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Abstract: Calculating single-source shortest paths (SSSPs) rapidly and precisely from weighted
digraphs is a crucial problem in graph theory. As a mathematical model of processing uncertain tasks,
rough sets theory (RST) has been proven to possess the ability of investigating graph theory problems.
Recently, some efficient RST approaches for discovering different subgraphs (e.g. strongly connected
components) have been presented. This work was devoted to discovering SSSPs of weighted digraphs
by aid of RST. First, SSSPs problem was probed by RST, which aimed at supporting the fundamental
theory for taking RST approach to calculate SSSPs from weighted digraphs. Second, a heuristic search
strategy was designed. The weights of edges can be served as heuristic information to optimize the
search way of k-step R-related set, which is an RST operator. By using heuristic search strategy, some
invalid searches can be avoided, thereby the efficiency of discovering SSSPs was promoted. Finally, the
W3SP@R algorithm based on RST was presented to calculate SSSPs of weighted digraphs. Related
experiments were implemented to verify the W3SP@R algorithm. The result exhibited that W3SP@R
can precisely calculate SSSPs with competitive efficiency.

Keywords: rough sets theory; graph theory; single-source shortest paths; weighted digraphs; heuristic
search strategy

1. Introduction

In the area of graph theory, SSSPs is a crucial topic. From perspective of knowledge discovery,
SSSPs is one sort of significant knowledge demanding to be extracted from specified graphs. SSSPs
problem is to discover shortest paths from a specified source vertex to other vertices. Presently, SSSPs
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have been extended to many different research fields, including geographic information system [1],
neural network [2–4], fuzzy network [5, 6], transportation system [7, 8], complex network [9, 10], etc.

Up to now, numerous algorithms [11–14] have been devised for computing SSSPs of weighted
digraphs, among which Dijkstra [11] is a well-known algorithm for handling SSSPs problem. If a
digraph composes of n vertices and m edges, then the classic Dijkstra algorithm needs O(n2) calculations.
Although the Dijkstra algorithm can exactly solve SSSPs problem, the quickly increasing computation
time makes it unsuitable for large graphs. For this issue, several approaches have been presented
accordingly. For instance, with the help of Fibonacci-heap, Fredman et al. [12] enhanced the efficiency
of the Dijkstra algorithm to O(m + nlogn). In addition, Sunita et al. [14] developed a method called
D Dij with time complexity of O(nlogm) by means of retroactive priority queue. In spite of these
approaches reducing computation time to some extent, the topic of developing more efficient approaches
for calculating SSSPs of weighted digraphs also needs to be considered in future works.

RST [15] is an effective model to process uncertain tasks. So far, RST has been utilized in numerous
research fields, including data mining [16–18], decision analysis [19–21], knowledge discovery [22–27],
machine learning [28–32], etc. It is worthy to notice that RST has been successfully employed to extract
knowledge from graphs. For example, Guan et al. [25] built the heuristic information of vertices by means
of RST to calculate the minimum dominating set. Chen et al. [22] calculated connected components
by k-step upper approximation, which is an RST operator. Xu et al. [23] first took RST to probe the
strongly connected components (SCCs) problem. Inspired by granular computing, the vertex granules
can be constructed by RST operators [24], then SCCs problem can be handled successfully in coarse
granularity. Consequently, it is practicable to investigate graph theory problems by aid of RST.

Both SSSPs and SCCs, two different knowledge of graph theory, can be discovered through taking
the graph theory procedure of breadth-first search (BFS). In [24], it has validated that forward BFS
has an equivalent operator, k-step R-related set, in RST. This fact indicates that RST can provide
another solution for solving graph theory problems. This perhaps can be the antecedent study of solving
uncertain graph theory problems by aid of RST.

This work focuses on designing a novel solution based on RST for discovering SSSPs in weighted
digraphs, a certain graph theory problem. First, in light of the theoretical connections between the
notions of RST and graph theory, SSSPs problem is probed by means of RST. The fundamental theory
of taking the RST approach to calculate SSSPs of weighted digraphs can then be gained. Second,
a heuristic search strategy is devised to instruct the detailed implementation of k-step R-related set.
Without the heuristic search strategy, the RST operator of k-step R-related set would be trapped in
exhaustive search. However, from a global perspective, if a vertex x has the smallest weight to the vertex
y, which belongs to the R-related set of x, then the two vertices x and y are more likely to be involved in
the SSSPs. The above viewpoint is served as the heuristic information, which can avoid some invalid
searches. Finally, combining the heuristic search strategy, a novel RST approach named W3SP@R is
presented to calculate SSSPs of weighted digraphs efficiently.

The main contributions are as follows.

1. SSSPs problem in weighted digraphs is probed by means of RST, which can support the
fundamental theory for taking the RST approach to calculate SSSPs from weighted digraphs.

2. A heuristic search strategy is introduced to optimize the way of the RST operator (k-step R-related
set) in searching SSSPs.

3. The W3SP@R algorithm based on RST is put forward to calculate SSSPs of weighted digraphs.
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This paper is planned as follows. In Section 2, the basic knowledge of SSSPs and RST is introduced.
In Section 3, SSSPs problem is probed by means of RST. Moreover, a heuristic search strategy is
designed. In Section 4, the W3SP@R algorithm based on RST is presented to calculate SSSPs of
weighted digraphs. In Section 5, the result analysis is given. In Section 6, the work is summarized.

2. Preliminaries

2.1. SSSPs

SSSPs is a popular study branch of shortest paths problems, which plays a significant role in actual
applications. For a digraph D = (U, E) as Definition 1, SSSPs problem aims at calculating shortest paths
from the specified source vertex a to all other vertices in D.

Definition 1. ( [33]) A digraph D = (U, E) consists of a nonempty finite set U of elements called
vertices and a finite set E of ordered pairs of distinct vertices called directed edges. The size of U is
denoted by |U | or n. The size of E is denoted by |E| or m.

v

(a) Loop

v

v

(b) Multiple edge

v

v

v

v

(c) Simple digraph

Figure 1. The display of loop, multiple edge and simple digraph.

In particular, a digraph with no multiple edges (or parallel edges) and loop is viewed as a simple
digraph. Multiple edges refer to more than one directed edge associated with a pair of vertices, which
possess the same direction. Loop refers to the directed edge, where source and target vertices are the
same one. Figure 1 provides the examples of loop, multiple edge and simple digraph. In this paper, it
should be stressed that the digraphs utilized are simple.

In addition, four fundamental notions in graph theory should be described here because they are
commonly used to analyze SSSPs problem, as in Table 1. In special, it can be found: (1) successors(x) ⊆
descendants(x); (2) predecessors(x) ⊆ ancestors(x).

Table 1. Four fundamental notions in graph theory.

Symbols Notions
successors(x) The successors of x
descendants(x) The descendants of x
predecessors(x) The predecessors of x
ancestors(x) The ancestors of x
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Definition 2. ( [34]) Let D = (U, E) be a digraph. For x, y ∈ U, if there is a sequence of vertices and
edges leading from x to y, that is xe1v1e2v2 · · · vk−1eky, where e1, e2, · · · , ek ∈ E and v1, v2, · · · , vk−1 ∈ U.
The sequence can be regarded as a directed path, denoted by p : x

∗
−→ y, where

∗
−→ is a binary relation on

U and called reachable relation. x is called an ancestor of y, and y is called a descendant of x. Every
vertex is an ancestor and a descendant of itself.

Definition 3. ( [35]) Given a digraph D = (U, E) with non-negative weights, w(e) on e ∈ E. P(u, v)
represents the shortest path from u to v. PE(u, v) and PU(u, v) represent the set of edges and vertices,
respectively. |P(u, v)| represents the sum of the edge weights of the path from u to v, |P(u, v)| =∑

e∈PE(u,v) w(e).

According to Definition 3, for any x, y ∈ U, if x has reachable relation to (or from) y, there would be
x
∗
−→ y (or y

∗
−→ x). Actually, there may be several directed paths from x to y (or from y to x). In these

paths, the shortest path from x to y (or from y to x) is bound to exist, as Proposition 1.

Proposition 1. Let D = (U, E) be a digraph. ∀x, y ∈ U, and if x
∗
−→ y or y

∗
−→ x, then there must exist

P(x, y) or P(y, x).

Proof. It is straightforward to obtain this conclusion. □

Conversely, if there exists P(x, y) or P(y, x), then x
∗
−→ y or y

∗
−→ x can be obtained.

Proposition 2. ( [23]) Let D = (U, E) be a digraph. If there are three vertices x, y, z ∈ U such that
x
∗
−→ y and y

∗
−→ z, then x

∗
−→ z.

Proposition 2 indicates that the reachable relation ”
∗
−→ ” is transitive. Furthermore, the shortest path

is also transitive, as in Proposition 3. For any vertices x, y, z ∈ U, if there exist the shortest paths from x
to y and from y to z, respectively, then the shortest path from x to z must exist.

Proposition 3. Let D = (U, E) be a digraph. ∀x, y, z ∈ U, and if there exist P(x, y) and P(y, z), then
there must exist P(x, z).

Proof. The existence of P(x, y) means the shortest path from x to y exists, then it is straightforward
that x

∗
→ y. Similarly, y

∗
→ z can also be got by the existence of P(y, z). According to Proposition 2,

x
∗
→ y

y
∗
→ z

 ⇒ x
∗
→ z.

According to Proposition 1, x
∗
→ z implies that there must exist P(x, z). □

To describe the paths conveniently, the vertex sequence of (x, v1, v2, · · · , vi, y) is used to represent
the path from x to y, where x, v1, v2, · · · , vi, y ∈ U, x and y are source and target vertices, respectively.
Moreover, for any x, y ∈ U, w(x, y) is used to represent the weight of edge (x, y) ∈ E. Next, the SSSPs
from a specified source vertex is illustrated in Example 1.

Example 1. Given a weighted digraph D = (U, E) exhibited in Figure 2, U = {a, b, c, d, e}, E =
{(a, b), (a, c), (a, d), (c, b), (c, e), (d, e), (e, b)}. Let a be the source vertex.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2626–2645.



2630

b

a c

d e

Figure 2. The weighted digraph D in Example 1.

(1) There are 3 different paths from a to b: (a, b), (a, c, b), and (a, d, e, b). The lengths of them are
100, 90, and 70, respectively. Hence, (a, d, e, b) is the shortest path, namely, PU(a, b) = {a, d, e, b},
PE(a, b) = {(a, d), (d, e), (e, b)}, |P(a, b)| =

∑
e∈PE(a,b) w(e) = w(a, d)+w(d, e)+w(e, b) = 10+50+10 = 70;

(2) There is only one path from a to c: (a, c). The length of (a, c) is 30 and it is the shortest path,
namely, PU(a, c) = {a, c}, PE(a, c) = {(a, c)}, |P(a, c)| =

∑
e∈PE(a,c) w(e) = w(a, c) = 30;

(3) There is only one path from a to d: (a, d). The length of (a, d) is 10 and it is the shortest path,
namely, PU(a, d) = {a, d}, PE(a, d) = {(a, d)}, |P(a, d)| =

∑
e∈PE(a,d) w(e) = w(a, d) = 10;

(4) There are 2 different paths from a to e: (a, c, e) and (a, d, e). The lengths of them are 90 and 60,
respectively. Hence, (a, d, e) is the shortest path, namely, PU(a, e) = {a, d, e}, PE(a, e) = {(a, d), (d, e)},
|P(a, e)| =

∑
e∈PE(a,e) w(e) = w(a, d) + w(d, e) = 10 + 50 = 60.

In sum, a total of 4 shortest paths from a are listed above.

2.2. RST

Classical RST [15] is a mathematical model presented by Pawlak, which possesses the ability of processing
uncertain tasks. With the continuous development of RST, it has been involved in many study areas. In the
area of graph theory, there have been several related studies. For instance, Chen et al. [22] abstracted a
simple undirected graph as a SP-relation, and an RST operator named k-step upper approximation (as
Definition 7) was devised for calculating connected components. Further, Xu et al. [23] abstracted a
simple digraph as an IR-relation, and an RST operator named k-step R-related set (as Definition 8) was
devised for calculating SCCs.

Definition 4. ( [22]) Let R be a relation on U. If R is serial, irreflexive and symmetric, we say R to be
a serial preclusivity relation (SP-relation) on U. We call the approximation space (U,R) with R being
SP-relation a SPA-space.

Definition 5. ( [23]) Let R be a binary relation on U. If R is irreflexive, R is then named a irreflexive
relation (IR-relation) on U. The corresponding approximation space (U,R) is here named IRA-space.

Three important notions of RST are introduced as Definition 6, that is, R-related set (as Eq (2.1)),
upper approximation set (as Eq (2.2)), and lower approximation set (as Eq (2.3)).

Definition 6. ( [23]) Let (U,R) be an IRA-space. For any x ∈ U and X ⊆ U:
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r(X) = ∪{r(x) : x ∈ X}, (2.1)

R(X) = {x ∈ U |r(x) ∩ X , ∅}, (2.2)
R(X) = {x ∈ U |∅ , r(x) ⊆ X}. (2.3)

Definition 7. ( [22]) Let (U,R) be a SPA-space and k a positive number. For any X ⊆ U, a new notion
of upper approximation R

(k)
(X) called k-step upper approximation of X is introduced as follows:

R
(1)

(X) = R(X),

R
(k)

(X) = R(R(· · · (R(X))))︸              ︷︷              ︸
k times

. (2.4)

Definition 8. ( [23]) Let (U,R) be an IRA-space and k a positive number. For any subset X ⊆ U, r(k)(X)
is named k-step R-related set of X. It is defined as follows:

r(1)(X) = r(X),
r(k)(X) = r(r(· · · (r(X))))︸            ︷︷            ︸

k times

. (2.5)

The symbol of A (X) stands for the union of R
(k)

(X), as Eq (2.6); the symbol of D(X) stands for the
union of r(k)(X), as Eq (2.7).

A (X) = ∪{R
(k)

(X) : k ≥ 1}, (2.6)
D(X) = ∪{r(k)(X) : k ≥ 1}. (2.7)

Specifically, ∀X ⊆ U, when it is only composed of element x, A (x) can be substituted for A (X).
Similarly, D(x) can be substituted for D(X). In addition, for convenience of describing the intermediate
results process of r(k)(X), a notion called the tth-step R-related set is introduced in Definition 9.

Definition 9. Let (U,R) be an IRA-space. ∀X ⊆ U, tth-step R-related set of X is denoted by r(t)(X),
where t is an integer (t > 0). It is described as follows:

r(t)(X) = r(r(· · · (r(X))))︸            ︷︷            ︸
t times

(1 ≤ t ≤ k). (2.8)

Correspondingly, the symbol of Dt(X) stands for the union of the previous t steps of r(k)(X), as
Eq (2.9).

Dt(X) = ∪{r(i)(X) : 1 ≤ i ≤ t}. (2.9)

Similarly, if X only contains x, then Dt(x) can be substituted for Dt(X). It is obvious that r(t)(x) ⊆
Dt(x) ⊆ D(x).
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3. The theoretical study on SSSPs problem by RST and heuristic search strategy

In this section, SSSPs problem in weighted digraphs is probed by aid of RST, which can support the
fundamental theory of taking the RST approach to calculate SSSPs of weighted digraphs. In addition, a
heuristic search strategy is devised for improving the calculation efficiency of SSSPs.

3.1. The theoretical study of SSSPs in RST

The theoretical connections between the notions of RST and graph theory are described, which
provide theoretical foundations for studying SSSPs by RST, as Theorems 3.1–3.3.

Theorem 3.1. ( [23]) Let (U,R) be an IRA-space and D = (U, E) the source directed graph of (U,R).
Then, ∀x ∈ U, we have that r(x) = successors(x).

Theorem 3.2. ( [23]) Let (U,R) be an IRA-space and D = (U, E) the source directed graph of (U,R).
Then, ∀x ∈ U, we have that R(x) = predecessors(x).

Theorem 3.3. ( [23]) Let (U,R) be an IRA-space and D = (U, E) the source directed graph of (U,R).
Then, ∀x ∈ U, we have that D(x) = descendants(x).

For any vertex x belonging to U, if there is no vertex included in D(x), then it can be deduced that
the SSSPs from x cannot be found. This conclusion is introduced in Theorem 3.4.

Theorem 3.4. Given the IRA-space (U,R) and its source weighted digraph D = (U, E), let x (x ∈ U) be
the source vertex. If D(x) = ∅, then there does not exist SSSPs from x.

Proof. For the source vertex x, if D(x) = ∅, then we can get descendants(x) = ∅ according to
the conclusion of D(x) = descendants(x) in Theorem 3.3. Further, descendants(x) = ∅ ⇔ ∀y
(y ∈ U ∧ y < descendants(x)). In other words, there is no y ∈ U so that x

∗
↛ y, since x cannot reach any

other vertex y, let alone the existence of the shortest path P(x, y). Overall, there does not exist SSSPs
from x. □

According to above proof, if a vertex y belongs to D(x), then x
∗
→ y can be got. By Proposition 1,

there must exist P(x, y). Thus, the SSSPs from x to y is bound to exist.
Moreover, if there is no vertex included in r(x), then it also can be deduced that the SSSPs from x

does not exist, as in Theorem 3.5.

Theorem 3.5. Given the IRA-space (U,R) and its source weighted digraph D = (U, E), let x (x ∈ U) be
the source vertex. If r(x) = ∅, then there does not exist SSSPs from x.

Proof. In Eq (2.7), D(x) = ∪{r(k)(x) : k ≥ 1} = r(x)∪
⋃

y∈r(x)
D(y). It is obvious that r(x) = ∅ ⇔ D(x) = ∅.

The result of D(x) = ∅ indicates that there does not exist SSSPs from x by Theorem 3.4. □

Similarly, by D(x) = r(x) ∪
⋃

y∈r(x)
D(y), if r(x) , ∅, then D(x) , ∅ can be found, namely, D(x)

contains a vertex y at least. Thus, the SSSPs from x must exist. Specially, if only y included in r(x),
then it can be obtained that (x, y) is the shortest path from x to y, as shown in Theorem 3.6.

Theorem 3.6. Given the IRA-space (U,R) and its source weighted digraph D = (U, E), let x (x ∈ U) be
the source vertex. ∀y ∈ U, if r(x) = {y}, then PU(x, y) = {x, y} and |P(x, y)| = w(x, y).

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2626–2645.



2633

Proof. For the source vertex x, if r(x) = {y}, then we can get successors(x) = {y} according to the
conclusion of r(x) = successors(x) in Theorem 3.1. In addition,

successors(x) ⊆ descendants(x)
successors(x) = {y}

 ⇒ y ∈ descendants(x) ⇔ x
∗
→ y.

By Proposition 1, there must exist P(x, y). It is obvious that (x, y) is the only path from x to y because
successors(x) = {y}, thus, it is definitely the shortest path P(x, y). In conclusion, if r(x) = {y}, then
P(x, y) can be determined directly, that is, PU(x, y) = {x, y} and |P(x, y)| = w(x, y). □

Use the RST notion of the upper approximation set to analyze the SSSPs. It can be concluded that if
only the source vertex x included in R(y), then it can be obtained that (x, y) is the shortest path from x to
y, as in Theorem 3.7.

Theorem 3.7. Given the IRA-space (U,R) and its source weighted digraph D = (U, E). Let x (x ∈ U)
be the source vertex. ∀y ∈ r(x), and if R(y) = {x}, then PU(x, y) = {x, y} and |P(x, y)| = w(x, y).

Proof. If R(y) = {x}, then we can get predecessors(y) = {x} according to the conclusion of R(x) =
predecessors(x) in Theorem 3.2. In addition,

predecessors(y) ⊆ ancestors(y)
predecessors(y) = {x}

 ⇒ x ∈ ancestors(y) ⇔ x
∗
→ y.

By Proposition 1, there must exist P(x, y). It is obvious that (x, y) is the only path from x to y because
predecessors(y) = {x}, thus, it is definitely the shortest path P(x, y). In conclusion, if R(y) = {x}, then
P(x, y) can be determined directly, that is, PU(x, y) = {x, y} and |P(x, y)| = w(x, y). □

Example 2. The weighted digraph D in Figure 2 is utilized to interpret above theories. The binary
relation R = {(a, b), (a, c), (a, d), (c, b), (c, e), (d, e), (e, b)} is constructed from D. Table 2 displays the
R-related set and upper approximation of each vertex in D.

Table 2. R-related set and upper approximation of each vertex.

x a b c d e
r(x) {b, c, d} ∅ {b, e} {e} {b}
R(x) ∅ {a, c, e} {a} {a} {c, d}

Let a be the source vertex. Since R(c) = R(d) = {a}, PU(a, c) = {a, c}, |P(a, c)| = w(a, c) = 30,
PU(a, d) = {a, d} and |P(a, d)| = w(a, d) = 10 according to Theorem 3.7.

Let b be the source vertex. Since r(b) = ∅, the SSSPs from b does not exist according to Theorem 3.5.
Let d be the source vertex. Since r(d) = {e}, PU(d, e) = {d, e} and |P(d, e)| = w(d, e) = 50 can be

found according to Theorem 3.6.

Next, the instance of r(x) containing multiple elements needs to be analyzed, as in Theorem 3.8.

Theorem 3.8. Given the IRA-space (U,R) and its source digraph D = (U, E) with positive weights. Let
x (x ∈ U) be the source vertex, r(x) = {y1, y2, · · · , yi, · · · , yn} (1 ≤ i ≤ n). If ∀yi∃y j (w(x, y j) ≤ w(x, yi)),
then PU(x, y j) = {x, y j} and |P(x, y j)| = w(x, y j).
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Proof. For the source vertex x ∈ U, if r(x) = {y1, y2, · · · , yi, · · · , yn}, then we can get successors(x) =
{y1, y2, · · · , yi, · · · , yn} according to the conclusion of r(x) = successors(x) in Theorem 3.1. In addition,

successors(x) = {y1, y2, · · · , yi, · · · , yn}

successors(x) ⊆ descendants(x)

 ⇒ {y1, y2, · · · , yi, · · · , yn} ⊆ descendants(x).

According to Definition 2, for any yi ∈ descendants(x) ⇔ x
∗
→ yi (1 ≤ i ≤ n). The expression of

∀yi∃y j (w(x, y j) ≤ w(x, yi)) means that w(x, y j) is the shortest distance between x and yi (1 ≤ i ≤ n).
Except for the path of (x, y j), x may reach y j by passing through the other yi. Obviously, the path of
passing through the other yi cannot be shorter than the path of (x, y j) because that w(x, y j) is the shortest
distance between x and yi (1 ≤ i ≤ n). Hence, we have PU(x, y j) = {x, y j} and |P(x, y j)| = w(x, y j). □

For convenience of computing SSSPs from source vertex x, Dist(y) is used to denote the distance
from x to y. In the beginning of computing SSSPs, for each vertex y ∈ U, the distance from x to y
is initialized as infinite (Dist(y) = ∞). Specifically, if there exists y ∈ U so that x cannot reach y,
then Dist(y) = ∞. During the process of finding SSSPs from x, if any vertex y ∈ U is visited, then
Dist(y) will be updated by the weights of corresponding edges. Let Dt(x) = {y1, y2, · · · , yi, · · · , yt}

(1 ≤ i ≤ t). If there exists y j ∈ Dt(x) (obviously, Dist(y j) , ∞) so that Dist(y j) is always less than
or equal to Dist(yi) (1 ≤ i ≤ t), then Dist(y j) can be determined as the shortest distance from x to y j

(∀yi∃y j(Dist(y j) ≤ Dist(yi) (1 ≤ i ≤ t))), as exhibited in Theorem 3.9.

Theorem 3.9. Given the IRA-space (U,R) and its source digraph D = (U, E) with positive weights. Let
x (x ∈ U) be the source vertex, Dt(x) = {y1, y2, · · · , yi, · · · , yt} (1 ≤ i ≤ t). If ∀yi∃y j (Dist(y j) ≤ Dist(yi)),
then |P(x, y j)| = Dist(y j).

Proof. For the source vertex x ∈ U, if Dt(x) = {y1, y2, · · · , yi, · · · , yt}, then we can get {y1, y2, · · · , yi,

· · · , yt} ⊆ D(x) by Dt(x) ⊆ D(x). In addition, {y1, y2, · · · , yi, · · · , yt} ⊆ descendants(x) can be found
according to the conclusion of D(x) = descendants(x) in Theorem 3.3. According to Definition 2,
for any yi ∈ descendants(x) ⇔ x

∗
→ yi (1 ≤ i ≤ t). The expression of ∀yi∃y j (Dist(y j) ≤ Dist(yi))

means that Dist(y j) is the shortest distance between x and yi (1 ≤ i ≤ t). Although x may reach y j by
passing through the other yi, the length of the path by passing through the other yi cannot be shorter
than Dist(y j) because that Dist(y j) is the shortest distance between x and yi (1 ≤ i ≤ t). Finally, we have
|P(x, y j)| = Dist(y j). □

Corollary 1. Given the IRA-space (U,R) and its source digraph D = (U, E) with positive weights. Let x
(x ∈ U) be the source vertex, D(x) = {y1, y2, · · · , yi, · · · , yn} (1 ≤ i ≤ n). If ∀yi∃y j (Dist(y j) ≤ Dist(yi)),
then |P(x, y j)| = Dist(y j).

Proof. Actually, D(x) is a special case of Dt(x). Hence, the conclusion of |P(x, y j)| = Dist(y j) is
straightforward according to Theorem 3.9. □

3.2. Heuristic search strategy

The RST operator of the k-step R-related set can be employed to traverse reachable vertices of
specified vertex x. That is to say, any vertex whom x has reachable relation “

∗
→” to can be found by

k-step R-related set. However, the implementation of the k-step R-related set is an exhaustive search
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process, which affects calculational efficiency of SSSPs. In response to this issue, a heuristic search
strategy is devised to instruct the search way of the k-step R-related set.

Given a weighted digraph D = (U, E) and a source vertex x, two sets are used, Q and T . Initially,
Q = U − {x} and T = {x}, the distances from x to all vertices in U are initialized as infinite. The shortest
paths of vertices in Q have not been determined. If the shortest path of a vertex is determined, then it
will be added into T . The details of the heuristic search strategy are as follows:

• Based on Theorem 3.6, if r(x) = {u}, then P(x, u) = (x, u). The corresponding heuristic operation
is adding u into T ;
• Based on Theorem 3.7, if R(u) = {x}, then P(x, u) = (x, u). The corresponding heuristic operation

is adding u into T ;
• Based on Theorems 3.8, if r(x) = {u1, u2, · · · , ui, · · · , un}, ∀ui∃u (w(x, u) ≤ w(x, ui) (1 ≤ i ≤ n)),

then |P(x, u)| = Dist(u) = w(x, u). The corresponding heuristic operations are adding u into T and
removing u from Q;
• Based on Theorems 3.9, if Dt(x) = {u1, u2, · · · , ui, · · · , ut}, ∀ui∃u (Dist(u) ≤ Dist(ui) (1 ≤ i ≤ t)),

then |P(x, u)| = Dist(u). The corresponding heuristic operation is using the found |P(x, u)| to
instruct the computation of k-step R-related set, that is r(t+1)(x) = r(t)(x) ∪ r(u). As a result,
Dt+1(x) = Dt(x) ∪ r(u), then remove u from Q and add u into T . Meanwhile, ∀v ∈ r(u), if v < T
and Dist(v) > Dist(u) + w(u, v), then update Dist(v) to Dist(u) + w(u, v).

In short, the weights of edges can be served as heuristic information to optimize the search way of
the k-step R-related set, which can avoid some invalid searches. The specific process of calculating
SSSPs by heuristic search strategy will be demonstrated in Section 4.

4. Proposed algorithm and the case study

In this section, an RST approach is presented to discover SSSPs of weighted digraphs, then a case
study is taken to introduce the presented approach.

4.1. An algorithm for calculating SSSPs of weighted digraphs based on RST

Combining the heuristic search strategy, a novel approach based on RST named W3SP@R is
presented to calculate SSSPs of weighted digraphs, as Algorithm 1.

Algorithm 1 An algorithm for calculating SSSPs of weighted digraphs based on RST (W3SP@R).
Input: A weighted digraph D = (U, E) and a source vertex s.
Output: Pre(x) and Dist(x); // The predecessor of each vertex x in SSSPs and the distance of each

vertex x in U from s.
1: Pre(x)← −1; Dist(x)← ∞; Q← U \ {s}; T ← {s}; k ← 1;
2: if r(s) = ∅ then
3: return; // The SSSPs from s do not exist.
4: end if
5: if r(s) = {x} then
6: Pre(x)← s; Dist(x)← w(s, x); T ← T ∪ {x};
7: end if

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2626–2645.



2636

8: if |r(s)| > 1 then
9: for x ∈ r(s) do

10: if R{x} = {s} then
11: Pre(x)← s; Dist(x)← w(s, x); T ← T ∪ {x}; continue;
12: end if
13: Pre(x)← s; Dist(x)← w(s, x);
14: end for
15: Pick out the x with the minimal Dist(x);
16: end if
17: while Q , ∅ do
18: if Dist(x) = ∞ then
19: break; // All remaining vertices belong to Q are inaccessible from s.
20: end if
21: Q← Q \ {x}; T ← T ∪ {x};
22: for y ∈ r(x) do
23: if y < T and Dist(y) > Dist(x) + w(x, y) then
24: Dist(y)← Dist(x) + w(x, y); Pre(y)← x;
25: end if
26: end for
27: k ← k + 1; Pick out the x with the minimal Dist(x);
28: end while

Phase 1 of W3SP@R (steps 2–16): Based on Theorem 3.5, determining whether SSSPs from s exists
through calculating R-related set of s, that is, r(s). If r(s) is empty, then the procedure can be ended. If
r(s) is not empty, then several vertices are picked out quickly to determine the shortest distance from s
according to Theorems 3.6 and 3.7, meanwhile, they will be added into T . By Theorem 3.8, the vertex
with the minimal distance Dist(x) is picked out.

Phase 2 of W3SP@R (steps 17–28): For the Dist(x) picked out in Phase 1, if Dist(x) is infinite, then all
remaining vertices belong to Q are inaccessible from s and the procedure can be ended. Otherwise, remove
x from Q and adding x into T . Subsequently, the k-step R-related set of x is performed heuristically. For
each vertex y in r(x), the distance from s to y (Dist(y)) and predecessor of y in SSSPs (Pre(y)) are updated.
After that, the vertex with the minimal distance Dist(x) is picked out and conducts the next iteration of
steps 17–28. With the iterations, Q will eventually become empty, which implies that all SSSPs from s
have been calculated, then the procedure can be ended.

The core of W3SP@R algorithm is Phase 2. Assuming that weighted digraph D = (U, E) is the input
of W3SP@R, where |U | = n, |E| = m. Because only a vertex x with the minimal distance Dist(x) from s
is extracted to calculate the R-related set in each iteration, and it will not be extracted again. Then total m
edges will be visited at most. Meanwhile, only the vertices belonging to the R-related set of x are found,
then n vertices will be visited in each iteration at most. If total k iterations are performed to calculate
SSSPs, then the worst calculational time of the W3SP@R algorithm is O(m) + O

(∑k
i=1 n
)
= O(m + kn).

4.2. A case study of the W3SP@R algorithm

The specific process of the W3SP@R algorithm in computing the SSSPs of an example digraph is
demonstrated as Example 3.
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Example 3. Given a weighted digraph D = (U, E) in Figure 3, the binary relation R = {(a, b), (a, c),
(a, g), (a, h), (b, a), (c, d), (c, e), (c, f ), (d, b), (d, f ), (h, c), (h, e), (i, e)} is constructed from D. Let a be
the source vertex.

a

h

b

c

g

d

i

e

f

Figure 3. The weighted digraph D of Example 3.

Table 3. The initial status of two outputs of W3SP@R.

x a b c d e f g h i
Pre(x) –1 –1 –1 –1 –1 –1 –1 –1 –1
Dist(x) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Now, W3SP@R is taken to discover SSSPs of D: In the beginning, Q is initialized to
{b, c, d, e, f , g, h, i}, T is initialized to {a}, the predecessor of each vertex in SSSPs is initialized to –1,
and the distance of each vertex in U from s is initialized to infinite. The initial status of two outputs of
W3SP@R is shown as Table 3. Starting from the source vertex a, r(a) = {b, c, g, h} , ∅. By steps 10–12,
because R{g} = {a}, then Pre(g) = a, Dist(g) = w(a, g) = 3, and T = T ∪ {g} = {a, g}. Similarly,
Pre(h) = a, Dist(h) = w(a, h) = 2, and T = T ∪ {h} = {a, g, h} by reason of R{h} = {a}. The remaining b
and c are treated by step 13, then Pre(b) = a, Dist(b) = w(a, b) = 1, Pre(c) = a, and
Dist(c) = w(a, c) = 4. After Phase 1, because the path information of b, c, g, and h are revised, then the
status of two outputs of W3SP@R is updated, as shown in Table 4. Next, according to Table 4, for the
vertices in Q, because vertex b has the minimal distance (Dist(b) = 1) from a, it is picked out by step 15
to induce the first iteration of Phase 2.

Table 4. The status of two outputs of W3SP@R after Phase 1.

x a b c d e f g h i
Pre(x) –1 a a –1 –1 –1 a a –1
Dist(x) ∞ 1 4 ∞ ∞ ∞ 3 2 ∞

Q = {b, c, d, e, f , g, h, i} , ∅. 1st iteration of Phase 2: Obviously, Dist(b) = 1 , ∞, then Q = Q− {b} =
{c, d, e, f , g, h, i} and T = T ∪ {b} = {a, b, g, h} by step 21. Because r(b) = {a} and a ∈ T, there is no
update operations on Pre(a) and Dist(a) by step 23. After the first iteration, because the path information
of any vertex has not been revised, then the status of two outputs of W3SP@R is also shown as Table 4.
Next, according to Table 4, for the vertices in Q, because vertex h has the minimal distance (Dist(h) = 2)
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from a, it is picked out by step 27 to induce the second iteration of Phase 2.
Q = {c, d, e, f , g, h, i} , ∅. 2nd iteration of Phase 2: Obviously, Dist(h) = 2 , ∞, then Q = Q − {h} =

{c, d, e, f , g, i} by step 21. By steps 22–26, r(h) = {c, e}, then there is some update operations, which are
Dist(c) = 3, Pre(c) = h, Dist(e) = 12, and Pre(e) = h. After the second iteration, because the path
information of c and e are revised, the status of two outputs of W3SP@R is updated, as shown in Table 5.
Next, according to Table 5, for the vertices in Q, because vertex c has the minimal distance (Dist(c) = 3)
from a, it is picked out by step 27 to induce the third iteration of Phase 2.

Table 5. The status of two outputs of W3SP@R after second iteration.

x a b c d e f g h i
Pre(x) –1 a h –1 h –1 a a –1
Dist(x) ∞ 1 3 ∞ 12 ∞ 3 2 ∞

Q = {c, d, e, f , g, i} , ∅. 3rd iteration of Phase 2: Obviously, Dist(c) = 3 , ∞, then Q = Q − {c} =
{d, e, f , g, i} and T = T ∪ {c} = {a, b, c, g, h} by step 21. By steps 22-26, r(c) = {d, e, f }, then there is
some update operations, which are Dist(d) = 8, Pre(d) = c, Dist(e) = 9, Pre(e) = c, Dist( f ) = 5, and
Pre( f ) = c. After the third iteration, because the path information of d, e, and f are revised, the status
of two outputs of W3SP@R is updated, as shown in Table 6. Next, according to Table 6, for the vertices
in Q, because vertex g has the minimal distance (Dist(g) = 3) from a, it is picked out by step 27 to
induce the fourth iteration of Phase 2.

Table 6. The status of two outputs of W3SP@R after third iteration.

x a b c d e f g h i
Pre(x) –1 a h c c c a a –1
Dist(x) ∞ 1 3 8 9 5 3 2 ∞

Q = {d, e, f , g, i} , ∅. 4th iteration of Phase 2: Obviously, Dist(g) = 3 , ∞, then Q = Q − {g} =
{d, e, f , i} by step 21. Because r(g) = ∅, there is no update operation by step 22. After the fourth
iteration, because the path information of any vertex has not been revised, the status of two outputs of
W3SP@R is also shown as Table 6. Next, according to Table 6, for the vertices in Q, because vertex f
has the minimal distance (Dist( f ) = 5) from a, it is picked out by step 27 to induce the fifth iteration of
Phase 2.

Q = {d, e, f , i} , ∅. 5th iteration of Phase 2: Obviously, Dist( f ) = 5 , ∞, then Q = Q−{ f } = {d, e, i}
and T = T ∪ { f } = {b, c, e, g, h, f } by step 21. Because r( f ) = ∅, there is no update operation by step 22.
After the fifth iteration, because the path information of any vertex has not been revised, the status of
two outputs of W3SP@R is also shown as Table 6. Next, according to Table 6, for the vertices in Q,
because vertex d has the minimal distance (Dist(d) = 8) from a, it is picked out by step 27 to induce the
sixth iteration of Phase 2.

Q = {d, e, i} , ∅. 6th iteration of Phase 2: Obviously, Dist(d) = 8 , ∞, then Q = Q − {d} = {e, i}
and T = T ∪ {d} = {b, c, d, e, g, h, f } by step 21. Because r(d) = {b, f } and {b, f } ⊆ T, there is no update
operations on Pre(b), Dist(b), Pre( f ), and Dist( f ) by step 23. After the sixth iteration, because the
path information of any vertex has not been revised, the status of two outputs of W3SP@R is also shown
as Table 6. Next, according to Table 6, for the vertices in Q, because vertex e has the minimal distance
(Dist(e) = 9) from a, it is picked out by step 27 to induce the seventh iteration of Phase 2.
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Q = {e, i} , ∅. 7th iteration of Phase 2: Obviously, Dist(e) = 9 , ∞, then Q = Q − {e} = {i} by step 21.
Because r(e) = ∅, there is no update operation by step 22. After the seventh iteration, because the path
information of any vertex has not been revised, the status of two outputs of W3SP@R is also shown as
Table 6. Next, according to Table 6, for the vertices in Q, because vertex i has the minimal distance
(Dist(i) = ∞) from a, it is picked out by step 27 to induce the eighth iteration of Phase 2.

Q = {i} , ∅. 8th iteration of Phase 2: By Dist(i) = ∞, the procedure is ended by steps 18–20.
Because the path information of any vertex has not been revised, the status of two outputs of W3SP@R
is also shown as Table 6.

Ultimately, the final status of two outputs of W3SP@R is recorded in Table 6. Actually, the distance
from a to itself is 0 (Dist(a) = 0). To ensure the correct execution of the W3SP@R algorithm, Dist(a)
is considered as infinite here for being neglected by the selection of minimal distance. According to
the obtained Pre(x) and Dist(x), SSSPs can be found. In detail, total 7 shortest paths from a are
discovered: (1) PU(a, b) = {a, b}, PE(a, b) = {(a, b)}, |P(a, b)| = 1; (2) PU(a, c) = {a, h, c}, PE(a, c) =
{(a, h), (h, c)}, |P(a, c)| = 3; (3) PU(a, d) = {a, h, c, d}, PE(a, d) = {(a, h), (h, c), (c, d)}, |P(a, d)| = 8;
(4) PU(a, e) = {a, h, c, e}, PE(a, e) = {(a, h), (h, c), (c, e)}, |P(a, e)| = 9; (5) PU(a, f ) = {a, h, c, f },
PE(a, f ) = {(a, h), (h, c), (c, f )}, |P(a, f )| = 5; (6) PU(a, g) = {a, g}, PE(a, g) = {(a, g)}, |P(a, g)| = 3; (7)
PU(a, h) = {a, h}, PE(a, h) = {(a, h)}, |P(a, h)| = 2.

In the process of the W3SP@R algorithm, by means of the heuristic search strategy, the exhaustive
search can be optimized. For instance, in the 2nd iteration of Phase 2, r(h) = {c, e}, then Dist(c) and
Dist(e) are updated. According to heuristic search strategy, vertex c has the minimal distance from s,
hence, only c is picked out to induce the 3rd iteration of Phase 2. Meanwhile, the search on r(e) can be
avoided. As a result, there will be an improvement on efficiency of calculating SSSPs, which will be
verified in the experimental section.

5. Experiments

In this section, a range of datasets are prepared for experiments. Furthermore, the analysis of test
results are drawn.

5.1. Experimental configuration

The experiments are conducted on a 2.80 GHz Intel(R) Core(TM) i7-7700HQ PC (Win10) with 8
GB RAM. The testing platform is MATLAB with version R2017b. A total of 12 different datasets
are utilized for experiments, which are gained from a UFMC database [36], as exhibited in Table 7.
Concretely, m and n stand for the number of edges and vertices, respectively. The comparison algorithms
are Dijkstra [11] and D Dij [14]. Dijkstra is selected because it is a well-known approach to exactly
discover SSSPs from digraphs. As for the reason of selecting the D Dij algorithm, in addition to
guaranteeing the correctness of the results, it also has less calculation time than Dijkstra.
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Table 7. The details of datasets.

Number Datasets n m
1 gre-216b 216 660
2 Harvard500 500 2563
3 Roget 1010 5074
4 CollegeMsg 1899 20296
5 ODLIS 2900 18241
6 Kohonen 3772 12729
7 Pd 5098 4509
8 California 6175 16150
9 wiki-Vote 8297 103689
10 coater2 9540 206968
11 foldoc 13356 120238
12 poli 15575 17458

5.2. Comparative study

The validity of the presented W3SP@R algorithm demands to be tested at first. The SSSPs calculated
by the Dijkstra algorithm are utilized as the comparative reference for the standard. Specifically,
MATLAB provides a method named isequal(), which can be used for data comparison. isequal() is
taken to compare the SSSPs calculated by W3SP@R with that of the Dijkstra algorithm. The final return
value obtained is 1, which means that the SSSPs calculated by W3SP@R are identical to the Dijkstra
algorithm. Therefore, it is proved that SSSPs can be exactly calculated by the W3SP@R algorithm.

The calculation efficiency of the W3SP@R algorithm also needs to be considered. Concretely,
the calculation efficiency of the Dijkstra (column 2), D Dij (column 3), and W3SP@R (column 4)
algorithms are exhibited in Table 8. The symbol of S w3s\di in column 5 stands for the acceleration ratio
of W3SP@R relative to Dijkstra. The symbol of S w3s\d di in column 6 stands for the acceleration ratio
of W3SP@R relative to D Dij.

By observing the performances of three algorithms on each dataset, it is apparent that W3SP@R
and D Dij are superior to the Dijkstra algorithm in terms of calculation time. Moreover, W3SP@R
also has comparable efficiency to the D Dij algorithm. The efficiency advantage of the W3SP@R
algorithm can be reflected through the acceleration ratio; the scope of S w3s\di is 2.79 × –6.99×, and the
scope of S w3s\d di is 1.13 × –2.09×.

Furthermore, for reflecting the efficiency of the W3SP@R algorithm more intuitively, the changing
trends of calculation time of the Dijkstra, D Dij, and W3SP@R algorithms are drawn as Figure 4. The
x-axis stands for the number of vertices and the y-axis stands for the execution time. Obviously, the
efficiency supplied by the W3SP@R algorithm is better than that of the other two algorithms.
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Table 8. The calculation efficiency of three algorithms on 12 datasets.

Datasets
Execution time (s)

S w3s\di S w3s\d di
Dijkstra [11] D Dij [14] W3SP@R

gre-216b 0.0052 0.0022 0.0013 3.89 1.60
Harvard500 0.0130 0.0057 0.0042 3.09 1.36
Roget 0.0433 0.0235 0.0155 2.79 1.51
CollegeMsg 0.1451 0.0949 0.0454 3.20 2.09
ODLIS 0.3457 0.1238 0.0856 4.04 1.45
Kohonen 0.5770 0.1330 0.1146 5.03 1.16
Pd 1.1785 0.2171 0.1783 6.61 1.22
California 1.5373 0.3220 0.2675 5.75 1.20
wiki-Vote 2.7442 0.6081 0.5066 5.42 1.20
coater2 4.5368 0.7332 0.6492 6.99 1.13
foldoc 8.0022 4.7078 2.4553 3.26 1.92
poli 8.7143 4.3446 3.0129 2.89 1.45
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Figure 4. The changing trends of calculation time of three algorithms on 12 datasets.

5.3. Related discussion

A range of experiments display that the presented W3SP@R algorithm based on RST is effective to
extract SSSPs from weighted digraphs. In terms of calculation time, the W3SP@R algorithm performs
better than the Dijkstra and D Dij algorithms. The W3SP@R algorithm combines with a heuristic
search strategy to change the way of the k-step R-related set in searching SSSPs, which can optimize the
exhaustive search. Overall, the utilization of the heuristic search strategy can lead to an improvement on
efficiency of calculating SSSPs.

Mathematical Biosciences and Engineering Volume 21, Issue 2, 2626–2645.



2642

6. Conclusions

As a crucial knowledge of graph theory, SSSPs is popularly utilized to actual research. In this paper,
a novel solution based on RST for calculating SSSPs of weighted digraphs was presented. First, in
order to acquire the fundamental theory of taking the RST approach to calculate SSSPs of weighted
digraphs, SSSPs problem was probed by aid of RST. Second, a heuristic search strategy was introduced
to optimize the search way of the k-step R-related set, which is an RST operator. By using this strategy,
some invalid searches can be avoided. Finally, through combining the heuristic search strategy, an
approach named W3SP@R based on RST for calculating SSSPs of weighted digraphs was proposed.
The testing result exhibited that the SSSPs in weighted digraphs can be exactly calculated by the
W3SP@R algorithm. Moreover, the performance of W3SP@R was competitive to that of the Dijkstra
and D Dij algorithms in terms of calculation time. In conclusion, SSSPs is successfully extracted from
weighted digraphs through using the RST approach. This work can be the antecedent study of handling
uncertain graph theory problems by means of RST.
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