation 

intensity differences. 
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Table 2. Enumeration of the top ten brain regions with large activation intensity differences 

and six brain regions known to have large activation intensity differences using KCCA 

fusion method. 

ROIs ROIs number AAL labels 𝐽 

Superior parietal gyrus 59 Parietal_Sup_L 56 

Heschl gyrus 79 Heschl_ L 50 

Middle frontal gyrus 7 Frontal_Mid_L 64 

Middle frontal gyrus 8 Frontal_Mid_R 68 

Gyrus rectus 28 Rectus_R 32 

Superior frontal gyrus, medial orbital 25 Frontal_Mid_Orb_L 49 

Superior frontal gyrus, medial orbital 26 Frontal_Mid_Orb_R 49 

Parahippocampal gyrus 39 ParaHippocampal_L 30 

Posterior cingulate gyrus 36 Cingulum_Post_R 65 

Gyrus rectus 27 Rectus_L 35 

Superior frontal gyrus, medial 23 Frontal_Sup_Medial_L 19 

Middle frontal gyrus 7 Frontal_Mid_L 68 

Superior temporal gyrus 81 Temporal_Sup_L 12 

Middle temporal gyrus 86 Temporal_Mid_R 16 

Inferior temporal gyrus 90 Temporal_Inf_R 20 

Heschl gyrus 79 Thalamus_L 50 

As can be seen in the table, the Heschl gyrus, Middle frontal gyrus, and Superior frontal gyrus, 

medial orbital regions all met previous expectations. Structural changes in the Superior parietal gyrus, 

Gyrus rectus, Parahippocampal gyrus, and Posterior cingulate gyrus have not been previously mentioned 

in the literature. However, the activation difference between the Middle temporal gyrus and Superior 

temporal gyrus was partially improved compared with the CCA calculations. Moreover, the Middle 

frontal gyrus and Heschl gyrus were among the top 10 brain regions with large activation intensities. It 

can be seen that KCCA performs better than CCA in the fusion of multimodal nonlinear data. 

3.3. SPCCA processing results 

Similarly, a group analysis of IBD and HC data, alongside data fusion using the SPCCA method, 

also obtained the difference in activation intensity of 90 brain regions. As shown in Table 3, the top 10 

brain regions with large activation intensity differences and the six brain regions with known large 

activation intensity differences are listed with ROIs, ROIs numbers, AAL labels, and their specific 

activation intensity differences. The details of the difference in activation intensity across the 90 brain 

regions are shown in Figure 5 and 6. 
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Table 3. Enumeration of the top ten brain regions with large activation intensity differences 

and six brain regions known to have large activation intensity differences using SPCCA 

fusion method. 

ROIs ROIs number AAL labels 𝐽 

Superior frontal gyrus, medial orbital 26 Frontal_Mid_Orb_R 75 

Inferior frontal gyrus, orbital part 15 Frontal_Inf_Orb_L 63 

Middle frontal gyrus 7 Frontal_Mid_L 59 

Middle frontal gyrus 8 Frontal_Mid_R 55 

Inferior frontal gyrus, orbital part 16 Frontal_Inf_Orb_R 63 

Superior frontal gyrus, medial orbital 25 Frontal_Mid_Orb_L 71 

Posterior cingulate gyrus 35 Cingulum_Post_L 60 

Amygdala 41 Amygdala_L 51 

Posterior cingulate gyrus 36 Cingulum_Post_R 58 

Gyrus rectus 27 Rectus_L 46 

Superior frontal gyrus, medial 23 Frontal_Sup_Medial_L 21 

Middle frontal gyrus 7 Frontal_Mid_L 59 

Superior temporal gyrus 81 Temporal_Sup_L 19 

Middle temporal gyrus 86 Temporal_Mid_R 23 

Inferior temporal gyrus 90 Temporal_Inf_R 33 

Heschl gyrus 79 Thalamus_L 43 

 

Figure 5. Labeling of the top ten brain regions with large activation intensity obtained 

using the SPCCA fusion method. 
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Figure 6. The specific activation values of the first ten brain regions with high activation 

intensity obtained by SPCCA fusion method were labeled (the activation values were 

represented by the size of a circle). 

As can be seen from the table, those that met expectations were the Middle frontal gyrus, 

Superior frontal gyrus, medial orbital, and Inferior frontal gyrus. Structural changes in the Middle 

frontal gyrus, Gyrus rectus, and Amygdala have not been previously reported. In addition, the 

Superior frontal gyrus, medial orbital had the highest activation intensity difference of 75; the Gyrus 

rectus had the lowest activation intensity difference of 46. The SPCCA showed a mean difference in 

activation intensity of 60.1 among the six brain regions known to have significant activation 

differences. However, the mean difference in activation intensity between the six brain regions 

obtained by CCA was 36.9, and the mean difference in activation intensity between the six brain 

regions obtained by KCCA was 49.8. Meanwhile, although the Inferior temporal gyrus and Heschl 

gyrus were not among the top 10 brain regions with large activation intensity differences, their 

activation strengths were also considerable. The results calculated by SPCCA in the six brain regions 

with known large activation differences were generally much higher than those calculated by CCA and 

KCCA. It can be seen that SPCCA not only has the highest activation intensity difference compared 

with CCA and KCCA, but also has the highest average difference value of the six known brain regions, 

which is more in line with the facts. It is concluded that SPCCA is the most suitable algorithm among 

the above three methods. 

3.4. Connection matrix results discussion 

By extracting the data for different voxels throughout time, a time series for different voxels can 

be obtained. This time series represents the change in blood oxygen levels of that voxel over time, 

which reflects the performance of the function. Based on the correlation between the time series, a 

functional correlation can be obtained. By calculating the average time series for each brain region and 

the pairwise correlation coefficient, the correlation matrix for the whole brain during this period can 

be obtained, that is, the functional connection matrix. 

Using the average time series of fMRI data from 25 IBD patients and 15 healthy people, the 

connection matrix of IBD patients to healthy subjects was plotted, as shown in Figure 7. According to 
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the figure, the differences between the two aforementioned connection matrices can be clearly seen, 

and the brain regions with the most obvious changes are indicated by the red boxes. 

Activation differences were analyzed and calculated for 90 brain regions. The most basic 

connection matrix method was used to analyze the parts of the brain regions with large activation 

differences between IBD patients and healthy individuals, namely the Superior occipital gyrus, 

Middle occipital gyrus, Inferior occipital gyrus, and Caudate nucleus. However, these regions do not 

contain relevant brain regions known in the medical literature. Therefore, it can be judged that the 

results obtained when using a single data analysis are not satisfactory. In this paper, the simultaneous 

EEG-fMRI fusion method was used to calculate the brain regions associated with IBD more correctly 

and excellently. 

 

Figure 7. (a) shows the functional connection matrix of the IBD group, which was 

calculated using the average time series of fMRI data from 25 IBD patients. (b) shows the 

functional connection matrix of the healthy group, which was calculated using the average 

time series of fMRI data from 15 healthy people. 

3.5. Two-sample t-test 

A two-sample t-test (also known as an independent-sample t-test) is a statistical method used to 

test the degree of difference between two groups; the smaller the p-value, the greater the difference [72]. 

The calculation results are shown in Table 4. 

According to the results described in the table, it can be seen that not only the activation intensity 

of the two brain regions, namely the frontal and temporal regions, differ considerably, and were 

mentioned in relevant literature. In addition, the Posterior cingulate gyrus, Gyrus rectus, and Amygdala 

proposed in the results of this paper are also statistically significantly different. The above results 

demonstrate the validity of the computational methods used in this paper, as well as the large degree of 

activation differences in Posterior cingulate gyrus, Gyrus rectus, and Amygdala regions, that is, there 

were significant differences between IBD and HC in the Posterior cingulate gyrus, Gyrus rectus, and 

Amygdala regions. Due to the large number of brain regions, a single brain region was selected for the 

t-test, and this test is generally applicable to the examination of the results of each fusion. 

  



2661 

Mathematical Biosciences and Engineering  Volume 21, Issue 2, 2646–2670. 

Table 4. t-test results of partially activated brain regions with high intensity. 

ROIs Data description Average value Standard deviation p  

Frontal lobe (include: Superior frontal 

gyrus, orbital part, Inferior frontal gyrus, 

orbital part, Middle frontal gyrus) 

HC −1.63 0.33 

0.006** 

IBD 0.76 0.01 

Temporal lobe (include: Temporal pole: 

superior temporal gyrus, Temporal pole: 

middle temporal gyrus, Heschl gyrus) 

HC 0.38 0.01 

0.001** 

IBD −1.43 0.02 

Posterior cingulate gyrus 

HC 0.36 0.04 

0.001** 

IBD −2.61 0.12 

Gyrus rectus 

HC −0.70 0.09 

0.003** 

IBD −2.99 0.14 

Amygdala 

HC −0.39 0.02 

0.001** 

IBD −0.85 0.02 

(*p < 0.05, **p < 0.01) 

3.6. Use relational degrees for comparison 

The CCA family of algorithms searches a pair of linear transformations of a set of variables in a 

one-to-one manner. Given two dataests and ( )_ EEGX Y  , their generative models are given by Eq (10): 

 X X

Y Y

X A C

Y A C

=

=
 (10) 

where 
XA  and 

YA  are canonical variate matrices and XC  and YC  are associated EEG and fMRI 

components. Xka   and Yka   represent the 
thk   column of XA   and YA  , respectively. The relational 

degree is defined in the following equation: 

 
×

T

Xk XY Yk
k

T T

Xk XX Yk Xk YY Yk

a S a

a S a a S a
=ρ  (11) 

where kρ  indicates the relational degree of the 
thk  pair of associated components. 

The activation differences of 90 brain regions were reconstructed using the CCA, KCCA, and 
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SPCCA algorithms fused with simultaneous EEG and fMRI data, through the judgement of the 

algorithms based on the differences was one-sided. Therefore, the correlation degree of different 

components of HC and IBD data under the three algorithms was compared: the greater the degree of 

correlation, the higher the degree of matching, which can prove the excellence of the algorithm. The 

correlation components with a correlation degree greater than 0.55 are shown in Table 5. In order to 

facilitate the comparison of data differences, the data with the highest correlation degree obtained from 

the HC and IBD data of the three algorithms are bolded within the table. 

Table 5. Correlated components of EEG-fMRI with high relational degrees (> 0.55). 

correlated components 

relational degrees (IBD/HC) 

CCA KCCA SPCCA 

component 1 0.899/0.917 0.903/0.926 0.923/0.955 

component 2 0.830/0.849 0.857/0.889 0.829/0.863 

component 3 0.811/0.834 0.801/0.833 0.841/0.850 

component 4 0.732/0.759 0.743/0.771 0.759/0.786 

component 5 N/A 0.648/0.673 0.647/0.685 

component 6 N/A N/A 0.577/0.598 

As shown in the table, there are four pairs of correlated components when using CCA for fusion. 

When KCCA was used for fusion, there were five pairs of correlations. When fused using SPCCA, 

there were six pairs of correlations. It is clear that the correlations obtained with SPCCA are greater 

than those obtained with KCCA and even greater than those obtained with CCA. 

4. Discussion 

The functional changes of 90 brain regions of IBD and HC individuals were studied by applying 

the CCA, KCCA, and SPCCA algorithms for capturing higher-order structures and the 

complementarity of multimodal data. The fusion of CCA and KCCA is widely used in simultaneous 

EEG-fMRI fusion analyses [60–62]. However, the noise contained in simultaneous EEG-fMRI fusion 

data is huge, and the nonlinearity of the data may lead to the decrease of fusion accuracy. Therefore, 

this paper introduces the SPCCA algorithm to improve the robustness of the algorithm in a complex 

environment. As shown in Table 4, the t-test method [74–76] was used to verify the excellence of 

SPCCA calculation results. The smaller the p-value, the greater the difference between different brain 

regions of IBD and HC, which indicates that the SPCCA calculation results were correct. As shown in 

Table 5, the correlation degree derived [77–79] from SPCCA fusion is generally greater than that 

derived from the fusion of CCA and KCCA. At the same time, the greater the degree of correlation, 

the stronger the relationship between the two components. Therefore, the results in the table can show 

that SPCCA fusion is superior to traditional CCA fusion. 

The results can be analyzed from three perspectives. On the one hand, the KCCA algorithm, which 

is upgraded from CCA and designed for nonlinear multimodal data, and the SPCCA algorithm, which 
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is more accurate for feature recognition, were used to process the same batch of data. Judging by the 

difference in activation intensity of different brain regions and the correlation of the data, SPCCA 

performs well. The algorithm is more suitable for processing synchronous EEG-fMRI data, and the 

data presentation is more accurate and complete. On the other hand, SPCCA proceeds to analyze the 

structural status of the brain in IBD patients. According to the treatment results corresponding to the 

brain region, the Frontal lobe and Temporal lobe regions mentioned in the literature were found in the 

results. The attention to the brain-gut axis around the world has brought new opportunities for the 

treatment of IBD. The human gastrointestinal tract and central nervous system are connected by the 

brain-gut axis, and the discomfort caused by the gastrointestinal tract is easily imaged by the brain-gut 

axis. The analysis of simultaneous EEG-fMRI fusion concluded that images of the brain regions of 

IBD patients are highly likely to be present not only in the Frontal and Temporal regions, but also in 

the Posterior cingulate gyrus, Gyrus rectus, and Amygdala. This means that the Posterior cingulate 

gyrus, Gyrus rectus, and Amygdala communicate with the gastrointestinal tract in the brain-gut axis. 

This discovery will definitely open up a new situation for IBD-related medical research. More 

importantly, the high activation intensity in the Amygdala region indicates that most of the patients 

with IBD also suffer from major depressive disorder (MDD), and healthcare professionals should pay 

more attention to the psychological status of patients with IBD. 

Based on a series of analyses presented here, simultaneous EEG-fMRI fusion analysis appears to 

be a potential approach to study functional and structural changes in IBD brain regions. This complex 

technique is very practical and provides a new perspective for IBD research. At the same time, the 

SPCCA algorithm can still maintain a certain stability and robustness in complex environments; 

therefore, it is also suitable for the study of other diseases or task state data. For example, the EEGs of 

epilepsy patients show characteristics of a strong sudden onset, rapid amplitude change, and a large 

range of change [80–82]. A more stable algorithm for analysis may obtain better results. 

5. Conclusions 

In this paper, CCA, KCCA, and SPCCA methods were used to study the differences in brain 

function between IBD and HC patients. This series of methods uses the complementarity of 

multimodal data and the interdependence of different dimensions to identify the association between 

two modal datasets and maximize the correlation between variables to obtain the activation intensity 

of each region in the brain. SPCCA performs well in synchronous EEG-fMRI data processing, and its 

calculated correlation components are highly correlated. At the same time, the calculated average 

activation intensity difference is 60.1, which is 36.9 and 49.8 when compared with the average 

activation intensity difference calculated by CCA and KCCA, respectively; this also implies a higher 

robustness of the SPCCA distinguishing features. This paper identifies significant differences in the 

functioning of IBD and HC brain regions proposed in other literature, as well as significant changes in 

the Posterior cingulate gyrus, Gyrus rectus, and Amygdala, which have been overlooked in previous 

research works. 

Among them, the presence of the Amygdala means that MDD follows IBD patients closely, and 

healthcare professionals should pay more attention to the mental health status of IBD patients and 

provide them with additional support. The results of this study help to further expand the research 

methods of brain function and contribute to the study of the SPCCA algorithm and brain function 

changes in IBD diseases. Meanwhile, it also brings new perspectives to the medical research of the 
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brain axis. 

The fusion method proposed in this paper has some limitations. (1) Prior knowledge is a 

necessary condition for the KCCA fusion method. It is important to select appropriate parameters to 

obtain satisfactory fusion results, though there is no standard to determine the threshold of 

correlation degree. (2) In the face of a large number of nonlinear problems, the focus of future research 

will be how to use relevant techniques of sparse representation to study and develop a nonlinear and 

sparse CCA. (3) Due to the difficulty of simultaneous EEG-fMRI fusion experiments and the extensive 

personnel involved, the sample size obtained in this paper was relatively small, and the evaluation may 

not be convincing. In future work, more simultaneous EEG-fMRI fusion data from additional IBD and 

HC patients will be collected to further validate the results. In addition, a new computational model 

will be built to analyze the brain differences between IBD and HC, and different subtypes of IBD will 

be analyzed and discussed. 
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